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Abstract 21 

22 

Many cellular processes including apoptosis, autophagy, translation, energy 23 

metabolism, and inflammation are controlled by the mammalian target of rapamycin 24 

(mTOR) kinase and the endoplasmic reticulum (ER) stress pathway, also known as 25 

the unfolded protein response (UPR). While both of these signaling nodes have 26 

attracted wide attention in fundamental cell biology and drug discovery, crosstalk 27 

between the two pathways has emerged only very recently. mTOR complex 1 28 

(mTORC1) operates both upstream and downstream of ER stress signals, which can 29 

either enhance or antagonize the anabolic output of mTORC1. Upon prolonged ER 30 

stress, mTORC1 contributes to apoptotic signaling by suppressing the survival kinase 31 

Akt through feedback inhibition. Likewise, chronic ER stress obstructs activation of 32 

Akt by mTOR complex 2. This review surveys existing knowledge on mTOR–ER 33 

stress intersections and highlights potential therapeutic implications. 34 

35 
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Introduction 36 

37 

Cell growth, proliferation, survival, and energetic maintenance are intimately 38 

connected processes. External signals such as nutrient availability, growth factors, or 39 

inflammatory mediators are decoded by cellular sentinels, which – where appropriate 40 

– can remodel cell physiology. Thus, cells respond to positive growth signals by41 

promoting anabolism (i.e. the buildup of macromolecules and the inhibition of 42 

degradative reactions) and to unfavorable growth conditions by eliciting stress 43 

pathways. The mammalian target of rapamycin (mTOR) signaling pathways and the 44 

endoplasmic reticulum (ER) stress response (the so-called “unfolded protein 45 

response”, UPR) play increasingly recognized roles in this interplay [1, 2]. These two 46 

apposing signaling networks have traditionally been considered separate pathways 47 

and the identification of mTOR–UPR interconnections, which is reviewed herein, is a 48 

relatively new area of research. 49 

The atypical serine/threonine kinase mTOR is a master regulator of cell growth and 50 

metabolism. It exists in two complexes, mTORC1 and mTORC2, which exhibit 51 

different subunit compositions and execute distinct cellular tasks [3, 4] (boxes 1 and 52 

2). mTOR complexes reside in the cytoplasm, where they are often found in 53 

association with cellular membranes ( see sections “Signal integration by mTORC1” 54 

and “mTORC2 and the ER”). Several pathways downstream of the mTOR complexes 55 

are known [4] and new ones are constantly being discovered. The UPR, on the other 56 

hand, is a conglomeration of signaling pathways originating from the ER (box 3). It is 57 

known to be triggered when the protein folding capacity in the ER is overwhelmed 58 

and “ER stress” ensues. The membrane-bound network of the ER, which extends 59 

from the nuclear envelope to the periphery of the cell and maintains vital contact 60 
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zones with many other cell organelles, is a highly metabolic organelle [1]. It mediates 61 

many anabolic processes such as lipid synthesis, gluconeogenesis, and the biogenesis 62 

of peroxisomes and lipid droplets, but also the catabolic turnover of proteins and 63 

organelles through autophagy or proteasomal hydrolysis. 64 

Signaling through mTORC1 and mTORC2 is activated by extracellular and 65 

intracellular cues when conditions are favorable for growth. Both mTOR complexes 66 

in turn facilitate cell growth, survival, and proliferation (boxes 1 and 2). The 67 

metabolic classification of the UPR stress pathway is less straightforward, since it 68 

would be a gross oversimplification to state that it generally antagonizes cellular 69 

anabolism, which is orchestrated by mTOR. Indeed, the UPR does not only signal 70 

stress, catabolism, and cell death [5], but also, for instance, the anabolic expansion of 71 

ER membranes [6]. In the same vein, activation of the UPR is also achieved by 72 

stimuli which are not necessarily linked to unfavorable (“stressful”) growth 73 

conditions (see section “Upstream of the UPR”).  74 

Given their central influence on cell viability, both mTOR and UPR have been subject 75 

to extensive biomedical and pharmacological research activity [7-9], for instance in 76 

the search for new cancer treatments. Thus, evaluating and understanding the 77 

intersections and synergisms (or antagonisms) between the outputs of mTOR and 78 

UPR is of importance; possible routes of crosstalk between these signaling networks 79 

are fundamental for cell health. Here, we do not intend to provide a comprehensive 80 

synopsis of the upstream and downstream signaling networks surrounding mTOR and 81 

UPR for which the reader is referred to other recent articles [3-5, 10]. Instead, this 82 

review focuses on the interdependence of these two pathways in health and disease. 83 

Recent pioneering studies on molecular links between mTORC1, mTORC2, and the 84 
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ER stress response will be summarized along with a tentative preview to where these 85 

new insights may guide future therapeutic strategies.  86 

 87 

Signal integration by mTORC1 88 

 89 

Our understanding of the molecular mechanisms leading to the activation of 90 

mTORC1 has tremendously increased over the past few years. Known pathways 91 

culminate in the association of mTORC1 with the active, GTP-bound forms of the 92 

small GTPases Rheb and Rag, which initiate mTORC1 signaling [11]. Thus, 93 

mTORC1 activation is regulated by at least two independent inputs. One is the 94 

regulation of the GTP-binding status of Rheb in response to growth factors. The other 95 

is the GTP loading of Rag and the recruitment of mTORC1 to the lysosomal 96 

membrane in response to amino acids [4, 11].  97 

Growth factors and hormones, which operate upstream of Rheb–mTORC1, are 98 

recognized by cell surface receptors. These in turn initiate intracellular signaling 99 

cascades, the majority of which act on the heterodimeric TSC1–TSC2 (also called 100 

hamartin–tuberin) complex, a GTPase activating complex and a negative regulator of 101 

GTP-bound Rheb (Fig. 1). Examples of cell surface receptors which enhance 102 

mTORC1 signaling via inhibition of TSC1–TSC2 are the insulin receptor and 103 

Frizzled (the receptor of the Wnt signaling pathway). The insulin receptor signals via 104 

PI3K and PDK1 to the AGC kinase family member Akt. It also activates the MAP 105 

kinase cascade Raf–Mek–Erk. Activated Akt and Erk phosphorylate and inactivate 106 

TSC2 on multiple serine/threonine residues [12-14] (Fig. 1). In contrast, 107 

phosphorylation by GSK3, which is inactivated by the Wnt–Frizzled pathway, 108 

activates TSC2 [15]. Further regulatory inputs on TSC1–TSC2 by intracellular energy 109 
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levels, cytokines, and hypoxia are summarized in Figure 1. Thus, the TSC1–TSC2 110 

complex operates as an integrator of complex signaling information upstream of 111 

mTORC1. Loss of either tumor suppressing subunit of TSC1–TSC2 leads to 112 

constitutive activation of mTORC1 by Rheb–GTP and to an autosomal dominant 113 

disease (tuberous sclerosis complex; TSC) characterized by the widespread 114 

accumulation of benign tumors [16].  115 

A second form of regulatory input on mTORC1 is spatial organization. Activation of 116 

mTORC1 by Rheb–GTP occurs on the cytosolic surface of lysosomes. Recruitment of 117 

mTORC1 to these sites is mediated by binding to heterodimeric Rag GTPases and 118 

signaled by the availability of amino acids in lysosomes [17-19] (Fig. 1). In what way 119 

this pathway is integrated with the input of alternative amino acid-sensing 120 

machineries upstream of mTORC1 [20, 21] (Fig. 1) is currently unknown.  121 

Collectively, activation of mTORC1 signaling is a multi-step process that depends on 122 

the inputs of cellular signaling cascades and the availability of nutrients, energy, and 123 

oxygen. As both Rheb- and Rag-integrated inputs are required for activation, this 124 

creates a situation of tight regulation which – in light of the pathological 125 

consequences of uncontrolled mTORC1 activation [16] – is critically important. 126 

Before discussing the inputs of ER stress on mTORC1 activation, we will next give 127 

an overview of specific “growth” conditions that elicit UPR signaling.  128 

 129 

Upstream of the UPR 130 

 131 

A growing body of evidence places the UPR downstream of physiological stimuli that 132 

do not necessarily act via the accumulation of unfolded proteins in the ER [10]. For 133 

instance, very much like mTORC1, the UPR is sensitive to the availability of 134 
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nutrients and growth signals [1]. Indeed, the historically oldest way to elicit the UPR 135 

(at that time measured by the increased synthesis of “glucose regulated proteins”) was 136 

glucose starvation [22], illustrating that the responsiveness of the ER to a low 137 

nutritional or energetic state has been recognized for decades. UPR induction results, 138 

at least in part, from a glucose-deprivation-induced decrease in cellular ATP, which 139 

affects the function of the ER calcium pump SERCA2b and ER calcium levels [23]. 140 

Physiological UPR activation can therefore be mediated by unfavorable growth 141 

conditions and be reciprocal to the activation of mTORC1.  142 

Hypoxia represents another stress condition which activates UPR signaling and 143 

inhibits mTORC1 [24]. What is the trigger of the UPR under hypoxic conditions? 144 

One possible answer is given by the fact that Ero1 oxidases which support disulfide-145 

bond formation in nascent proteins in the ER depend on oxygen [25]. Accordingly, 146 

lowered Ero1 activity under hypoxia could lead to hampered protein folding and ER 147 

stress. This simple model, however, is complicated by the facts that oxygen 148 

deprivation transcriptionally induces Ero1 [26] and increases its activation state [27, 149 

28]. Indeed, ER redox readouts showed that hypoxia-activated Ero1 is operative in 150 

preventing ER hypo-oxidation [27]. Alternative mechanisms are hypoxia-mediated 151 

up-regulation of GSK3, which leads to the induction of PERK signaling via 152 

destabilization of the nascent polypeptide-associated complex [29] and/or an increase 153 

in free fatty acids (FFAs) evoked by the hypoxia-inducible transcription factor HIF-154 

2 [30].  155 

The fact that circulating FFAs, prevalent during obesity, induce ER stress illustrates 156 

that the UPR, like mTORC1, can also be activated by a high nutritional state [31]. 157 

Underlying mechanisms likely include changes in ER membrane composition, 158 

fluidity, and curvature that inhibit SERCA2b as shown in pancreatic -cells [32] and 159 
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mouse liver [33]. Other examples that document the responsiveness of the UPR to 160 

overnutrition are cholesterol-loaded macrophages [34] and -cells exposed to a high 161 

glucose concentration [35]. 162 

In certain contexts, the UPR is also activated by growth stimuli. Thus, ER expansion 163 

and induction of ER chaperones in B lymphocytes in response to antigen [36] and in 164 

thyrocytes in response to thyroid-stimulating hormone [37] is mediated by the UPR. 165 

Along the same line, UPR-mediated lipogenesis in the liver is activated following a 166 

high-carbohydrate meal in an mTORC1-dependent manner [38]. This finding implies 167 

that mTORC1 and UPR can act jointly to stimulate cell growth and suggests a 168 

pathway by which mTORC1 can induce UPR signaling. Interestingly, the UPR-169 

dependent proliferation of ER membranes during differentiation of B lymphocytes 170 

and thyrocytes precedes the massive synthesis of immunoglobulin and thyroglobulin, 171 

respectively [36, 37], indicating that a mechanism other than ER overload is 172 

responsible for UPR activation. Whether this mechanism involves mTORC1 has not 173 

yet been examined.  174 

Taken together, UPR signaling is elicited by a variety of physiological inputs, which 175 

include both favorable and unfavorable growth conditions. Likewise, a functional 176 

interaction between UPR and mTORC1 has been observed. As discussed in the next 177 

section, bidirectional crosstalk between mTORC1 and UPR also occurs under 178 

pathological conditions of chronic activation.  179 

 180 

Links between mTORC1 and UPR 181 

 182 

The primary output of UPR signaling is homeostatic adaptation by a variety of 183 

mechanisms that aim at restoring ER function (box 3). As a secondary output, 184 
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however, the UPR can also switch to promote apoptotic cell death through multiple 185 

pathways that remain to be fully understood [5]. Notably, the UPR as a mediator of 186 

ER-stress-induced apoptosis plays a pivotal role in a host of pathological conditions 187 

including neurodegenerative misfolding diseases and oxidative injury, as reviewed 188 

elsewhere [9, 39, 40]. It is intriguing to note that recent studies have also highlighted 189 

pathological situations where cell toxicity by ER stress is coupled to the chronic 190 

activation of mTORC1 [41-48]. This implies the apparent paradox that under certain 191 

settings, mTOR – a bona fide positive regulator of cell growth and division – can also 192 

signal cell demise. Furthermore, as discussed in this section, UPR activation can 193 

occur both upstream and downstream of mTORC1, which designates mTORC1 – at 194 

least in certain contexts – as a component in the process of ER-stress-induced cell 195 

death.  196 

The best-documented ER pathway downstream of mTORC1 is Ire1–ASK1–JNK 197 

(box 3). Constitutive mTORC1 activation by loss of TSC1–TSC2 stimulates JNK, 198 

which contributes to ER-stress-induced apoptosis [41, 43, 48]. Furthermore, thus 199 

activated JNK can participate in the development of insulin resistance [43], which 200 

occurs in parallel to other mechanisms such as ER-stress-facilitated de novo 201 

lipogenesis [49], activation of PKR [50], and the mTORC1–S6K1–IRS1 negative 202 

feedback loop [51, 52]. Activation of the Ire1–JNK branch downstream of mTORC1 203 

appears to be privileged over other arms of the UPR [41], and it has been suggested 204 

that it is in fact the induction of an incomplete UPR by chronic mTORC1 activation 205 

that kills the cell [53]. Consistent with apoptotic signaling through mTORC1–Ire1–206 

ASK1–JNK, over-expression or knockdown of Rheb enhances or antagonizes 207 

apoptotic stimuli in an ASK1-dependent fashion [54].  208 
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The finding that ER stress can also act upstream of mTORC1 adds a further layer of 209 

complexity. Pharmacological induction of the UPR rapidly activates the PI3K–Akt–210 

mTORC1 signaling axis [41, 44, 45], which depends on the ATF6 branch of the 211 

UPR [55]. Prolonged treatment with ER-stress-inducing agents, however, inhibits Akt 212 

[45, 55-58] and mTORC1 [42, 59], which has – at least in part – been attributed to the 213 

mTORC1–S6K1–IRS1 negative feedback loop [41, 52]. Furthermore, PERK–CHOP-214 

mediated induction of the Akt inhibitor TRB3 [60, 61] and GSK3-mediated 215 

inactivation of mTORC2 (see section “mTORC2 and ER”) may also contribute to the 216 

inhibition of Akt upon advanced ER stress.  217 

The suppression of Akt following an extended period of ER stress apparently plays a 218 

central role in the activation of Ire1–ASK1–JNK downstream of mTORC1, possibly 219 

by derepression of the ASK1 adaptor protein TRAF2 [41]. Such specific mTORC1-220 

to-ER signaling in our opinion better explains the selective activation of Ire1–JNK 221 

upon chronic activation of mTORC1 than a general mTORC1-mediated increase in 222 

protein synthesis and ER load. Additional modulation of UPR–mTORC1 crosstalk is 223 

provided by ATF6-dependent up-regulation of Rheb [62] and by Akt-catalyzed 224 

suppressive phosphorylation of PERK [63]. The currently identified links between 225 

mTORC1 and UPR both upon acute and chronic stimulation are depicted in Figure 226 

2A.  227 

Given the interdependence of mTORC1 and UPR during pathological programs, it is 228 

also interesting to consider common target processes as well as antagonizing outputs 229 

of the two pathways during normal physiology. This interplay which is summarized in 230 

Figure 2 is likely fundamental for cell health. Synergism between mTORC1 and UPR 231 

occurs in the regulation of hepatic lipid synthesis [64-66], angiogenesis [67, 68], 232 

NFB signaling [1, 69], and insulin resistance [43, 51]. By contrast, the two pathways 233 
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emit conflicting signals as to the control of ribosome biogenesis [70, 71], translation 234 

[4, 10], apoptosis [5, 72], and autophagy [4, 73].  235 

Collectively, convincing evidence exists that ER stress, through stimulation of the 236 

“survival kinase” Akt, initially causes activation of mTORC1, which itself, in a later 237 

phase, contributes to Akt inhibition to activate the ER–JNK “death kinase” pathway. 238 

We therefore suggest that bi-phasic regulation of Akt by ER stress is a critical 239 

determinant of apoptotic UPR signaling. As mTORC2 also participates in the 240 

activation of Akt (box 2), the relationship between ER stress and mTORC2 is 241 

discussed in the next section.  242 

 243 

mTORC2 and the ER 244 

 245 

In contrast to mTORC1, much less is known about pathways operating upstream of 246 

mTORC2. However, ER stress also impacts mTORC2 signaling. Pharmacological 247 

induction of ER stress for several hours leads to GSK3-catalyzed phosphorylation of 248 

the mTORC2 component rictor, which suppresses Akt activation [74]. Thus, together 249 

with the negative regulation of mTORC2 by the mTORC1 effector S6K1 [75], this 250 

mechanism likely contributes to the chronic UPR–mTORC1 apoptosis pathway 251 

described above.  252 

Does mTORC2 also participate in Akt activation in an early phase of ER stress? At 253 

present, there is no compelling evidence in favor or against this notion. However, as 254 

demonstrated by immunofluorescence microscopy and subcellular fractionation, a 255 

significant fraction of mTORC2 resides on ER membranes – even following the 256 

stimulation of cells with growth factors [76]. It is therefore possible that 257 

phosphorylation of Akt by mTORC2 occurs on the surface of the ER. Upstream 258 
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regulation of mTORC2 critically relies on its binding to ribosomes, which is induced 259 

upon growth factor stimulation [77]. Whether such activation preferentially occurs on 260 

ER-associated ribosomes and depends on the physiological state of the ER remains to 261 

be explored. We would like to posit though that such regulation would be in line with 262 

the emerging view that mTOR complexes are controlled by association with specific 263 

membranes, as exemplified by mTORC1, which couples the sensing of amino acids in 264 

the lysosomal lumen with its activation on the surface of lysosomes [19]. 265 

 266 

Therapeutic implications and future directions 267 

 268 

The connections and interdependencies between mTORC1 and UPR during chronic 269 

responses are associated with various pathologies [43, 45-48]. As a consequence, a 270 

number of new clues for combined therapy ensue, which warrant detailed preclinical 271 

evaluations and are discussed in this section.  272 

A first example is TSC [16], a multisystem disorder which is caused by constitutive 273 

activation of mTORC1 and includes the activation of ER stress pathways [41, 43, 45, 274 

53]. The most frequent medical symptom associated with TSC is epileptic seizure, 275 

which is widely believed to be caused by cerebral cortical tubers [16] but has also 276 

been proposed to be associated with mTORC1-dependent ER and oxidative stress 277 

through the ATF4–CHOP pathway [45]. Accordingly, antioxidant therapy or 278 

treatment with ER-stress-alleviating “chemical chaperones” such as 4-phenylbutyric 279 

acid (PBA) possibly combined with a low dosage of an mTORC1 inhibitor such as 280 

Everolimus (RAD001; approved for TSC patients who are not suitable for surgical 281 

intervention [7]) might inhibit epileptic seizures in TSC. A concern with systemic 282 

inhibition of mTORC1 in TSC, however, is that elimination of the S6K1–IRS1 283 



13 

feedback loop would lead to hyper-activation of Akt, which could potentially convert 284 

hamartomas into malignant tumors.  285 

A deadly interplay between mTORC1 and ER stress has also been identified as a 286 

causal factor in renal syndromes such as diabetic nephropathy [47, 78] and so-called 287 

minimal change disease [46], which are characterized by the damage of glomerular 288 

podocytes. Similarly, pancreatic -cell demise under glucolipotoxic conditions that 289 

occur in type 2 diabetes mellitus is supported by the same pathways [48]. In both 290 

cases, however, the functioning of mTORC1 is essential for cell viability so that the 291 

therapeutic value of mTOR inhibitors is restricted. It has therefore been suggested that 292 

a low dosage of rapamycin or alternative mTORC1 inhibitor [7] that would lower but 293 

not abolish mTORC1 signaling combined with PBA to inhibit ER stress could be used 294 

for treatment of nephropathies [47]. A similar strategy could also be considered for 295 

the treatment of type 2 diabetes, since combined inhibition of ER stress and mTORC1 296 

is expected to improve the survival of -cells [48] and also increase peripheral insulin 297 

sensitivity [43]. Furthermore, mTORC1 inhibition could counteract the pathological 298 

consequences of diabetes-linked obesity in white adipose tissue [79]. It is important to 299 

emphasize though that despite the fact that both rapamycin and PBA are FDA-300 

approved drugs, such combined formulations for the treatment of TSC, renal failures, 301 

or diabetes still require preclinical assessment to identify possible pleiotropic effects. 302 

An alternative therapeutic approach to restore hepatic insulin sensitivity is the 303 

stimulation of the deacetylase SIRT1, as adenovirus-mediated over-expression of 304 

SIRT1 in the liver ameliorates the metabolic symptoms of obese animals through 305 

inhibition of mTORC1 and ER stress [44]. In addition, clinically approved ASK1 or 306 

JNK inhibitors would potentially add an important tool to mTORC1/ER-stress-307 

targeting combination therapies [9].  308 
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As exemplified in TSC cells which are particularly sensitive to ER-stress-induced cell 309 

death [41, 43, 45, 53] the targeted activation of this pathway could be used to 310 

selectively kill tumors with hyperactive PI3K–Akt–mTORC1 axis. For instance, the 311 

approved anti-tumor drug Velcade/Bortezomib which indirectly induces ER stress by 312 

inhibiting the proteasome [80] could be considered. The Bcl-2 family tumor 313 

suppressor Mcl-1 provides another promising link between mTORC1- and ER-stress-314 

based anti-tumor therapy. The inhibition of 4EBP-controlled translation of Mcl-1 is a 315 

central element in the treatment of mTORC1-hyperactive cancers [72]. Since – with 316 

the notable exception of melanoma cells [81] – the UPR also downregulates the 317 

translation of this key antiapoptotic protein through PERK–eIF2 [82, 83], a 318 

combination of PERK induction [84] and mTOR inhibition [7] could produce 319 

synergistic effects. 320 

Although most of the links between mTOR and the ER have been uncovered by 321 

examination of chronic responses, the two signaling nodes almost certainly also 322 

interact under healthy conditions. Currently, this is best illustrated by the postprandial 323 

up-regulation of Ire1 signaling through mTORC1 in the liver [38]. As this up-324 

regulation is an acute anabolic response to mTORC1, it is reasonable to assume that it 325 

does not result from inhibition of Akt, which elicits apoptotic Ire1 signaling during 326 

chronic response. A question for future investigation is, which factors make a cell 327 

sensitive to the channeling of initially anabolic mTORC1 signals into the apoptotic 328 

Ire1–ASK1–JNK or ATF4–CHOP pathways. Moreover, it is important to stress that 329 

the current mechanistic understanding of UPR–mTORC1 as well as of mTORC1–330 

UPR signaling is fragmentary (Fig. 2A). The linkage between UPR and the activation 331 

of mTORC1 apparently involves the ATF6 branch, which somehow elicits PI3K–332 

Akt signaling upstream of mTORC1 [42, 55] as well as the induction of Rheb [62]. 333 
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The stimulation of Ire1 by mTORC1, on the other hand, has been correlated with the 334 

up-regulation of TRAF2 through depletion of activated Akt [41]. How Akt lowers the 335 

levels of TRAF2, and whether there are additional mechanisms operating between 336 

mTORC1 and the UPR machinery in parallel remains to be worked out.  337 

In summary, a number of recent reports have shed light on new connections that link 338 

two hitherto separated areas of modern cell biology. During the course of this review, 339 

we have discussed both physiological and therapeutic implications of these findings. 340 

Taken into consideration that the field of combined mTOR/UPR research is new, 341 

significant progress is likely still ahead.  342 

343 
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Box 1 344 

mTORC1 345 

The catalytic subunit of mTORC1 (and mTORC2; box 2) is the PI3K-related protein 346 

kinase family member mTOR, which associates with Raptor and mLST8 to form the 347 

mTORC1 core complex [3] (Fig. I). Direct substrates of mTORC1 are 4E-BP1, S6K1, 348 

ATG13, ULK1, and Lipin 1 [4, 8] (Fig. I). 4E-BP1 inhibits translation initiation 349 

unless it is phosphorylated by mTORC1. Phosphorylated S6K1 positively regulates 350 

mRNA translation and ribosome biosynthesis. Conversely, mTORC1 phosphorylates 351 

and inhibits ATG13 and ULK1, thereby inhibiting autophagosome assembly. The 352 

mechanism by which mTORC1 enhances lipid synthesis through SREBP transcription 353 

factors has been elucidated only recently; Lipin 1, a negative regulator of SREBP 354 

transcriptional activity, is prevented from entering the nucleus when phosphorylated 355 

by mTORC1 [66]. Activation of mTORC1 also increases the transcription of HIF-1 356 

by an unknown mechanism, which stimulates glycolytic gene expression and 357 

angiogenesis.  358 

359 
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Box 2 360 

mTORC2 361 

The core components shared by mTORC2 and mTORC1 are mTOR and mLST8. In 362 

addition, mTORC2 contains Rictor, mSIN1, which exists in several isoforms, and 363 

PRR5 (also known as Protor1) (Fig. II). mTORC2 phosphorylates a subset of AGC 364 

kinase family members on a conserved serine residue in the hydrophobic motif [4]. 365 

Identified substrates are the AGC kinases Akt, SGK1, and PKC (Fig. II). Ablation of 366 

mTORC2 does not equally affect all Akt substrates; for example, phosphorylation of 367 

the FOXO1 and 3 transcription factors is affected, whereas phosphorylation of TSC2, 368 

which is upstream of mTORC1, is not affected [85]. By phosphorylating PKC, 369 

mTORC2 also regulates the actin cytoskeleton and cell polarity.  370 

371 
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Box 3 372 

The Unfolded Protein Response 373 

UPR signaling in vertebrates depends on three types of ER membrane-embedded 374 

sensor proteins that impart distinct, but partially overlapping cell fate signals [1, 10] 375 

(Fig. III). (i) After UPR activation, the Ire1 RNase initiates the unconventional 376 

splicing of a specific mRNA on the surface of the ER, which then encodes the 377 

transcription factor Xbp1s. Alternatively, probably depending on the nature or 378 

severity of the triggering insult, Ire1 can both, degrade select ER-associated mRNAs 379 

(through a process called regulated Ire1-dependent decay; RIDD) to attenuate 380 

protein import into the ER and initiate a MAP kinase signaling cascade that leads to 381 

JNK activation. (ii) By directly phosphorylating the eIF2 translation initiation factor, 382 

the ER stress-sensor PERK is part of an “integrated stress response”, which lowers 383 

overall translation, while increasing the cellular antioxidant capacity by selectively 384 

stimulating the translation of the transcription factor ATF4 among others. In addition, 385 

PERK directly activates the antioxidant response transcription factor Nrf2. (iii) The 386 

activation of ATF6 and an increasing number of tissue-specific ATF6-like ER-387 

resident transcription factors occurs by yet another mechanism; on sensing ER stress, 388 

these proteins travel to the Golgi complex where they are subjected to intramembrane 389 

proteolysis thus liberating their DNA-binding domain (p50) for nuclear translocation. 390 

Transcriptional targets of Xbp1s, ATF4, and ATF6 include genes encoding ER 391 

chaperones and oxidoreductases, ER-associated degradation factors, phospholipid 392 

biosynthesis enzymes, and proteins involved in metabolic control.  393 

While the UPR primarily aims at lowering the burden of folding substrates and 394 

increasing the capacity of the ER’s folding machinery, it can also mediate apoptotic 395 

cell death through many different pathways [5]. One key pathway to ER stress-396 
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induced apoptosis is the transcriptional induction of CHOP by ATF4 (Fig. III). CHOP 397 

is an important proapoptotic transcription factor that, for instance, upregulates 398 

proapoptotic members of the Bcl-2 family. Likewise, the activation of the intrinsic 399 

apoptosis pathway via ER stress-induced ER-to-mitochondria calcium transmission 400 

and activation of Bax/Bak on mitochondria is of particular importance [5].  401 

402 
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Figure legends 403 

 404 

Figure 1 405 

Upstream regulation of mTORC1 406 

Activation of mTORC1 is controlled by TSC1–TSC2 and by amino acids (AA). 407 

(Upper part) By acting as a GTPase-activating protein on Rheb, TSC1–TSC2 inhibits 408 

mTORC1 signaling. TSC1–TSC2 loss-of-function systems are frequently used to 409 

study the consequences of chronic mTORC1 hyper-activity. Multiple pathways 410 

positively or negatively impact mTORC1 signaling through modulation of TSC1–411 

TSC2. Growth factors and hormones signal via PI3K–Akt or Raf–Mek–Erk to 412 

phosphorylate and inhibit TSC1–TSC2. Conversely, GSK3 activates TSC2 by 413 

phosphorylation, as does AMPK in response to low intracellular energy levels [86]. 414 

Similarly, a cytokine-induced pathway where IKK phosphorylates and suppresses 415 

TSC1 exists to varying degrees in different cell types [87]. In addition to these 416 

phosphorylation-dependent events, the stability of TSC1–TSC2 is negatively 417 

regulated through association with the gluconeogenic (i.e. anabolic) transcription 418 

factor FOXO1 [88]. Furthermore, an inhibitory complex between TSC2 and 14-3-3 419 

proteins is dissociated by the action of REDD1 in response to hypoxia [89], which 420 

adds to several different mechanisms for mTORC1 inhibition by hypoxia [24]. Where 421 

applicable, the principal phosphorylation sites of a given pathway in TSC1–TSC2, 422 

which either enhance or suppress its activity, are indicated. (Lower part) Different 423 

mechanisms by which AA talk to mTORC1 exist in parallel. (1) In mammals, AA 424 

stimulation induces influx of extracellular Ca
2+

, which activates calmodulin (CaM) to 425 

bind and activate the class III PI3K mVps34. This complex in turn positively 426 

regulates mTORC1 by a mechanism that remains to be fully elucidated [21]. (2) AA 427 
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in the lysosomal lumen modulate the binding of the vacuolar proton pump (v-428 

ATPase) to the trimeric p14–p18–MP1 complex (also called the Ragulator), which 429 

anchors Rag GTPases to the surface of lysosomes. Thus, v-ATPase promotes the 430 

translocation of mTORC1 to lysosomes where it is activated by Rheb–GTP [19]. (3) 431 

Phosphorylation of MAP4K3 on Ser170 in response to AA activates mTORC1 by an 432 

unknown mechanism [20].  433 

 434 

Figure 2 435 

Interplay between UPR and mTORC1 436 

(A) The known signaling pathways linking UPR and mTORC1 activation can be 437 

subdivided into acute phase (black arrows) and chronic phase (grey arrows) pathways. 438 

ER stress/UPR can activate mTORC1 via ATF6, which triggers the PI3K pathway 439 

and increases the levels of Rheb by unknown mechanisms (question marks). The 440 

former pathway leads to activation of Akt during an early phase of ER stress. Acute 441 

activation of the UPR by mTORC1 presumably occurs through increased protein 442 

synthesis, which elevates the demand on the ER machinery for protein folding. 443 

Chronic activation of mTORC1 and UPR causes inactivation of Akt through at least 444 

four mechanisms: (1) Suppressive phosphorylation of IRS1 and (2) mTORC2 by 445 

S6K1 downstream of mTORC1, (3) inhibition of mTORC2 by GSK3-catalyzed 446 

phosphorylation downstream of ER stress, and (4) PERK–CHOP-mediated induction 447 

of TRB3, which directly binds to Akt and blocks its activation. Lowered Akt 448 

activation precipitates higher levels of TRAF2, which triggers the Ire1–ASK1–JNK 449 

branch of the UPR. Question marks denote where molecular mechanisms remain to be 450 

identified.  451 
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(B) The diverse outputs of the UPR and mTORC1 pathways can be synergistic or 452 

antagonistic. Joint positive regulation occurs in the case of de novo lipogenesis, 453 

angiogenesis, insulin resistance, and activation of the NFB pathway (light brown 454 

boxes). By contrast, autophagy is stimulated by the UPR and inhibited by mTORC1, 455 

whereas inverse signaling outputs regulate the processes of ribosome biogenesis and 456 

translation (light green boxes). Relating to apoptosis, the interplay between UPR and 457 

mTORC1 is context-dependent. While in an initial (“physiological”) phase of ER 458 

stress, the output of the UPR may be homeostatic/antiapoptotic, the UPR will promote 459 

apoptosis upon chronic activation (represented by a dashed activation arrow). 460 

Likewise, on unknown stimulus and/or prolonged ER stress, mTORC1, which usually 461 

promotes cell survival, can also contribute to apoptotic signaling by the UPR (dashed 462 

grey arrow; see main text for details).  463 

464 
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