Strong-coupling effects in dissipatively coupled optomechanical systems

Weiss, Talitha and Bruder, Christoph and Nunnenkamp, Andreas. (2013) Strong-coupling effects in dissipatively coupled optomechanical systems. New journal of physics, Vol. 15 , 045017.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6223223

Downloads: Statistics Overview


In this paper, we study cavity optomechanical systems in which the position of a mechanical oscillator modulates both the resonance frequency (dispersive coupling) and the linewidth (dissipative coupling) of a cavity mode. Using a quantum noise approach, we calculate the optical damping and the optically induced frequency shift. We find that dissipatively coupled systems feature two parameter regions providing amplification and two parameter regions providing cooling. To investigate the strong-coupling regime, we solve the linearized equations of motion exactly and calculate the mechanical and optical spectra. In addition to signatures of normal-mode splitting that are similar to the case of purely dispersive coupling, the spectra contain a striking feature that we trace back to the Fano line shape of the force spectrum. Finally, we show that purely dissipative coupling can lead to optomechanically induced transparency which will provide an experimentally convenient way of observing normal-mode splitting.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik (Bruder)
UniBasel Contributors:Bruder, Christoph and Nunnenkamp, Andreas and Weiss, Talitha
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:IOP Publishing
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:27 Feb 2014 15:46
Deposited On:27 Feb 2014 15:46

Repository Staff Only: item control page