edoc

Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36

Kamiya, Y. and Kamiya, D. and Yamamoto, K. and Nyfeler, B. and Hauri, H. -P. and Kato, K.. (2008) Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. Journal of Biological Chemistry, Vol. 283, H. 4. pp. 1857-1861.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257733

Downloads: Statistics Overview

Abstract

ERGIC-53, VIPL, and VIP36 are related type 1 membrane proteins of the mammalian early secretory pathway. They are classified as L-type lectins because of their luminal carbohydrate recognition domain, which exhibits homology to leguminous lectins. These L-type lectins have different intracellular distributions and dynamics in the endoplasmic reticulum-Golgi system of the secretory pathway and interact with N-glycans of glycoproteins in a Ca(2+)-dependent manner, suggesting a role in glycoprotein sorting and trafficking. To understand the function of these lectins, knowledge of their carbohydrate specificity is crucial but only available for VIP36 (Kamiya, Y., Yamaguchi, Y., Takahashi, N., Arata, Y., Kasai, K. I., Ihara, Y., Matsuo, I., Ito, Y., Yamamoto, K., and Kato, K. (2005) J. Biol. Chem. 280, 37178-37182). Here we provide a comprehensive and quantitative analysis of sugar recognition of the carbohydrate recognition domains of ERGIC-53 and VIPL in comparison with VIP36 using a pyridylaminated sugar library in conjunction with frontal affinity chromatography. Frontal affinity chromatography revealed selective interaction of VIPL and VIP36 with the deglucosylated trimannose in the D1 branch of high-mannose-type oligosaccharides but with different pH dependence. ERGIC-53 bound high-mannose-type oligosaccharides with low affinity and broad specificity, not discriminating between monoglucosylated and deglucosylated high-mannosetype oligosaccharides. Based on the sugar-binding properties in conjunction with known features of these proteins, we propose a model for the action of the three lectins in glycoprotein guidance and trafficking. Moreover, structure-based mutagenesis revealed that the sugar-binding properties of these L-type lectins can be switched by single amino acid substitutions.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Pharmacology/Neurobiology (Hauri)
UniBasel Contributors:Hauri, Hans-Peter
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Society of Biological Chemists
ISSN:0021-9258
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:20
Deposited On:22 Mar 2012 13:18

Repository Staff Only: item control page