Magnetic order in Kondo-Lattice systems due to electron-electron interactions

Braunecker, Bernd and Simon, Pascal and Loss, Daniel. (2008) Magnetic order in Kondo-Lattice systems due to electron-electron interactions. In: Solid-state quantum computing, AIP Conference Proceedings Volume 1074. Melville (N.Y.), pp. 62-67.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5254595

Downloads: Statistics Overview


The hyperfine interaction between the electron spin and the nuclear spins is one of the main sources of decoherence for spin qubits when the nuclear spins are disordered. An ordering of the latter largely suppresses this source of decoherence. Here we show that such an ordering can occur through a thermodynamic phase transition in two-dimensional (2D) Kondo-lattice type systems. We specifically focus on nuclear spins embedded in a 2D electron gas. The nuclear spins interact with each other through the RKKY interaction, which is carried by the electron gas. We show that a nuclear magnetic order at finite temperature relies on the anomalous behavior of the 2D static electron spin susceptibility due to electron-electron interactions. This provides a connection between low-dimensional magnetism and non-analyticities in interacting 2D electron systems. We discuss the conditions for nuclear magnetism, and show that the associated Curie temperature increases with the electron-electron interactions and may reach up into the millikelvin regime. The further reduction of dimensionality to one dimension is shortly discussed.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Theoretische Physik Mesoscopics (Loss)
UniBasel Contributors:Loss, Daniel
Item Type:Conference or Workshop Item, refereed
Conference or workshop item Subtype:Conference Paper
Publisher:American institute of physics
Note:Publication type according to Uni Basel Research Database: Conference paper
Identification Number:
Last Modified:22 Mar 2012 14:29
Deposited On:22 Mar 2012 14:07

Repository Staff Only: item control page