edoc

Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus

Wu, J. F. and Holmes, E. and Xue, J. and Xiao, S. H. and Singer, B. H. and Tang, H. R. and Utzinger, J. and Wang, Y. L.. (2010) Metabolic alterations in the hamster co-infected with Schistosoma japonicum and Necator americanus. International journal for parasitology, Vol. 40, H. 6. pp. 695-703.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5842949

Downloads: Statistics Overview

Abstract

Co-infection with hookworm and schistosomes is a common phenomenon in sub-Saharan Africa, as well as in parts of South America and southeast Asia. As a first step towards understanding the metabolic response of a hookworm-schistosome co-infection in humans, we investigated the metabolic consequences of co-infection in an animal model, using a nuclear magnetic resonance (NMR)-based metabolic profiling technique, combined with multivariate statistical analysis. Urine and serum samples were obtained from hamsters experimentally infected with 250 Necator americanus infective L(3) and 100 Schistosoma japonicum cercariae simultaneously. In the co-infection model, similar worm burdens were observed as reported for single infection models, whereas metabolic profiles of co-infection represented a combination of the altered metabolite profiles induced by single infections with these two parasites. Consistent differences in metabolic profiles between the co-infected and non-infected control hamsters were observed from 4 weeks p.i. onwards. The predominant metabolic alterations in co-infected hamsters consisted of depletion of amino acids, tricarboxylic acid cycle intermediates (e.g. citrate and succinate) and glucose. Moreover, alterations of a series of gut microbial-related metabolites, such as decreased levels of hippurate, 3-hydroxyphenylpropionic acid, 4-hydroxyphenylpropionic acid and trimethylamine-N-oxide, and increased concentrations of 4-cresol glucuronide and phenylacetylglycine were associated with co-infection. Our results provide a first step towards understanding the metabolic response of an animal host to multiple parasitic infections
Faculties and Departments:09 Associated Institutions > Swiss Tropical and Public Health Institute (Swiss TPH) > Department of Epidemiology and Public Health (EPH) > Eco System Health Sciences > Health Impact Assessment (Utzinger)
UniBasel Contributors:Utzinger, Jürg
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Elsevier
ISSN:0020-7519
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:14 Sep 2012 07:19
Deposited On:14 Sep 2012 06:51

Repository Staff Only: item control page