edoc

Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina

Callaerts, P. and Munoz-Marmol, A. M. and Glardon, S. and Castillo, E. and Sun, H. and Li, W. H. and Gehring, W. J. and Salo, E.. (1999) Isolation and expression of a Pax-6 gene in the regenerating and intact Planarian Dugesia(G)tigrina. Proceedings of the National Academy of Sciences of the United States of America, Vol. 96, H. 2. pp. 558-563.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257297

Downloads: Statistics Overview

Abstract

The Pax-6 gene encodes a transcription factor containing both a paired and a homeodomain and is highly conserved among Metazoa. In both vertebrates and invertebrates, Pax-6 is required for eye morphogenesis, development of parts of the central nervous system, and, in some phyla, for the development of olfactory sense organs. Ectopic expression of Pax-6 from insects, mammals, cephalopods, and ascidians induces ectopic eyes in Drosophila, suggesting that Pax-6 may be a universal master control gene for eye morphogenesis. Platyhelminthes are an ancient phylum, originating from the base of spiralian protostomes, that bear primitive eyes, consisting of a group of rhabdomeric photoreceptor cells enclosed in a cup of pigment cells. The analysis of Pax-6 and its expression pattern should provide insights into the ancestral function of Pax-6 in eye morphogenesis. We have identified the Pax-6 gene of the planarian Dugesia(G)tigrina (Platyhelminthes; Turbellaria; Tricladida). This gene shares significant sequence identity and conserved genomic organization with Pax-6 proteins from other phyla. Phylogenetic analysis indicates that it clusters with the other Pax-6 genes, but in the most basal position. DtPax-6 is expressed as a single transcript in both regenerating and fully grown eyes, and electron microscopy studies show strong expression in the perykarion of both photoreceptor and pigment cells. Very low levels of expression also are detectable in other body regions. Because a bona fide Pax-6 homolog so far has not been detected in diploblastic animals, we speculate that Pax-6 may be typical for triploblasts and that the appearance of additional Pax genes may have coincided with increasingly complex body plans.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Cell Biology (Gehring)
UniBasel Contributors:Gehring, Walter Jakob
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:National Academy of Sciences
ISSN:0027-8424
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:22
Deposited On:22 Mar 2012 13:30

Repository Staff Only: item control page