edoc

Distinguishing between cooperative and unimodal downhill protein folding

Huang, Fang and Sato, Satoshi and Sharpe, Timothy D. and Ying, Liming and Fersht, Alan R.. (2007) Distinguishing between cooperative and unimodal downhill protein folding. Proceedings of the National Academy of Sciences of the United States of America, 104 (1). pp. 123-127.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/47498/

Downloads: Statistics Overview

Abstract

Conventional cooperative protein folding invokes discrete ensembles of native and denatured state structures in separate free-energy wells. Unimodal noncooperative (`downhill`) folding, however, proposes an ensemble of states occupying a single free-energy well for proteins folding at >/=4 x 10(4) s(-1) at 298 K. It is difficult to falsify unimodal mechanisms for such fast folding proteins by standard equilibrium experiments because both cooperative and unimodal mechanisms can present the same time-averaged structural, spectroscopic, and thermodynamic properties when the time scale used for observation is longer than for equilibration. However, kinetics can provide the necessary evidence. Chevron plots with strongly sloping linear refolding arms are very difficult to explain by downhill folding and are a signature for cooperative folding via a transition state ensemble. The folding kinetics of the peripheral subunit binding domain POB and its mutants fit to strongly sloping chevrons at observed rate constants of >6 x 10(4) s(-1) in denaturant solution, extrapolating to 2 x 10(5) s(-1) in water. Protein A, which folds at 10(5) s(-1) at 298 K, also has a well-defined chevron. Single-molecule fluorescence energy transfer experiments on labeled Protein A in the presence of denaturant demonstrated directly bimodal distributions of native and denatured states.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Services Biozentrum > Biophysics Facility (Sharpe)
UniBasel Contributors:Sharpe, Timothy
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:National Academy of Sciences
ISSN:0027-8424
e-ISSN:1091-6490
Note:Publication type according to Uni Basel Research Database: Journal article
Identification Number:
Last Modified:28 Nov 2017 08:18
Deposited On:28 Nov 2017 08:18

Repository Staff Only: item control page