edoc

Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T

Zahringer, U. and Lindner, B. and Knirel, Y. A. and van den Akker, W. M. R. and Hiestand, R. and Heine, H. and Dehio, C.. (2004) Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. Journal of Biological Chemistry, 279 (20). pp. 21046-21054.

[img]
Preview
PDF - Published Version
273Kb

Official URL: http://edoc.unibas.ch/dok/A5259008

Downloads: Statistics Overview

Abstract

The facultative intracellular pathogen Bartonella henselae is responsible for a broad range of clinical manifestations, including the formation of vascular tumors as a result of increased proliferation and survival of colonized endothelial cells. This remarkable interaction with endotoxin-sensitive endothelial cells and the apparent lack of septic shock are considered to be due to a reduced endotoxic activity of the B. henselae lipopolysaccharide. Here, we show that B. henselae ATCC 49882(T) produces a deep-rough-type lipopolysaccharide devoid of O-chain and report on its complete structure and Toll-like receptor-dependent biological activity. The major short-chain lipopolysaccharide was studied by chemical analyses, electrospray ionization, and matrix-assisted laser desorption/ionization mass spectrometry, as well as by NMR spectroscopy after alkaline deacylation. The carbohydrate portion of the lipopolysaccharide consists of a branched trisaccharide containing a glucose residue attached to position 5 of an alpha-(2--<4)-linked 3-deoxy-d-manno-oct-2-ulosonic acid disaccharide. Lipid A is a pentaacylated beta-(1'--<6)-linked 2,3-diamino-2,3-dideoxy-glucose disaccharide 1,4'-bisphosphate with two amide-linked residues each of 3-hydroxydodecanoic and 3-hydroxyhexadecanoic acids and one residue of either 25-hydroxyhexacosanoic or 27-hydroxyoctacosanoic acid that is O-linked to the acyl group at position 2'. The lipopolysaccharide studied activated Toll-like receptor 4 signaling only to a low extent (1,000-10,000-fold lower compared with that of Salmonella enterica sv. Friedenau) and did not activate Toll-like receptor 2. Some unusual structural features of the B. henselae lipopolysaccharide, including the presence of a long-chain fatty acid, which are shared by the lipopolysaccharides of other bacteria causing chronic intracellular infections (e.g. Legionella and Chlamydia), may provide the molecular basis for low endotoxic potency.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Infection Biology > Molecular Microbiology (Dehio)
UniBasel Contributors:Dehio, Christoph
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Society for Biochemistry and Molecular Biology
ISSN:0021-9258
e-ISSN:1083-351X
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:15 Nov 2017 10:51
Deposited On:22 Mar 2012 13:21

Repository Staff Only: item control page