Occhetta, Paola and Stüdle, Chiara and Barbero, Andrea and Martin, Ivan. (2016) Learn, simplify and implement: developmental re-engineering strategies for cartilage repair. Swiss medical weekly, 146. w14346.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/53040/
Downloads: Statistics Overview
Abstract
The limited self-healing capacity of cartilage in adult individuals, and its tendency to deteriorate once structurally damaged, makes the search for therapeutic strategies following cartilage-related traumas relevant and urgent. To date, autologous cell-based therapies represent the most advanced treatments, but their clinical success is still hampered by the long-term tendency to form fibrous as opposed to hyaline cartilage tissue. Would the efficiency and robustness of therapies be enhanced if cartilage regeneration approaches were based on the attempt to recapitulate processes occurring during cartilage development ("developmental engineering")? And from this perspective, shouldn't cartilage repair strategies be inspired by development, but adapted to be effective in a context (an injured joint in an adult individual) that is different from the embryo ("developmental re-engineering")? Here, starting from mesenchymal stem/stromal cells (MSCs) as an adult cell source possibly resembling features of the embryonic mesenchyme, we propose a developmental re-engineering roadmap based on the following three steps: (i) learn from embryonic cartilage development which are the key pathways involved in MSC differentiation towards stable cartilage, (ii) simplify the complex developmental events by approximation to essential molecular pathways, possibly by using in vitro high-throughput models and, finally, (iii) implement the outcomes at the site of the injury by establishing an appropriate interface between the delivered signals and the recipient environment (e.g., by controlling inflammation and angiogenesis). The proposed re-design of developmental machinery by establishing artificial developmental events may offer a chance for regeneration to those tissues, like cartilage, with limited capacity to recover from injuries.
Faculties and Departments: | 03 Faculty of Medicine > Bereich Operative Fächer (Klinik) > Querschnittsbereich Forschung > Tissue Engineering (Martin) 03 Faculty of Medicine > Departement Klinische Forschung > Bereich Operative Fächer (Klinik) > Querschnittsbereich Forschung > Tissue Engineering (Martin) 03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Tissue Engineering (Martin) |
---|---|
UniBasel Contributors: | Martin, Ivan |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | EMH Swiss Medical Publishers |
ISSN: | 1424-7860 |
e-ISSN: | 1424-3997 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Identification Number: |
|
Last Modified: | 03 Oct 2017 08:08 |
Deposited On: | 03 Oct 2017 08:08 |
Repository Staff Only: item control page