edoc

Tissue engineering for total meniscal substitution: animal study in sheep model : results at 12 months

Kon, E. and Filardo, G. and Tschon, M. and Fini, M. and Giavaresi, G. and Marchesini Reggiani, L. and Chiari, C. and Nehrer, S. and Martin, I. and Salter, D. M. and Ambrosio, L. and Marcacci, M.. (2012) Tissue engineering for total meniscal substitution: animal study in sheep model : results at 12 months. Tissue engineering. Part A, Vol. 18, H. 15-16. pp. 1573-1582.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6338291

Downloads: Statistics Overview

Abstract

The aim of the study was to investigate the use of a hyaluronic acid/polycaprolactone material for meniscal tissue engineering and to evaluate the tissue regeneration after the augmentation of the implant with expanded autologous chondrocytes. Eighteen skeletally mature sheep were treated. The animals were divided into three groups: cell-free scaffold, scaffold seeded with autologous chondrocytes, and meniscectomy alone. The implant was sutured to the capsule and to the meniscal ligament. At a 12-month gross assessment, histology and histomorphometry were used to assess the meniscus implant, knee joint, and osteoarthritis development. All implants showed excellent capsular ingrowth at the periphery. The implant gross assessment showed significant differences between cell-seeded and cell-free groups (p=0.011). The histological analysis indicated a cellular colonization throughout the implanted constructs. Avascular cartilaginous tissue formation was significantly more frequent in the cell-seeded constructs. Joint gross assessment showed that sheep treated with scaffold implantation achieved a significant higher score than those underwent meniscectomy (p>0.0005), and the Osteoarthritis Research Society International score showed that osteoarthritic changes were significantly less in the cell-seeded group than in the meniscectomy group (p=0.047), even though results were not significantly superior to those of the cell-free scaffold. Seeding of the scaffold with autologous chondrocytes increases its tissue regeneration capacity, providing a better fibrocartilaginous tissue formation. The study suggests the potential of the novel hyaluronic acid/polycaprolactone scaffold for total meniscal substitution, although this approach has to be further improved before being applied into clinical practice.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Tissue Engineering (Martin)
UniBasel Contributors:Martin, Ivan
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Mary Ann Liebert
ISSN:1937-3341
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:10 Apr 2015 09:12
Deposited On:10 Apr 2015 09:12

Repository Staff Only: item control page