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ABSTRACT 

CASP is a community experiment to advance methods of computing three-dimensional 

protein structure from amino acid sequence. Core components are rigorous blind testing 

of methods and evaluation of the results by independent assessors. In the most recent 

experiment (CASP14) deep learning methods from one research group consistently 

delivered computed structures rivalling the corresponding experimental ones in accuracy. 

In this sense, the results represent a solution to the classical protein folding problem, at 

least for single proteins. The models have already been shown to be capable of providing 

solutions for problematic crystal structures, and there are broad implications for the rest 

of structural biology. Other research groups also substantially improved performance. 

Here we describe these results and outline some of the many implications. Other related 

areas of CASP, including modeling of protein complexes, structure refinement, estimation 

of model accuracy, and prediction of inter-residue contacts and distances, are also 

described.  
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INTRODUCTION 

CASP (Critical Assessment of Structure Prediction) is an organization whose aim is to 

advance solutions to the problem of computing protein three-dimensional structure from 

amino acid sequence information. It’s a community experiment in which those interested 

in the ‘protein folding problem’ (as it has traditionally been known) are asked to submit 

computed structures for independent assessment of accuracy. Every two years, CASP 

identifies a set of modeling targets - proteins for which the experimental structure is about 

to be solved or is solved but still not public - and provides the corresponding amino acid 

sequences to the modeling community. Participants are typically required to return 

computed structures within three weeks. Participating automatic servers are also sent the 

sequences, and must return models within 72 hours. Submitted structures are analyzed 

by a team of independent assessors. All models and analyses are made public. Each 

CASP round culminates with an international conference (held virtually for CASP14) and 

a special issue of PROTEINS, containing papers by the assessors, selected participants, 

and an overview of the results. This paper is the overview for the 14th CASP round.   

The primary focus of CASP has always been on computing the structures of single 

proteins and domains. There are two assessments of performance in this area for 

CASP14 [Prot-00153-2021][ Prot-00146-2021]. Assessing methods for modeling 

proteins complexes is increasingly important and is done in conjunction with CASPs’ 

sister organization CAPRI, also providing two assessments [Prot-00145-2021][Prot-

00175-2021]. Other assessed categories in this CASP are the prediction of inter-

residues contacts and distances [Prot-00198-2021], refinement of initial models [Prot-

00138-2021], and estimation of model accuracy [Prot-00135-2021]. There is also an 

analysis of how useful the computed structures are for deducing aspects of function 

related to molecular recognition [Prot-00184-2021]. For the first time, there is a separate 

assessment of multi-domain assemblies [Prot-00140-2021] with an emphasis on the 

accuracy of domain interactions. 

In CASP14, a total of 97 research groups from 19 countries tested 215 modeling methods 

and submitted over 67,000 predictions in six prediction categories, maintaining the 
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previous high level of participation in spite of the Covid-19 pandemic. Structures of 52 

proteins and protein-protein complexes were received from the experimental community 

in time for the assessments. 42 were determined using X-ray crystallography, seven using 

cryo-electron microscopy (cryo-EM), and three by NMR. These were divided into 

monomeric subunits and, in one case, separate domains (for a large 2180-residue long 

RNA polymerase, T1044), and released for prediction as 68 tertiary structure modeling 

targets. For the assessment, the targets were split into domains based on homology and 

structural integrity, and then re-organized into 96 evaluation units based on the 

comparison of the performance on individual and combined domains [Prot-00132-2021]. 

Target evaluation units are assigned to one of four classes of modeling difficulty, based 

on sequence and structure similarity to already experimentally determined structures: 

‘TBM-Easy’ (easy template modeling) for straightforward template modeling targets, 

‘TBM-Hard’ for more difficult homology modeling targets, ‘FM/TBM’ for those with only 

remote structural homologies and ‘FM’ (Free modeling) for the most difficult set with no 

detectable homology to known structures.  As discussed later, these divisions are no 

longer very relevant. 

 Additionally, ten multidomain targets were assessed for accuracy of domain interactions. 

Multimolecular assemblies, including eight hetero-complexes, were released for 

prediction as 22 quaternary structure modeling targets. 12 of those were also selected for 

the joint CASP/CAPRI experiment. The quaternary structure modeling targets were 

divided into 29 evaluation units (19 of which were also included in the CASP/ CAPRI 

experiment). Target details are available at 

https://predictioncenter.org/casp14/targetlist.cgi and are also discussed in a paper in this 

issue [Prot-00132-2021].  

Like most aspects of life in 2020, CASP was affected profoundly by the Covid-19 

pandemic. The CASP category of data assisted modeling1-3 was not possible because 

most labs were closed and so not able to generate the necessary data. The CASP14 

conference, usually a very intense in-person event, was held virtually.  The CASP 

community also responded to the emergency by working together to compute and 

evaluate models for 10 of the hardest to model SARS-CoV-2 proteins of unknown 

https://predictioncenter.org/casp14/targetlist.cgi
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structure (see paper in this issue [Prot-00143-2021]). This was the most extensive 

community modeling experiment so far in CASP, and produced interesting results. 

Three-dimensional Protein Structure Modeling 

CASP14 saw an extraordinary increase in the accuracy of the computed three-

dimensional protein structures. One research group, AlphaFold2 from the company 

DeepMind, submitted models competitive with experimental accuracy for at least 2/3 of 

the targets (group 427 in the Results tables, available online at 

https://predictioncenter.org/casp14/results.cgi). Other groups also showed substantial 

improvement. Figure 1 summarizes performance in terms of backbone accuracy for the 

best models received in each CASP.  

 

Figure 1: Trend lines of backbone agreement with experiment for the best models in each of the 

14 CASP rounds. Individual target points are shown for the most recent round. The three targets 

with the lowest agreement with experiment are colored blue (T1027 and T1029, NMR) and red 
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(T0147s1, a subunit of a cryo-EM-derived heteromeric structure with complex inter-subunit 

interactions). The agreement metric, GDT_TS, is a multi-scale indicator of the closeness of the 

Cα atoms in a model to those in the corresponding experimental structure. Target difficulty is 

based on sequence and structure similarity to other proteins with known experimental structures. 

Performance in CASP14 (top black line) is very impressive, with accuracy approaching and in 

some cases likely exceeding experimental accuracy for many targets (see later text).  

Historically, the most accurate models have been obtained using information about 

experimentally determined homologous structures (template-based modeling), and the 

Figure 1 difficulty scale4 (X axis) reflects the degree to which those methods were 

applicable. As the trend lines for earlier CASPs show, until now, accuracy on the right-

hand ‘difficult’ side of the plot was sharply lower. In CASP13 (2018)5, with the introduction 

of effective deep learning methods, the trend line rose to above 60 on the GDT_TS scale, 

even for the most difficult targets, a major advance from the previous CASP. Note that 

the fold of the protein backbone is usually correct at values above 50 on this scale, and 

so that represented a solution to the problem as classically defined, for most targets.  

Astonishingly, the trend curve for CASP14 (the black straight-line) starts at a GDT_TS of 

about 95, and finishes at about 85 for difficult targets. Because of experimental errors and 

artifacts, a GDT_TS of 100 is highly unlikely, and previous CASP trend lines intercept the 

Y axis at about 90, indicating that that is approximately the limit expected. In CASP14, 

about 2/3 of the 96 targets reached GDT_TS values greater than that, and so are 

considered competitive with experiment in backbone accuracy.  

Although this outstanding performance is dominated by AlphaFold2 (group 427), the 

dashed black line in Figure 1 shows that other groups also advanced substantially from 

CASP13.  Also of note, performance of servers in CASP14 (dotted black line in Figure 1) 

is similar to the best performance of all groups in CASP13. This is of particular 

significance since AlphaFold2 did not submit server models. Thus, other research groups 

have not only now surpassed AlphaFold’s leading performance in CASP13, they have 

also made these improved methods available in servers, some of which are publicly 

accessible. Nevertheless, it is clear that the AlphaFold2 models are generally much more 
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accurate, and the only ones to consistently approach experimental quality. For only four 

targets did another group obtain a higher GDT_TS.   

Figure 2 shows an example of a model with close agreement with experiment. Model and 

experimental backbone closely overlap almost everywhere. As discussed below, minor 

differences in loop conformations are often due to crystal packing effects. The helix loop 

helix motif in the model at the bottom right of the figure corresponds to a disordered region 

in the experimental structure (for which there is no observed structure). The set of five 

submitted models contain two different conformations for this region.  

 

Figure 2: Example of a high accuracy CASP14 model - CASP target T1053, a two-domain 

bacterial kinase. Model (from AlphaFold2, GDT_TS 93) in magenta, experimental 

structure (PDB 7m7a, resolution 3.2 Å) in turquoise. Both domains are difficult modeling 

targets (FM/TBM category).  

Figure 3 provides an atomic level view of part of a model of SARS CoV-2 ORF8 (from 

AlphaFold2) and the corresponding crystal structure (CASP target T1064, FM category, 

GDT_TS 87) showing impressive atomic level agreement for the main chain as well as 

side chain atoms.  
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Figure 3: Superposition of a model (from AlphaFold2) of SARS CoV-2 ORF8 (CASP 

target T1064) and the corresponding experimental structure (PDB 7jtl, resolution 2.0 Å), 

illustrating the atomic level of agreement with experiment typically found in CASP14.  

Remaining sources of disagreement between calculation and experiment 

In previous CASPs, with rare exceptions, it was usually safe to assume that differences 

between models and experiment were dominated by computational error. The high 

accuracy results in this round required a more careful analysis. Data are limited and some 

contributing factors are correlated, complicating interpretation. Nevertheless, as outlined 

below, several distinct influences on agreement with experiment can be identified. 

Dependence on Experimental data: Figure 4A shows the relationship between average 

best GDT_TS and the quality of experimental data (three ranges of X-ray structure 

resolution and cryo-EM). The lower agreement with experiment for lower resolution X-ray 

structures and for cryo-EM structures suggests that experimental structure accuracy may 
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be a factor in limiting the maximum GDT_TS obtained, particularly for values less than 

90. There were also three NMR targets in CASP14 (data not included in the figure) two 

of which are template free (FM) targets with very low GDT_TS values (blue points in 

Figure 1). Analysis by Gaetano Montelione’s group [Proteins ID pending], shows that one 

of these, T1027, is a dynamic structure and the best computed structures may correspond 

to a member of the ensemble. For the other, the best computed structures agree better 

with the experimental NOE data than does the experimental structure.  

Figure 4B shows that there is a strong relationship between target difficulty categories 

and the quality of experimental data obtained. That is, proteins belonging to well-studied 

protein families tend to yield high quality X-ray data. As a consequence, some of the 

decrease in average agreement with experiment for hardest targets may be likely due to 

higher experimental error. 

 

Figure 4A: Average agreement of the best CASP14 models with experiment (GDT_TS) 

for different categories of experimental data. The first three bins show a fall-off as the 

resolution of X-ray structures decreases, suggesting lower GDT_TS values are partly due 

to higher experimental error. The effect is most pronounced for Cryo-EM experimental 

structures (right hand bin, resolution range 2.2 - 3.8 Angstroms). Two of the three NMR 

targets (not included here) have very low GDT_TS values (see text).  
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Figure 4B: Distribution of experimental data type across categories of target difficulty. The 

large majority of targets in the most difficult category (FM) have low resolution X-ray, 

Cryo-EM (resolution range 2.2 - 3.8 Angstroms), or NMR data, whereas in the easiest 

category, 90% of targets are determined from higher resolution X-ray data. 

Dependence on modeling difficulty: Historically, the most accurate models have been 

obtained by leveraging information on related structures. A surprising feature of the 

CASP14 results is the small fall-off in agreement with experiment with fall-off in 

evolutionary information for related structures, especially compared to earlier CASPs. As 

noted above in Figure 1, the best model trend line starts at 95, but only falls to ~85 for the 

most difficult targets. Apparently, there is only minor benefit from homologous structure 

information - models are only marginally more accurate when it is available. Figure 5 

shows agreement with experiment (GDT_TS) as a function of the fraction of targets 

reaching a given level of agreement for different categories of target difficulty. 

Performance is still strongest for the category of targets with most information from 

homologous structures available (‘TBM-easy’, green), with the lowest GDT_TS of 90, and 

many targets with greater than 95. For the most difficult targets (‘FM’, black line), where 

no assistance from homologous structures is available, performance is slightly lower 

overall than for the easiest category, but still about 30% of targets achieve a GDT_TS 

above 90, and 75% have a GDT_TS of 80 or greater. As noted above, two NMR targets 

with very low GDT_TS (colored blue in Figure 1) pull down the right side of this trend line 
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and a third (red point), discussed below, also contributes. The strong correlations 

between average GDT_TS, traditional target difficulty, and experimental data quality 

discussed above (Figure 4) make cause and effect hard to separate conclusively: It is not 

clear whether the remaining fairly small differences in performance across target 

categories are because the AlphaFold2 method performs somewhat better when there is 

information for homologous structures available, or if the performance differences are just 

due to differences in the average accuracy of the corresponding experimental structures.  

Inter subunit interactions in protein assemblies: One of the points with low GDT-TS value 

in Figure 1 (colored red) is a subunit of a 52-mer bacterial flagellum cryo-EM structure 

(T1047s1, PDB 7bgi6). This is an unusual target in that there are very extensive inter-

subunit interactions, including a domain swap 7 in which part of the fold of one monomer 

occupies the corresponding position of a neighboring one. Thus, the monomer 

conformation is heavily influenced by its neighbors. More moderate conformational 

changes on forming a multimer are not unusual, and some investigators are developing 

methods specifically to deal with this issue (see for example [Prot-00165-2021]). 

Participants were not provided with specific multimer assembly information, and so all 

submitted models are based on an isolated monomer environment. In this sense, this 

type of difference to experiment is not a computational failure, although it is of course a 

poorer representation of the in vivo structure.  

Crystal lattice contacts: A related reason for lower GDT_TS values is the effect of lattice 

contacts on local conformation in crystal structures. The refinement category assessor, 

Daniel Rigden, has looked at this for a subset of seven targets, with GDT-TS values 

ranging from 72 to 93 [Prot-00138-2021]. These are cases where the best models differed 

from experiment for small regions of the polypeptide chain, and refinement methods were 

unable to converge to the experimental structure. Of the 105 residues involved, he found 

64 to be close to lattice contacts, suggesting the local conformations are determined by 

the crystal environment (also not provided to the participants). For these regions, the best 

calculated structures likely provide conformations closer to that found in vivo than those 

from the crystal structure.  
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Figure 5A: Backbone agreement with experiment (GDT_TS) versus fraction of targets 

reaching a given level of agreement with experiment in different modeling difficulty 

categories. Trend lines for targets with the strongest homologous structural information 

available (‘TBM-easy’) are green, those where homology modeling is more difficult (‘TBM-

Hard’) blue, those with only remote structural homologies (‘FM/TBM’) red, and the most 

difficult set with no detectable homology to known structures (‘FM’) black. Best models 

for each target Targets with more information on homologous structures tend to be more 

accurate, but interpretation of that is complicated (see text). 

Traditionally, CASP has used the multi-superposition, multiscale GDT-TS measure of 

agreement between models and experiment as a more robust metric than traditional 
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RMSD when dealing with medium or poor-quality models8,9. In CASP 14, almost all best 

models are in close enough agreement with experiment for RMSD to be an appropriate 

metric, and we include it here for those more familiar with its properties than those of 

GDT_TS. Figure 5B shows the percentage of targets modeled to a given Cα-RMSD for 

the different target categories, analogous to the GDT_TS cumulative plot in Figure 5A. 

Supplementary figure 1 shows the mapping between RMSD and GDT_TS for a larger set 

of CASP14 models. The threshold of 90 GDT_TS corresponds to approximately 1.5 

Angstroms RMSD, and 80 corresponds to about 2.5 Angstroms (all residues included, 

calculated with LGA 9).  
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Figure 5B: Backbone agreement with experiment (Cα atom Root Mean Square Deviation) 

for different modeling difficulty categories (best models for each target).   

Other Modeling Categories 

The startling results for 3D structure tend to overshadow the other areas of CASP in this 

round, where progress was less dramatic. At the same time, several of these areas are 

likely to benefit directly from type of the deep learning approaches that have been so 

successful for single proteins.  

Multimers and protein complexes:  This CASP saw a very impressive solution to the 

classical protein folding problem10 - accurate modeling of single protein structures from 

their amino acid sequences. Since the formulation of that problem, science has moved 

on - most proteins are not monomers, and most biology involves interactions with other 

proteins, DNA, RNA, or small molecules. In particular, accurate modeling of protein 

complexes is now receiving increased attention as the next barrier in computational 

structural biology likely to be surmounted. In this round, CASP and CAPRI (Critical 

Assessment of Protein Interactions11) again worked together to assess the accuracy of 

protein complexes, with two corresponding assessment papers [Prot-00145-2021],[Prot-

00175-2021]. 39 groups took part in this modeling category, with 22 targets altogether, 

12 of which were also considered by CAPRI participants. Most targets are obligate 

assemblies, and in future CASP needs to include more transient complexes.  About a 

third of the targets were determined by cryo-EM, and the increasing output from that 

technology is allowing larger and more complicated protein assemblies to be included in 

CASP.  

Three broad types of methods were used for modeling complexes in CASP14. As the 

PDB becomes more populated with large complexes, opportunities for homology 

modeling have steadily increased, and targets where that is possible continue to provide 

the most accurate models [Prot-00145-2021]. Where homology modeling is not possible, 

many groups used classical docking methods in which a search is made for sterically and 

electrostatically complementary surfaces12. A number of groups have now augmented 

these with the prediction in interface residue-residue contacts, often employing deep-
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learning methods, for example [Prot-00139-2021], producing some of the best results, 

although so far, the gains are fairly modest.  

Most methods start with models of individual constituent proteins, and conformational 

changes accompanying complex formation as well as intertwining of monomers present 

major challenges. As noted earlier, intertwining was a problem for accurate modeling of 

bacterial flagellum subunit, and an analysis by the CASP assessor Ezgi Karaca [Prot-

00145-2021] showed that at least two of the other CASP14 targets undergo substantial 

conformational changes on complex formation (targets T1061 and T1070). Three other 

targets were classified as ‘intertwined’ and two as coiled-coils, and these would also be 

difficult to predict by starting with monomeric structures.  

Although overall progress this round from the previous CASP is small [Prot-00145-2021], 

there is excitement as to what will happen next time, for several reasons. First, analysis 

by the function assessors [Prot-00184-2021] shows that simply using more accurate 

models of the constituent proteins will have a major impact on the effectiveness of 

classical docking methods. Second, deep learning methods for interface residue contact 

prediction are still in their infancy. Third, at least one group (Baker) already has a ‘fold 

and dock’ algorithm intended to model conformational change on binding [Prot-00139-

2021]. Fourth, that group have recently reported using deep learning methods developed 

for single proteins to directly predict the structure of multimers13. 

Refinement: The CASP refinement category was introduced in CASP8 (2008) on the 

basis that informatics methods are ultimately limited in accuracy and so physics or related 

representations of atomic interactions together with some form of local conformational 

exploration (such as those provided by conventional molecular dynamics) would be 

essential to achieving atomic accuracy. The deep learning results in this CASP suggest 

that assumption was incorrect, so that re-examination of the role of refinement is called 

for. Further, although earlier CASP rounds have seen substantial progress, in the last 

two, that has been harder to identify. In CASP14, only four methods on average improve 

models over the starting structures provided, and no method improves much more than 
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half of the targets [Prot-00145-2021]. No refinement for any model approached the 

accuracy achieved by AlphaFold2 directly.  

Why have refinement methods apparently stalled? One reason, as noted after CASP135, 

is that modeling methods increasingly incorporate a refinement component, so that further 

improvement with similar methods has become more difficult. That is, refinement may in 

fact be improving but most of what the methods can deliver is already being exploited in 

developing the pre-refinement models. A second more fundamental problem appears to 

be the rugged nature of the refinement landscape, with local energy barriers preventing 

convergence to high accuracy, at least using realizable amounts of computer time 

(identifying the global minimum with current scoring functions does not seem to be an 

issue14). There are two developments in conformational search methods that suggest 

future progress may be possible. First, the Baker group have successfully incorporated 

deep learning prediction of inter-residue distance errors into their refinement procedures 

[Prot-00145-2021], allowing computational effort to be focused on the parts of the 

structure most needing it. That strategy led to improved performance on bigger targets in 

CASP14 [Prot-00145-2021]. Second, a number of groups in the molecular dynamics 

community are applying new machine learning methods to allow exploration of 

trajectories in less frustrated latent spaces15.  

Estimation of Model Accuracy (EMA): For any data, it is important to have useful 

estimates of error. Historically, that has been especially crucial for protein structure 

models, where accuracy has varied widely from protein to protein and method to method. 

CASP has a separate category to assess methods for estimation of model accuracy, both 

globally and locally in a structure. The category has two parts. First, ‘Self Assessment’ - 

every 3D model that is submitted to CASP is required to have error estimates for each 

atom in the co-ordinate file, and the accuracy of those data has been considered as part 

of the overall evaluation metric used by recent assessors. Second, those interested are 

encouraged to provide accuracy estimates for all the server models submitted to CASP - 

that is, to develop general methods that can be applied to any model. This is a popular 

category in CASP, with 70 methods used in CASP14. Methods are divided into two types 

- those that estimate accuracy based on only the model itself and those that make use of 
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consensus properties across models generated by different modeling methods. 

Assessment metrics have been stable for some time. For overall accuracy estimation, the 

gap between the accuracy of the best model and the one ranked highest by an error 

estimation method (‘top1 loss’) is most useful - how close does an EMA method come to 

picking the best model available? For local accuracy, an average normalized Cα 

agreement score is used (‘ASE’, see the assessor’s paper for the full definition [Prot-

00135-2021]). Negative control baselines are provided by a simple consensus method 

and an older single model method.  

In recent CASPs there has not been substantial progress in methods performance. On 

the other hand, particularly for global estimates, the methods appear to be usefully 

accurate for selecting close to the best model available, with an average loss of about 10 

GDT_TS units for the most effective methods, both single model and consensus based. 

However, a recent more real-life test suggests there is something misleading about the 

CASP evaluation framework. As noted earlier and reported in a paper in this issue [Prot-

00143-2021], the CASP community worked together to generate models for 10 of the 

SARS2 proteins that had no experimental structure and where homology modeling was 

not effective. The result was a large set of models for each of these ten targets. To be 

useful to the broader scientific community, it was necessary to somehow select one model 

for each target and to provide global and local accuracy estimates. A large set of accuracy 

estimates were also collected for the models. It turned out there was very little agreement 

as to which were the most accurate structures. The Venclovas group devised a 

consensus accuracy estimate method to address this problem in the short term. 

Subsequently, two of these structures have been solved experimentally so making it 

possible to check how well model selection worked. The SARS2 paper [Prot-00143-2021] 

shows these data. By far the most accurate models are from the AlphaFold group, 

consistent with the later CASP results. But only one EMA method selected an AlphaFold 

model as the best, for only one of the targets, and generally the AlphaFold models were 

not highly ranked.  

This failure may reflect unusual properties of the AlphaFold models. For single model 

methods this problem has been recognized before16 - it is difficult to devise a general 
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method. The large gap in accuracy between the AlphaFold models and other also likely 

defeated the consensus methods - the best models were far from any consensus 

measure. Whatever the cause, it is clear that CASP should carefully reconsider how 

assessment is done for this category.    

Results based on estimates of error provided by model builders themselves are much 

more encouraging. The AlphaFold2 method outputs estimated Cα errors directly from the 

structure modeling deep learning network. The average normalized accuracy in estimated 

Cα error (ASE) for their CASP14 models is 0.91 (out a maximum of possible 1.0), 

suggesting this approach to error estimation can be very effective.  Some other groups 

are well placed to provide this type of estimate in future. Interestingly, some of the less 

accurate AlphaFold2 error estimates are for targets where there is doubt about the quality 

of the experimental structures, such as the NMR targets discussed earlier. That is, a low 

ASE for a model may turn out to be a useful indicator of low experimental structure 

reliability.  

Inter-residue Contacts and Distances: It was first proposed that evolutionary sequence 

information could be used to predict which pairs of amino acids are in three-dimensional 

contact in 1994, and in 1996 CASP2 introduced a category to encourage development of 

such methods. After initial progress, for about 14 years, from 2000 to 2014 (CASP11), 

the methods showed no significant improvement, in spite the huge quantities of relevant 

sequence data that became available in that period. Accuracy stuck at around 20% on 

the most confidently predicted set of long-range contacts17. But in 2016, the accuracy 

from the best groups almost doubled to just under 50%18. Apparently, this was a 

consequence of the introduction of improved classical statistical methods19. That level of 

accuracy was still too low to have a big impact on the three-dimensional structure 

accuracy though. In 2018 (CASP13), accuracy improved again, to around 70%, this time 

as the result of the use of deep learning convolutional network methods20. A number of 

CASP participants also began using these methods to predict a continuous probability 

function for inter-residue distances rather than just a binary yes/no for contacts21. 

Together, these developments did result in the CASP13 major jump in 3D accuracy seen 

in Figure 1.  
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For CASP14, we maintained the category on binary contact prediction and extended it to 

include prediction of inter-residue probability distributions. There was no further 

improvement in the contact accuracy. That may reflect the fact that most creative energy 

went into the development of probability methods. This first assessment of probability 

accuracy showed a strong signal using newly developed metrics and provides a baseline 

against which to measure progress in future CASPs. The currently most successful deep 

learning methods all depend on predicting these distributions.  

DISCUSSION 

Objective testing in CASP14 has shown that the problem of computing atomic accuracy 

protein structures from amino acid sequence is solved, at least for single ordered proteins. 

The improvements in model accuracy by AlphaFold2 and the other leading groups almost 

all arise from more advanced use of deep learning methods, discussed in [Prot-00154-

2021]. At the CASP14 conference, AlphaFold2 outlined four significant changes from their 

CASP13 methodologies and a detailed methodology paper describing these and many 

specifics has recently been published22. The changes are: (a) An additional stage of the 

neural network architecture which produces three-dimensional coordinates rather than 

ending with inter-residue probability distributions, as was done in CASP13. (b) 

Replacement of convolutional operations with attention learning23. Convolutions do not 

appear ideal for distogram or contact map feature extraction, and in fact it is surprising 

they work as well as they do. Attention learning is a rapidly advancing branch of deep 

learning24 that in principle allows identification of the most important information flows in 

a network. (c) Some protein specific features, such as covalent geometry, were 

introduced into the network structure, partly tailoring the network to the specifics of the 

problem. (d) The network directly outputs confidence estimates for the position of each 

residue in the structure, and as noted earlier, these are impressively accurate.  

Most (but not all) previous participants in CASP have been academic research groups. 

AlphaFold2 are from a company, and the CASP organizers recognize they operate under 

different restraints. For conference presentations, CASP expects that methods 

descriptions equivalent to that normally found in a published paper will be available, a 
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level that was not reached by AlphaFold2 at that time. However, as noted earlier, full 

methodology has now been published22, and a shorter CASP special issue paper 

discussing details of the CASP results has been submitted [Prot-00211-2021]. As a 

practical matter, CASP is unable to insist on full code and data availability though it is of 

course encouraged.  In any case, extensive AlphaFold2 code has in fact now been 

released. Nevertheless, the delay has been a source of controversy. Previous experience 

suggests it may not have been critical. AlphaFold were also the most successful 

participant in the previous CASP, and although more method information was provided 

at the conference, full details were only published many months later, and there was no 

code release. In spite of this, as Figure 1 shows, other research groups had substantially 

surpassed AlphaFold’s performance by CASP14, and most importantly, publicly available 

servers were also performing at a level similar to AlphaFold’s CASP13 level. There is 

intense activity in the modeling community now, exploring the new techniques, and the 

Baker group has already reported modeling accuracy similar to that of AlphaFold2 using 

deep learning methods25.     

The success of a company in this field has lessons for the academic community. In 

CASP13, DeepMind’s methods very clearly and directly built on ideas and methods 

pioneered in the CASP community. In CASP14 they appear to have very effectively 

implemented their own new insights. Partly, this reflects the fact that they have 

unparalleled expertise in deep learning. It has also been suggested that the computing 

resources used are beyond what is available to a normal academic group, though this is 

unclear. The human resources used are also larger than a typical academic group. On 

the other hand, the total human resources and computer power deployed by other CASP 

participants likely far exceeds DeepMind’s – but it was fragmented over multiple 

competitive groups. In the US in particular, the funding system encourages this kind of 

small-scale approach. What happened here should be a reason to carefully examine and 

adjust funding models. 

The AlphaFold2 methodology consistently produces models competitive in accuracy with 

the best experimental results, and subatomic scale differences from experiment are the 

norm. In this sense, it is an almost complete solution to the problem of computing three-
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dimensional structure from amino acid sequence. But there have been some objections 

raised to calling it a solution to the classical ‘protein folding’ problem10. To some that 

requires two further conditions to be fulfilled: there is no dependence on evolutionary 

information (a folding protein does not know the sequence of its relatives) and there is 

some explicit inclusion of the folding process.  On the first of these, recent CASPs have 

seen a dramatic reduction in the dependence of model accuracy on sequence alignment 

depth, a key ingredient in the classical contact prediction methods that preceded deep 

learning18 and also a usual input into deep learning networks. Figure 6 shows this 

dependency over recent CASPs for the subset of the hardest (FM) targets.  

 

 

 

Figure 6: Best model backbone agreement with experiment (GDT_TS) as a function of 

log normalized sequence alignment depth (Neff/len) for targets with no detectable 

homology to known structures (‘Free Modeling’ (‘FM’)). Data for the most recent three 
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CASPs. For this subset of the hardest ‘FM’ targets, dependence on alignment depth seen 

in earlier CASPs is not seen in CASP14. 

In CASP12 (2016), where best performance was dominated by methods dependent on 

predicting three dimensional contacts between residue pairs using classical statistical 

methods, there is a pronounced fall-off in accuracy for shallower alignments. In CASP13, 

where convolutional neural networks had become the most effective methods, there is  a 

similar dependency, though with an overall increase in accuracy. Strikingly, in CASP14, 

where more sophisticated deep learning methods were most successful, there is no 

accuracy fall-off with decreasing alignment depth. In their analysis of a much larger 

benchmarking sample22 the AlphaFold2 group did find that for shallow alignments (less 

than 30 sequences) there is a remaining dependence on depth. However, the accuracy 

spread in that region is large, and there are still highly accurate models, some with only 

a single sequence available. Very few models are really low accuracy.  So, especially if 

the less demanding criterion of fold rather than atomic accuracy is used, the method is 

effective for single sequences.  

The second objection - inclusion of the folding process - is more nuanced. There are two 

factors involved. One is a belief that a protein sequence that can successfully fold must 

not only have a well-defined global free energy minimum but must also incorporate 

specific features dictating a preferred folding pathway. This concept arises from a 1968 

paper26 which argues that the conformational space of a protein is so large that there 

must be a very specific pathway by which the conformation progresses from the unfolded 

to folded state. That motivated a large number of experimental and computational 

investigations of possible pathways in the subsequent decades. In fact, as has often been 

pointed out (for example27) this is a fallacious argument, since the free energy falls 

progressively as the protein folds, providing sufficient guidance28.  Local conformational 

restraints also greatly reduce the size of the space29. More concrete evidence for this 

conclusion is the large number designed proteins that have now been made, with no 

design of a pathway30.  
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The further concern is an unease that we do not know what the machine is doing, and 

therefore still do not understand key aspects of the physics of the process. This is 

probably the first solution of a serious scientific problem by artificial intelligence, and we 

will face more of these issues in future. However the results are achieved, it is clearly not 

just by pattern recognition - at this level of accuracy there are astronomically more atomic 

configurations than are present in the PDB - in some serious sense the machine 

generalizes from the training data to an extent analogous to the way in which a physics 

force field is a generalization that is applicable to all atomic configurations.  Does that 

mean that the network learns the force field? Not in the way we understand the term. For 

example, there are two free modeling targets with zinc binding sites and another target 

with two bound hemes. The parts of these structures interacting with the ligands are 

accurately modeled, even though the ligands are absent in the calculation.   

A frequently asked question is if any of the new methods contribute to modeling of 

disorder and dynamics. There are limited data from CASP to fully address this, and the 

terms mean different things to different people. Some CASP targets do have local 

disorder and flexibility and it appears that AlphaFold2 typically produces a variety of 

structures for these regions. The difficulty here is one that affects the whole disorder field 

- a lack of experimental data with which to assess performance. There is also at least one 

example in CASP14 of flexibility between domains being reproduced (T1024). As 

discussed earlier, conformational flexibility associated with docking to other molecules is 

already being addressed by members of the CASP community [Prot-00139-2021]. As 

already noted, the new report from the Baker group uses the deep learning system 

developed for monomers to directly built multimers, in some circumstances obviating the 

problem25. Given adequate ligand docking methods (see below), allosteric conformational 

changes should be addressable. Short time scale classical dynamics do not appear to be 

within the scope of the methods, so there is still a role there for molecular dynamics. 

The level of modeling accuracy seen in this CASP has many implications for structural 

biology. We have already seen that the structures are accurate enough to help solve 

structures, both X-ray and cryo-EM [Prot-00158-2021]. Three difficult target structures 

were solved with molecular replacement using crystallographic data and CASP14 
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models. An additional atomic structure was derived based on a lower resolution cryo-EM 

density map. A post-CASP study of the extent to which other targets could have been 

solved using molecular replacement by Randy Read found that only two of those tested 

did not have models good enough for molecular replacement [Prot-00207-2021]. So it is 

clear that going forward, the solution of crystal structures in particular will very frequently 

be done using these models, often greatly speeding the process. As well as providing a 

powerful aid for solving structures the methods will create more general synergy between 

computation and experiment. For example, a sequence alignment error in one of the 

target experimental structures was corrected with the aid of a model [Prot-00158-2021]. 

The correction hinged on accurately identifying which of two proline residues is in the cis 

conformation rather than trans, a very finely balanced energy difference with about only 

one in 15 prolines in protein structures adopting the cis form31. All this will be aided by the 

availability of servers such as that already released by the Baker group25, and by 

databases of computed structures, such as the one launched by DeepMind and the 

EMBL.  

As discussed earlier, there is reason to believe that the new methods will also be 

extended to protein complexes. As with protein docking, the CASP function assessors 

have shown that improved accuracy of structure models will improve the performance of 

current ligand docking methods [Prot-00184-2021], with implications for screening ligand 

specificity across all proteins. Deep learning methods for small ligand docking have been 

developing in parallel to the protein structure work32 and a new community experiment 

(CACHE) similar to CASP about to be launched to evaluate these. There are obvious 

implications for drug design and repurposing if the methods are as effective as claimed.  
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Figure S1: Relationship between Cα RMSD and GDT_TS for higher accuracy CASP14 

models. 

 


