Folding of the transcription factor Brinker and interactions of the bacterial second messenger c-di-GMP studied by NMR

Gentner, Martin. Folding of the transcription factor Brinker and interactions of the bacterial second messenger c-di-GMP studied by NMR. 2013, Doctoral Thesis, University of Basel, Faculty of Science.


Official URL: http://edoc.unibas.ch/diss/DissB_10327

Downloads: Statistics Overview


Nuclear magnetic resonance (NMR) spectroscopy is a technique, which allows the non-invasive investigation of
structures, dynamics and interactions of biomolecules.
The main goal of this thesis was to elucidate the folding mechanism of the transcription factor Brinker and its
implications for DNA recognition as well as the characterization of unfolded protein states by NMR.
This constitutes the first part of this thesis.
The transcription factor Brinker is a nuclear repressor, which is involved in
cellular growth and differentiation.
In the absence of DNA, Brinker is completely disordered.
However, in the presence of DNA or at low temperatures, the Brinker DNA binding domain (BrkDBD) adopts a well-folded structure.
Thus, BrkDBD represents an extreme case of the coupling between binding and folding phenomenon.
We have aimed to elucidate this folding mechanism in order to understand its implications for DNA recognition.
From our data, it is clear that the BrkDBD folding energy landscape sharply depends on buffer anion type and concentration.
We show that folded BrkDBD always adopts the same structure irrespective of the conditions.
Our data indicate helical propensity for 3 of the 4 native helices even in unfolded BrkDBD, which may serve as
initial contact points for DNA recognition.
Resonance broadening due to conformational exchange on the micro- to millisecond time scale between folded and
unfolded BrkDBD was analyzed by NMR relaxation dispersion experiments indicating a two-state
folding mechanism.
Only few residues show a different behavior and these are all located at the DNA binding interface.
This local conformational heterogeneity may be important for DNA recognition.
Based on these findings, we propose a mechanism of DNA recognition by BrkDBD, where the electrostatics-driven folding
is a key component, accelerating the recognition process.
In addition, we have analyzed the side-chain chi1-rotamer distribution of urea-denatured ubiquitin and protein G,
revealing that individual residues show significant deviations from statistical-coil ensemble averages,
indicating local bias towards the folded state.
The second part of this thesis describes the quantitative characterization of the intermolecular interactions between monomers
of the bacterial second messenger c-di-GMP at physiologically relevant concentrations.
C-di-GMP is a bacterial second messenger, involved in many signaling events.
Its most important effect is to trigger the transition from motile to sessile bacterial life-styles which plays a major
role in biofilm formation.
In solution, c-di-GMP has been reported to form several oligomers in the presence of monovalent cations, particularly
However, only monomeric and dimeric c-di-GMP have been observed in complexes with proteins or RNA.
We have carried out a detailed kinetic and thermodynamic analysis of c-di-GMP polymorphism in the presence of potassium,
which showed that predominantly monomers and only few dimers exist at physiological concentrations.
Additionally, we present NOE and ROE structural information on c-di-GMP oligomers, which
indicate that these are not entirely all-syn and all-anti as opposed to the literature.
Advisors:Grzesiek, Stephan
Committee Members:Häussinger, Daniel
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Structural Biology & Biophysics > Structural Biology (Grzesiek)
UniBasel Contributors:Gentner, Martin and Grzesiek, Stephan and Häussinger, Daniel
Item Type:Thesis
Thesis Subtype:Doctoral Thesis
Thesis no:10327
Thesis status:Complete
Number of Pages:139 S.
Identification Number:
edoc DOI:
Last Modified:22 Apr 2018 04:31
Deposited On:14 Mar 2013 10:35

Repository Staff Only: item control page