edoc

Items where contributor is "Lenzmann, Enno"

Up a level
Export as [feed] Atom [feed] RSS 1.0 [feed] RSS 2.0
Group by: Date | Item Type | Refereed | No Grouping
Jump to: No | Yes

No

Boulenger, Thomas and Lenzmann, Enno. (2015) Blowup for Biharmonic NLS. Preprints Fachbereich Mathematik, 2015 (17).

Boulenger, Thomas and Himmelsbach, Dominik and Lenzmann, Enno. (2015) Blowup for fractional NLS. Preprints Fachbereich Mathematik, 2015 (31).

Frank, Rupert L. and Lenzmann, Enno and Silvestre, Luis. (2013) Uniqueness of Radial Solutions for the Fractional Laplacian. Preprints Fachbereich Mathematik, 2013 (06).

Yes

Lenzmann, Enno and Schikorra, Armin. (2018) On energy-critical half-wave maps into S^2. Inventiones Mathematicae. pp. 1-82.

Gérard, Patrick and Lenzmann, Enno and Pocovnicu, Oana and Raphael, Pierre. (2018) A Two-Soliton with Transient Turbulent Regime for the Cubic Half-Wave Equation on the Real Line. Annals of PDE, 4 (7).

Gérard, Patrick and Lenzmann, Enno. (2018) A Lax Pair Structure for the Half-Wave Maps Equation. Letters in Mathematical Physics, 108 (7). pp. 1635-1648.

Frank, Rupert L. and Lenzmann, Enno and Silvestre, Luis. (2016) Uniqueness of radial solutions for the fractional Laplacian. Communications on Pure and Applied Mathematics, 69 (9). pp. 1671-1726.

Boulenger, Thomas and Himmelsbach, Dominik and Lenzmann, Enno. (2016) Blowup for fractional NLS. Journal of Functional Analysis, 271 (9). pp. 2569-2603.

Herr, Sebastian and Lenzmann, Enno. (2014) The Boson star equation with initial data of low regularity. Nonlinear analysis, Vol. 97. pp. 125-137.

Kirkpatrick, Kay and Lenzmann, Enno and Staffilani, Gigliola. (2013) On the continuum limit for discrete NLS with long-range lattice interactions. Communications in mathematical physics, Vol. 317, H. 3. pp. 563-591.

Krieger, Joachim and Lenzmann, Enno and Raphaël, Pierre. (2013) Nondispersive solutions to the L²-critical half-wave equation. Archive for rational mechanics and analysis, Vol. 209, H. 1. pp. 61-129.

Frank, Rupert L. and Lenzmann, Enno. (2013) Uniqueness of non-linear ground states for fractional Laplacians in $BbbR. Acta mathematica, Vol. 210, H. 2. pp. 261-318.

Lenzmann, Enno and Lewin, Mathieu. (2013) Dynamical ionization bounds for atoms. Analysis of PDEs, Vol. 6, H. 5. pp. 1183-1211.

Lenzmann, Enno and Lewin, Mathieu. (2011) On singularity formation for the $L^2$-critical Boson star equation. Nonlinearity, 24 (12). pp. 3515-3540.

Hainzl, Christian and Lenzmann, Enno and Lewin, Mathieu and Schlein, Benjamin. (2010) On blowup for time-dependent generalized Hartree-Fock equations. Annales Henri Poincaré, 11 (6). pp. 1023-1052.

Lenzmann, Enno and Lewin, Mathieu. (2010) Minimizers for the Hartree-Fock-Bogoliubov theory of neutron stars and white dwarfs. Duke mathematical journal, 152 (2). pp. 257-315.

Krieger, Joachim and Lenzmann, Enno and Raphaël, Pierre. (2009) On stability of pseudo-conformal blowup for $L^2$-critical Hartree NLS. Annales Henri Poincaré, 10 (6). pp. 1159-1205.

Lenzmann, Enno. (2009) Uniqueness of ground states for pseudorelativistic Hartree equations. Analysis & PDE, 2 (1). pp. 1-27.

Fröhlich, Jürg and Knowles, Antti and Lenzmann, Enno. (2007) Semi-classical dynamics in quantum spin systems. Letters in Mathematical Physics, 82 (2-3). pp. 275-296.

Fröhlich, Jürg and Lenzmann, Enno. (2007) Blowup for nonlinear wave equations describing boson stars. Communications on Pure and Applied Mathematics, 60 (11). pp. 1691-1705.

Lenzmann, Enno. (2007) Well-posedness for semi-relativistic Hartree equations of critical type. Mathematical Physics, Analysis and Geometry, 10 (1). pp. 43-64.

Fröhlich, Jürg and Lenzmann, Enno. (2007) Dynamical collapse of white dwarfs in Hartree- and Hartree-Fock theory. Communications in Mathematical Physics, 274 (3). pp. 737-750.

Fröhlich, Jürg and Jonsson, B. Lars G. and Lenzmann, Enno. (2007) Boson stars as solitary waves. Communications in Mathematical Physics, 274 (1). pp. 1-30.

Fröhlich, J. and Jonsson, B. L. G. and Lenzmann, E.. (2007) Effective dynamics for boson stars. Nonlinearity, 20 (5). pp. 1031-1075.