edoc

The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion

Copanaki, Ekaterini and Schürmann, Tina and Eckert, Anne and Leuner, Kristina and Müller, Walter E. and Prehn, Jochen H. M. and Kögel, Donat. (2007) The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion. Biochimica et biophysica acta. Molecular cell research, Vol. 1773, Issue 2. pp. 157-165.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5253458

Downloads: Statistics Overview

Abstract

Here we investigated the role of the amyloid precursor protein (APP) in regulation of Ca(2+) store depletion-induced neural cell death. Ca(2+) store depletion from the endoplasmic reticulum (ER) was induced by the SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase) inhibitor thapsigargin which led to a rapid induction of the unfolded protein response (UPR) and a delayed activation of executioner caspases in the cultures. Overexpression of APP potently enhanced cytosolic Ca(2+) levels and cell death after ER Ca(2+) store depletion in comparison to vector-transfected controls. GeneChip and RT-PCR analysis revealed that the expression of classical UPR chaperone genes was not altered by overexpression of APP. Interestingly, the induction of the ER stress-responsive pro-apoptotic transcription factor CHOP was significantly upregulated in APP-overexpressing cells in comparison to vector-transfected controls. Chelation of intracellular Ca(2+) with BAPTA-AM revealed that enhanced CHOP expression after store depletion occurred in a Ca(2+)-dependent manner in APP-overexpressing cells. Prevention of CHOP induction by BAPTA-AM and by RNA interference was also able to abrogate the potentiating effect of APP on thapsigargin-induced apoptosis. Application of the store-operated channel (SOC)-inhibitors SK & F96365 and 2-APB downmodulated APP-triggered potentiation of cytosolic Ca(2+) levels and apoptosis after treatment with thapsigargin. Our data demonstrate that APP significantly modulates Ca(2+) store depletion-induced cell death in a SOC- and CHOP-dependent manner, but independent of the UPR.
Faculties and Departments:03 Faculty of Medicine > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK
UniBasel Contributors:Eckert, Anne
Item Type:Article, refereed
Article Subtype:Research Article
Bibsysno:Link to catalogue
Publisher:Elsevier
ISSN:0006-3002
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:27
Deposited On:22 Mar 2012 13:59

Repository Staff Only: item control page