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How to build a ribosome from RNA fragments
in Chlamydomonas mitochondria
Florent Waltz 1,2,3,8, Thalia Salinas-Giegé 2,8, Robert Englmeier4, Herrade Meichel2, Heddy Soufari1,

Lauriane Kuhn 5, Stefan Pfeffer 6, Friedrich Förster 4, Benjamin D. Engel 3,7, Philippe Giegé 2✉,

Laurence Drouard 2✉ & Yaser Hashem 1✉

Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene

expression machineries where highly divergent and specialized ribosomes, named hereafter

mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial

genomes. Here, we present a biochemical and structural characterization of the mitoribo-

some in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some

of its specific components. Single particle cryo-electron microscopy resolves how the Chla-

mydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-

contiguous gene pieces. Additional proteins, mainly OPR, PPR and mTERF helical

repeat proteins, are found in Chlamydomonas mitoribosome, revealing the structure of an OPR

protein in complex with its RNA binding partner. Targeted amiRNA silencing indicates that

these ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-

electron tomography to show that Chlamydomonas mitoribosomes are attached to the inner

mitochondrial membrane via two contact points mediated by Chlamydomonas-specific pro-

teins. Our study expands our understanding of mitoribosome diversity and the various

strategies these specialized molecular machines adopt for membrane tethering.
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M itochondria are essential organelles of eukaryotic cells
that act as metabolic hubs and powerhouses, producing
energy through aerobic respiration. They still possess

their own genome and gene expression machineries, vestiges of
their once free-living bacterium ancestor1,2. Due to the evolu-
tionary drift of eukaryotes, mitochondrial complexes involved in
metabolism and gene expression combine features from their bac-
terial ancestor with traits that evolved in eukaryotes3,4. The final
step of gene expression, translation, is carried out by specialized
mitochondrial ribosomes (mitoribosomes). They synthesize the few
proteins still encoded by the mitochondrial genome, most of which
are hydrophobic components of the respiratory chain. Despite their
shared prokaryotic origin5, mitoribosome structure and composi-
tion were shown to be highly divergent across eukaryotes. They
systematically acquired numerous additional ribosomal proteins (r-
proteins), and their ribosomal RNAs (rRNAs) were either greatly
reduced, like in animals and kinetoplastids6–9, or expanded, like in
plants and fungi10–13.

Among the most prominent unresolved questions in the mito-
chondria biology field is the long-standing debate over the peculiar
organization of the mitochondrial genome in the unicellular green
alga Chlamydomonas reinhardtii and the biogenesis of its mitor-
ibosome. This organism is widely used to study photosynthesis and
cilia14, but it is also an excellent model to investigate mitochondrial
biology. It is one of the few organisms where mitochondrial
transformation is possible15, and mitochondrial mutants are viable
in photoautotrophic conditions16. In contrast to vascular plants, or
Viridiplantae in general, which are characterized by gene-rich and
largely expanded mitochondrial (mt)-genomes, C. reinhardtii pos-
sess a small linear mt-genome of 16 kb. It only encodes eight
proteins (all membrane-embedded components of the respiratory
chain), three transfer RNAs (tRNAs) and, most intriguingly, non-
contiguous pieces of the large subunit (LSU) and small subunit
(SSU) ribosomal RNAs (rRNAs), scrambled across the
genome17–19. The mt-genome is transcribed as two polycistronic
primary transcripts synthesized from opposite strands17,19. Indivi-
dual transcripts are then generated from the primary transcripts to
produce mature, functional RNAs. When initially characterized 30
years ago17, Chlamydomonas mitoribosome rRNA fragmentation
represented the earliest example that an rRNA does not need to be
continuous in order to be functional20. Although it was predicted
that the rRNA fragments would somehow be integrated into a
functional ribosome18, it is enigmatic how these fragments are
recruited, interact with each other, and are stabilized to form the 3D
mitoribosome structure.

Here, we combine cryo-electron microscopy (cryo-EM) with
in situ cryo-electron tomography (cryo-ET) to resolve the structure
of a green algal mitoribosome, stunningly different from both its
prokaryotic ancestor, as well as from the flowering plant
mitoribosome11, but also from all other characterized mitoribosomes
across diverse species3. Our structure reveals how the reduced and
fragmented rRNAs are organized and stabilized in the mitoribosome
via numerous Chlamydomonas-specific r-proteins. Cryo-ET resolves
the native structure and organization of Chlamydomonas mitor-
ibosomes inside mitochondria, revealing that these mitoribosomes
are exclusively bound to the inner mitochondrial membrane. Our
study provides an example of a mitoribosome composed of
numerous rRNA fragments, revealing a strikingly divergent blue-
print for building this conserved molecular machine.

Results
Isolation, mass spectrometry, and cryo-EM of mitoribosomes.
To analyze the C. reinhardtii mitoribosome, mitochondria were
purified and used for mitoribosome isolation following a proce-
dure based on sucrose density gradient separation (see Methods)

(Supplementary Fig. 1). Collected fractions were systematically
analyzed by nano-LC MS/MS (Supplementary Table 1) and
screened by cryo-EM to determine their composition. This
approach allowed us to identify fractions containing the two
mitoribosome subunits, which were subsequently used for data
collection (Supplementary Fig. 1). Proteomic analysis identified
putative Chlamydomonas-specific r-proteins that were then con-
firmed by the corresponding cryo-EM reconstructions. Following
image processing and extensive particle sorting, reconstructions
of both dissociated subunits were obtained. The large subunit
(LSU) was resolved to 2.9 Å, while the small subunit (SSU) was
reconstructed at 5.49 Å and further refined to 4.19 Å for the body
and 4.47 Å for the head using a focused refinement approach
(Supplementary Fig. 2). Fully assembled mitoribosomes were
identified by nano-LC MS/MS in the cytoribosome fraction
(Supplementary Fig. 1), but cryo-EM investigation revealed
aggregates in this fraction, most likely corresponding to mitor-
ibosomes. Nevertheless, the individual subunit reconstructions
were docked into the map of the entire C. reinhardtti mitoribo-
some obtained from subtomogram averaging of the in situ cryo-
ET data (see below), allowing accurate positioning of both sub-
units relative to each other in the context of a fully assembled
native mitoribosome. The isolated subunit reconstructions were
similar to the in situ subtomogram average, demonstrating that
they represent the mature LSU and SSU and not assembly
intermediates. Notably, all densities corresponding to Chlamy-
domonas-specific r-proteins were present in both single particle
and subtomogram average reconstructions.

Overall structure of the Chlamydomonas mitoribosome. Our
cryo-EM reconstructions, along with our extensive MS/MS ana-
lyses, allowed us to build atomic models of both C. reinhardtii
mitoribosome subunits (see “Methods” section) (Figs. 1 and 2).
The overall architecture of this mitoribosome (Fig. 1) is clearly
distinct from both its bacterial ancestor and the flowering plant
mitoribosome11. Chlamydomonas-specific proteins and domains
largely reshape both subunits. Similar to all previously described
mitoribosomes, the Chlamydomonas mitoribosome has more
r-proteins compared to its bacterial counterpart3,4. These proteins
include ancestral r-proteins conserved with bacteria, mitoribo-
some-specific r-proteins shared with other mitoribosomes, and
Chlamydomonas-specific r-proteins. In total, the Chlamydomo-
nas mitoribosome contains 47 r-proteins in the LSU and 36 in the
SSU. These include 11 new r-proteins (not accounting for
unknown densities), 8 in the LSU and 3 in the SSU. The total of
83 r-proteins greatly exceeds the 54 r-proteins in bacterial ribo-
somes (Fig. 2 and Supplementary Table 1). As a result, very few
rRNAs are exposed to the solvent, with proteins coating the entire
mitoribosome and stabilizing the fragmented rRNAs (Supple-
mentary Movie 1). Proteins follow the classical r-protein
nomenclature21, and newly identified proteins are numbered
according to the last inventory of mitoribosomal r-proteins22.

Reconstruction of the LSU (Fig. 1d) revealed eight additional r-
proteins, named mL113 to mL119, plus PPR*, a putative
PentatricoPeptide Repeat (PPR) protein (Figs. 1, 2 and Supple-
mentary Fig. 4, Supplementary Table 1). They are distributed
across the whole LSU, where they extend into the solvent and are
anchored to the ribosome by interacting with both conserved
r-proteins and rRNA fragments. With the exception of mL119 at
the exit of the peptide channel, all these proteins are relatively
large RNA binders composed of repeated alpha-helical folds,
including a mitochondrial TERmination Factor (mTERF) pro-
tein, several OctotricoPeptide Repeat (OPR) proteins, and PPR*.

The small subunit (Fig. 1c) reconstruction highlights several
distinctive features. Most strikingly, the SSU is shaped by two
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large protuberances positioned on its beak side, one on the head
and one on the body, both formed by helical-rich proteins. The
body protuberance, located close to the mRNA entrance, is
mainly formed by a specific extension of more than 400 aa in the
mitochondria-specific r-protein mS45 (Supplementary Fig. 5), a
highly variable r-protein22. The head protuberance density could
not be assigned due to the low resolution of this area. However,
several conserved proteins of the SSU head located nearby,
notably uS3m, uS10m, and mS35, present large extensions.
Therefore, it is likely that these extensions could come together
and form the head protuberance, as no other apparent candidates
could be identified by MS/MS analyses. On the solvent side of the
head, a large torus-shaped domain protrudes in the solvent. This
additional domain is a homotrimeric complex formed by three
copies of mS105, also called p32 (Supplementary Fig. 5a). This
MAM33-family protein is seemingly conserved in all eukaryotes
and has been described to have several functions in mitochondria,
some related to mitoribosome assembly23–26. However, mS105/
p32 was never before reported as a core component of a
ribosome. Additionally, the head of the SSU is characterized by its
missing beak, which is typically formed by helix 33 at the junction
site of rRNA fragments S3 and S4 (Fig. 3c and Supplementary
Fig. 7). The foot of the SSU is reshaped by Chlamydomonas-
specific r-proteins. The extension is formed by two super-helical
proteins, one PPR (mS106) and one OPR (mS107) identified by
MS/MS and confirmed by AlphaFold27. The mS106 protein
occupies a position similar to mS27 in humans6,7 and fungi12, but
it does not appear to interact with RNA, nor does it share any
sequence identity with mS27 (Supplementary Fig. 5d). On the

other hand, the OPR mS107 directly interacts with rRNA
fragment S2, where it encapsulates the tip of helix 11
(Supplementary Fig. 5c).

Fragmented ribosomal RNAs are assembled to reconstitute the
core of Chlamydomonas mitoribosome. In contrast to flowering
plants, where rRNAs are largely expanded, the C. reinhardtii
mitoribosome is characterized by its reduced and fragmented
rRNAs (Fig. 3). These rRNAs are scrambled in the mitochondrial
genome (Fig. 3a), where they are expressed as a single polycistron
that is then further processed into matured transcripts by cur-
rently unknown endonucleases17. The “23S” and “16S” rRNAs are
respectively split into eight fragments totaling 2035 nt, and four
fragments totaling 1200 nt (Fig. 3c and Supplementary Figs. 6, 7,
Supplementary Supplementary Movie 1). This corresponds to
30% and 22% reductions compared to bacteria (Fig. 3f). Among
all the rRNA pieces predicted to be integrated into the mature
mitoribosome, all but one (L2b) could be identified in our cryo-
EM reconstructions. To confirm the absence of the L2b fragment,
we performed comparative RNAseq analyses of mitochondrial
and mitoribosomal fractions (Fig. 3b). Consistently, all rRNA
fragments could be identified in the mitoribosome fraction except
L2b. However, this analysis confirmed that the fragment is indeed
expressed and accumulates in the purified mitochondria fraction
(Fig. 3b), which is in line with previous transcriptomic
analyses19,28,29. These results were further confirmed by RNA
blots hybridized against L2b and an L2a control found in the
ribosome and stabilized by the r-protein mL116 (Fig. 3d).
Therefore, the L2b RNA is not associated with the mitoribosome,
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suggesting that this small RNA has an independent function that
remains to be elucidated.

In the SSU, the fragmented rRNAs form only a few interactions
with the additional r-proteins and are mainly stabilized by base-
pairing with each other (with the exception the S2 fragment’s
h11), which is encapsulated by mS107 (Supplementary Figs. 5 and
7). Fragments S1, S2, and a small portion of S3 form the 5′
domain, with the rest of S3 making up domain C. The 3′ end of
S3 and the entirety of S4 constitute domains 3′M and 3′m, with
S4 largely contributing to linking the head and body of the SSU.
The region most conserved with bacteria is the decoding center,
made by h1-2 and h27-28 (Fig. 3 and Supplementary Fig. 7).

In contrast to the SSU, the nine rRNA fragments in the LSU are
all stabilized by the newly identified Chlamydomonas-specific
r-proteins. These fragments reconstitute the different domains of
the large subunit. L1 forms the highly reduced domain I of the LSU.
L2a, L3b, L4, L5, and part of L6 together form domain II. Portions of
L6 and L7 form the highly reduced—almost deleted—domain III.
Fragments L7 and L8, the largest of all, make up domains IV, V, and
VI, which form the catalytic core of the ribosome. These three
domains are the least altered, with only a few helices missing and
two expansion segments ES-66 and ES-94 (Fig. 4 and Supplementary

Fig. 6). The peptidyl transferase center (PTC) formed by H89 to H93
is particularly conserved with bacteria. The conservation of these
domains is most likely due to the high selective pressure to conserve
the catalytic region of the ribosome30. These rRNA fragments are
held together by base-pairing with each other, and their extremities
are stabilized by base-pairing with other fragments, e.g., L2a, L3b,
and L4 (Fig. 3e) or with themselves. These results corroborate the
initial predictions made 30 years ago by Boer and Gray17. However,
several single-stranded rRNA extremities are also stabilized by the
Chlamydomonas-specific r-proteins (see below). Surprisingly, while
it was anticipated that 5S rRNA should be absent from
Chlamydomonas mitoribosome, we identified an RNA density at
the typical position of the 5 S rRNA in the central protuberance (CP)
(Fig. 1 and Supplementary Fig. 8). This rRNA density could be
attributed to the L3a rRNA fragment (Supplementary Fig. 8). We
further confirmed its association with the mitoribosome by
comparative RNAseq analysis of mitochondrial and mitoribosomal
fractions (Fig. 3b). Previous studies of the C. reinhardtii mitochon-
drial genome and rRNAs always failed to identify this rRNA as a
putative 5S17–19,31. While L3a likely derives from an ancestral
bacterial 5S rRNA, it has highly diverged; very little of the primary
sequence is conserved with other 5S rRNAs (Supplementary Fig. 8d),
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but a consensus of 6 consecutive nucleotides confirmed its origin. Its
overall structure is also weakly conserved, with only domain γ
retaining its characteristic structure to interact with H38. Domain β
is angled differently relative to the domain γ stem, which allows the
interaction of the terminal loop of domain β with H87, in contrast to
other known ribosome structures. Additionally, domain α could
not be fully resolved, but most likely interacts with the putative
PPR protein (labeled “PPR*”), possibly stabilizing its 3′ and 5′
termini. In conclusion, when compared with the flowering plant

mitoribosome11, the overall structure of the CP appears similar.
However, in terms of composition, the Chlamydomonas mitoribo-
some CP includes a divergent 5S, lacks the uL18m protein, and
contains an additional protein, PPR*.

Specific r-proteins stabilize the rRNAs by highly intertwined
protein-RNA interactions. In the LSU, all the Chlamydomonas-
specific r-proteins except mL119 are predicted to be nucleic-acid
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binders. mL114 is an mTERF protein, but mL113, mL115,
mL116, mL117, and mL118 all appear to belong to the same
protein family, as they all have similar tertiary structures and
resemble ASA2/OPR proteins. These OPR proteins (Octo-
tricoPeptide Repeat), are predicted to fold into repeated pairs of
α‐helices, forming a super‐helical solenoid, similar to PPR
(PentatricoPeptide Repeat) and TPR (TetratricoPeptide Repeat)

proteins32,33. Both PPR and TPR are widespread in eukaryotes
and have previously been found in mitoribosomes, notably in the
flowering plant mitoribosome, which includes 8 PPR proteins
(rPPR proteins) that stabilize the numerous rRNA expansions11.
In Chlamydomonas, OPR proteins were previously described to
be involved in gene expression regulation, notably in the
chloroplast32,34–37. In the mitoribosome, these proteins stabilize
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the many rRNA fragments by different modes of RNA interac-
tion. This is, to our knowledge, the sole structural description of
this kind of protein in interaction with RNA. Proteins mL115,
mL116 and mL117 stabilize the 3′ extremities of L1, L2a, and L5,
respectively, by binding the single-stranded rRNA fragments in
their inner groove (Fig. 4). The stabilization is primarily mediated
by positive/negative charge interactions, where the inner grooves
of the proteins are largely positively charged, filled with lysine and
arginine that interact with the negatively charged phosphate
backbone of the RNA (Supplementary Fig. 4). Unlike the rest of
the RNA binders, mL113 does not interact with RNA in its inner
groove. An inter-repeat domain formed by amino acids 353–397
clamps the tip of H34 from the L3b fragment (Fig. 4c and Sup-
plementary Fig. 4a). Here, the interaction does not stabilize the
rRNA itself, but rather constitutes an anchor point between
mL113 and the ribosome. mL118 acts similarly to the SSU’s OPR
mS107, as it binds the 3′ extremity of the L8 fragment, which
forms a loop inside the inner groove of the protein (Fig. 4a).
Additionally, these proteins also interact with RNA via the con-
vex side of their super-helical fold. This is the case for mL115,
which interacts with H4 and H19 of the L1 fragment. mL116
interacts with H28 of the L2a fragment and H38 formed by the
L3b/L4 duplex, while mL118 interacts with ES-94 of the L8
fragment (Supplementary Fig. 4). Moreover, the mTERF protein
mL114 stabilizes the ES-66 via its C-terminal region, not its inner
groove (Supplementary Fig. 4a). All these proteins largely interact
with conserved proteins as well as with each other, e.g., mL113
with mL114 and mL116 with mL117 (Fig. 4). Furthermore,
mL113, mL114, and mL115 structurally compensate for missing
rRNA on the back side of the LSU (Fig. 4d). mL113 and mL114
compensate for the almost wholly deleted domain III, while
mL115 both stabilizes and compensates for the missing parts of
domain I. Interestingly, mL113 and mL114 are similarly posi-
tioned compared to mL101 and mL104 of flowering plants, which
stabilize the remodeled domain III11.

Knockdown of Chlamydomonas-specific r-proteins affects
cell fitness and rRNA stability. Next, we used targeted gene
silencing to investigate the importance of the Chlamydomonas-
specific r-proteins for ribosome integrity. We explored the
Chlamydomonas CLiP mutant library38, but no mutant strains for
the genes of interest could be confirmed. Hence, we generated
artificial miRNA (amiRNA) strains for these factors. This method
reduces targeted protein expression at the transcript level39.
Strains were generated for mL113, mL116, mL117, mL118, and
mS105 (p32). The physiological phenotype of each amiRNA
strain was analyzed, particularly the capacity to grow under
heterotrophic conditions (dark+ acetate), which is typically
defective in Chlamydomonas mutants impaired in mitochondrial
respiration16. Some transformants revealed growth retardation
when cultivated in heterotrophic conditions, and the ones pre-
senting the most severe phenotypes were selected (Fig. 5a). The
expression of targeted mRNAs was monitored by quantitative
RT-PCR, showing reductions of 80%, 49%, 82%, 51%, and 83%
on average for mL113, mL116, mL117, mL118, and mS105,
respectively (Fig. 5b).

The levels of rRNA fragments in these downregulated amiRNA
strains were then monitored by quantitative RT-PCR to
determine the effect on mitochondrial rRNAs stability. This
analysis showed that the overall relative levels of LSU rRNAs
decreased by 13%, 40%, and 14% in the mL113, mL117, mL118
knockdown strains, respectively, while the level of L2b RNA,
which is not present in mitoribosomes, followed a different
behavior (Fig. 5c). In contrast, relative rRNA levels were not
significantly affected in the mL116 and mS105 knockdown

strains, with the exception of L2b, which was reduced to about
67% in mS105. Altogether, it appears that Chlamydomonas-
specific r-proteins, in particular mL113, mL117, and mL118, are
required for the proper stability of the LSU rRNAs. In addition,
the accumulation of mitochondria-encoded proteins was inves-
tigated by protein immunoblots. Two mitochondrial-encoded
components of respiratory complex I, Nad4 and Nad6, were
analyzed alongside two controls, the nuclear-encoded subunit
NUO7 of complex I and the mitochondrial porin VDAC (Fig. 5d).
Analysis from 3 to 4 technical replicates from 2 biological
replicates showed that Nad4 and Nad6 levels were decreased in
the mL113, mL117, and mS105-mutant strains compared to wild-
type; in contrast, NUO7 and VDAC had unchanged levels
(Supplementary Fig. 9 and Source Data file). Finally, the
accumulation of assembled respiratory complexes, which contain
mitochondria-encoded proteins, was investigated by blue native
PAGE (BN-PAGE) coupled to in-gel activity assays (Fig. 5e).
These tests revealed that the mL113 strain is impaired in complex
I and IV activity, whereas the mL117 strain also appears to be
affected but to a lesser extent, which correlates with the
immunoblot assays. Collectively, these analyses show different
impacts on the knockdown strains, suggesting non-redundant
functions for these r-proteins.

The Chlamydomonas mitoribosome is tethered to the inner
mitochondrial membrane via two protein contact sites. The
LSU reconstruction revealed the presence of a specific r-protein,
mL119, precisely located at the exit of the peptide channel
(Fig. 6). There, this protein forms several contacts with r-proteins
uL22m, uL24m, uL29m, and bL32m, and with nucleotides
114–124 of the L6 fragment via its C-terminal part, which
anchors the protein to the ribosome (Fig. 6e). The N-terminal
part of mL119, which constitutes most of the protein’s mass, is
exposed to the solvent. This protein has no apparent homolog
and appears to be restricted to the Chlorophyceae (green alga)
lineage. Similar to humans, the Chlamydomonas mitochondrial
genome only codes for membrane components of the respiratory
chain, except for the rtl gene, whose expression and function
remain uncertain. In humans and yeast, it was previously shown
that mitoribosomes contact the membrane protein insertase Oxa1
via r-protein mL45 in human and the linker protein Mba1 in
yeast40–44. These two homologous proteins are positioned at the
exit of the peptide channel, where they link the ribosome to the
membrane by binding Oxa1, allowing direct insertion of nascent
proteins into the membrane. Given the position of mL119, one
would expect this protein to fulfill a function similar to mL45 and
Mba1. To assess the role of mL119 in membrane binding,
Chlamydomonas mitoribosomes were directly visualized inside
cells using in situ cryo-ET (Fig. 6 and Supplementary Movie 2).

Whole Chlamydomonas reinhardtii cells were vitrified, thinned
by cryo-focused ion beam (FIB) milling, and imaged by cryo-ET.
A representative tomogram depicting a section of a native
mitochondrion within a Chlamydomonas cell is shown in
Fig. 6a–d. ATP synthase dimers, cytosolic ribosomes, and
mitoribosomes were automatically localized by template match-
ing, structurally resolved by subtomogram averaging, and then
mapped back into the native cellular environment (Fig. 6b).
Contrary to cytosolic ribosomes, which crowd the cytoplasm,
mitoribosomes have a very low abundance and are localized to
the inner mitochondrial membrane. Their low copy number and
membrane association highlight the difficulty of purifying these
complexes compared to cytosolic ribosomes. Alignment of
subtomograms containing mitoribosomes yielded a structure of
the native membrane-bound mitoribosome at 31.5 Å resolution
(Supplementary Fig. 3). With the exception of dynamic flexible
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regions (e.g., L7/L12 and L1 stalks), the in situ subtomogram
average is highly similar to our single-particle reconstructions, as
revealed by molecular fitting. This structural agreement confirms
that the single-particle reconstructions very likely correspond to
mature forms of the mitoribosome subunits (Fig. 6f). The in situ
subtomogram average had one additional density located at the
mitoribosomes’s mRNA exit channel. Although we do not know
the identity of this density, we speculate that it may correspond to
exiting mRNAs or the recruitment of additional factors during
active translation (Fig. 6g).

The in situ subtomogram average reveals how the mitoribo-
some is tethered to the inner mitochondrial membrane.
Membrane-bound mitoribosomes were previously described by
cryo-ET of mitochondria isolated from yeast45 and humans46.

Similar to yeast, but not humans, the Chlamydomonas mitoribo-
some makes two distinct contacts with the membrane. Super-
position with the atomic model reveals that one contact is located
at the precise position of mL119, supporting the hypothesis that
this protein could directly interact with the ribosome binding
domain of Oxa1 in vivo. Therefore, it appears that mL119
constitutes a functional analog of mL45 and Mba1. However,
mL119 and mL45/Mba1 are not evolutionary related, but rather
appear to have convergently evolved to fulfill the same function.
The mitoribosome’s second membrane contact is mediated via
the C-terminal part of mL113 (Fig. 6f). This region of mL113 had
poorly resolved density in our cryo-EM map and was thus not
modeled, but we could still observe its position at low resolution
(Supplementary Fig. 4a). The mL113 contact mimics the rRNA
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expansion segment ES-96 that forms the second contact site with
the membrane in yeast45.

Discussion
Our study describes the structure and composition of the Chla-
mydomonas mitochondrial ribosome. The cryo-EM reconstruc-
tions show that this green alga mitoribosome differs significantly
from prokaryotic ribosomes as well as its flowering plant
counterpart47,48. In both the small and the large subunits, the
mitoribosome has acquired several additional r-proteins that
significantly reshape its overall architecture. These specific
r-proteins combined with the fragmented rRNAs (four pieces in
the SSU and nine pieces in the LSU) constitute an extreme case of
ribosome divergence, even among the exceptionally diverse
mitoribosomes.

One striking feature of the SSU is the presence of two large
protuberances on the head and the body. The body protuberance

could be assigned to a large insertion in the mitoribosome-
specific protein mS45 (Supplementary Fig. 5b), which shows high
structural variability between mitoribosomes in different species
despite the conservation of its core domain22. The head protu-
berance was poorly resolved in our density map but is most likely
composed of long extensions of the head’s conserved r-proteins
(uS3m, uS10m, mS35). In vascular plant mitoribosomes, the
uS3m r-protein was shown to form a similar large protuberance
on the SSU head, suggesting a common origin of these
protrusions11. The roles of these two protuberances are unknown.
The position of the body protuberance, close to the mRNA entry
channel, might suggest a species-specific mechanism of mRNA
recruitment, similar to that mediated by mS39 in
humans4,41,46,49. This protuberance, in conjunction with the
additional density observed in the subtomogram average next to
bS1m at the mRNA exit channel (Fig. 6g), might point to the
existence of specific translation processes in Chlamydomonas.
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Translation initiation in Chlamydomonas mitochondria shares
some features with that of human mitochondria, as the mRNAs
lack 5′ untranslated regions in both organisms. However, Chla-
mydomonas most probably has a specific mechanism for trans-
lation initiation, as its mitochondrial mRNAs do not have the
U-rich motif downstream of the AUG that was proposed to
interact with mS39 in humans. Furthermore, mature Chlamydo-
monas mRNAs have poly-C rich 3′ tails that might be required
for translation initiation19.

Another key feature of the SSU is the homotrimeric mS105
(p32) protein forming a torus-shaped protuberance on the back
of the SSU head, reminiscent of RACK1 on the cytosolic
ribosome50. This protein belongs to the MAM33 family, which
appears to be eukaryote-specific and is characterized by its qua-
ternary structure: a doughnut-shaped trimer that is highly
negatively charged26,51. The p32 protein has been the subject of
many studies, as its mutations result in severe diseases in
humans25,52–54. However, despite decades of research, its precise
functions remain elusive. Recent studies suggest that MAM33-
family proteins might be involved in mitoribosome biogenesis.
Indeed, they are linked to LSU biogenesis in yeast24, the recent
structure of the Trypanosoma SSU “assemblosome” includes a
heterotrimeric p22 (homolog of p32), directly highlighting its role
in mitoribosome biogenesis55,56, and in humans, the YBEY pro-
tein forms a complex with p32 and is involved in SSU
biogenesis23. We observed that p32 is an integral component of
the Chlamydomonas mitoribosome. However, it does not appear
to have an obvious function related to the translation process, as
it does not bind rRNA and only makes a few contacts with the
adjacent r-proteins. Likewise, its downregulation does not impair
the accumulation of mitochondrial rRNAs. Taking these results
together with the above-mentioned studies, it seems that p32
could act in mitoribosome maturation. Given its overall negative
charge, it might serve as a binding platform that scaffolds other
factors during ribosome biogenesis. It is unclear why p32 would
be kept as a constitutive ribosomal protein in Chlamydomonas
and not in other eukaryotes, but this may point to species-specific
functions.

One of the most prominent features of the Chlamydomonas
mitoribosome is its extensively fragmented rRNAs, with four
pieces in the SSU and nine pieces in the LSU. It is interesting to
note that Kinetoplastida and Euglenozoa also have fragmented
rRNA in their cytosolic ribosomes57–62. However, only the LSU
rRNA is fragmented, and the fragments are continuous in the
genome. Among mitoribosomes, the ciliate mitoribosome also
contains LSU and SSU rRNAs that are each split into two pieces,
contrasting with the extensive fragmentation observed here with
Chlamydomonas63–65.

It has been proposed that the fragmentation and scrambling of
the Chlamydomonas rRNA genes are the result of several mito-
chondrial genome recombination events between short repeated
sequences31. We assigned all the previously identified rRNA
fragments in the mitoribosome except one, L2b. This fragment is
not incorporated into the mature mitoribosome and is thus not
an rRNA. Nevertheless, its transcript has reproducibly been found
in the total mitochondrial fraction19,28. Its function is unclear, but
it might be involved in mitochondrial genome maintenance,
which involves telomere-like structures in Chlamydomonas, as the
L2b sequence is highly similar to both ends of the linear Chla-
mydomonas mitochondrial genome66,67. Alternatively, the
observation that the L2b RNA level is decreased in the mS105-
mutant strain may hint at a function related to mS105, and thus,
possibly to mitoribosome or SSU biogenesis. We cannot exclude
the possibility that the mS105 protein plays a role outside the
mitoribosome and is involved in mitochondrial genome main-
tenance via an interaction with L2b.

Importantly, we reveal that the L3a rRNA fragment is a 5S
rRNA, which previously escaped identification because of its
highly divergent primary sequence. Even compared to closely
related Chlorophytes and Chlorophyceae species, Chlamydomo-
nas L3a is particularly different at the sequence level (Supple-
mentary Fig. 8d). L3a occupies the same position as a classical 5S,
but its overall structure, notably the domain α and β structures,
are quite different from other known 5S structures, rendering it
one of the most divergent 5S rRNA described to date. Putative
highly divergent mitochondrial 5S rRNAs have also been pre-
viously identified in various amoebozoan species68,69. Given the
high divergence of the 5 S rRNA in Chlamydomonas, together
with the aforementioned studies, a wider phylogenetic distribu-
tion of mitochondrial 5 S rRNA might be suggested.

The rest of the rRNA fragments form the core of the mitor-
ibosome and are globally conserved, yet reduced. In the ribosome
core, these fragments are stabilized by base-pairing with each
other. In contrast, on the outer shell of the ribosome, especially in
the LSU, the rRNA fragments are stabilized by the Chlamydo-
monas-specific r-proteins. These proteins are all alpha-helical
repeats belonging to nucleic-acid binder families PPR, OPR, and
mTERF. In our structures, they form highly intertwined interfaces
with single- and double-stranded RNA, all involving positive/
negative charge interactions. These proteins stabilize the 3′ end of
rRNA fragments L1, L2a, L5, and L8 by enlacing their single-
stranded extremities and also contact and stabilize additional
rRNA helices via their convex surfaces.

The function of these proteins was investigated by analyzing
downregulation mutants (Fig. 5). All mutants for LSU r-proteins,
except the mL116 mutant, showed reduced levels of LSU rRNA
fragments, indicating that these r-proteins are important for the
stability of the rRNAs, and thus integrity of the mitoribosome.
They seem to play a chaperone-like role, stabilizing and perhaps
contributing to the recognition and recruitment of the different
rRNA pieces during assembly. In mS105, where the protein does
not directly interact with rRNAs, the rRNA levels are almost
unaffected. Additionally, in downregulation mutants mL113 and
mL117, steady-state levels of mitochondria-encoded proteins and
active respiratory complexes are decreased, highlighting their
importance in translation and impact on mitochondrial
metabolism.

Our cryo-ET analysis reveals that Chlamydomonas mitoribo-
somes are bound to the inner mitochondrial membrane. In ani-
mals and most eukaryotes, the mitochondrial genome encodes
almost exclusively components of the respiratory chain, which are
all membrane-embedded proteins. These proteins are co-
translationally inserted into the inner mitochondrial membrane
to reduce the probability of protein aggregation during
transport70. To facilitate this process, mitoribosomes are con-
sistently found attached to the inner membrane45,46. In mam-
mals, the mitoribosome attachment is mediated by a specific r-
protein, mL45, located at the exit of the peptide channel, which
links the ribosome to the main insertase of the inner membrane,
Oxa142,43. In the yeast S. cerevisiae, where one of the
mitochondria-encoded proteins is soluble71, the association is
mediated by an mL45 homolog, Mba1, which is not an integral
constituent of the mitoribosome, and an expansion segment of
H96 directly contacting the membrane13,40,44. This is most likely
also the case in the yeast N. crassa12. In Chlamydomonas, simi-
larly to mammals, all proteins encoded in the mitochondrial
genome are components of the respiratory chain. Therefore, it is
not surprising that the Chlamydomonas mitoribosome would
have acquired a specific r-protein to tether translation to Oxa1.
Interestingly, the membrane interaction in Chlamydomonas is
mediated via two contact points. mL119 forms one contact, and
mL113 create a second contact point directly with the membrane,
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similar to ES-H96 in yeast. Notably, despite the similar location of
the mL113 and ES-H96 contact sites, they are of different
molecular nature (protein vs. rRNA) and have been acquired via
different evolutionary mechanisms: an expansion of the nuclear
genome in case of mL113, compared to the expansion of the
mitochondrial gene coding for 23S rRNA in yeast. In light of
recent literature suggesting an early expansion of mitoribosomal
proteins in eukaryotes72, this raises the question of whether the
second contact site is an isolated case of convergent evolution
between green algae and yeast, or whether it is a more universal
feature of mitoribosomes that was either replaced (yeast) or lost
(mammals) throughout evolution. The fact that membrane
association is mediated by different proteins in each organism, yet
the Oxa1 contact is conserved, indicates that this interface is
particularly critical40. In flowering plant mitochondria, which still
encode a large number of soluble proteins, accessory factors
might recruit mitoribosomes to the membrane, similar to Mba1
in yeast. However, in Tetrahymena, the mitochondrial genome
encodes numerous soluble proteins, but the mitoribosome has
still acquired a probable permanent anchor to Oxa1, the r-protein
mL10565. Finally, contrary to mammalian mL45 blocking the
peptide channel until mitoribosome association with the
membrane41,43, or kinetoplastid assembly factor mL71 block-
ing the peptide channel during ribosome maturation9, the Chla-
mydomonas peptide channel is not blocked by mL119.

In conclusion, our structural and functional characterization of
Chlamydomonas mitoribosome provides a new perspective on
mitoribosome evolution and membrane binding. It delivers
essential information to broader questions on the function and
evolution of rRNA and the ribosome. This work paves the way for
future investigations of mitoribosomes in other species, in par-
ticular Apicomplexa such as Plasmodium and Toxoplasma, where
fragmented mitochondrial rRNAs also occur3,73. Indeed, the
structure of the Chlamydomonasmitoribosome demonstrates that
despite the extreme fragmentation of rRNAs, the functionally
important regions are well preserved. Moreover, it indicates that
rRNAs do not have to be covalently continuous if the 3D ribo-
some structure can be recreated via RNA-RNA and RNA-protein
interactions. Interestingly, Gray et al. proposed that long, cova-
lently continuous conventional rRNAs might have evolved from
short, non-covalently interacting ancestors20. The Chlamydomo-
nas mitoribosome might thus represent a relic from an ancestral
form of rRNA organization.

Overall, the structure reported here provides further insights
into the evolution of mitoribosomes and the elaboration of
independent strategies to accomplish and regulate translation.
Together with recent work on mitoribsosomes from other spe-
cies, our study demonstrates how the mitoribosome is truly one
of nature’s most eclectic playgrounds for evolving diverse stra-
tegies to regulate a fundamental cellular process.

Methods
Chlamydomonas reinhardtii mitochondria and mitoribosome purification.
Chlamydomonas reinhardtii cell wall-less strain CC-4351 (cw15–325 arg7–8 mt+)
was used for mitochondria purification and transformation. The mitochondrial
mutants dum574 and dum1175 were used as a control for the phenotypic growth
analysis in the dark, kindly provided by Dr. Remacle (University of Liège) and,
respectively, annotated on figures as CI- and CIII-. The strains were grown on Tris-
Acetate Phosphate (TAP) solid or liquid medium14, supplemented with 100 µg/ml
of arginine when necessary, under continuous white light (50 µE/m2/s1), or in the
dark. Mitochondria were isolated from liquid cell cultures grown up to the expo-
nential phase76. Cells were harvested by centrifugation 10 min 1000 × g, and
resuspended in 10 ml ice-cold 25 mM phosphate buffer pH 6.5 containing 6% PEG
6000, 0.4% (w/v) bovine serum albumin (BSA), and 0.016% (w/v) digitonin to a
final concentration of 3 × 108 cells/ml. The suspension was warmed rapidly to
30 °C, kept at this temperature for 30 seconds, and cooled to 4 °C. Then the broken
cells were pelleted at 2500 × g and washed with 40 ml of ice-cold 20 mM Hepes-
KOH pH 7.2 containing 0.15M mannitol, 2 mM EDTA, 0.1% (w/v) BSA, and
1 mM MgCl2. After a 2 min 1000 × g centrifugation, the pellet was resuspended in

2 ml of the same solution, stirred vigorously for 45 s, and then 6 ml of 20 mM
Hepes-KOH buffer pH 7.2 containing 0.15 M mannitol, 0.8 mM EDTA, and 4 mM
MgCl2 were added. Mitochondria were collected at 12,000 × g for 10 min, resus-
pended in the same last buffer, and then loaded on a discontinuous Percoll gradient
(13%/21%/45%) in MET buffer (280 mM Mannitol, 10 mM Tris-HCl pH 6.8,
0.5 mM EDTA, and 0.1% BSA) and centrifuged for 60 min at 40,000×g. Purified
mitochondria were recovered at the 45/21 interface and washed two times in MET
buffer by centrifugation at 12,000 × g for 10 min and stored at −80 °C.

Mitoribosome purification was conducted as previously10,11. In brief, purified
mitochondria were resuspended in Lysis buffer (20 mM HEPES-KOH, pH 7.6,
100 mM KCl, 30 mM MgCl2, 1 mM DTT, 1.6% Triton X-100, 0.5% n-DDM,
supplemented with proteases inhibitors (C0mplete EDTA-free)) to a 1 mg/ml
concentration and incubated for 15 min in 4 °C. Lysate was clarified by
centrifugation at 25.000 × g, 20 min at 4 °C. The supernatant was loaded on a 40%
sucrose cushion in Monosome buffer (Lysis buffer without Triton X-100 and 0.1%
n-DDM) and centrifuged at 235,000 × g, 3 h, 4 °C. The crude ribosomes pellet was
resuspended in Monosome buffer and loaded on a 10–30% sucrose gradient in the
same buffer and run for 16 h at 65,000 × g. Fractions corresponding to
mitoribosomes were collected, pelleted, and resuspended in Monosome buffer and
analyzed by nanoLC-ESI-MS/MS and cryo-EM (Supplementary Fig. 1).

Grid preparation. For the single-particle analyses, 4 µl of the samples at a protein
concentration of 1.5 µg/µl was applied onto Quantifoil R2/2 300-mesh holey car-
bon grid, coated with thin home-made continuous carbon film and glow-
discharged (2.5 mA for 20 s). The sample was incubated on the grid for 30 s and
then blotted with filter paper for 2 s in a temperature and humidity-controlled
Vitrobot Mark IV (T= 4 °C, humidity 100%, blot force 5) followed by vitrification
in liquid ethane.

Cryo-electron microscopy data collection. The single-particle data collection was
performed on a Talos Arctica instrument (ThermoFisher Company) at 200 kV
using the SerialEM software for automated data acquisition. Data were collected at
a nominal underfocus of −0.5 to −2.5 µm, at magnifications of 36,000× with a
pixel size of 1.13 Å for the SSU, and 45,000× with a pixel size of 0.9 Å for the LSU.
Micrographs were recorded as movie stacks on a K2 direct electron detector
(GATAN Company); each movie stack was fractionated into 65 frames, for a total
exposure of 6.5 s corresponding to an electron dose of 45 e−/Å2.

Electron microscopy image processing. Drift and gain correction and dose
weighting were performed using MotionCorr277. A dose-weighted average image of
the whole stack was used to determine the contrast transfer function with the
software Gctf78. The following workflow was processed using RELION 3.079. Initial
analyses were performed in CryoSPARC80 to asses sample composition and to
generate ab-initio cryo-EM map. After reference-free 2D classification, for the LSU
346,994 particles were extracted and used for 3D classification into 6 classes
(Supplementary Fig. 2). Ab-initio cryo-EM reconstruction generated in CryoS-
PARC was low-pass filtered to 30 Å, and used as an initial reference for 3D clas-
sification. Two subclass depicting high-resolution features was selected for
refinement with 101,291 particles. After Bayesian polishing, the LSU reconstruction
reached 3.00 Å resolution. For the SSU reconstruction, a similar workflow was
applied. After 2D classification, 445,469 particles were extracted and used for 3D
classification into 6 classes. A single subclass depicting high-resolution features was
selected for refinement with 40,131 particles. After focus refinement using masks
for the head and body of the small subunit, the SSU reconstruction reached a
resolution of 4.19 Å for the body and 4.47 Å for the head. Determination of the
local resolution of the final density map was performed using ResMap81.

Structure building and model refinement. The atomic model of the C. reinhardtii
LSU was built into the high-resolution maps using Coot, Phenix, and Chimera.
Atomic models from E. coli (PDB: 5KCR) and the A. thaliana mitoribosome (PDB:
6XYW) were used as starting points for protein identification and modelization, as
well as rRNA modelization. The online SWISS-MODEL82, as well as AlphaFold27

through the ColabFold service83, were used to generate initial models for bacterial
and mitochondria conserved r-proteins. Models were then rigid body fitted to the
density in Chimera84 and all subsequent modeling was done in Coot85. Extensions
were built has polyalanine and mutated to the adequate sequences. Chlamydo-
monas-specific proteins for which no model could be generated were first built
entirely as polyalanine, then the sequence-from-map Phenix tool86 was used to
identify each of the proteins, and the correct sequences were placed in the densities.
For the SSU, due to the lower resolution in comparison to the LSU, all extensions
of the homology models were built as polyalanine and unknown densities were
built as Ala residues. For refinement, a combination of regularization and real-
space refine was performed in Coot for each proteins. The global atomic model was
then subjected to real-space refinement cycles using phenix.real_space_refine
Phenix86 function, during which protein secondary structures, Ramachandran, and
side-chain rotamer restraints were applied. Several rounds of refinement (manual
in Coot and automated using the phenix.real_space_refine) were performed to
obtain the final models, which were validated using the built-in validation tool of
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Phenix, based on MolProbity. Refinement and validation statistics are summarized
in Supplementary Table 2.

Cell vitrification and Cryo-FIB milling. We used Chlamydomonas reinhardtii
mat3-4 cells (strain CC-3994)87, which exhibit superior vitrification due to their
small size. The strain was acquired from the Chlamydomonas Resource Center,
University of Minnesota, St. Paul. Cells were grown until the mid-log phase in Tris-
acetate-phosphate (TAP) medium under constant light exposure and bubbling with
a normal atmosphere. Vitrification and FIB milling were performed as previously
described88,89. Using a Vitrobot Mark 4 (FEI), cells in suspension (4 μl of ∼1000
cells per µl) were blotted onto R2/1 carbon-coated 200-mesh copper grids
(Quantifoil Micro Tools) and plunge frozen in a liquid ethane/propane mixture.
Grids were then mounted into Autogrid supports (FEI) and transferred into either
a FEI Scios or FEI Quanta dual-beam FIB/SEM instrument. The grids were coated
with an organometallic platinum layer by the gas injection system (FEI), and cells
were thinned from both sides with a gallium ion beam to a final thickness of
∼100–200 nm.

Cryo-electron tomography data acquisition. Cellular tomograms were acquired
on a 300 kV Titan Krios microscope (FEI), equipped with a post-column energy
filter (Quantum, Gatan) and a direct detector camera (K2 summit, Gatan). Tilt
series were recorded using SerialEM software90 with 2° tilt increments from −60°
to +60° (in two halves separated at either 0° or −20°), an object pixel size of 3.42 Å,
12 frames per second, a defocus of −4 to −5.5 μm, and a total accumulated dose of
~100 e−/Å.

Cryo-electron tomography data processing. Frames from the K2 detector were
motion corrected with MotionCor277. Using IMOD software, tilt series were
aligned with patch-tracking, and tomograms were reconstructed with weighted
back projection. Out of ~130 tomograms, 47 tomograms containing mitochondria
were selected. The following workflow is described in Supplementary Fig. 3. An
initial structure of the C. reinhardtii mitoribosome was obtained by manually
picking 103 mitoribosomes from 27 tomograms following template-free alignment
by spherical harmonics91. The initial map was then used as a template for auto-
mated template matching on 47 tomograms with a voxel size of 2.1 nm using
PyTOM92. To reduce false positives, the highest correlation peaks of the resulting
6-D cross-correlation function localized in the mitochondrial matrix were manu-
ally inspected in UCSF Chimera84, and a set of 222 subvolumes from 27 tomo-
grams was obtained. The subvolumes were reconstructed at a voxel size of 6.84 Å,
aligned using PyTOM’s real-space refinement, and subjected to one round of
classification with a mask encompassing the membrane region. This yielded a class
of 73 mitoribosomes with a clear membrane density that was subjected to one more
round of real-space refinement in PyTOM. For the resulting average, a resolution
of 31.6 Å (large ribosomal subunit) and 31.5 Å (small ribosomal subunit) was
determined by fourier-shell cross-resolution of the two maps against the maps
obtained by single-particle analysis (FSC= 0.33). For the localization of ATP
synthases, an initial structure of the C. reinhardtii ATP synthase was obtained by
manually picking 417 subvolumes from four tomograms and aligning them using
spherical harmonics. The obtained map was used as a template for automated
template matching on tomograms with a voxel size of 2.1 nm using PyTOM, and
the highest correlation peaks were then manually inspected in Chimera to remove
false positives. Cytosolic 80S ribosomes were localized in one tomogram by filtering
EMDB-178093 to 40 Å and using it as a template for template matching on the
deconvolved tomogram (tom_deconv; https://github.com/dtegunov/tom_deconv)
using PyTOM. Subvolumes were extracted for the 2100 highest correlation peaks,
of which 1700 subvolumes were classified as ribosomes by unsupervised, auto-
focused 3D classification94.

Proteomic analyses of C. reinhardtii mitoribosome composition. Mass spec-
trometry analyses of the total, mitochondrial and ribosomal fractions of C. rein-
hardtii were done at the Strasbourg-Esplanade proteomic platform and performed
as previously10. In brief, proteins were trypsin digested, mass spectrometry analyses
and quantitative proteomics were carried out by nanoLC-ESI-MS/MS analysis on a
QExactive+(T hermo) mass spectrometer. Data were searched against the Uni-
ProtKB (Swissprot+ trEMBL) database restricted to the C. reinhardtii taxonomy
with a target-decoy strategy (UniProtKB release 2020_03, taxon 3055, 31246 for-
ward protein sequences), Proteins were validated respecting FDR < 1% (false dis-
covery rate) and quantitative label-free analysis was performed through in-house
bioinformatics pipelines.

Artificial miRNA C. reinhardtii strain generation and analyses. Artificial
microRNAs constructs were created according to Molnar et al.39 as follows: the
oligonucleotides were designed using the WMD3 Web MicroRNA Designer soft-
ware v3.2 [http://wmd3.weigelworld.org/cgi-bin/webapp.cgi] and genome release
Chlamydomonas CDS reinhardtii 281 v5.6.cds (Phytozome) (Supplementary
Table 3). The oligonucleotides were annealed, phosphorylated, and ligated into a
SpeI-digested pChlamiRNA2 containing the ARG7 gene as a selection marker. The
resulting plasmids were linearized and transformed into Chlamydomonas CC-4351
strain by the Neon® Transfection System (LifeTechnologies) according to the

GeneArt® MAX Efficiency® Transformation protocol for Algae (LifeTechnologies
Cat#A24229). Cells with integrated plasmid were selected on TAP plates without
arginine. Colonies (16–48 depending on the transformation) were picked to grow
to logarithmic phase on liquid TAP medium. They were then spotted on two
identical TAP plates to test their capacity to grow in the dark. One plate was placed
in a mixotrophic condition (light+ acetate) for 5–7 days, and the other one in a
heterotrophic condition (dark+ acetate), for 10–15 days. For the dilution series,
cells were grown for 3–4 days on TAP plates and were resuspended in 2 ml of
liquid TAP medium. The cell density was measured spectrophotometrically at
OD750 and diluted to an OD750= 1.5. This normalized suspension was used as
the starting material (set to 1) for making three serial 5-fold dilutions (2.10−1,
4.10−2, and 8.10−3). A volume of 10 µl for each dilution was then spotted on two
identical TAP plates.

rRNA analysis by RNA sequencing. The RNAs were prepared from cells using
TRI Reagent® (Molecular Research Center) according to the manufacturer’s
instructions.

For northern blots, 1 µg of total, mitochondrial and mitoribosome fraction
RNA, were separated on 7M Urea - 8% polyacrylamide gel, transferred onto
Amersham HybondTM-N+membrane (GE Healthcare Cat#RPN203B), and
hybridized to radiolabelled oligonucleotide probes (Supplementary Table 3) in 6 ×
SSC, 0.5% SDS at 45 °C. Washing conditions were: 2 times 10 min in 2 × SSC and 1
time 30 min in 2 × SSC, 0.1% SDS at the hybridization temperature. For each
specific probe, the signal was detected with the Amersham Typhoon laser scanner
(Amersham).

For the quantitative real-time RT-PCR analyses, RNAs were treated with RQ1
RNase-Free DNase (Promega Cat#M6101) according to Promega’s protocol, using
0.2 U/µg of RNA. To obtain cDNA, reverse transcription assays were performed
according to the manufacturer’s instructions with 2,5 µg of total RNA in the
presence of 5 µM of oligo(dT) primer (Supplementary Table 3) and 25 ng/µl of
Random Primers (Promega Cat#C118A) using the SuperScript™ IV Reverse
Transcriptase (Invitrogen Cat#18090010). The RT-qPCR amplification was carried
out with the dsDNA-specific dye Takyon™ SYBR® 2X qPCR Mastermix Blue
(Eurogentec Cat#UF-FSMT-B0701) and monitored in real-time with a LightCycler
480 instrument (Roche). The primers used are listed in (Supplementary Table 3).
The delta-delta Ct method was used to calculate the relative RNA abundance with
respect to the geometric mean of two RNA references MAA7 and CYN19-395.

For the RNA sequencing, the p204 library was built with total mitochondrial
RNA. The RNA was first chemically fragmented (4 min) and then enzymatically
treated with Antarctic Phosphatase (NEB#M0289S) and T4 Polynucleotide Kinase
(NEB#M0201S). Library preparation was done according to the TruSeq Small RNA
Sample Preparation Guide #15004197 Rev. F February 2014. The library was
sequenced on the Illumina MiSeq sequencer in a paired-end mode of 2 × 75 nt
reads. The NGS192-small library was built with the mitoribosome fraction. The
RNA was also enzymatically treated with Antarctic Phosphatase and T4
Polynucleotide Kinase. The library was then constructed with the NEBNext
multiplex small RNA Library set for Illumina reference E7580 following the
manufacturer’s instructions. Following PCR amplification, a size selection was
performed on a 6% TBE gel to recover the 160–350 bp PCR fragments for
sequencing. The NGS192-total library was prepared according to the Truseq
Stranded Total RNA with Ribozero Plant kit, starting from the first-strand cDNA
synthesis step and omitting the two first depletion and fragmentation steps. The
library was sequenced on the Illumina MiSeq sequencer in a paired-end mode of 2
× 110 nt reads. Both libraries were sequenced at the IBMP platform. The reads
were mapped to the Chlamydomonas mitochondrial genome (EU306622) using
Bowtie2 version 2.4.1 with the following options -end-to-end -very-sensitive -N 0
-L 22. Alignments were displayed with the Integrative Genomics Viewer (IGV)
with the bigWig format.

Protein analyses. The Chlamydomonas crude total membrane fractions were
obtained according to Remacle et al.96 as follow: Chlamydomonas cells TAP liquid
cultures were collected and resuspended to 2–1.6 × 108 cells/ml in MET buffer
(280 mM mannitol, 0.5 mM EDTA, 10 mM Tris-HCl pH 7) with 1× cOmplete™
Protease Inhibitor Cocktail and then disrupted by sonication (four times 30 s of
sonication and 30 s of pause; Bioruptor® Pico, Diagenode). The suspension was
centrifugated (10 min at 500 × g, followed by 4 min at 3000 × g) and the protein
content of the supernatant was determined by the Bradford method. Equal
amounts of protein were separated using 15% SDS-polyacrylamide gel electro-
phoresis (PAGE), and transferred to a 0.45 µm PVDF membrane (Immobilon®-P
Transfer Membrane; Merck Millipore Cat.#IPVH00010). Specific antibodies were
used in immunoblotting and were detected using chemiluminescence (Clarity
Western ECL Substrate, Bio-Rad). We used rabbit sera obtained against Chlamy-
domonas reinhardtii mitochondrial-encoded subunits complex I, Nad4 (1:1000)
and Nad6 (1:100), nuclear-encoded subunit complex I, NUO7 (1:2000), and the
nuclear-encoded mitochondrial protein VDACI (1:25000). The expected / apparent
molecular weight are as follows 49 kDa/50–55 kDa for Nad4, 18 kDa/18 kDa for
Nad6, 49 kDa/38 kDa for NUO7, and 28 kDa/28 kDa for VDACI. Blue native
polyacrylamide gel electrophoresis (BN-PAGE) analyses were conducted according
to Schägger et al.97 as follow: the crude total membrane fractions were prepared as
above with an additional centrifugation at high speed (27,000 × g for 15 min) and
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the final pellet was suspended in ACA buffer (375 mM 6-aminohexanoic acid,
25 mM Bis-Tris, pH 7, and, 250 mM EDTA). 0.5 mg of the crude total membrane
were first solubilized in the presence of 1,5% (w/v) n-dodecyl-β-D-maltoside and
then centrifuged for 40 min 14,200 × g at 4 °C to remove insoluble matters. 0.65%
(w/v) of coomassie serva blue G was then added to the supernatant prior to
separation by electrophoresis on a 5% to 12% polyacrylamide gradient BN gel. In-
gel detection of Complex I (NADH dehydrogenase) activity was performed using a
100 mM Tris-HCl pH 7.4 buffer containing 200 μM NADH and 0.2% nitro blue
tetrazolium (NBT). In-gel detection of Complex IV (cytochrome c oxydase) activity
was performed using a 10 mM MOPS-KOH pH 7.4 buffer containing 7.5% sac-
charose, 19 U/ml catalase from bovine liver, 0.1% cytochrome c, and 0.01% 3,3′-
diaminobenzidine (DAB).

Figure preparation and data visualization. Three-dimensional segmentation of
ER, mitochondrial, and chloroplast membranes in the cryo-tomogram was per-
formed using EMAN’s convolutional neural network for automated annotation98.
Using the TOM toolbox in matlab99, the averages of the cytoribosomes, mitor-
ibosomes, and ATP synthases were pasted into the tomogram at the refined
coordinates and angles determined by subtomogram analysis. Figures featuring
cryo-EM densities as well as atomic models were visualized with UCSF
ChimeraX100 and Chimera84.

Statistical information. Data are presented as mean values ± SD (standard
deviation), calculated using Microsoft Excel version 16.43 and GraphPad Prism 8
version 8.4. The p-value < 0.05 was considered the threshold for statistical sig-
nificance. The p-value significance intervals (*) are provided within each figure
legend, together with the statistical test performed for each experiment: the two-
tailed Mann–Whitney. For Fig. 5b, c, derived statistics correspond to the analysis of
mean values of n= 3 biological replicates. Statistics detailed data (means, standard
deviation, n values, exact p-values) are provided in the Source Data file.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding authors upon
reasonable request. The cryo-EM maps of C. reinhardtii mitoribosome have been
deposited at the Electron Microscopy Data Bank (EMDB): EMD-13480 for the LSU,
EMD-13481 for the head of the SSU, EMD-13477 for the body of the SSU, and EMD-
13578 for the subtomogram averaging of the whole ribosome. The corresponding atomic
models have been deposited in the Protein Data Bank (PDB) under the accession 7PKT
for the LSU and 7PKQ for the SSU. Mass spectrometric data have been deposited to the
ProteomeXchange Consortium via the PRIDE partner repository with the dataset
identifier PXD024708. RNAseq data were deposited in the NCBI Gene Expression
Omnibus under accession number GSE171125. Source data are provided with this paper.
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