edoc

Multiscaling behavior of atomic-scale friction

Jannesar, M. and Jamali, T. and Sadeghi, A. and Movahed, S. M. S. and Fesler, G. and Meyer, E. and Khoshnevisan, B. and Jafari, G. R.. (2017) Multiscaling behavior of atomic-scale friction. Physical Review E, 95 (6). 062802.

[img]
Preview
PDF - Published Version
415Kb

Official URL: http://edoc.unibas.ch/58440/

Downloads: Statistics Overview

Abstract

The scaling behavior of friction between rough surfaces is a well-known phenomenon. It might be asked whether such a scaling feature also exists for friction at an atomic scale despite the absence of roughness on atomically flat surfaces. Indeed, other types of fluctuations, e.g., thermal and instrumental fluctuations, become appreciable at this length scale and can lead to scaling behavior of the measured atomic-scale friction. We investigate this using the lateral force exerted on the tip of an atomic force microscope (AFM) when the tip is dragged over the clean NaCl (001) surface in ultra-high vacuum at room temperature. Here the focus is on the fluctuations of the lateral force profile rather than its saw-tooth trend; we first eliminate the trend using the singular value decomposition technique and then explore the scaling behavior of the detrended data, which contains only fluctuations, using the multifractal detrended fluctuation analysis. The results demonstrate a scaling behavior for the friction data ranging from 0.2 to 2 nm with the Hurst exponent H = 0.61 +/- 0.02 at a 1 sigma confidence interval. Moreover, the dependence of the generalized Hurst exponent, h(q), on the index variable q confirms the multifractal or multiscaling behavior of the nanofriction data. These results prove that fluctuation of nanofriction empirical data has a multifractal behavior which deviates from white noise.
Faculties and Departments:05 Faculty of Science > Departement Physik > Physik > Nanomechanik (Meyer)
UniBasel Contributors:Meyer, Ernst
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physical Society
ISSN:2470-0045
e-ISSN:2470-0053
Note:Publication type according to Uni Basel Research Database: Journal article
Language:English
Identification Number:
edoc DOI:
Last Modified:15 Jan 2018 14:38
Deposited On:15 Jan 2018 14:38

Repository Staff Only: item control page