edoc

The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses

Guetg, Nicole and Seddik, Riad and Vigot, Réjan and Turecek, Rostislav and Gassmann, Martin and Vogt, Kaspar E. and Bräuner-Osborne, Hans and Shigemoto, Ryuichi and Kretz, Oliver and Frotscher, Michael and Kulik, Akos and Bettler, Bernhard. (2009) The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses. Journal of Neuroscience, 29 (5). pp. 1414-1423.

[img]
Preview
PDF - Published Version
Available under License CC BY (Attribution).

803Kb

Official URL: http://edoc.unibas.ch/dok/A5262210

Downloads: Statistics Overview

Abstract

GABA(B) receptor subtypes are based on the subunit isoforms GABA(B1a) and GABA(B1b), which associate with GABA(B2) subunits to form pharmacologically indistinguishable GABA(B(1a,2)) and GABA(B(1b,2)) receptors. Studies with mice selectively expressing GABA(B1a) or GABA(B1b) subunits revealed that GABA(B(1a,2)) receptors are more abundant than GABA(B(1b,2)) receptors at glutamatergic terminals. Accordingly, it was found that GABA(B(1a,2)) receptors are more efficient than GABA(B(1b,2)) receptors in inhibiting glutamate release when maximally activated by exogenous application of the agonist baclofen. Here, we used a combination of genetic, ultrastructural and electrophysiological approaches to analyze to what extent GABA(B(1a,2)) and GABA(B(1b,2)) receptors inhibit glutamate release in response to physiological activation. We first show that at hippocampal mossy fiber (MF)-CA3 pyramidal neuron synapses more GABA(B1a) than GABA(B1b) protein is present at presynaptic sites, consistent with the findings at other glutamatergic synapses. In the presence of baclofen at concentrations <or=1 microm, both GABA(B(1a,2)) and GABA(B(1b,2)) receptors contribute to presynaptic inhibition of glutamate release. However, at lower concentrations of baclofen, selectively GABA(B(1a,2)) receptors contribute to presynaptic inhibition. Remarkably, exclusively GABA(B(1a,2)) receptors inhibit glutamate release in response to synaptically released GABA. Specifically, we demonstrate that selectively GABA(B(1a,2)) receptors mediate heterosynaptic depression of MF transmission, a physiological phenomenon involving transsynaptic inhibition of glutamate release via presynaptic GABA(B) receptors. Our data demonstrate that the difference in GABA(B1a) and GABA(B1b) protein levels at MF terminals is sufficient to produce a strictly GABA(B1a)-specific effect under physiological conditions. This consolidates that the differential subcellular localization of the GABA(B1a) and GABA(B1b) proteins is of regulatory relevance.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Division of Physiology > Molecular Neurobiology Synaptic Plasticity (Bettler)
03 Faculty of Medicine > Departement Biomedizin > Former Units at DBM > Pharmakologie (Vogt)
05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Pharmacology/Neurobiology (Vogt)
UniBasel Contributors:Gassmann, Martin and Guetg, Nicole and Seddik, Riad and Vogt, Kaspar and Bettler, Bernhard
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Society for Neuroscience
ISSN:0270-6474
e-ISSN:1529-2401
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Related URLs:
Identification Number:
edoc DOI:
Last Modified:27 Nov 2017 14:38
Deposited On:22 Mar 2012 13:30

Repository Staff Only: item control page