edoc

Formation of threohydrobupropion from bupropion is dependent on 11β-hydroxysteroid dehydrogenase 1

Meyer, Arne and Vuorinen, Anna and Zielinska, Agnieszka E. and Strajhar, Petra and Lavery, Gareth G. and Schuster, Daniela and Odermatt, Alex. (2013) Formation of threohydrobupropion from bupropion is dependent on 11β-hydroxysteroid dehydrogenase 1. Drug metabolism and disposition, Vol. 41, H. 9. pp. 1671-1678.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6194602

Downloads: Statistics Overview

Abstract

Bupropion is widely used for treatment of depression and as a smoking-cessation drug. Despite more than 20 years of therapeutic use, its metabolism is not fully understood. While CYP2B6 is known to form hydroxybupropion, the enzyme(s) generating erythro- and threohydrobupropion have long remained unclear. Previous experiments using microsomal preparations and the nonspecific inhibitor glycyrrhetinic acid suggested a role for 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) in the formation of both erythro- and threohydrobupropion. 11β-HSD1 catalyzes the conversion of inactive glucocorticoids (cortisone, prednisone) to their active forms (cortisol, prednisolone). Moreover, it accepts several other substrates. Here, we used for the first time recombinant 11β-HSD1 to assess its role in the carbonyl reduction of bupropion. Furthermore, we applied human, rat, and mouse liver microsomes and a selective inhibitor to characterize species-specific differences and to estimate the relative contribution of 11β-HSD1 to bupropion metabolism. The results revealed 11β-HSD1 as the major enzyme responsible for threohydrobupropion formation. The reaction was stereoselective and no erythrohydrobupropion was formed. Human liver microsomes showed 10 and 80 times higher activity than rat and mouse liver microsomes, respectively. The formation of erythrohydrobupropion was not altered in experiments with microsomes from 11β-HSD1-deficient mice or upon incubation with 11β-HSD1 inhibitor, indicating the existence of another carbonyl reductase that generates erythrohydrobupropion. Molecular docking supported the experimental findings and suggested that 11β-HSD1 selectively converts R-bupropion to threohydrobupropion. Enzyme inhibition experiments suggested that exposure to bupropion is not likely to impair 11β-HSD1-dependent glucocorticoid activation but that pharmacological administration of cortisone or prednisone may inhibit 11β-HSD1-dependent bupropion metabolism.
Faculties and Departments:05 Faculty of Science > Departement Pharmazeutische Wissenschaften > Pharmazie > Molecular and Systems Toxicology (Odermatt)
UniBasel Contributors:Odermatt, Alex and Strajhar, Petra
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Williams and Wilkins
ISSN:1521-009X
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:06 Dec 2013 09:35
Deposited On:06 Dec 2013 09:35

Repository Staff Only: item control page