edoc

Universal patterns of purifying selection at noncoding positions in bacteria

Molina, N. and van Nimwegen, E.. (2008) Universal patterns of purifying selection at noncoding positions in bacteria. Genome research, Vol. 18, H. 1. pp. 148-160.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5259627

Downloads: Statistics Overview

Abstract

To investigate the dependence of the number of regulatory sites per intergenic region on genome size, we developed a new method for detecting purifying selection at noncoding positions in clades of related bacterial genomes. We comprehensively quantified evidence of purifying selection at noncoding positions across bacteria and found several striking universal patterns. Consistent with selection acting at transcriptional regulatory elements near the transcription start, we find a universal positional profile of selection with respect to gene starts and ends, showing most evidence of selection immediately upstream and least immediately downstream from genes. A further set of universal features indicates that selection for translation initiation efficiency is the major determinant of the sequence composition around translation start in all clades. In addition to a peak in selection at ribosomal binding sites, the region immediately around translation start shows a universal pattern of high adenine frequency, significant selection at silent positions, and avoidance of RNA secondary structure. Surprisingly, although the number of transcription factors (TF) increases quadratically with genome size, we present several lines of evidence that small and large genomes have the same average number of regulatory sites per intergenic region. By comparing the sequence diversity of the most and least conserved DNA words in intergenic regions across clades we provide evidence that the structure of transcription regulatory networks changes dramatically with genome size: Small genomes have a small number of TFs with a large number of target sites, whereas large genomes have a large number of TFs with a small number of target sites each.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Computational & Systems Biology > Bioinformatics (van Nimwegen)
UniBasel Contributors:van Nimwegen, Erik
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Cold Spring Harbor Laboratory Press
ISSN:1088-9051
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:22
Deposited On:22 Mar 2012 13:29

Repository Staff Only: item control page