edoc

Effects of changes in hydration on protein, glucose and lipid metabolism in man : impact on health

Keller, U. and Szinnai, G. and Bilz, S. and Berneis, K.. (2003) Effects of changes in hydration on protein, glucose and lipid metabolism in man : impact on health. European journal of clinical nutrition, Vol. 57, Suppl. 2. pp. 1-6.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6419923

Downloads: Statistics Overview

Abstract

Alterations of cell volume induced by changes of extracellular osmolality have been reported to regulate intracellular metabolic pathways. Hypo-osmotic cell swelling counteracts proteolysis and glycogen breakdown in the liver, whereas hyperosmotic cell shrinkage promotes protein breakdown, glycolysis and glycogenolysis. To investigate the effect of acute changes of extracellular osmolality on whole-body protein, glucose and lipid metabolism in vivo, we studied 10 male subjects during three conditions: (i) hyperosmolality was induced by fluid restriction and intravenous infusion of hypertonic NaCl (2-5%, wt/vol) during 17 h; (ii) hypo-osmolality was produced by intravenous administration of desmopressin, liberal water drinking and infusion of hypotonic saline (0.4%); and (iii) the iso-osmolality study comprised oral water intake ad libitum. Plasma osmolality increased from 285+/-1 to 296+/-1 mosm/kg (Ptextless0.001 during hyperosmolality, and decreased from 286+/-1 to 265+/-1 mosm/kg during hypo-osmolality (Ptextless0.001). Total body leucine flux ([1-(13)C]leucine infusion technique), reflecting whole-body protein breakdown, as well as whole-body leucine oxidation rate (irreversible loss of amino acids) decreased significantly during hypo-osmolality. The glucose metabolic clearance rate during hyperinsulinaemic-euglycemic clamping increased significantly less during hypo-osmolality than iso-osmolality, indicating diminished peripheral insulin sensitivity. Glycerol turnover (2-[(13)C]glycerol infusion technique), reflecting whole-body lipolysis, increased significantly during hypo-osmolar conditions. The results demonstrate that the metabolic adaptation to acute hypo-osmolality resembles that of acute fasting, that is, it results in protein sparing associated with increased lipolysis, ketogenesis and lipid oxidation and impaired insulin sensitivity of glucose metabolism.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Former Units at DBM > Metabolism (Keller/Müller)
03 Faculty of Medicine > Bereich Medizinische Fächer (Klinik) > Ehemalige Einheiten Medizinische Fächer (Klinik) > Klinische Endokrinologie (Keller)
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Medizinische Fächer (Klinik) > Ehemalige Einheiten Medizinische Fächer (Klinik) > Klinische Endokrinologie (Keller)
UniBasel Contributors:Keller, Ulrich O.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Nature Publishing Group
ISSN:0954-3007
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:02 Oct 2015 10:00
Deposited On:02 Oct 2015 10:00

Repository Staff Only: item control page