edoc

Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins

Strelkov, S. V. and Schumacher, J. and Burkhard, P. and Aebi, U. and Herrmann, H.. (2004) Crystal structure of the human lamin A coil 2B dimer: implications for the head-to-tail association of nuclear lamins. Journal of molecular biology, Vol. 343, H. 4. pp. 1067-1080.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5258512

Downloads: Statistics Overview

Abstract

Nuclear intermediate filaments (IFs) are made from fibrous proteins termed lamins that assemble, in association with several transmembrane proteins of the inner nuclear membrane and an unknown number of chromatin proteins, into a filamentous scaffold called the nuclear lamina. In man, three types of lamins with significant sequence identity, i.e. lamin A/C, lamin B1 and B2, are expressed. The molecular characteristics of the filaments they form and the details of the assembly mechanism are still largely unknown. Here we report the crystal structure of the coiled-coil dimer from the second half of coil 2 from human lamin A at 2.2A resolution. Comparison to the recently solved structure of the homologous segment of human vimentin reveals a similar overall structure but a different distribution of charged residues and a different pattern of intra- and interhelical salt bridges. These features may explain, at least in part, the differences observed between the lamin and vimentin assembly pathways. Employing a modeled lamin A coil 1A dimer, we propose that the head-to-tail association of two lamin dimers involves strong electrostatic attractions of distinct clusters of negative charge located on the opposite ends of the rod domain with arginine clusters in the head domain and the first segment of the tail domain. Moreover, lamin A mutations, including several in coil 2B, have been associated with human laminopathies. Based on our data most of these mutations are unlikely to alter the structure of the dimer but may affect essential molecular interactions occurring in later stages of filament assembly and lamina formation.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Structural Biology, associated group (Burkhard)
UniBasel Contributors:Burkhard, Peter
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Elsevier
ISSN:0022-2836
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:20

Repository Staff Only: item control page