Charge Delocalization in a Homologous Series of a,a’-Bis(dianisylamino)-Substituted Thiophene Monocations

Reuter, Luisa G. and Bonn, Annabell G. and Stückl, A. Claudia and He, Bice and Baran Pati, Palas and Zade, Sanjio S. and Wenger, Oliver S.. (2012) Charge Delocalization in a Homologous Series of a,a’-Bis(dianisylamino)-Substituted Thiophene Monocations. Journal of Physical Chemistry A, 116 (27). pp. 7345-7352.

PDF - Accepted Version

Official URL: http://edoc.unibas.ch/48171/

Downloads: Statistics Overview


A homologous series of three molecules containing thiophene, bithiophene, and terthiophene bridges between two redox-active tertiary amino groups was synthesized and explored. Charge delocalization in the one-electron-oxidized forms of these molecules was investigated by a combination of cyclic voltammetry, near-infrared optical absorption spectroscopy, and EPR spectroscopy. All three cation radicals can be described as organic mixed-valence species, and for all of them the experimental data are consistent with strong delocalization of the unpaired electron. Depending on what model is used for analysis of the optical absorption data, estimates for the electronic coupling matrix element (HAB) range from ∼5000 to ∼7000 cm–1 for the shortest member of the homologous series. According to optical absorption and EPR spectroscopy, even the terthiophene radical appears to belong either to Robin–Day class III or to a category of radicals commonly denominated as borderline class II/class III systems. The finding of such a large extent of charge delocalization over up to three adjacent thiophene units is remarkable.
Faculties and Departments:05 Faculty of Science > Departement Chemie > Chemie > Anorganische Chemie (Wenger)
UniBasel Contributors:Wenger, Oliver and Bonn, Annabell G. and Heinz, Luisa
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
Note:Publication type according to Uni Basel Research Database: Journal article -- The final publication is available at American Chemical Society, see DOI link
Identification Number:
edoc DOI:
Last Modified:13 Jun 2018 06:49
Deposited On:05 Jan 2017 10:24

Repository Staff Only: item control page