Peptide binding to lipid bilayers : nonclassical hydrophobic effect and membrane-induced pK shifts

Beschiaschvili, G. and Seelig, J.. (1992) Peptide binding to lipid bilayers : nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry, Vol. 31, H. 41. pp. 10044-10053.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5257458

Downloads: Statistics Overview


The binding of the cyclic peptide (+)-D-Phe1-Cys2-Phe3-D-Trp4-(+)-Lys5-Thr6- Cys7-Thr(ol)8, a somatostatin analogue (SMS 201-995), and the potential-sensitive dye 2-(p-toluidinyl)naphthalene-6-sulfonate (TNS) to lipid membranes was investigated with high-sensitivity titration calorimetry. The binding enthalpy of the peptide was found to vary dramatically with the vesicle size. For highly curved vesicles with a diameter of d congruent to 30 nm, the binding reaction was enthalpy-driven with delta H congruent to -7.0 +/- 0.3 kcal/mol; for large vesicles with more tightly packed lipids, the binding reaction became endothermic with delta H congruent to +1.0 +/- 0.3 kcal/mol and was entropy-driven. In contrast, the free energy of binding was almost independent of the vesicle size. The thermodynamic analysis suggests that the observed enthalpy-entropy compensation of about 8 kcal/mol can be related to a change in the internal tension of the bilayer and is brought about by an entropy increase of the lipid matrix. The "entropy potential" of the membrane may have its molecular origin in the excitation of the hydrocarbon chains to a more disordered configuration and may play a more important role in membrane partition equilibria than the classical hydrophobic effect. The binding of the peptide to the membrane surface induced a pK shift of the peptide terminal amino group. Neutral membranes were found to destabilize the NH3+ group, leading to a decrease in pK; negatively charged membranes, generated an apparent increase in pK due to the increase in proton concentration near the membrane surface. No pK shifts were seen for TNS. Titration calorimetry combined with the Gouy-Chapman theory can be used to determine both the reaction enthalpy and the binding constant of the membrane-binding equilibrium.
Faculties and Departments:05 Faculty of Science > Departement Biozentrum > Former Organization Units Biozentrum > Biophysical Chemistry (Seelig J)
UniBasel Contributors:Seelig, Joachim
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Chemical Society
Note:Publication type according to Uni Basel Research Database: Journal article
Last Modified:22 Mar 2012 14:19
Deposited On:22 Mar 2012 13:18

Repository Staff Only: item control page