edoc

Ceramic materials lead to underestimated DNA quantifications : a method for reliable measurements

Piccinini, E. and Sadr, N. and Martin, I.. (2010) Ceramic materials lead to underestimated DNA quantifications : a method for reliable measurements. European cells & materials, 20. pp. 38-44.

[img]
Preview
PDF - Published Version
134Kb

Official URL: http://edoc.unibas.ch/dok/A6003826

Downloads: Statistics Overview

Abstract

In the context of investigating cell-material interactions or of material-guided generation of tissues, DNA quantification represents an elective method to precisely assess the number of cells attached or embedded within different substrates. Nonetheless, nucleic acids are known to electrostatically bind to ceramics, a class of materials commonly employed in orthopaedic implants and bone tissue engineering scaffolds. This phenomenon is expected to lead to a relevant underestimation of the DNA amount, resulting in erroneous experimental readouts. The present work aims at *lpar;i) investigating the effects of DNA-ceramic bond occurrence on DNA quantification, and (ii) developing a method to reliably extract and accurately quantify DNA in ceramic-containing specimens. A cell-free model was adopted to study DNA-ceramic binding, highlighting an evident DNA loss (up to 90%) over a wide range of DNA/ceramic ratios (w/w). A phosphate buffer-based (800 mM) enzymatic extraction protocol was developed and its efficacy in terms of reliable DNA extraction and measurement was confirmed with commonly used fluorometric assays, for various ceramic substrates. The proposed buffered DNA extraction technique was validated in a cell-based experiment showing 95% DNA retrieval in a cell seeding experiment, demonstrating a 3.5-fold increase in measured DNA amount as compared to a conventional enzymatic extraction protocol. In conclusion, the proposed phosphate buffer method consistently improves the DNA extraction process assuring unbiased analysis of samples and allowing accurate and sensitive cell number quantification on ceramic containing substrates.
Faculties and Departments:03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Tissue Engineering (Martin)
UniBasel Contributors:Martin, Ivan
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:AO Research Institute Davos
e-ISSN:1473-2262
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Related URLs:
Identification Number:
edoc DOI:
Last Modified:30 Jan 2018 07:54
Deposited On:26 Apr 2013 07:01

Repository Staff Only: item control page