Böhi, Pascal and Riedel, Max F. and Hänsch, Theodor W. and Treutlein, Philipp. (2010) Imaging of microwave fields using ultracold atoms. Applied physics letters, 97 (5). 051101.
|
PDF
- Published Version
937Kb |
Official URL: http://edoc.unibas.ch/dok/A5841510
Downloads: Statistics Overview
Abstract
We report a technique that uses clouds of ultracold atoms as sensitive, tunable, and noninvasive probes for microwave field imaging with micrometer spatial resolution. The microwave magnetic field components drive Rabi oscillations on atomic hyperfine transitions whose frequency can be tuned with a static magnetic field. Readout is accomplished using state-selective absorption imaging. Quantitative data extraction is simple and it is possible to reconstruct the distribution of microwave magnetic field amplitudes and phases. While we demonstrate two-dimensional imaging, an extension to three-dimensional imaging is straightforward. We use the method to determine the microwave near-field distribution around a coplanar waveguide integrated on an atom chip.
Faculties and Departments: | 05 Faculty of Science > Departement Physik > Physik > Experimentelle Nanophysik (Treutlein) |
---|---|
UniBasel Contributors: | Treutlein, Philipp and Böhi, Pascal and Riedel, Max |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | American Institute of Physics |
ISSN: | 0003-6951 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 05 Apr 2018 15:03 |
Deposited On: | 14 Sep 2012 06:47 |
Repository Staff Only: item control page