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I N T R O D U C T I O N

The process of gene regulation is a fascinating process. Investigated for years, still the
scientific world lacks appropriate knowledge to explain gene expression of observed
phenotypes with an underlying regulatory network. The control of gene expression
is a multi-step process that takes place at the epigenetic, transcriptional and transla-
tional level and can adapt dynamically to external or internal stimuli. Gene expression
is not only regulated through transcription factors binding at promoter regions, close
to the transcriptional start sites: the genome wide chromatin state plays a crucial role
in the administration of gene expression, by dynamically changing the accessibility of
regulatory regions on the DNA genome wide. Distal regulatory regions (enhancers)
can activate transcription [1] even if they locate thousands of bases away from the pro-
moter. One gene can be regulated by multiple enhancers with different spatiotemporal
activities, which adds yet another level of complexity to the repertoire of expression
levels of a given set of genes [2].
Consequently, the gene expression of an observed phenotype is to some extent a result
of its genome wide chromatin state defining which regions are accessible, ready to be
bound by factors that will interact with a set of other proteins to initiate target gene
expression.

Nowadays, researchers make use of established experimental techniques followed by
genome wide sequencing such as ATAC or ChIP-seq to capture exactly these infor-
mations on DNA level. That is a very promising approach as it is possible to capture
the whole genomic architecture at once. Another approach is to measure directly the
mRNA expression to find important or novel genes or infer which transcriptional acti-
vators could have enabled the transcription.
However, making use of the data requires thorough computational processing and
analysis: Several preprocessing steps have to be followed to clean up the data and get
it into the right shape for the actual inference of important regulatory regions. Even
after preprocessing, the quantification of chromatin state usually requires a sequence
of sophisticated and coordinated statistical tools. In the present work, I will outline
our approaches in treating genomic and transcriptomic data.

This thesis is structured as follows:
The first two parts form the introduction and will give insights about the current
knowledge and hypotheses in genetic regulation (Chapter 1) and high throughput
sequencing (Chapter 2). Chapter 3 will then go deeper into the computational ap-
proaches that are used in the following manuscripts, but its main focus are the meth-
ods and concepts used in Chapter 4.

Chapter 4 describes the main work of my PhD.
Here, I will describe how our newly developed techniques can and will help our un-
derstanding of genome wide gene regulation by the analysis of genomic sequencing
data. Using high throughput genomic sequencing data, we identified key transcrip-
tional regulators which drive the changes underlying chromatin state across samples
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2 contents

genome wide.
Our results confirmed transcriptional regulators that have already been implicated in
embryonic development, stem cell differentiation and circadian regulation. Further, us-
ing our extensive library of transcription factor motifs, we were able to predict new
regulators and regulatory pathways. To make our tool accessible to everyone dealing
with high throughput data, we implemented it as an automated pipeline on our web-
server (Chapter 4).

Two smaller side projects of my PhD deal with methods to analyze gene expression
data and are described in the following two chapters:
In Chapter 5 we use RNA-seq data in combination with principal component analy-
sis to infer regulatory mechanisms in exercise response in mice. The last Chapter 6

outlines the usage and integration of self-written and already published tools to pre-
dict the response of human cancer patients to immune checkpoint therapy from gene
expression data.
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1
G E N E R E G U L AT I O N

The first step of gene regulation is transcription. In 1958, the central dogma of
biology was proposed by Francis Crick: "DNA makes RNA and RNA makes
protein". Transcription as the first step is itself divided into three sub steps:
initiation, elongation and termination. Ever since then, transcription was
seen as the key in understanding genetic regulation, with RNA polymerase
II being the core protein necessary for the whole process. With the advent of
Next-Generation-Sequencing techniques, the view on transcriptional initia-
tion was dramatically extended and a whole machinery of proteins was found
to be necessary: general transcription factors, co-activators, cohesions, insula-
tors, enhancers or silencers and epigenetic mechanisms. The dynamic usage
of the genome defines cell types, drives development of tissues, keeps the cell
homeostasis intact and initiates response to external stimuli. Misregulation
at this level of regulation can lead to severe malfunction and diseases. Regu-
lators can act in a cis- or trans manner, depending on where the regulatory
sequences occur. Trans-regulatory elements can act independently on the al-
lele (e.g. general transcription factors), cis-regulatory elements are classically
defined as enhancers or promoters, depending on their location. Among those,
distal regulatory elements and epigenetic regulation have been found to play
a vital role in the complex process of gene regulation.

1.1 regulation through transcription factors

1.1.1 The different roles of transcription factors

The first level of regulation is exerted by transcription factors (TF). The number of
TFs seems to depend on the genome size of the organism [49], from around 300 for
e.coli up to 3000 for humans, where each of them has one or more distinct function.
However, this system is highly redundant, a loss of function of one factor can be re-
placed by another one in many cases. TFs perform the first step in decoding the DNA,
which makes them indispensable for all kinds of genetic pathways in living organisms.
The number of transcription factors – compared to the 20000 expressed genes – seems
rather small. Of course, one transcription factor not only targets one gene and their
action is highly dynamic: their regulatory programs differ depending on condition,
binding partners and tissues.
Some can also function as repressor by competing for the binding with activating fac-
tors and thus block transcription, this mechanism is frequently found in bacteria [23].
The mechanisms that TFs use to interact with the DNA are highly variable: Whereas
some can directly recruit RNA polymerases, some can unwrap the DNA and others
need a to form complex with other proteins and factors to initiate the transcription.

5



6 gene regulation

1.1.2 Co-regulators

The tightly coordinated program of gene transcription makes use of co-regulators to
fine-tune the transcriptional program. Co-regulators either activate (co-activator) or in-
activate (co-repressor) regulatory loci by binding to another transcription factor or al-
tering the chromatin state, largely employed in multiple physiological and pathogenic
contexts.
Besides acting as silencer or activator, co-regulators can be classified into three groups:
Those which covalently modify histones by acetylation/deacetylation (HATs), exam-
ples would be histone acetyltransferase p300 (p300) and CREB-binding Protein (Cbp).
Factors of this group can act as activators or repressors, by acetylating or deacetylating
the side chains of histone lysines, thus increasing or decreasing the accessibility of the
DNA. Members of the second group are part of the TRAP/DRIP/Mediator complex,
can recruit that bind to transcription factors, recruit RNA polymerase II (PolII), and
interact with the whole transcriptional machinery. The last group consists of factors
which make use of ATP to unwind the DNA (SWI/SWF) complex (see Figure 1.1)
[1, 20].

Figure 1.1: Schematic representation of the three modes of co-regulators. Chromatin remod-
eling factors help unwind the DNA and provide access to the DNA (light blue).
Nuclear Receptors (NR, orange) have been shown to recruit co-activators with hi-
stone acetyltransferase activity (HATs) (purple) to help enabling the transcription.
Factors that recruit or are part of the mediator complex (light purple) are needed to
interact with the whole transcriptional machinery, for instance the sterol regulatory
element-binding protein (SREBP, blue-green). RNA Polymerase II (PolII, green) can
initiate the transcription together with general transcription factors (GTFs,blue) and
Transcription factor II D (TFIID, pink). Activators like Sp1 (dark blue) help forming
the this pre-initiation complex. Taken from [21].
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1.1.3 The transcriptional co-activator Pgc1α

An example for a highly variable transcriptional co-activator is Peroxisome proliferator
activated receptor gamma co-activator 1-alpha (Pgc1α), which uses both histone mod-
ification and interaction with other transcription factors. As Pgc1α is a key nodal reg-
ulator of metabolism and energy management, its expression is necessary for the reg-
ulation of metabolic pathways in many tissues: It guides the adaptation to endurance
exercise in skeletal muscle, the thermogenesis in brown adipose tissue (BAT) and has
important other functions in liver and brain. Several isoforms of the Pgc1α transcript
have been found, their function is still indefinite and remains to be elucidated [32].
Its binding to different partners in a complex has been studied extensively in the
past. The most investigated transcription factor that it binds to is the nuclear receptor
or estrogen-related-receptor (Errα). The action of the Pgc1α-Errα complex has been
found to be important for mitochondrial health and thus metabolism in different tis-
sues.
More specific findings show the implication of PGC1α, ERRα and GA-binding protein
(Gabpa) in the oxidative phosphorylation [30], PGC1α coactivation of activator protein
1 (AP1) in the hypoxic gene program [50] and heat shock factor 1 (Hsf1) in the heat
shock response [51]. Another study showed forkhead box protein 1 (Foxo1) and hep-
atic nuclear factor 1 α (Hnf1α) being coactivated by PGC1α in hepatic gluconeogenesis
[33, 34].
Chapter 5 examines the implication of Pgc1α in acute response to exercise in mice,
for deeper insight into the actions of Pgc1α especially in epigenetic regulation, please
refer to Appendix 1.

1.2 epigenetic regulation

1.2.1 Histone marks

The DNA in each cell is tightly packed into chromatin. But this structure is far from be-
ing inert, but rather used to respond quickly by regulating gene expression in response
to external stimuli. This is organized by wrapping the DNA around an octameric pro-
tein complex, the nucleosome, which itself consists of 8 histone molecules. Intrinsically,
this packaging is repressive, supposably because of the bending and physical obstruc-
tion. However, histones are not just statically placed on the DNA, they can be also be
marked postranslationally which alters their state of accessibility or induce reposition
entire nucleosomes [26, 2].
The modifications on histones range from phosphorylation, ubiquitination acetylation
and methylation, which have been studied in the past years, to the more recently
discovered GlcNAcylation, citrullination, krotonilation and isomerization. This modi-
fications can change dynamically with time. The first histone modification to be discov-
ered was acetylation, found by Allfrey et al in 1964 [27]. Subsequently two groups of
proteins that regulate histones were found: histone acetylases (HATs) and deacetylases
(HDACs). HATs make use of acetyl CoA to neutralize the initially positively charged
lysine by adding an acetyl group to it, which weakens the bond between histones
and DNA and thus makes the DNA more accessible. HDACs, contrariwise, restore
the positive charge, potentially acting as repressors. Histone methylation is one of the
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Figure 1.2: Schematic visualization of the genomic location of different histone modifica-
tions. The arrow denotes the transcription start site (TSS), NDR is the nucleosome
depleted regionand TTS is the transcription termination site. Taken from [29].

most studied histone marks, regulated by histone methylases (HKMT) which deposit
methyl groups to the histone lysine or arginine side chains (lysines can be mono-, di-,
or trimethylated and arginines mono-, symmetrically or asymmetrically methylated).
This reaction does not change the charge of the histone and was thought to be static
for a long period of time. In 2002, a number proteins with histone-demethylating func-
tion were found, which changed the view completely and makes the dynamic usage
of histone methylation part of the regulatory network.

Whereas histone acetylation mainly acts as a positive regulator for gene transcription,
methylation is more diverse: It does not perturb the initial chromatin structure but
rather recruits transcription factors to their loci, which can activate transcription. They
can even inhibit the binding of factors which would act as a repressor otherwise. Ad-
ditionally, histone modifications affect each other: by competition for the same lysine
or arginine sites, by disrupting the function of another modification, or by depending
on other already deposited modifications [28].
Depending on the function and location of the histone, different lysine tails are tar-
geted (see Figure 1.2). Active promoters have been associated with enriched lysine 4

trimethylation and acetylation of histone 3 and 4 (H3K4me3 and H3ac/H4ac). His-
tones located in genes in the process of being transcribed show K36me3 and K79me3.
Enhancer elements are marked by H3K4me1, if they are activated they show enrich-
ment for H3K27ac. Repressed regulatory elements show H3K9 methylation (H3K9me1)
H3K27 trimethylation (H3K27me3) or H3K20 trimethylation (H3K20me3) [29].

1.2.2 Enhancers

Enhancers were first discovered in 1981 as a viral repeat sequence (simian virus 40) ??
which could increase the expression of a reporter gene by 200 fold. Two years later, the
first enhancer was discovered in mammals. Consecutively, more and more enhancer
sequences have been identified or predicted. Nowadays enhancers are thought to be
highly implicated into the tissue and cell specific gene programs, especially during
embryogenesis [10].
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A lot of effort has been put into identifying distal regulatory regions by genetic and
biochemical analyses [8, 9]. Although these studies greatly improved the understand-
ing of enhancer function, genome-wide identification of tissue-specific enhancers was
precluded by the inability to annotate them systematically based on DNA sequence.
Enhancers are distal elements which are uncoupled from promoters and are able to
start the transcription independent of their orientation, which makes them highly vari-
able and enables the activation of distinct pathways during development and a fast
response to external stimuli [10]. Genome wide studies have shown that enhancers
occur at distal regulatory regions hundreds or thousands of kilobases away, but nev-
ertheless they are targeted in a higher frequency as promoters in lineage-specific gene
programs. An example is given by the embryonic stem cells octamer-binding tran-
scription factor 4 (Oct4), SRY-Box Transcription Factor 2 (Sox2) and Nanog Homeobox
(Nanog) which share most of their targets, where only 10 % of the binding events
take place at the promoter [11, 12]. Most enhancers are not amenable to binding of
a TF directly. Specific proteins facilitate the binding: co-activators: histone modifiers,
(e.g. acetyltransferases p300/CBP, Gcn5-containing ATAC complex), ATP-dependent
chromatin remodelers catalyzing nucleosome movement (e.g. chro- modomain heli-
case DNA binding protein 7 (CHD7), Brg1 complex (BAF), or mediators of crosstalk
with basal transcriptional machinery at promoters (e.g. Mediator complex) [15, 13, 14].
Although it is almost impossible to predict enhancers dirctly from DNA sequence,
they leave traces which can be identified: A study conducted in 2007 linked transcrip-
tional regulation with histone modifications (Figure 1.3). Specifically, H3K4me1 was
found be deposited at enhancers and H3K4me3 at promoters (1.3A) [17, 16]. Notably,
not all enhancers have to be marked, they still can be dynamically activated: Special
factors, pioneer factors, can bind to wrapped DNA and recruit the necessary machinery
to activate the enhancer by unwrapping the DNA or substitution of additional factors
which would have been needed otherwise (Figure 1.3B) [18].
Following the hypothesis, histone modifications not only report the location of an reg-
ulatory element, but also its mode: Active enhancers are thought to be marked simul-
taneously with H3K4me1 and H3K27me1, whereas a sole modification of H3K4me1

is only a ’primer’ to prepare the enhancer for being activated or poised. Poised en-
hancers are trimethylated at K27 and still marked by H3K4me1 (Figure 1.3C). The
incorporation of the hypermobile histone variant H3.3/H2A.Z makes the enhancer
easier accessible and has even been associated with epigenetic memory [52]. Although
the annotation of enhancers to their targeted genes remains very challenging, genomic
analyses are in concordance about the cell-type specificity of enhancers. Sites which
are marked by enhancer associated histone marks vary much more across cell types
than promoter marking or CTCF binding sites (see also Chapter 4 of this thesis). Over-
whelming is also the fact that the currently predicted number of enhancers which are
cell type specific ranges up to hundreds of thousands. Even in yet undifferentiated em-
bryonic stem cells a specific enhancer signature exists whereas promoters are largely
invariant [19].

1.2.3 DNA methylation

The cytosine nucleotide in the DNA can be methylated (5-methylcytosine (5mC)) and
has numerous functions: Earlier, hypermethylation was suggested to be repressive
[3, 39, 5], but recent findings associate it with actively transcribed gene bodies and
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Figure 1.3: The three suggested principle states of enhancers and the resulting chromatin
landscape: A) Active enhancer: H3K27ac/H3K4me1 is deposited at the enhancer
flanking regions and H3K4me3 at the promoter. Hypermobile H3.3/H3A.Z nucleo-
somes are often incorporated at enhancer locations. A transcription-initiation com-
plex (P300/PolII/Mediator) can bind to the enhancer to enable transcription of the
target gene. B) Primed enhancer: Only H3K4me1 is present at the enhancer and no
H3K4me3 at the promoter, C) Poised enhancer: H3K27me3 and H3K4me1 can lo-
cate both at the enhancer while the promoter may be marked with H3K4me3. PRC
binds to the enhancer and communicates with the promoter, but transcription is
repressed. Taken from [24].
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gene activation per se.
Not all organisms possess 5mC, because methylated regions can easily undergo a
point mutation C→ T. This leads to fewer CpG content in the genome, explaining the
observed lower amount of CpG nucleotides than expected [6, 7].

1.2.4 miRNA

The recent advances in high throughput sequencing have revealed several types of
RNA, (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), endoge-
nous small interfering RNAs (endo-siRNAs or esiRNAs), promoter associate RNAs
(pRNAs), small nucleolar RNAs (snoRNAs) and sno-derived RNAs. Among those,
miRNAs were found to play an important role in post-transcriptional regulation of
their messenger RNA (mRNA) targets via mRNA degradation and/or translational
repression.

1.3 gene regulation in :

This thesis is about computational analysis and how to get insight into how the com-
plex regulatory structure is governed and how we can make predictions from the data
that is being measured. Biological datasets come in many forms – in terms of data
structure – but they vary also in terms of hypothesis, experiment, organism, treatment.
We analyzed three different types of datasets with various intentions and approaches.
This section covers the background knowledge to understand the biological questions
in our chosen datasets (Please read Chapters 4 5 and 6 for profound analysis of these
datasets).

1.3.1 Exercise

Exercise ameliorates skeletal muscle mitochondrial expression and counteracts several
severe illnesses such as obesity, cardiovascular diseases, hypertension and type 2 di-
abetes [32]. It has been shown – among others – to improve lung function, reduce
adipose tissue mass and liver fat, increase muscle mass and even has effects on the
human psyche [44]. Regular exercise thus affects the whole body. We focus on skeletal
muscle, as it is a highly versatile organ capable of adapting to a myriad of external
stimuli. Those range from mechanical loading, e.g. the intensity or type of exercise,
to the availability of nutrients, hormone signaling, fiber type distribution, tempera-
ture and other metabolic programs [43]. Immediately upon initiation of exercise the
local demand for ATP, oxygen, glucose and fatty acids increases dramatically. To cope
with this, the muscle rapidly starts allosteric regulation and phosphorylation of key
enzymes and transporters of glucose and fatty acid oxidation. Simultaneously, the tran-
scription of relevant genes related to energy metabolism is initiated [45]. However, the
knowledge of which pathways serve the muscle to adapt to exercise are still relatively
unknown.
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1.3.2 Embryonic development and stem cells

Embryonic development is a highly regulated process, complex and coordinated. A
large portion of the regulation is thought to come from alterations in chromatin accessi-
bility and histone modifications. With today’s possibilities to examine chromatin state
as well as gene expression, a growing number of mechanistic insights and hypotheses
have been evolved and proofed in multiple organisms [46, 47]. Most previous stud-
ies were aimed at investigating the mRNA expression pattern, although it’s becoming
more clear that a big part of the dynamic regulation happens in distal regions. The
dynamics of enhancer–promoter communication in different cellular contexts and its
influence on transcription is not well understood, as the gene-enhancer association
is not straightforward and can differ across cell types. We will analyze a dataset in
murine embryonic development genome wide and a dataset on human stem cell lin-
eages to decipher parts of the underlying regulatory network.

1.3.3 Circadian rhythm

Naturally all living organism show a time-dependent behavior governed by certain ex-
ternal stimuli. The most important stimuli is here the day-night cycle, that has set the
oscillation period of time-dependent gene programs in most organisms to a 24h cycle.
The supracharismatic nucleus (SCN) receives signals from the ocular photoreceptors,
to synchronize and induce tissue-specific independent circadian clocks. On the molec-
ular level, these circadian clock programs are governed by transcription-translation
feedback loops: Clock Circadian Regulator (Clock) and Brain And Muscle ARNT-Like
1 (Bmal1) drive the expression of Period 2 (Per2) and cryptochrome 1/2 (Cry1/2)
which in turn represses further transcription of Clock and Bmal1. Thousands of genes
are downstream of those two master regulators and regulate for example metabolic,
humoral signals and body temperature [48].
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2
N E X T G E N E R AT I O N S E Q U E N C I N G T E C H N I Q U E S :
P R O C E D U R E S , B E N E F I T S A N D C H A L L E N G E S

Orchestrated through a complex interplay of transcription factors, co-
activators, chromatin and histones, the gene expression pattern is a main
determinant of a cells phenotype. The DNA sequence is thought to encode the
bases of this regulation and is used widely to predict potentially functional
pattern genome wide using conversation across species. However, less than
10% of our genome falls into conserved regions, and if so, they still cannot be
genuinely depicted as being active. For gene transcription to be initiated, it
must be accessible and not packed in histones, its promoter has to be bound
by an activator and eventually other factors like co-activators have to be
present. Recently, it has been found that a large portion of these binding
events also happen at distal regions, enhancers. Rigorous methods have been
developed to investigate the chromatin state (ATAC-seq and DNase-seq) or
the binding of transcription factors (ChIP-seq) genome-wide and will lift our
understanding of genomic regulation to the next level.

2.1 genomic methods in analysing dna accessibility and transcrip-
tion factor localization

As outlined in the previous chapter, the chromatin state of a cell is highly regulated.
By making the DNA accessible, active open regions can interact with other sequences
and proteins to initiate genetic programs. Thus, understanding the chromatin state by
scanning for open regions in the DNA of cells is the first step in understanding the
cell-specific complex regulatory network. Importantly, the binding of specific proteins
cannot be assessed by analysis of the chromatin state alone. Therefore researchers
make use of DNA binding profiles to detect functional binding sites of their proteins
of interest.

This chapter will give an overview over the most common techniques to assess
accessibility and functional binding sites.

2.2 methods to detect accessible regions or transcription factor

binding sites

2.2.1 ChIP-seq

The eternal process in gene transcription is the binding of a transcription factor to the
DNA. Of interest are transcription factors and histone marks which can be targeted
by an antibody. By combining chromatin immunoprecipitation with deep sequencing
it gets possible to study genome wide regulatory elements targeted by transcription
factors, cofactors and histone modifications. A typical ChIP-seq experiment starts with
crosslinking the DNA-associated proteins to the DNA, followed by a sonication of the

17



18 next generation sequencing techniques : procedures , benefits and challenges

Figure 2.1: Schematic explanation of the workflow for ChIP seq, DNase seq and Histone
ChIP seq. left: ChIP seq, middle: Histone modification ChIP seq, right: DNase se-
q/ATAC seq, basic concept taken from [18]. Blue bullets are the nucleosome com-
plexes, TF is an arbitrary transcription factor, the Y-shaped structure is the antibody
against the TF. Tn5 is the transposase enzyme.

samples to obtain equally long fragments (see Figure 2.1,left). Immunoprecipitation is
done using protein specific antibodies (=foreground sample). To find the baseline of
fragment counts, a control sample contains a random selection of fragments from the
same sample. Fragments are then amplified and oligonucleotide adapters are attached
to them to allow for deep sequencing. After sequencing, the location of the transcrip-
tion factor can be inferred by searching for regions that are enriched for reads in the
foreground sample compared to the control sample (see also Chapter 3). ChIP-seq for
histone modifications uses a slightly adapted protocol: The fragmentation of DNA is
done by using MNase to digest DNA. Unfortunately, ChIP-seq has certain limitations.
A large amount of data is necessary to achieve the necessary sequencing depth, in the
range of 107 cells which is not always feasible – for example in small organisms or
very specific tissues. However, recent protocols even managed to perform ChIP-seq in
single cells using a microfluidics [23]. Another bottleneck of the ChIP seq protocol is
to find the right antibody. If a lot of non-specific binding events occur, the analysis will
be confined by false positive peaks. Therefore, ChIP-seq experiments always include a
control sample. This can be either an "input" DNA, which is the DNA before immuno-
precipitation or substitution of an unspecific antibody such as anti-IgG [24]. One of
the most important problems is the required prior knowledge of important transcrip-
tion factors which makes it hard get an unbiased overview of the genetic state of a
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cell or organism in an experiment. Recently, new techniques have emerged, the most
important being DNase and ATAC-seq.

2.2.2 DNase-seq

DNase-seq makes use of enzymatic digestion of accessible regions with the non spe-
cific endonuclease DNase1. Initially this technique included running twice the experi-
ment on a gel with and without the protein of interest and checking which basepairs
change in enrichment [7]. The first DNase followed by deep sequencing was estab-
lished in 2006 [13].
To perform DNase-seq, nuclei are isolated from cells and exposure to DNase1, then
degrading RNA and proteins and purifying the DNA (see Figure 2.1,middle). The frag-
ments of desired size (usually around 130-160bp in length, according to the length
of DNA wrapped around 1 nucleosome [8]). The fragments least abundant are those
targeted by DNase1 and recognized as most accessible (DNase 1 hypersensitive sites).
After sequencing, enriched regions show almost the same pattern as in ChIP-seq and
can be inferred by traditional ChIP-seq analysis (Chapter 3)). DNase-seq has influ-
enced the genomic research by providing information about promoters and enhancer.
Despite DNase has a slight sequence bias towards minor grooves in the DNA [16], lots
of highly influential papers have been published using this method, for example an
atlas of all known cis-regulatory regions [9], and the atlas of tissue- and cell-specific
differences, provided by the ENCODE project and the Roadmap Epigenomic Consor-
tium [10, 11, 12].

2.2.3 ATAC-seq

This method is a fast and sensitive alternative to DNase-Seq for assaying chromatin ac-
cessibility genome-wide, first applied in 2013 [14]. As with DNase-seq, the sequenced
reads give information of regions with increased accessibility, active sites of transcrip-
tion factor binding and nucleosome position. Here, a hyperactive Tn5 transposase
binds to open regions not covered by histones, yet accessible regions (see Figure
2.1,right). The transposase directly inserts sequencing adapters to the bound fragment
[1]. Also the ATAC-seq derived regions which denote the accessibility can be inferred
via methods for ChIP seq analysis (Chapter 3). The successful technology has been
used in a multitude of different contexts, for example in yeast, plants, nematodes, flies,
mammals, and even frozen tissues [15]. Because ATAC-seq relies on the insertion of
the transposase into open chromatin, rather than digesting it, mitochondrial (mt)DNA
is often overrepresented and has to be corrected for [17]. In comparison, ATAC-seq
and DNase-seq agree principally on the identified sites, while both methods have dis-
tinct sequence biases. DNase showed better results in footprinting TFs, where both
approaches yielded different results [3]. While DNase is rather time - consuming (a
standard protocol requires approximately 3days to finish), an ATAC-seq library can
be prepared in about 2-3h [4]. The simplified procedure also diminished experimental
errors and thus increases reproducibility.
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2.3 methods to assess transcription

2.3.1 RNA-seq

RNA sequencing was developed more than 10 years ago. Mostly used for finding
differential expressed genes (DE), it is used for finding isophorms, new transcripts
like long non-coding (lnc)RNAs and distal regulatory regions (enhancers). The ex-
perimental procedure to prepare the library for RNA-seq consists of RNA extraction
and enrichment (or depletion or ribosomal (r)RNA), then synthesis of complementary
(c)DNA and ligation of adapters for the sequencing. Normal sequencing depth is about
10-30 million reads per sample.

2.3.2 Microarray

Before RNA sequencing was established, the microarray technique was the one most
used to determine the expression level of a gene across different samples. Here, certain
probes (cDNA sequences of known identity) are immobilized on a plate, and samples
from the different conditions are marked with different fluophores. When the samples
are washed over the plate, they hybridize with the probes and the fluorescence emis-
sion is measured to quantify from which sample the fragments for each gene came
[25].

2.4 sequencing techniques

Sanger sequencing was for almost 30 years the acronym for sequencing, named by
Frederic Sanger who invented the successful "chain termination method". In summary,
this technique uses single strand DNA and chemically-altered deoxynucleotide (dATP,
dCTP, dGTP, dTTP), which are incorporated randomly by the DNA polymerase and
terminate the chain replication of single-stranded DNA. The resulting fragments differ
in size and can be divided by gel-electrophoresis. By doing 4 such runs with different
modified nucleotides, it is possible to reconstruct which nucleotide belongs to which
position.
Most of the data available nowadays was produced by the widely used NGS platform
Illumina, former Solexa. This technique is called cyclic reversible terminator technol-
ogy and takes place on flow cells, containing billions of fragments. Specific adaptors
are ligated to the fragments 3’ and 5’ ends, and complementary adapters are placed as
anchors on the flow cell. The fragments coming from the experiment then attach to the
hybridize with the anchor and are bound to the flow cell (Figure 2.2, upper panel). Af-
ter this, a few cycles of amplification take place: The single strands bend over to other
adjacent anchors and are copied starting from the anchor region bridge amplification
(Figure 2.2, middle). This process is repeated until the desired amount of fragments is
present. Then the original template strands (the reverse strands) are washed away and
the 3’ ends are blocked to prevent further amplification. Then modified nucleotides
– the same as in Sanger sequencing – are washed over the plate, each carrying a flu-
ophore, which can be identified by laser. Each washing one nucleotide is added to
the each the sequences and the chain reaction is stopped by the modified nucleotide.
After detection of the fluophore, it is removed and the reaction continues (Figure 2.2,
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Figure 2.2: Representation of the NGS technique for sequencing. Upper panel: Ligation to the
anchors. Middle Bridge amplification, Lower panel: Single strands bend over and are
copied. Detailed sequencing process. Each cycle a new nucleotide is incorporated,
its color is recorded and the chain reaction stops. Taken from [22].

lower panel). In difference to Sanger, here, each nucleotide terminates the replication,
which makes it much more effective. This technique captures the sequence of the cod-
ing strand, however it is also possible to obtain both strands by paired end sequencing.
In this case, the clusters are regenerated, but this time the the 3’ blocking is removed,
another step of bending is performed and this time the forward strand is washed away
[22].
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2.5 challenges

The decreasing cost of sequencing led to a tremendous increase of available sequenc-
ing data during the last decade. However, the capacities to handle the data are getting
more and more pushed to the limits. The analysis of this type of data is highly chal-
lenging, due to the extremely heterogeneous structure. Dedicated statistical models are
developed to get rid of white noise and model the data to transform it into meaningful
results. Given the number of current available tools, it requires certain knowledge to
apply the right models to the right data with the right parameters. Using a tool with
different parameter settings may result in very different results and interpretations.
Even using different version of one program may lead to non-overlapping outcomes.
This poses a problem in terms of reproducibility of scientific studies. The increasing
amount of data also poses challenges to the available infrastructure: A whole human
genome takes up to 140 GB in disk-space. Tools doing calculations on the data can
need up to 100GB of RAM to run. Bioinformaticians are thus pressed to find the most
economic way of processing and storing the data, without risking the loss of informa-
tion.
All these reasons lead to eventual poor reproducibility in the analysis of high - through-
put experiments. Therefore, adequate documentation of the programming languages,
versions, packages and parameters is required. Raw data and the used code has to be
made accessible for future researchers. However, as self-built scientific pipelines usu-
ally depend on the developer’s computing environment, it can be very challenging
to make the pipeline publicly available although this should be common practice. To
interpret the results of a computational analysis, one has to be aware that everything
is a prediction and based on statistical models. Thus, every gene or transcription fac-
tor that is reported, is reported with a certain probability. Normally, the false positive
rate of the predictions is controlled and set to mostly 5-10 %. Still, a critic view on
the data and validation through previously published literature or even experimental
approaches is definitely a plus in the process of understanding genetic regulation.
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N E X T G E N E R AT I O N S E Q U E N C I N G : D ATA A N A LY S I S

With the increasing amount of high throughput sequencing data, a myriad
of new doors have been opened to increase our understanding of the complex
nature of genetic regulation. As the data is highly dimensional and noisy, it is
crucial to analyze the data in the right way to draw meaningful conclusions.
The natural noisiness of the data stems from from experimental and sequenc-
ing biases, but also on the innate fluctuations in biological systems. To dis-
entangle real effects from artefacts and to reliably make predictions about the
underlying biological system, a multitude of tools using sophisticated statisti-
cal models and machine learning technologies have been developed. However,
most of these tools require proper understanding of the algorithms in order
to applicate them correctly. This prerequisite makes data analysis very chal-
lenging for researchers without computational background, but also induces a
huge problem of reproducibility of results if not documented correctly. We will
outline our way of treating the data starting from raw files. Our approaches
have partly been included into a standalone pipeline.

3.1 inferring transcription factor binding sites from high through-
put genomic sequencing data

The current format of data coming from the sequencing facilities is fastq. A fastq file
stores, for every sequenced read, 4 measures:

• line 1: the identifier, usually with the instrument name and the flowcell lane
number and tile number.

• line 2: the sequence of the read based on the IUPAC notation, consisting of
"A","T","C","G" and "N".

• line 3: contains just a "+", may followed by optional identifiers or description.

• line 4: contains a qualityscore in ASCII characters for each letter of the sequence
in line 2 ("!" denotes lowest quality and ≈ highest quality).

For ChIP-seq the data comes usually with a control sample as outlined in the previous
chapter. In case of DNase or ATAC-seq, no control is provided. There are different
ways to deal with a lacking control: several tools estimate the background read den-
sity by assuming a random uniform background distribution (MACS2 [3], HOMER[4],
SICER [5]) or from flanking windows of enriched regions (SPP [6]). [2]. We assume the
background in cases like this to be distributed uniformly.
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3.1.1 Preprocessing

We use and adapt the previously published pipeline CRUNCH [10] for the first steps
of our analysis. The preprocessing consists in general of qualityfiltering and adapter
trimming.

quality filtering There are several ways to check for the quality of the reads.
FastQC [23] can be used to assess the files in terms of quality scores, GC content, se-
quence length distribution, sequence duplication levels, k-mer overrepresentation and
contamination of primers and adapters in the sequencing data. This is useful to get
a grasp on the overall quality of the data. cutadapt [22] for example uses a 5’ and
3’ end quality trimming, which is useful for Illumina reads as their quality degrades
towards the 3’ end. As the quality is already encoded in the 4th line of the fastq file,
cutadapt makes use of the Phred score: Qphred = −10 log10 p with p as the probability
that the called base is incorrect. Note that the ascii values encoding the quality in fastq
files range from 33 to 126, thus there is an offset of 33. This offset can be different
depending on the sequencing pipeline which is used, so it is important to first guess
which the encoding of the files. cutadapt trims the reads according to the following
procedure:

Our threshold is 20, so assuming we have these quality scores:
52, 50, 36, 37, 18, 17, 21, 14, 12, 13

then we subtract our threshold:
32, 30, 16, 17, -2, -3, 1, -6, -8, -7

Form the partial sums: sum up the numbers starting from the end. The threshold is
reached with the first number which is greater than 0 (here in brackets):
(70), (38), 8, -8, -25, -23, -20, -21, -15, -7

Then the read is trimmed up to the minimum of this series (in this case -25).

adapter trimming For the adapter trimming it is important to find the most
represented adapter in the files. We make use of cutadapt as it can quality trim and
trim the adapters in the same step. This is especially useful as we are dealing with large
datasets and economic usage of the tools saves time and resources without lowering
quality standards of the analysis.

1 cutadapt --quality-cutoff 20 --quality-base=$ENCODING --minimum-length 25 --trim-n

\

--max-n 2 -a $ADAPTER --overlap 10 --cores 12 \

We use a pre-defined list of commonly used adapter sequences [34]:

GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG (OligonucleotideSequencesforGenomicDNA)
ACACTCTTTCCCTACACGACGCTCTTCCGATCT (TrueSeq Universal Adapter)
TGGAATTCTCGGGTGCCAAGG (normally used for RNA trimming, we include here, too)
GATCGGAAGAGCACACGTCTG (TrueSeq index Adapter)
TCGTATGCCGTCTTCTGCTTG (TrueSeq index Adapter)
CAAGCAGAAGACGGCATACGAGAT (PCR Primer)
AATGATACGGCGACCACCGAGATCTACAC (PCR Primer)
GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG (Paired End Adapters)
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GATCGGAAGAGCACACGTCTGAACTCCAGTCAC (TrueSeq index Adapter)

mapping to the reference genome After obtaining the cleaned and quality-
filtered reads, the next step is mapping to the reference genome. A multitude of tools
exists here, for DNA sequencing most frequently used are STAR [19], Bowtie [20], BWA
[21]. In our approach, we make use of Bowtie1, a fast, effective and accurate algorithm
using the Burrows Wheeler indexing procedure. This only uses 1.3GB of memory and
2GB of RAM to map to the human genome. [40]. Bowtie has also been used especially
for short read mapping.
In our case, we make use of the older version, Bowtie1. This version runs faster and
and was found to be more sensitive, especially to reads that are <50bp long [10].
Bowtie reports only one mapping position for one read(-a strata -best), choosing the
ones with least mismatches , while allowing for 3 mismatches (-v 3). Multi mapping
reads are then distributed across their matching positions n , keeping a weight w =

1/n. We call this format bedweight and it is used later in the pipeline to estimate exact
read counts for specific regions on the genome. Typically, more than 70-80% of the
input reads are mapped.

fragment size estimation Another important step in quantifying DNA se-
quencing data is to infer the fragment length as the signal obtained by mapping the
sequenced reads stems from the regions flanking the binding site of the chipped tran-
scription factor. As most of the datasets we looked at are sequenced single end, they
don’t contain any information about the fragment length. We estimate the fragment
length d with maximizing the correlation c given by:

c(d) =
∑
i/∈r

r+(i)r−(i+ d) (1)

the sum runs over all regions excluding repeat sequences r, those are repeated in the
same way across the genome.

r+(i)r−(i+d) =

1, if a read occurs at position i and another one at position i+ d

0, if no read occurs at position i together with one at position i+ d.

Having determined the fragment length, we shift the reads d2 up or downstream, de-
pending whether they map to the sense or antisense strand respectively. Like this we
are able to quantify the strength of the binding directly at the estimated binding posi-
tion of the transcription factor, or the middle of the accessible region.
We use the exact same procedure here for ATAC and DNase-seq data, although we are
aware that determining the middle of the fragments as center of the peaks only works
for fragments that do not include a nucleosome (no insert).

3.1.2 Identification of important regulatory regions

counting fragments in sliding windows Prior to the actual peak calling
step, we generally identify regions which have a high number of reads coming from
the ChIP, ATAC or DNase experiment. Assuming that if there hasn’t been any bind-
ing event or accessible region, those read densities shouldn’t differ from the control
samples. We thus compare genome-wide the read densities between foreground and
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background samples.
We slide a window of 500bp across the genome, shifted by 250bp in each step. The
length of the window is in accordance with the expected signal: Transcription factor
ChIP-seq usually yields 100-150bp long fragments of the DNA which is also the length
of a DNA fragment wrapped around histones, and thus the obtained fragment length
for ATAC or DNase experiment (see also figure 3.3) [2]. The length of 500bp thus
provides good resolution and will capture most of the binding events and accessible
regions. In case of overlapping or adjacent enriched regions, we merge them before
scanning explicitly for peaks (see ’merging of peaks’). The background is fluctuating
much slower and the read density is typically lower. We account for this by taking a
larger window for the background samples, 2000bp by default.
When we run both sliding window across the whole genome we simply count all the
reads that fall into each region each for foreground n and background m. In the case
of replicates, the raw counts for all foreground and background replicates are summed
up.

identification of truly enriched regions We then compute the read den-
sity counts for each region i by normalizing the fore- and background counts m and n
by the total library size N and M respectively:

countsi =
log(ni/N)

log(mi/M)
(2)

We observed previously that some regions yield abnormally high read densities in
ChIP-control samples. We exclude those regions from our analysis in ChIP-seq analy-
sis, as well as regions mapping to chrM in ATAC-seq and DNase-seq analysis.
Once we have quantified the counts across the genome, the crucial step is now to dis-
tinguish bound from unbound regions in ChIP-seq (bound by a transcription factor)
and open from closed regions in ATAC-seq (bound by the transposase / digested by
DNase).
We then assume the background read density to be a mixture of 1) variations in the
biological state of the cells and experimental variations in the library preparation, and
2) a sampling noise from the sampling of fragments itself. That means we can ap-
proximate the read density in an unperturbed sample (without any intervention like
immunoprecipitation, DNase digestion or addition of a transposase) by a multiplica-
tive model of log normal- and poisson noise. As we have shown previously [10], the
fluctuations in next-generation sequencing read-densities across replicate experiments
can be well approximated by a combination of multiplicative noise (which may results
from uncontrolled variations both in the biological state of the cells and variations in
the process of preparing a sequence library from the sample) and poisson sampling
noise (from the sequencing itself), which leads to an approximately log-normal distri-
bution of read-counts.
In other words, we want to estimate the probability P to find n out of N fragments in
the foreground and m out of M fragments in the background:

P(n,m|σ,µ,N,M) =
1√

2π(2σ2 + 1
n + 1

m)
exp

(
−

(
log( nN) − log(mM)

)2
2(2σ2 + 1

n + 1
m)

)
(3)

Additional parameters of this model are 2σ2 which is the variance of the multiplicative
noise components, 1n + 1

m the noise coming from the poisson sampling in foreground
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and background.
We do not expect the average read densities to have the same mean value. A large
fraction of the reads in the foreground will be located in enriched regions, thus the read
density in not-enriched regions will be substantially lower than in the background. To
account for this, we fit an additional parameter, µ to the model:

P(n,m|σ,µ,N,M) =
1√

2π(2σ2 + 1
n + 1

m)
exp

(
−

(
log( nN) − log(mM) − µ

)2
2(2σ2 + 1

n + 1
m)

)
(4)

µ is thus the log( FGBG) shift in unbound regions (see Figure 3.1), which should scale re-
versely with the amount and size of the peaks. µ allows us to quantify also differences
in binding strength across samples.
We further assume that - if a region is significantly enriched - this distribution is just
shifted up by a constant factor (1− ρ) 1W , where ρ is the estimated fraction of unbound
regions and W is the difference between the maximum and the minimum of normal-
ized read densities:

W = max

(
log(n/N)

log(m/M)

)
−min

(
log(n/N)

log(m/M)

)
(5)

Taken all together, the total log likelihood of the data is then given by:

L(D|σ,µ, ρ,N,M) =
∏
i

ρP(ni,mi|σ,µ,N,M) + (1− ρ)
1

W
(6)

We fit σ, ρ and µ by maximizing the log likelihood (eq. 6) by an expectation-maximization
approach.
To finally quantify which regions differ significantly between fore- and background,

Figure 3.1: Inference of the log read density. Sketch of the foreground and background read
densities and sliding windows across a piece of the genome. By sliding a window
across the genome, we count all fragments in this window. Note that the window
in the background is 2000bp. We expect most of the reads in the foreground to
map to bound regions, which reduces the amount of reads in unbound regions.
We therefore infer the difference of foreground and background levels in unbound
regions µ.
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Figure 3.2: Distribution of zScores for one the dataset of ATAC-seq in murine embryos. Red
line denotes the standard distribution, black is the real data. Note that we plot the
histogram in log scale. Clearly visible is the deviation of real data from the standard
distribution on the right.

we then compute a zScore for each region.

z =
log( nN) − log(mM) − µ√

2σ2 + 1
n + 1

m

(7)

If there was no binding, the zScores should follow a standard distribution. Indeed,
most of the zScores follow the log normal distribution, confirming our understanding
of the noise distribution (Figure 3.2). Enriched regions deviate from the log normal
distribution and locate in the right tail, meaning they are significantly different from
the assumed background.
To rigorously take into account only regions which show significant differences from
the background distribution, we calculate a false discovery rate, with summing over
the top T regions which comply with FDR 6 0.1.

FDR =
1

T

T∑
i=1

Pfalse(wi|D) (8)

with Pfalse standardly defined as:

Pfalse(wi|D,σ, ρ,µ) =
ρP(ni|mi,σ,µ,N,M)

ρP(ni|mi,σ,µ,N,M) + (1− ρ) 1W
(9)

Regions which fall above this cutoff in at least one sample are taken into account for
further analysis. Regions which overlap or are adjacent to each other are merged to
bigger regions.
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increasing the resolution So far, our approach allows to detect regions of
size > 500bp potentially involved in regulatory actions. The binding sites for most
transcription factors range from 7− 21bp, so we aim to inspect each of the regions in
more detail to exactly determine the regulatory region and potential regulators.
We therefore construct a coverage profile for each region in basepair-resolution. As the
lengths of the fragment are naturally not all similar, they don’t locate all at the exact
same position and will form gaussian-shaped coverage profiles. For the exact detection
of individual active regulatory sites, we fit the coverage profile of each region with a
gaussian mixture model:

L(~C|~µ,~σ,~ρ) =
l∏
i=1

[∑
j

ρj
1√
2πσ2

exp(−
(i− µj)

2

2σ2j
) +
(
1−

∑
j

ρj
)1
l

]C(i)

(10)

C(i) is the coverage at position i, with i is going over every position inside the region.
j runs over all the gaussians in the model with parameters µj and σj and ρj being the
fraction of reads in the gaussian. The number of gaussians we include in the model
depends on the fragment size and the length of the region, but is at least 2. This like-
lihood is again fitted with expectation maximization and we obtain all the gaussians
which were fitted to the coverage profile. Gaussians are merged, if their means are
smaller than the sum of their standard-deviations. The definite peak region is then
defined as µ− σ until µ+ σ.

Figure 3.3: Length of inferred CREs. Reverse cumulative distribution of the lengths of all CREs.
CREs were taken from dataset 2 in the CREMA paper (see chapter (4).
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3.2 using the peaks to infer transcription factor activities

Having found significant peak regions for each sample, we want to go one step further
and infer which key regulators may drive the observed system and changes across
samples. For an application of this method, please also read chapter 4.

3.2.1 Finding common cis-regulatory elements

After calling the peaks for each sample, we need to create a common set of regulatory
regions which captures all the peaks in each sample.
We retain all the peaks which were significantly enriched in at least one of the samples.
Then we overlap all the peaks from the different samples and merge them if their
centers are closer than 75bp by single-linkage clustering. In the case of merging, the
resulting cis-regulatory element (CRE) thus spans all the centers of peaks belonging
to it +- 75 bp up and downstream. We chose 75bp as cutoff as it has been shown that
one nucleosome approximately spans 150bp on the DNA, which fits with the general
width of a transcription factor binding peak as well. Indeed, looking at the length of
all CREs, we find that most of them are in the range of 150-750bp. Only about 3% of
the CREs are larger than 1000 (Figure 3.3)
The analysis of genomic data imposes challenges in the analysis and comparison across
different samples: For ChIP-seq we aim to estimate the strength of the binding of the
TF to the DNA from the height of the peak, for DNase and ATAC seq it is the fraction
of cells that have increased accessibility at the same region. The inferrence of these
parameters implies an accurate estimation of the read density and its fluctuations
along the genome. We compute a signal Scs for each CRE c in each sample s, which is
normalized for background and inter-sample library size differences:

Scs = log
(fcs
Fs
· F̃+ 1

)
− log

(bcs
Bs
· F̃+ 1

)
− log

(
lc/Lc

)
(11)

where fcs and bcs is the read-count across CRE c in sample s. Fs and Bs are the library
size of background and foreground samples s. F̃ denotes the median of library sizes
in the foreground. lc and Lc are the length of the CRE c in the foreground and the
corresponding background CRE, these are similar across samples s. If a foreground
region is shorter than 750bp, we choose the background region to be fixed to 750bp.
As in the step before, we account for slow fluctuations and smooth the ideally uniform
background distribution. Is the CRE bigger than 750bp we use the same size for fore-
ground and background CRE.
To know which regulators play a role across samples, we perform an extensive motif
search for transcription factor binding sites (TFBS) to construct our sitecount matrix.

3.2.2 Predicting binding sites genome-wide

To rigorously find TFBS for our library of ≈ 600 regulatory motifs in our set of CREs,
we make use of the algorithm MotEvo [1], which has been developed earlier in our
group. MotEvo is based on a hidden markov model and uses our extensive set of motif
sequences w (weight matrices) and a pre-calculated prior probability π (which is equal
to the probability ofw to occur in a randomly chosen position on the input alignments)
to model the input sequences [67]. Finally, MotEvo assigns, at each position of the
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sequence and for each w, a posterior probability that a site for the corresponding w
occurs at this position.
Note that the binding sites are non-overlapping as it is assumed that redundant motifs
compete for the binding and don’t increase the overall binding free energy. In our case,
the prior probabilities p were chosen to optimize the fraction of explained variance in
the MARA model on a large set of input samples.
To account for redundancy in our set of weight matrices, we fuse them given that

• one TF has multiple WMs which are nearly identical and/or

• WMs are not statistically distinguishable.

To find binding sites in all the significant CREs, we download all position weight
matrices (PWM) for mouse (680) and human (684) genomes from the SwissRegulon
database [24]. PWMs with similar binding pattern are clustered, so at the end we have
a library of 503 (mouse) and 501 (human) PWMs [6]. We run the algorithm MotEvo in
transcription factor binding site (TFBS) mode [1], across all the CREs. MotEvo reports
a posterior probability Ncm for a motif m to have a binding site in CRE c. To fix the
priors for each motif to occur, we rely on previously obtained values which have been
optimized for the ISMARA run on an extensive set of samples taken from the fantom
5 project [16].

3.2.3 Modeling the observed data in terms of regulators

As stated previously, a multitude of CREs are changing their chromatin state across
time or condition. Making conclusions about which CREs drive the difference is ex-
tremely challenging. What we really want to know is: Why does this happen and
what are the key regulators driving these differences? Therefore we adapt an approach
which was previously published by our group: ISMARA [49]. ISMARA models RNA-
seq data in terms of binding sites in the promoters of expressed genes and an unknown
activity. The activity for a motif m here denotes the amount the expression of a gene
changes if one were to remove the binding site for one motif in this promoter. We want
to make use of this model and introduce the concept of ’activity of a regulator’ to our
approach.

We now have information on the signal Scs for each CRE c and each sample s, plus the
probability that CRE c has a binding site for motif m, stored in matrix Ncm Further
we assume, that the chromatin state across our samples and therefore the signal Scs
depends on the underlying motifs in the sequence of CRE c and an unknown activity
Amsof the factor binding to it. This approach is adapted from the previously in our
group developed MARA model [49], which models RNA-seq data in terms of binding
sites in the promoters of expressed genes. We can now fit the linear model:

Scs =
∑
m

Ncm ·Ams + c̃c + cs +noise (12)

to estimate the activity Ams of each motif in each sample. The CRE- and sample-
dependent constants c̃c and cs are CRE and sample dependent constants which are
estimated in the next step. The noise term accounts for measurement errors in Scs plus
biological fluctuations throughout the samples and the error in the model. In detail,
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MARA makes use of a bayesian procedure assuming the noise is gaussian distributed
with variance σ2 and equal for all CREs and samples. The likelihood of obtaining the
signal table Scs is then given by:

P(S|A) ∝
∏
c,s

1

σ
exp

[
−

(
Scs − c̃c − cs −

∑
mNcmAms

)2
2σ2

]
(13)

We maximize this likelihood in terms of the CRE- and sample-dependent constants
and replace them with the maximum likelihood estimations. Which gives:

P(S|A) ∝ σ−CS exp
[
−

∑
c,s
(
S′cs −

∑
mN

′
cmA

′
ms

)2
2σ2

]
(14)

with C the total number of CREs. Note that the table S′cs is now centralized, such that
mean of all the rows and the mean of all columns is zero. The sitecount values in Ncm
is normalized in such way that the average count across all CREs is zero (

∑
iN
′
cm = 0).

This way we obtain activity values A′ that the average across all sample for each motif
is zero. To avoid the overfitting, each activity gets a gaussian distributed prior:

P(A′|λ,σ) ∝
∏
s

exp
[
−
λ2

2σ2
A′2ms

]
(15)

With this, the posterior distribution becomes:

P(A|EN) ∝ exp
[
−

∑
i,m

((
S′cs −

∑
mN

′
cmA

′
ms

)2
+ λ2

∑
mA

′2
ms

)
2σ2

]
(16)

the parameter λ is fitted through a cross validation approach, using 80% of the CREs
as train; and the remaining 20% as testset. The λ that minimizes the average square
deviation of the expression levels in the test set versus those predicted by the fit of the
train set is chosen as optimal λ. This posterior probability can be calculated via a ridge
regression procedure, in this case SVD is used. The resulting activities are then sorted
by their zScore:

zm =

√√√√1

S

S∑
s

(
A′ms
δA′ms

)2
(17)

The absolute signal Ycs = eScs ,which is the raw normalized counts can be expressed
as:

Ycs ∝
∏
m

eN
′
cmA

′
ms (18)

meaning that every reduction of a binding site for motif m decreases the signal for a
CRE by eA

′
ms . In other words, the activityA′ms corresponds to the amount by which the

signal S′cs would be reduced if a binding site for motif m in CRE cwere to be removed.

Using the techniques described in (3.1-3.2), we are able to infer important key regula-
tors shaping chromatin state or transcription factor binding to promoters and distal
regulatory regions (see also Chapter 4).
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3.3 analysis of rna-seq data to predict transcription factor activ-
ity

For examples of analysis of RNA-seq data, please refer to Chapters 4 and 5.

3.3.1 Preprocessing and mapping

The treatment of RNA-seq data differs from what is described for ChIP, ATAC and
DNase-seq data. RNA can be mapped in several ways: Once to the genome (e.g. STAR
[19], Bowtie [20], BWA [21]) and once to the transcriptome (kallisto [15]). Tools map-
ping to the transcriptome use the novel technique pseudoalignment, which differs
from the conventional practice, where the reads are matched to the genomic sequence.
Using a de-Brujin graph, the sequences are split into k-mers and matched to the tran-
scripts. This is a very fast approach as no real mapping procedure takes place. Another
advantage of using kallisto is that no adapter-trimming or quality filtering is needed,
as contaminated or adapter sequences would never match a transcript’s sequence.

3.3.2 ISMARA on the RNA-seq data

ISMARA models genome-wide gene expression pattern in terms of predicted func-
tional TFBSs in the respective gene’s promoters. Promoter regions are either annotated
or taken to be -500 +500 of the TSS defined by CAGE analysis (for more details see
[6, 5]). In the model, the expression of promoter p in sample s, Eps is assumed to
follow a linear function of the binding sites Npm in promoter p and motif m times an
unknown activity Ams of a motif binding site m in sample s.
When summing across all motifs this gives the core ISMARA equation:

Eps =
∑
m

Npm ·Ams + cp + cs (19)

whereas cp and cs account for the promoter related basal expression and for the
sample-dependent normalization constant, respectively.
The matrix Npm contains information on the binding sites in each promoter and has
been inferred using the algorithm Motevo. Equivalent to the method in previously de-
scribed for ATAC, DNase and ChIP-seq, ISMARA also calculates, for each motif, a
zScore which gives information about the significance of the motif activity change
across the samples.

zm =

√√√√1

S

S∑
s

A′ms
δA′ms

(20)

The term activity can be understood as: a change in activity represents the change in
the expression Eps of promoter p in sample s, when motifm in exactly in this promoter
p would be removed. This means that the higher the activity, the higher the expression
of genes having this motif in the promoter.

The target promoters pm of motifm are promoters of genes that are expressed in the
dataset and have a binding site for motif m in their promoter sequence. To estimate
the importance of each promoter, ISMARA calculates a target score which denotes
how worse the fit would be if the site for motif m in promoter p would be missing.
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3.4 other computational tools

Especially in chapters 5 and 6, we make use of different computational strategies,
which are explained in the following.

3.4.1 SVD/PCA

Figure 3.4: Schematic representation of SVD. Left panel shows how we obtain the singular
vectors ~vk from the initial table A. Right panel shows the proportion of variance that
the singular vectors explain. Taken from [10].

Single value decomposition (SVD) or principal component analysis (PCA) is a gen-
eralization of matrix diagonalization to non-square matrices and thus a powerful
approach for dimensionality reduction. It is widely used in data science driven ap-
proaches to find common sets of variables in large datasets. This makes it especially
useful for the application on gene expression data or - in our case - to motif activities.
Generally speaking, every matrix Amxs can be expressed in terms of two sets of sin-
gular vectors and singular values:

Amxs = UmxsΛsxsVsxs (21)

where Vsxs and Umxs are the right and left singular vectors, it holds VTV = I and
UTU = I, with I the identity matrix. Λsxs is a diagonal matrix and contains the singu-
lar values (see Figure 3.4, left panel). The vectors ~v span a new orthogonal coordinate
system, and every direction captures in descending order, the directions of variance
thoughout the dataset. Each vector am with {am}s = Amxs can now be written as a
linear combination of the right singular vectors (see Figure 3.4, left panel).
Note that SVD, which is a more general approach than PCA, as we don’t rely on the
construction of the covariance matrix ATA. PCA on ATA would in this case yield the
same eigenvectors ~v:

ATA = VΛUT ·UΛVT = VΛ2VT (22)

which yields the so-called eigenvalues in Λ2, which are the square of the singular vec-
tors obtained above. The singular values give thus information on how much variance
σ2 was captured by the respective singular vectors.

σ2j =
λ2j∑m
i=1 λ

2
i

(23)
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Generally, the follow-up analysis focuses on the singular vectors that capture most of
the variance (Figure 3.4, right panel). To know which pattern of ~am are following which
singular vector, we make use of a geometric approach which allows to identify vectors
in am that follow the direction of the principal components.
As now, the vectors am are vectors in the principal component space, their projection
on each of the axes (=principal components) indicates how strongly the vector am
overlaps with the singular vector vk. We an now calculate the projections according to
qmk = ~am ·~vk, and as, according to the SVD, AV = UΛ it can be written in matrix
multiplication qmk = (UΛ)mk.
Note that the projection captures also how strongly the vector am follows a sin-
gular vector, e.g. how ’long’ it is. Still, short vectors can still correlate pretty well
with the singular vectors. The correlation can be obtained by calculating: pmk =

qmk/
√∑

k(qmk)
2. Note that the singular vectors v form a new orthogonal basis and

are thus independent of each other, each capturing another pattern in the data. An
application of SVD or PCA is described in Chapters 4 and 5.

3.4.2 Machine learning algorithms

Machine learning (ML) has evolved as a very powerful technique in all to treat the
highly heterogeneous data coming from biological experiments. In Chapter 6, we make
use of several machine learning techniques to determine maker genes in highly diver-
gent human data.
ML algorithms in supervised learning build a mathematical model when subjected to
training data, which then can be applied to new data to make predictions. Classifi-
cation algorithms, a subset of supervised learning algorithms are trained to assign
data-points to classes, for example, ’healthy’ or ’sick’. Making use of kernel methods,
a linear regression model can be performed in a non-linear problem (Figure 3.5): A
kernel function maps the data in to an n dimensional space where the regression can
be performed. For example, is the kernel function is K(x,y) = 〈f(x), f(y)〉, with x and
y inputs and f the mapping to another space. The calculation of 〈f(x), f(y)〉 would
normally requires the calculation of the dot product of f(x) and f(y). This is a rather
computationally expensive step. Knowing the kernel function makes the computation
much easier and saves computational time and resources. Recently, neural networks

Figure 3.5: Classification of nonlinear data. Using kernel methods, non-linear data can be clas-
sified: Non-linear data is transformed in such a way that it is possible to separate it
linearly.

have been developed and used for classification tasks as well. In general a two-layer
neural network could be considered as an SVM: the hidden layer transforms the input,
the output is then classified. However, neural networks can contain several hidden lay-
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ers. Each layer can apply different functions to the data and transform it. A function f
for example maps the input x to the single hidden layer value f(x) = h. If the output
is y and is calculated by g(h) = y, the output is connected to the input as g(f(x)).
For an application of ML methods, please refer to Chapter 6.
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C R E M A : A U T O M AT E D M O D E L I N G O F G E N O M E - W I D E
C H R O M AT I N S TAT E I N T E R M S O F L O C A L C O N S T E L L AT I O N S
O F R E G U L AT O RY S I T E S

abstract

The variety of cells is partly governed by the chromatin state. It is determined by
the DNA accessibility, the presence of a binding site for specific transcription factors
(TFs) and the presence of co-activators, substrates and mediators. The ongoing devel-
opment and usage of high throughput sequencing techniques have opened a wholly
new perspective to quantitatively characterize the chromatin state which may extend
our knowledge about how the genome-wide regulatory structure across cell types, con-
ditions or tissues is orchestrated. Here we present cis regulatory element motif activity
analysis (CREMA). By combining previously published tools CRUNCH and ISMARA,
CREMA analyzes high throughput genomic data quantifying TF binding (ChIP-seq)
and DNA accessibility (DNase-seq, ATAC-seq) to rigorously model genome-wide chro-
matin state in terms of local constellations of transcription factor binding sites. Using a
sophisticated model, CREMA infers key transcription factors which drive the observed
changes in chromatin state and makes reliable predictions about their implication in
the regulatory processes.

Here, our tool applied to a selection of published human and mouse data, infers
important key regulators in circadian regulation, embryonic development and stem
cell differentiation in agreement with the current state of knowledge.

We find that the chromatin state is in general more variable at distal regions and
predict novel TFs implicated in circadian oscillation in murine liver and in human
stem cell fate. To get an insight into the functional roles of our TFs, we predict target
genes and functional terms and pathways that are being regulated by the TF. Our al-
gorithm runs as a fully automated pipeline on a dedicated web-server and is designed
to process raw data coming directly from the sequencing facilities.

running title

Modeling of genome-wide chromatin state

keywords

Gene regulation, ATAC-seq, DNase-seq, ChIP-seq, transcription factor binding, regu-
latory motifs

introduction

During the last decade, the amount of researchers using high-throughput measure-
ments has increased drastically, as it allows a genome-wide quantification of chro-
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matin state or transcription factor binding. However, making sense of the generated
data requires sophisticated computational analysis. A common problem here is the
high dimensionality of the data, as the number of DNA loci which are subject to chro-
matin state changes can be very large. Dealing with data of that size requires not only
computational power and storage, but also robust models to analyze the data in a way
that provides meaningful insights. As we know from the biological side, compared
to the number of regions that are regulated, there are only few transcription factors
that drive the observed chromatin state. Our tool combines ChIP-seq analysis [9] with
a previously developed model for inferring key regulators for gene expression from
RNA-seq data [49] to robustly quantify and explain changes in chromatin state by the
activity of regulators. Our tool is designed to be easily accessible for any researcher
who deals with high throughput data.
Cell identity is defined and stabilized through a complex regulatory network. Al-
though ultimately this regulatory network is encoded in the constellations of regula-
tory sites in the whole genome, we still understand quite little about how this regula-
tory code is translated into regulatory circuitry that defines and stabilizes cell identity.
Besides promoters located close to their target genes, a large part of the genetic regula-
tion is additionally guided by distal regulatory modules (enhancers) that, in mammals,
can occur tens to hundreds of kilobases away from the transcription start sites of genes
that they regulate.
Additionally, the expression of genes is regulated by the chromatin state: DNA is com-
pacted in several layers into chromosomes, on the first level it is wrapped around 8

core histones forming a nucleosome [43]. This packaging is intrinsically repressive as
it prevents regulatory factors from binding and thus unwanted transcriptional action
[41]. However, histone occupation is not static: By a dynamic unwrapping/wrapping
of DNA, it defines and changes the chromatin structure and enables or disables tran-
scription. Histones can be modified postranslationally in multiple ways which affects
chromatin state and gene expression, making them powerful predictors of DNA acces-
sibility and active regulatory elements along the whole genome [12, 17].
Hence, the minimum requirement for a gene to be expressed in a certain condition
is that the associated promoter: 1) has a binding site for a condition-specific TF and
eventual co-regulators, 2) be accessible for its binding and 3) be temporarily bound by
the TF which recruits the transcription machinery. In case of a distal regulatory region,
TFs additionally have to compete with nucleosomes for the binding and the region
has to interact with the promoter. Depending on the gene and condition, supplemen-
tal fine-tuning processes such as the interplay of multiple regions or transcriptional
regulators be involved in this regulation [55].
Thus, from a combination of both the accessibility and underlying binding sites of tran-
scription factors, it is possible to determine which regulatory regions are potentially
active, even if they occur in intergenic regions. In fact, it has been shown previously,
that the state of a cell can be precisely predicted by analysis of its chromatin state
[53], while the chromatin state itself depends on specific sequence characteristics and
binding sites of transcription factors [2]. In this work, we provide a rigorous method
to analyze the regulatory key players involved in shaping the chromatin state genome-
wide.
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Figure 4.1: From raw data to genome-wide identification of cis regulatory elements (CREs)
and motif activities. Analysis and modeling steps: A) Detection of significant peaks
genome-wide is performed for each sample independently (colored read density
profiles), followed by the construction of a universal set of cis regulatory elements
(CREs) (grey boxes) by merging close peaks from all samples. Black vertical lines
represent the centers of peaks used to construct the common CRE set. B) Normal-
ized log read density for each CRE c and each sample s is stored in a signal matrix
Scs. C) We computationally predict transcription factor binding sites for a large col-
lection of regulatory motifs in all CREs. This generates the sitecount matrix Ncm
which contains the number of sites for each motif m in each CRE c. E) Using the
matrices from B) and D) we fit a linear model to explain the observed signal across
samples Scs in terms of regulatory sites Ncm and an unknown motif activity Ams.
c̃c and cs are CRE and sample-dependent constants.

results

CREMA: cis regulatory element motif activity analysis

We developed CREMA, a combination of two approaches which have been published
by our group earlier: CRUNCH [9] and ISMARA (FANTOM Consortium and Riken
Omics Science Center 2009, [6]). ISMARA models the genome-wide mRNA expres-
sion level changes across samples in terms of transcription factor binding sites in
(TFBS) promoters for around 600 regulatory motifs. This is highly successful in in-
ferring which regulators are key regulators within a given system, how these regu-
lators change activity across samples, and what genes and pathways are targeted by
each of the regulators. However, much of the regulation is not directly controlled by
TFBSs at promoters, but rather by large numbers of cis regulatory elements (CREs)
which include, in addition to promoters, distal regulatory elements. Distal CREs are
generally more specific than promoters, likely because they can be activated in a
condition-dependent manner by particular transcription factors complexes. In addi-
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tion, CREs are more numerous than promoters, meaning that the number of active
CREs in one condition exceeds the number of active promoters. Consequently, the
genome-wide signals at CREs contain more information about the regulatory states of
cells within a given condition than the mRNA expression levels. To infer regulators
that are driving the observed changes in chromatin state at CREs genome-wide, we
developed CREMA. CREMA processes ATAC-seq (Assay for Transposase-Accessible
Chromatin using sequencing) and DNAse-seq (DNase I hypersensitive sites sequenc-
ing), which assess accessibility of regions on the DNA, as well as ChIP-seq (Chro-
matin ImmunoPrecipitation DNA-Sequencing) for e.g. a specific TF or histone mod-
ifications. CREMA is implemented as an automated pipeline on our web-server at
https://crema.scicore.unibas.ch. Users can upload raw sequencing data (.fastq) to
CREMA. The information on the samples, such as condition and grouping of replicates
has to be provided in a simple table.

From raw data to cis regulatory elements

Calling the peaks is done by following the steps used in CRUNCH [9]: After thorough
preprocessing, the data is modeled using multiple sophisticated statistical models and
reports significant peaks [9]. Having determined the significant peaks (Figure 4.1A,
colored tracks), for each sample individually, we define a common set of peaks across
all samples: If the centers of individual peaks in a sample and/or across samples are
closer than 150bp we merge the peak to one cis regulatory element (CRE) (Figure 4.1A
gray boxes). The typical lengths of the CREs after merging range, depending on the
dataset, from 150bp up to 5600bp, whereas 90% of the CREs are smaller than 500bp
and 97% are smaller than 1000bp in length (Figure S1).
We then calculate the log read density for each CRE and each sample. To make the
signal comparable across samples, we construct a common CRE set including peaks
of all samples and construct the signal matrix Scs which contains the normalized log
read density (peak height) at CRE c in sample s (Methods).

prediction of transcription factor activities We then assume that the
resulting peak height at any CRE, stored in the signal matrix Scs, depends on the TF
binding sites sites for motif m in CRE c and a yet unknown motif activity Ams. To
infer TFBS, we make use of the curated library of regulatory motifs which are used
also in ISMARA [6]. With MotEvo[1], we computationally predict TFBS for each CRE
c (=sitecount matrix Ncm) (Fig 4.1,C and D).
Using the matrices Scs and Ncm, we model the observed signal matrix using the core
linear model of ISMARA to explain the peak height at each CRE c in sample s with
a linear combination of each motif Ncm and an unknown motif activity Ams (Figure
4.1E).
The inferred motif activities Ams in each sample s for each motif m are stored in the
activity matrix Ams. For each motif activity we additionally report the associated un-
certainties δAms (error bars on motif activities). Looking at the data in terms of motif
activity reduces the high dimensionality of the data, as the signal in all regions can
now be explained by the activities of ≈600 motifs of our library. We then calculate,
for each motif, a zScore which summarizes the importance of the motif for explaining
the variation in peak height across the samples. While the regulation on DNA level is
a complicated, not yet understood interplay of various regulatory variables, we don’t

https://crema.scicore.unibas.ch
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aim to present an accurate snapshot of the chromatin landscape and transcription
factor occupancy. Depending on the dataset, our model explains only approximately
10%-20% of the variance in the dataset, yet enough to make reliable predictions of
important motifs driving the observed changes in chromatin.
To give further insight into the function of each motifm, we provide an extensive list of
"targets". Those are CREs with a TFBS for motifm. To quantify the evidence of a CRE c
to be a target of motifm, we compute the target score ζmc as the log-likelihood ratio of
the full CREMA model versus the model with only the sites for motif m removed from
CRE c. The target score depicts how much the activity of the motif contributes to the
peak height at the target CREs (see Methods). As a large fraction of the CREs locates
at distal regions, it is not always trivial to associate a gene definitely. Nevertheless, to
obtain meaningful results for functional gene enrichment analysis, we define the gene
targeting score ξm(G) (see Methods). Here, we first calculate a probability Pcg for each
CRE c to regulate nearby genes based on the distance of the CRE to the promoters of
the nearby genes (= CRE/gene association probability). The total log-likelihood (=gene
targeting score) for a motif m to regulate gene g is then the sum over all CREs c of the
product Pcg and the target score ζmc. We then run several types of functional analysis
considering the gene targeting score, Gene Ontology (GO), Reactome and Kyoto En-
cyclopedia of Genes and Genomes (KEGG) on the set of genes for each motif. After
the analysis finished, we provide a detailed report including information on all motifs
(Figure S2-S10).

To test the performance of and versatility of CREMA, we analyzed three different
public datasets, including ChIP-, ATAC- and DNase-seq in mouse and human, and
validated CREMAs predictions with important established theories and hypotheses on
genomic regulation. All datasets analysed in this study are available online at https:
//crema.unibas.ch (see Methods). As outlined in the introduction, the DNA is tightly
packed, only a small fraction of the genome is open and thus amenable for the binding
of a regulatory protein. Straight-forward methods to get a snapshot of the chromatin
state and determine accessible regions are DNase-seq or ATAC-seq. DNase-seq makes
use of the enzyme endonuclease to cut accessible, non-nucleosomal DNA, whereas
ATAC-seq relies on a transposase enzyme which has intrinsic high affinity to the DNA
and cuts out exposed parts of the DNA. Both techniques thus determine accessible
regions, which are then selected for sequencing. An accumulation of fragments at a
genomic locus thus denotes higher accessibility.

Dataset 1: Preserved circadian cycling of transcription factors in murine liver after >
50h in darkness

Circadian (or near 24-h) oscillations are generated by transcriptional – translational
feedback loops involving core transcriptional activators (Bmal1 and Clock) and repres-
sors (Per and Cry) which control the 24-h rhythmicity of gene expression. The liver
clock is mainly synchronized by the master circadian clock located in the suprachias-
matic nucleus of the hypothalamus. However, the liver clock can be uncoupled from
the light-regulated "master clock", when food access is limited to a temporal window
during the day [25]. Studies investigating the liver clock usually make use of this by
setting the mice into constant darkness to prevent any possible influence of the liver
clock by light. In the chosen study, the authors provide food ad libitum, so we expect

https://crema.unibas.ch
https://crema.unibas.ch


46 crema

the liver clock to function in a normal circadian manner.
We downloaded a public dataset from the ENCODE consortium [21, 20] (see Table
S1 for accessions, datasets are also linked on crema.unibas.ch). DNase-seq has been
performed on the liver of adult mice exposed to constant darkness for 70h. Here, mice
were first entrained to a standard 24h light/dark cycle (we refer to the timepoints as
circadian time CT0-CT24, where CT0 is, according to common notation, equivalent to
6am), the active phase starting at CT12 until CT24 for night-active mice. From 50h
after switching the light-dark cycle to constant darkness, the liver was taken every 4h
to perform DNase-seq (see Methods). We run CREMA on the whole dataset to predict
motifs shaping the chromatin state during one 24h cycle.

Sustained cycling of motif activity in liver

We observe a strong cycling pattern of the motif activity with 24h periodicity (Figure
4.2A). Notably, the most significant motifs correspond to known drivers of circadian
regulation (Arntl, Nfil3 and Egr1) or are strongly regulated in a circadian fashion
(Hnf1b):
The activity of Arntl, also known as Bmal1 is strongly cycling, with lower activity dur-
ing the active phase. Almost 15% of the oscillating transcriptome is regulated by the
Clock:Bmal1 complex. A study performed in 2018 suggests even a chromatin-shaping
role for Clock:Bmal1 which primes tissue and condition dependent enhancers [63].
Nfil3 is a known circadian transcription factor [37] and was found to control lipid
metabolism in a circadian way [71]. A predicted target of Nfil3 is Per2, which is an
important gene in whole body circadian rhythm.
A study showed that Egr1 is cycling strongly in hepatocytes, regulating the transcrip-
tion of important clock genes (for instance Per2, Bmal2 and Rev-erbα/β)[59].
Hnf1b was identified as circadianly cycling in a study investigating double knockout
(Rev-erbα and Rev-erbβ) in mouse embryonic stem cells. Hnf1β cycling was dimin-
ished upon the knockout, suggesting it to be regulated in a circadian manner by the
Rev-erb factors [33].
CREMA further predicts several motifs whose activity oscillates in a circadian manner
as well. Those novel motifs still yield a high zScore and a strong oscillating pattern
but haven’t yet been associated circadian regulation or oscillation.
Irf2 shows oscillation with higher activity during the inactive phase. Members of the
Irf family have been found to be important for the elicitation of recognition pattern –
and thus for the innate immune response. CREMA predicts GO terms related to neu-
ronal cells to be regulated by Irf2 (e.g. "motor neuron axon guidance" (GO:0008045)),
but also immune-related pathways, e.g. "negative regulation of interferon-alpha pro-
duction" (GO:0032687) and "protection from natural killer cell mediated cytotoxicity"
(GO:0042270).
The Nfia activity follows strongly a 24h cycle. This TF has been suggested to play an
important role in mammalian embryonic development [18], but has not been associ-
ated with circadian rhythm. In our analysis, it seems to be involved in signaling and
transport, our GO analysis shows "gluthamine transport" (GO:0006868) and "regula-
tion of Rho protein signal transduction" (GO:0051895).
Etv1, is very similar to the Gabpa motif and was associated with organ-size control
and tumorigenesis by regulating the transcription of the transcriptional coactivator
Yes-associated protein (Yap) [72], which is associated with cell proliferation [68]. We
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Figure 4.2: Sustained oscillation of previously known and prediction of novel potential cir-
cadian regulators in murine liver after exposure to darkness for multiple days. A)
upper panel: Highly active motifs which were previously identified as circadian regu-
lators (Arntl, Egr1 and Nfil3) or show strong circadian behavior (Hnf1b); lower panel:
Highly active motifs which are predicted to oscillate with 24h period, but have not
been associated to act as circadian regulation or being circadianly. regulated before.
B) PCA on the activity matrix shows a clear distinction of the inactive and active
phases of the mice. Values on the axes represent the fraction of explained variance
of the respective component. C) Correlation of R2 correlation coefficient of the fit
of a sinusoidal curve to the activity pattern versus the zScore of our model. Known
and novel circadian regulators (including those in A) are denoted as blue (known)
and orange (novel) dots. D) Phase distribution f(φ), showing which phases of motif
activity occur most frequently in the dataset. Phase shifts (offsets) are calculated for
a sequence of φ ∈ [−π,π] (oscillation period 24h). An offset of 0h corresponds to
CT0=6am. Motifs contributing most to the two local maxima of f(φ) are indicated
in the boxes.

observe for Etv1 a significant pattern switching from negative activity to positive ac-
tivity at around CT12. For Etv1, CREMA indeed infers GO categories related to prolif-
eration and differentiation, for example "megakaryocyte development" (GO:0035855),
and "aortic smooth muscle cell differentiation" (GO:0035887). From this we are not
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confident enough to define a specific function for Etv1 in liver.
Stat5a was found to be involved in shaping the chromatin landscape in liver, and be-
ing essential for liver sexual dimorphism [19]. Stat5a has – to our knowledge – not
been investigated with regard to circadian cycling. However, a study included Stat5a
into their analysis when looking at the regulation of the liver clock by Bmal/Clock,
but without any concrete conclusions related to Stat5a [62]. Our predictions for func-
tional categories include "positive regulation of production of miRNAs involved in
gene silencing by miRNA" (GO:1903800) and metabolic terms, such as "negative regu-
lation of glycogen biosynthetic process" (GO:0045719) and "arginine biosynthetic pro-
cess" (GO:0006526). One of the known circadian regulators, Bhlhe40, shows very little
changes in our hands with a zScore of 1.5, however, it was also found to be weakly ex-
pressed in liver, which could explain the fact that we don’t find any accessible binding
sites with this motif [16]. However, we find Bhlhe41 to be significantly cycling (zScore
8.8), which has a similar motif. It is thus likely that we may have a slightly wrong
motif-TF association in this case.

Distinction of the circadian timepoints through motif activity

We performed principal component analysis (PCA) on the motif activity matrix. The
first two principal components (PC1 and PC2) show exact separation of the timepoints
according to the inactive and active phase of the mice - indicating that the light-dark
cycle is sustained (Figure 4.2B). Interestingly, the timepoints taken during the active
phase seem to lay closer together in the motif activity space than the ones taken from
the active phase. This suggests that in general, changes in transcription factor activity
are bigger during the inactive phase than during the active phase.

Correlation of oscillation and zScore

To estimate the strength of circadian oscillation, we fitted a harmonic function of the
form y(t) = A0 · sin(2π/24 · t+φ), assuming a 24h periodicity, starting at CT0, with
A0 the amplitude and φ the phase (see Methods). The R2 is the fraction of variance
explained by our fit y(t) compared to the total variance in the underlying activity
pattern and quantifies the goodness of the fit. In (Figure 4.2C). we plot the overall zS-
core for each motif versus the R2 value. Higher zScores occur thus concomitantly with
higher R2 values. We find 15 known (blue dots) and 7 novel (orange dots) circadian
motifs (those may be regulators themselves or regulated in a circadian manner) above
a threshold of R2 > 0.74 and zScore > 5 (see Table S2), including the motifs mentioned
earlier.

Phase shift of motifs and CREs

We found the most common motif activity pattern showing lower activity in the inac-
tive phase. We thus investigated how the phase φ of our function y(t) changes across
motifs. To take into account the significance of the motif activity pattern too, we we
calculate a distribution f(φ). That is, for a sequence of φ ∈ [−π,π] we calculate a
weight wm for each motif indicating how much its phase deviates from φ (phaseshift).
Additionally, we weight each wm by the respective zScore of the motif m. Thus, mo-
tifs whose phase φm is close to φ and have a high zScore will have high values and
increase f(φ) (see Methods). We refer to the phaseshift as offset in hours, as we imply
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a period of 24h. An offset of 0h refers to the cycle starting at 6am=CT0 and the activity
is increased during the first three timepoints, whereas an offset of around 10h denotes
higher activity in the last 3 timepoints, as the cycle starts at 4pm. What we observe
is that our function f(φ) peaks around an offset +10h and −4h. This confirms the
previous observation that the majority of the oscillating motifs shows a low activity
during the active phase. Examples of motifs having a offset of −4h are indicated in Fig-
ure 4.2D (boxes). Ybx1 (Ybx1_Nfya_Nfyb_Nfyc_Cebpz) and Hnf1γ (but also other Hnf
factors, Hnf1β, Hnf4α) activities follow this pattern. Further we find motifs with an
offset of +10h, meaning their activity is increased during the resting phase. This holds
for example Nfil3, Foxj3 and Ar. Among the predicted functional GO categories that
CREMA predicts for Ar are "negative regulation of peptidase activity" (GO:0010466)
and "progesterone biosynthetic process" (GO:0006701), which would suggest that this
transcription factor is involved in metabolic processes that are slowed down during
the inactive phase. Motif activity plots of Nfya (Ybx), Ar and Hnf4γ are displayed in
S11.

Dataset 2: Regulation of the development of organs in mice

To demonstrate the performance of our approach in the analysis of ATAC-seq data,
we chose ENCODE data [21, 20] (see Table S1 for accessions), and selected ATAC-seq
data of heart, liver, lung, hindbrain, forebrain, intestine, kidney, limb, neural tube and
embryonic facial prominence (face) during development in mouse. As an additional
dataset we downloaded RNA sequencing data (see Methods). [21, 20] (see Table S1 for
accessions) of the same mouse-line at the same timepoints. For this dataset we wanted
to answer three questions: 1) Are there motifs which are specific for one or multiple
tissues? 2) How do the motif activities change with time? 3) How correlated are the
motif activities derived from ATAC-seq data with RNA-seq derived activities?

Motifs responsible for tissue specificity

To answer the previously defined questions we looked first at the pattern across all tis-
sues and timepoints. We manually selected 6 of the top 25 motifs which have already
been associated with functions in the respective tissue and in embryonic development
and plotted their activity pattern for all tissues (Figure 4.3A). Some motifs show in-
creased activity in a subset of tissues compared to other tissues across all timepoints
(e.g. Tal1), while others in- or decrease their activity with time (e.g. Nfia, Cebpb).
Specifically, we find the following motifs:
Tal1 shows higher activity in liver and heart compared to the other tissues. Addition-
ally, it’s activity decreases with time in both tissues. This is consistent with literature:
Tal1 has been found in all hematopoietic organs during development, including liver
[66]. It is also mandatory for heart development: A study with Tal1 knockout in ze-
brafish showed severe defects in the heart development [14]. In our plot, the high
activity of Tal1 in liver is more than twice as high as the activity changes in heart, but
seen independently of liver, the activity of Tal1 in heart is still significantly elevated
compared to the remaining tissues. CREMA predicts Tab3, a TGF-β activated kinase,
to be regulated by Tal1, which was indeed found to be involved in the TGF-β signaling
pathway previously [60].
Nfia increases its activity across all the timepoints in all tissues except for in liver, kid-
ney and intestine. Members of the Nfi transcription factor family were associated to be
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important during mouse embryogenesis already 20 years earlier [18]. Especially Nfia
has been found to control the transition from neurogenesis to gliogenesis in the central
nervous system [47, 22]. This is consistent with our findings, where Nfia increases its
activity with time in brain-associated tissues too.
Hnf4a and Hnf1b are known liver-specific factors [27, 48] and show higher activity
only in liver, kidney and intestine compared to the other tissues. According to our
KEGG pathway analysis, Hnf4a and Hnf1b are involved in lipid metabolism and
genes associated to its targets play a role in transcription factor networks, such as
the PI3K/AKT and Foxa2/Foxa3 networks.
Rfx3, Rfx1 and Rfx4 have been - amongst other factors in the Rfx family - found to
play an important role in axon migration [45, 58]. CREMA infers higher activity in the
brain-associated tissues hindbrain, forebrain and neural tube than in other tissues. No-
tably, the activity increases with time. Among the predicted GO pathways that Rfx3,
Rfx1 and Rfx4 are predicted to be regulating are "fasciculation of sensory neuron"
(GO:0097155) and "neuronal channel clustering" (GO:0045161).
Mef2b is increasing its activity almost exclusively in heart – with higher overall activ-
ity than other tissues. Being considered as one of the core cardiac transcription factors
which is involved, among a number of other cellular programs, in direct reprogram-
ming and genome-wide cardiomyocyte gene regulation [23], our findings make sense.
Table 1 shows an excerpt of the CREs targeted by Mef2b: genomic location of the CRE,
the inferred target score and the regulated genes, as well as the CRE/gene association
probability Pcg and the distance to the promoter. For Mef2b we find – in concordance
with current knowledge – muscle-related genes such as Titin (Ttn) [31] and Prkaa2,
which is a catalytic subunit of the energy sensor protein kinase AMPK that plays a
key role in regulating cellular energy metabolism especially relevant in muscle [39]. In
table 2, we show the top GO categories which were inferred for the set of genes asso-
ciated to the targets of Mef2b. Here, too, we find muscle related terms which validates
our findings.
Cebpb is systematically more active in liver and lung, and it increases activity in both
tissues. The family of Cebpb transcription factors is important for pulmonary gene
expression and is implicated in several lung-associated diseases such as asthma, pul-
monary fibrosis and COPD. Specifically Cebpb was found to support proliferation and
to regulate inflammatory and innate immunity gene expression [52]. Indeed, the top
predicted target of Cebpb is Interleukin-3, which a cytokine, activated by T-cells, and
plays a role in several immunopathologies [13].

Tissue specificity and time dependence of motif activities

A principal component analysis of the activity matrix across all tissues and timepoints
shows that the highest variance in the data is due to the difference between tissues.
The fraction of explained variances for the first two PCs is 51.7% and 20.9%, respec-
tively (see also Figure S12C). Liver samples have very specific activity patterns which
distinguish them from other samples, the tissues which locate closest to liver in the
PCA space are intestine and kidney. Brain-associated tissues cluster together, as well as
limb and face. We suggest that this may be because these tissues are made up of bone
and muscle tissue (Figure 4.3B). We chose top 9 motifs according to CREMAs zScore
and plotted the projection of their activity profiles into the PCA space (Rfx comprises
two motifs, Rfx3_Rfx1_Rfx4 and Rfx2_7). Interestingly, besides expected TFs such as
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Figure 4.3: Motif activities are tissue and time dependent and the variability across tissues
increases with time. A) Motifs selected from the top 30 motifs to represent known
TFs and to show the variety of activity patterns in a single or multiple tissues.
Some motifs are changing their activity in multiple tissues, whereas others are
more tissue-specific. B) The first two PCA components show that most of the vari-
ation in DNA accessibility patterns are associated with differences between tissues
rather than developmental time. Plotted vectors represent the projection of activity
profiles of the top 9 significant motifs according to CREMAs zScore into PCA space.
Rfx represents Rfx3_Rfx1_Rfx4 and Rfx2_Rfx7. C) Variation in motif activity along
the third and fourth PCs is associated with time-dependence. Big dots: activities
at 11days (or 14days for intestine, kidney and neural tube). Small dots: activities
at intermediate timepoints. Stars: activities at birth. Several tissues which represent
the overall behavior have been selected to simplify the plot. Plotted vectors repre-
sent the 2 motifs with highest projection score on PC3 and 3 motifs with highest
projection on PC4. Several tissues have been preselected to simplify the plot. All
samples are shown in S12A. continued on next page

the Hnf factors, Gata3 and Gata4 (Figure 4.3B,C) distinguish liver, kidney and intestine
from other tissues in the PCA space. Gata factors have been found to be involved in
liver development earlier [74], as well as in intestine [11]. Tissues taken from heart,
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Figure 4.3: continued D) Despite of the specificity for some tissues (groups), around 50% of the
variance of motif activities in each tissue can be explained by the first principal
component for a PCA across activities in this tissue (tissue specific PC1) which is
an increasing or decreasing pattern (Figure S12D). This holds for all the tissues.
Several tissues have been selected to simplify the plot, all samples are shown in
Figure S12B.

target associated distance to CRE/gene

target CREs score gene Gene Info promoter ass. prob.

chr8:122451195-22451377 70.65 Gm20735 predicted gene, 20735 1 0.94

chr2:76806390-76806720 67.76 Ttn titin 19987 0.22

chr4:105100638-105100793 67.56 Prkaa2 protein kinase 9175 0.27

chr15:103355478-103355629 54.81 Itga5 fibronectin receptor 1098 0.34

chr2:91117863-91118209 50.42 Mybpc3 myosin binding protein 108 0.94

ch14:55003891-55004289 47.30 Myh7 myosin, cardiac muscle 9464 0.07

Table 1: Target CREs and their associated genes for Mef2b. We show the location on the
genome, the target score, the associated gene and more extensive gene info. The dis-
tance to the promoter and the CRE/gene association probability (Pcg, see Methods) is
shown in the last two columns.

kidney or face cluster near the origin of the PC1-PC2-space, but have different values
in the third and fourth principal components (Figure4.3C and S12A).
PC3 and PC4 show additionally that with advancing time, tissues separate from each
other: Big points show the first timepoint of the measurement (11days or 14days for
kidney, intestine and neural tube), small dots show intermediate timepoints and stars
the last timepoint at birth. In PC3/PC4, timepoints at the beginning locate close to each
other while the motif activities inferred for samples at birth span larger regions. (Fig-
ure 4.3C, stars). This reflects that tissues evolve their specific functions subsequently
during embryonic development.
Although the tissues are defined by the activity of tissue-specific distinct motifs, we
asked whether there were differences in the general time-dependent pattern of motif
activity depending on tissue. Therefore we subdivided the dataset into one individual
matrix for each tissue and performed PCA on this matrix (see Methods). The obtained
first principal component (tissue specific PC1) points in the direction carrying most
of the variance in each tissue, here the first component already captures 55.6-79.9% of
the variance, depending on the tissue (Figure S12D). The most common behavior of
motif activity in individual tissues across developmental time is thus a systematic in-
or decrease of the activity (Figure 4.3D and S13). Note that PCA is invariant under
point reflection, meaning that the pattern could as well be reversed (decreasing activ-
ity with time). We calculated which motifs follow most strongly the PC1-pattern by
correlating the motif activity pattern with the PC1 pattern. For a list of motifs with
highest correlation to PC1 please refer to Table S3.
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Log-likelihood Total

per target log-likelihood Term Description

28.1 112.3 GO:0035995 detection of muscle stretch

19.1 57.2 GO:0090292 nuclear matrix organization

15.4 46.1 GO:0031034 myosin filament assembly

13.4 26.8 GO:0014878 response to electrical stimulus involved in

regulation of muscle adaptation

12.1 24.1 GO:0002019 regulation of renal output by angiotensin

10.8 32.5 GO:0014873 response to muscle activity involved in regulation of muscle adaptation

10.4 51.8 GO:0098735 positive regulation of the force of heart contraction

Table 2: Top GO categories inferred for the associated genes to the target CREs of Mef2b,
according to their total log likelihood (total enrichment score). The log likelihood
per target shows the fold enrichment compared to random selection. We include the
ID for the GO term as well as a more extensive description of the term.

Figure 4.4: Integration of RNA seq data with the previously analyzed ATAC seq data re-
veals loci-dependent activity of motifs. A) Variance of the signal at CREs across
samples. The samples taken into account to compute the variance for each CRE are
stratified by timepoints B) CREs are grouped depending on the distance to the clos-
est promoter, the box whisker plots show the variance at CREs across all samples
(right) C) Scatter plot of the correlation of CREMA and ISMARA-inferred activity
pattern and CREMA-inferred zScore. Motifs selected in C) are denoted by orange
dots. D) Motifs selected to represent the 4 possible scenarios when comparing IS-
MARA and CREMA-inferred motif activities: well correlated (Rfx3), only significant
changes in the ISMARA analysis (Rest), inverse correlation (Mbd2) and only signif-
icant changes in the CREMA analysis (Rara). Opacity of the dots increases with
developmental time. Inlays (piecharts) show the fraction of target CREs locating
to promoters, untranslated regions (UTR), coding sequences (CDS) and intronic or
intergenic regions, weighted by the target score.

Timepoint and tissue-specific marker motifs

To define which motifs are rather time- or tissue dependent, we made use of CRE-
MAs built-in averaging tool which allows users to contrast motif activities between
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different groups of samples by calculating average motif activities for each group and
calculating how significant these averages vary across groups. This can be used to get
a broader overview of which regulators drive the chromatin landscape or transcrip-
tion factor binding either mainly across developmental time independent of tissues or
mainly across tissues independent of developmental time. To identify factors that are
either specifically active at a particular developmental timepoint or in a particular tis-
sue, we averaged the CREMA run in two ways: 1) across all tissues for each timepoint
and (time specific motifs) and 2) across all timepoints for each tissue (tissue specific
motifs).
Averaging between different timepoints across all motifs (1) yields generally lower zS-
cores than averaging across all timepoints for each tissue (2), which shows in addition
to our PCA analysis that the difference in motif activity between tissues is higher than
the difference in time.
Figure S14A shows that the general pattern of time specific motifs (see also Figure
4.3D) is either in or decreasing. Interestingly, also the variance of motif activity in-
creases with time (Figure 4.3C, stars, and increasing error on averaged motif activities
in Figure S14A). Motifs like Elf5, Stat4_Stat3_Stat5b and Gmeb2 act as time-specific
motifs in all tissues. Using the second way of averaging yields tissue specific motifs
(see Figure S14B). We identify Tal1 to have the highest motif activity of all tissues in
liver, Klf4_Sp3 in intestine and liver, while Rfx2_Rfx7 and Gfi1_Gfi1b have a high motif
activity only in brain associated tissues (forebrain, hindbrain, neural tube).

Comparison with ISMARA

We divided our set of CREs into four subsets, depending on the distance taken from
the middle of a CRE to the start of the promoter: 1) closer than 1,000bp 2) between
1,000 and 10,000bp, 3) between 10,000 and 100,000bp and 4) larger than 100,000bp. We
refer to a promoter as being the transcription start site of a gene (TSS). Further we
subdivided the samples by timepoints. We calculated the variance then for each for
the CREs in each group and timepoint and plotted it as a histogram (Figure 4.4A).
Here, independent of the distance, the variance increases from 11days to birth as can
be seen by the density of variances across all samples at CREs at birth is much flatter
than at 11days, independent of the distance. This confirms our findings from the PCA
(Figure 4.3C). But the distance plays a role too: The further away, the flatter and longer
the right tail of the distribution, suggesting that indeed, the more distal the CRE, the
more variable in terms of accessibility.
To investigate how much the activities of motifs in driving chromatin accessibility
genome-wide match or differ from the activities of motifs at promoters in driving
gene expression, we used ISMARA [6] on RNA-seq data, matching the tissues and
time-points of the ATAC-seq data exactly. ISMARA models the RNA expression data
in terms of the same regulatory motifs that are used in CREMA. The difference is that
it uses the annotation of promoters to their target genes and infers a motif activity
based on the expression of the target gene and the likelihood of this motif having a
binding site in its promoter. ISMARA was applied successfully over the past years to
a multitude of different datasets to predict novel regulators (e.g. [51, 69, 44]). However,
ISMARA relies on the motifs located in promoters to model the regulatory network.
Although both CREMA and ISMARA use the same core model, the activity to affect
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transcription by binding to the promoter is not the same as the activity to affect DNA
accessibility. Therefore, we were interested in how the inferred motif activity pattern
relate.

Correlation of motif activity pattern and inferred zScores

We compared the RNA-seq derived (ISMARA) with the ATAC-seq derived (CREMA)
motif activity pattern. Hence, we calculated, for each motif, the Pearson correlation
between the activity pattern obtained by ISMARA and CREMA analysis. For the most
significant motifs in the CREMA run also correlate highly with the motif activity pat-
terns inferred by ISMARA (Figure 4.4B). Nevertheless, the correlation values range
from -0.85 (Stat1a) to 0.96 (Tal1), so some of the motif activities obtained by CREMA
analysis differ from the ones ISMARA infers. We expect to find three different scenar-
ios when comparing motif activities from both analyses:
1) the ISMARA-inferred activity pattern correlates well with the CREMA-inferred pat-
tern. 2) either the motif has a high zScore in the ISMARA run (which means it is
located in promoters of regulated genes), but a low one in the CREMA run, or the
other way round (which means that it drives the observed changes in accessibility). 3)
both activity pattern are anti-correlated.
We selected four motifs to demonstrate the different scenarios (Figure 4.4C).
Motif activities for Rfx3 show a high Pearson correlation value, suggesting that it
affects transcription as well as chromatin state. ISMARA and CREMA-inferred activi-
ties correlate positively (ISMARA zScore = 8.9; CREMA zScore=31.11). Note that the
ATAC zScore is higher because our model runs on CREs in ATAC-seq (number of
CREs: 234168, max. zScore=43.9) compared to promoters in RNAseq (number of pro-
moters: 30115,max. zScore=8.9).
Rest is a known repressor of neuronal genes in non-neuronal tissues [4]. As such, the
RNA activity pattern shows elevated activity in brain-associated tissues, although it
means that Rest is not bound. The activity pattern do not correlate. ISMARA-inferred
motif activities (zScore = 8.6) vary strongly across tissues and reach high values in
brain-associated tissues, whereas the CREMA-inferred activity (zScore = 3.15) changes
are very minor across tissues. Hence, according to our analysis, Rest is predicted to
be important for the regulation of gene expression directly at promoters but does not
affect change the genome-wide chromatin state. This point is further confirmed by the
location of CREs with a Rest motif. Those are mainly located at promoters (inlay in fig
4.4C, Rest).

Mbd2 is one of the examples with a very negative correlation value between IS-
MARA (zScore = 1.5) and CREMA motif activity (zScore = 2.55), suggesting its bind-
ing might increase chromatin accessibility while its binding at promoters may lead to
repression of the target genes. Indeed, this protein has been found to bind methylated
regions in the DNA and act as transcriptional repressor, for example in cancer cells
[57, 8, 30]. Our analysis reveals in addition that Mbd2 motifs are located predomi-
nantly at the promoter (inlay in fig 4.4C, Mbd2)
Rara or Rar, was found to be important in embryonic development [36]. With the
CREMA-inferred motif activity pattern (zScore = 4.52) showing higher activity com-
pared to the ISMARA-inferred motif activity pattern (zScore = 1.08), our results sug-
gest Rara activity impacts or is strongly impacted the chromatin landscape. Similarly
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to Rfx3, the loci of CREs with Rara motifs are located mainly in intronic or intergenic
regions (inlay in fig 4.4C, Rfx3 and Rara). Rara’s chromatin-modifying behaviour has
recently been found leukemia, [70].

Dataset 3: ChIP for histone marks in primary cells

To verify the performance of our approach also in ChIP seq data, we applied CREMA
to an extensive selection of samples downloaded from the ENCODE consortium [21,
20] (see Table S1 for accessions). ChIP was performed for different Histone modifica-
tions in human primary cells belonging to the hematopoietic (T cell, regulatory T cell
(reg T cell), memory T cell (mem T cell), neutrophil, common myeoloid progenitor cell
(CMP) and mesenchymal (keratinocyte, osteoblast, fibroblast, astrocyte) lineage (see
methods for full names of the primary cells).

Top motifs changing activity at enhancer and promoter marks

We chose H3K4me1 (Histone 3 lysine 4 monomethylation) as one of the most studied
histone modifications for enhancers [7, 29, 61]. For a direct comparison, we include
H3K4me3 (Histone 3 lysine 4 trimethylation) which is generally associated with pro-
moters [26]. We further find that the zScores for all motifs obtained by the H3K4me1

and H3K4me3 analysis are correlated (Figure S15A). Motifs which show high corre-
lation between their H3K4me3 and H3K4me1-derived activity pattern yield higher
zScores in the H3K4me1 analysis S16A). As in the previous dataset, we find that CREs
marked by H3K4me1 are generally more distal from CREs marked by H3K4me3 and
are more numerous (more than 60% of the H3K4me3 regions are overlapping with
H3K4me1, which is reflected in total variance of activity across motifs and samples
(Figure S15B)). As our analysis focuses on distal regulatory elements, we continue
using the H3K4me1 dataset exclusively. Especially given the large overlap, higher vari-
ance and number of significant CREs, the H3K4me1 dataset it is more promising to
infer important cell-type specific regulators.

Hematopoietic and mesenchymal cells are clustered in PCA

We performed PCA on the resulting activity matrix (Figure S15C). The first princi-
pal component (PC1) clearly separates the two different lineages, mesenchymal and
hematopoietic cells with a captured variance of 45.4% (Figure S15C and S16B). The
second principal component (PC2), captures the differences of cells in each lineage.
Plotted vectors here were chosen to represent the motifs with the top 10 zScores, and
highest 5 projection values on PC1. The projection of motif activities to the PCA space
gives already first insights into which motifs are important for H3K4 monomethyla-
tion in the different cell types, for example the CXXC1 motif activity changes across
different cell types in each lineage, whereas HMGA1 activity distinguishes between
mesenchymal and hematopoietic cells.
The PCA gives us an overview of which motifs may be important for the difference

H3K4 monomethylation at CREs across the cell types. However, this analysis does not
detect motifs which are active in specific single cells types. To increase the resolution
and to predict which motifs drive the differences in histone modification of specific cell
lines and cell types, we performed sample averaging between selected sub-groups of
our dataset (see the table in Figure 4.5). As our dataset includes cells at different stages
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Figure 4.5: Differentiation of hematopoietic and mesenchymal primary cells. Inferred mo-
tifs driving the changes in H3K4 monomethylation between cell types. Activities
were obtained by sample-averaging (Methods). Colors in barplots correspond to
the cell types. Table in the left lower corner displays the averaging configura-
tions matched with colors represented in the barplots. Abbreviations in the table
are: hem-mes=hematopoietic-mesenchymal. CLP-CMP=common lymphoid progen-
itor/common myeloid progenitor, ast=astrocyte, ker=keratinocyte, ost=osteoblast,
fib=fibroblast of dermis, T=CD4+ T cell, regT= CD4+ regulatory T cell, memT =
CD4+ memory T cell. The length of the black lines is not related to similarity of
cell types and is only used to visualize cellular differentiation paths.

of the differentiation, our aim was to determine motifs regulating H3K4 monomethy-
lation that are specific for subsets of cells or even single cell types. Overall, we find
ZNF711 (zScore 18.5), RCOR (zScore 16.7) and CEBPA (zScore 15.6)) to change their
activity strongest across all examined cell types.
CEBPA has been already found to be important for the hematopoietic-mesenchymal
transition [42], as has RCOR [65], whereas ZNF711 is a potentially novel motif here
and has to our knowledge not been directly associated with hematopoietic or mes-
enchymal differentiation.
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Deciphering transcription factor activity during different stages of differentiation

To go deeper into the transcription factors regulating differentiation, we averaged mo-
tif activities for all cells in our dataset which belong to the mesenchymal lineage and
compare them to the average activities of cells belonging to the hematopoietic cell
lineage (Figure 4.5). Motifs are sorted by their zScore in the overall run, from left to
right. We find POU2F1 (zScore, merged: 6.7) for the averaged motif activity) and FOSB
(zScore, merged: 7.0) to be important for the difference in H3K4 monomethylation be-
tween hematopoietic and mesenchymal cells.

Hematopoietic lineage: In osteoblasts, FOSB was found to play a role in differentia-
tion: stretching induced its transcription and was followed by expression of osteoblast
markers in human mesenchymal precursor cells [28]. POU2F1 has been associated
previously with the epithelial-mesenchymal transition in cancer [75]. TEAD3 (overall
zScore 11.4) is important in the epithelial-mesenchymal transition [73], our analysis
predicts it to be a strong indicator for distinguishing mesenchymal from hematopoi-
etic cells based on H3K4 monomethylation.
Going further into the hematopoietic lineage, we averaged transcription factor activi-
ties between cells evolving from common myeloid progenitor cells (CMP) and those
evolving from common lymphoid cells (CLP). In case of infections, the decision that
cells become CMP or CLP can be forced towards the myeloid cells [24, 46]. In our anal-
ysis, the activity of CEBPE/CEBPD and SPIC are driving the differences in H3K4me1

deposition between cells deriving from CMP or CLP . A study from 2017 found CEBPB
and BACH2 acting in a feed forward loop to regulate myeloid differentiation [35].
Given the similarity of weight matrices of BACH2 and BACH1 (overall zScore 6.6),
the motif-TF association may not be completely correct, thus we would rather infer
BACH1 than BACH2. BACH2 indeed shows a peak in its activity pattern in CMP in
the overall CREMA run (Figure S17).
Going further, we investigated which regulatory key players are involved in the differ-
ence in H3K4 monomethylation in neutrophils versus CMP. Strikingly, CEBPA shows
high activity in neutrophils compared to CMP (zScore merged: 23.7), which is in accor-
dance with a previous study that defined CEBPA as marker for neutrophils [3]. Next
we questioned what are the most important motifs for the difference in H3K4me1 be-
tween regulatory T cells (reg T Cell) and T Cells. Here, we find RCOR1 being highly
active in T-cells, but it has not been mentioned in relation to T-cell specification previ-
ously. Additionally, a very interesting candidate is CXXC1, which was found to play a
role in the differentiation of T cells by regulating the H3K4me3 deposition at promot-
ers of key genes important for thymocyte survival [15]. This confirms our previous
finding that H3K4me1 and H3K4me3 marks are highly correlated. Consistent with
this, predicted GO categories for CXXC1 are "negative regulation of histone methy-
lation" (GO:0031061), but also T cell associated categories such as "T cell tolerance
induction"(GO:0002517) and "CD8positive, alpha-beta T cell activation" (GO:0043374).
FOXL1, is more active in regulatory T cells compared to T cells. Although FOXL1 has
not been implicated directly with T cell development, FOXP3 was found to be an im-
portant regulator in the development and function of regulatory T cells [38]. From our
results, also FOXP3 (overall zScore 2.8) is highly active comparing all cells, but not to
the extend of FOXL1 (overall zScore 13.8). However, the weight matrices of both motifs
differ, which suggests that FOXL1 may be a novel regulator implicated in regulatory
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T cell development.

Mesenchymal lineage: Regarding the mesenchymal cell lineage, we compared each
cell to all others to determine which regulators are driving H3K4 monomethylation
here. We get a very clear signal for keratinocyte, with TP63 (zScore, merged: 17.6)
being highly active. Indeed, TP63 is a keratinocyte-exclusive master regulator in epi-
dermal development [50, 64]. Our pathway analysis (Reactome) predicts TP63 to be
involved in "Genes involved in collagen formation" and "ErbB receptor signaling net-
work", which is both related to epidermal development.
In astrocytes, we find, besides TP63, Ahr (zScore, merged: 4.5) and CXXC1 (zScore,
merged: 4.9) to be active. While CXXC1 has not been associated with astrocytes, Ahr
was found to modulate astrocyte-related transcription programs [54]. The top motif
differentiating H3K4me1 methylation of other mesenchymal cells from fibroblasts is
MECP2 (zScore, merged: 16.8). Notably, a connection of histone modification and my-
ofibroblast differentiation has been found earlier [56, 32]. The data for osteoblasts,
fibroblasts and astrocytes is very noisy, so we are not confident enough to draw strong
conclusions here.

discussion

Motif activity response analysis, the core of the ISMARA [6] model has already been
applied successfully to RNA-sequencing data [51, 69, 44]. However, the ISMARA pre-
dictions are based solely on binding sites in promoters. As it is known that distal
regulatory regions play a non-neglectable role in gene regulation, a growing num-
ber of scientists aim to get a genome-wide view on their system. Here, we proposed
CREMA, a novel approach to analyze the chromatin state genome-wide in terms of reg-
ulatory motifs. Using CRUNCH [9] to scan for significant regulatory elements across
the whole genome, CREMA applies the core model of ISMARA to infer key regula-
tory motifs which explain changes in chromatin state across a non-limited number of
samples.
Using CREMA has several advantages. First, we reduce the high dimensionality of the
dataset, often including up to 500,000 cis regulatory regions by explaining observed
changes in chromatin state with the activities of around 600 transcription factors. Nar-
rowing down the number of potential key regulators is a crucial step for the design
of follow-up experiments and hypotheses. Secondly, CREMA not only analyzes the
chromatin state of each sample separately, but reports the differences of motif activity
across samples. This is especially useful to define which key regulators play a role
in certain conditions, cells types or treatments. Thirdly, CREMA is implemented as a
fully automated pipeline freely accessible our webserver. Thus, everyone dealing with
high throughput data can apply CREMA, without the prerequisite of having previous
knowledge in computational biology.
To display the performance and versatility of our model, we applied it to three datasets.
Using a DNase-seq dataset, we investigated which regulatory key elements are follow-
ing circadian oscillation pattern across a 24h timecourse. The top motifs that CREMA
predicts to be involved in shaping the chromatin state across a 24h cycle were indeed
known circadian regulators that show a strongly cycling motif activity pattern. Addi-
tionally we find regulators, e.g. Stat5a and Irf2 whose activity oscillates strongly with
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24h period but have not been found to oscillate in a circadian manner before.
Further, we applied the model to ATAC-seq data on 10 different murine embryonic
tissues at 4-7 different developmental stages. After modeling the data in terms of reg-
ulators using CREMA, we find motifs shaping the chromatin state of specific tissues
while other motifs are more universal and change their activity in multiple tissues at
the same time. Although motif activities are mostly tissue specific, the general pattern
of motif activity is similar across tissues. PCA on the activity matrix for each tissue
separately shows that most of the variance, around 40-60%, can be explained by a time-
dependent in- or decreasing pattern, this holds for all tissues. To highlight the novelty
of results obtained by our genome-wide approach, we compared it to the results in-
ferred by ISMARA on RNA expression data for the same tissues and same timepoints.
While we find generally a high correlation between CREMA and ISMARA-inferred
patterns, we indeed find motifs that are found to be significantly active only in the
CREMA analysis, such as Rara, whereas other motifs are presumably recruited only
to promoters and thus their activity changes significantly in the ISMARA analysis, but
not in the CREMA analysis, for example Rest.
Using a large dataset where ChIP was performed against two different histone mod-
ification marks in 9 types of human primary cells, we find that CREs marked by
H3K4me1 are more distal and numerous than those marked by H3K4me3. Using the
built-in averaging tool of CREMA, we analyzed motifs implicated in the decision of
cell fate. Here we show for instance that TEAD factors play a role in distinguishing
mesenchymal from hematopoietic cells and identify CEBPA to be a strong regulator
for neutrophil differentiation.
Of course, there are some drawbacks in our model. Especially in ChIP-seq data, the
differences in antibody efficacy for different target proteins are not distinguishable
from biological relevant binding signals. Although we use a sophisticated strategy to
normalize the data, there can be biases if samples are prepared using antibodies with
differing efficacy. Adjusting for this would require previous exact determination of
the antibody efficacy for each sample and could be included into the normalization
procedure in future implementations. The linear model we use is very simple which
has the advantage to be easily solvable, but of course lacks additional parameters, for
example differences in function of these factors (chromatin opening, transcriptional
activators or repressors) or the interplay of transcription factors. A sole binding site,
as our model takes it into account, may not be enough to explain the changes in chro-
matin state. Most transcription factors don’t act alone but in large complexes and not
all of them bind to the DNA. Including the formation of higher order complexes of
transcription factors or distinct functions of transcription factors into our model would
certainly improve our predictions.

One of the advantages of CREMA, the genome-wide view on chromatin state, makes
it – in turn – very hard to assign and reliably predict regulated genes to the motifs.
Our inferred CREs often locate in intronic or intergenic regions, and could thus be
assigned to a large number of surrounding genes. Knowledge on enhancer-promoter
associations would improve our CRE-gene associations and functional analysis tremen-
dously.
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methods

Datasets

We downloaded raw fastq files from the ENCODE database [20, 21]. For a complete
list of accessions, see table S1.

• Dataset 1: DNase-seq of murine liver of mice left in darkness for 50-70 (Panda et
al, 2002) [?]

• Dataset 2.1: ATAC-seq for 11 different tissues and at 4-7 different timepoints
from E11.5 - birth in the embryos in mice

• Dataset 2.2: RNA-seq for 11 different tissues and at 4-8 different timepoints from
E10.5 - birth in the embryos in mice

• Dataset 3: ChIP-seq for H3K4me1 and H3K4me3 across 9 primary cell lines in
cultured human cells

The ChIP-seq data we use consists of foreground and background samples. For ATAC-
seq and DNase-seq we assume the background to be uniformly distributed.
For a clearer visualization of the data and to be in accordance with common notation,
we renamed the samples for the first dataset in the following way: darkness50=CT14;
darkness54=CT18; darkness58=CT22; darkness62=CT02; darkness66=CT06; darkness70=CT10.
For second datasets we chose: E11.5=11days, E12.5=12days, E13.5=13days, E14.5=14days,
E15.5=15days, E16.5=16days, and 0h=birth For the third dataset: common myeloid
progenitor, CD34-positive = CMP, CD4-positive, alpha-beta memory T cell= mem T
cell, CD4-positive, alpha-beta T cell= T cell, alpha-beta regulatory T cell= reg T cell,
astrocyte, keratinocyte, neutrophil, osteoblast. In the second dataset, we refer to the
timepoint denoted in as ’0’ or postnatal as ’birth’.

Quality filtering and Adapter trimming

We use cutadapt [?] as it can quality trim
(-quality-cutoff 20) and trim the adapters in the same step. For the adapter trim-
ming, we first find the most abundant adapters by running cutadapt on the first
1000000 sequences. We use a pre defined list of commonly used adapter sequences
from illumina S5 and scan it across our reads. The adapter with the highest number
of matches is chosen. [34]:
Then we run cutadapt in the following mode, with $ENCODING a placeholder for the
sequencing machine and $ADAPTER the adapter, both are inferred in the previous step.
We then remove reads which are too short (<25bp) and reads with more than two unde-
fined bases. cutadapt −−quality-cutoff 20 −−quality-base=$ENCODING −−minimum-length

25 −−trim-n

−−max-n 2 -a $ADAPTER −−overlap 10 −−cores 12

Mapping to the reference genome

For the mapping we use bowtie1 [40]. Bowtie reports only one mapping position for
one read(-a strata -best), choosing the ones with least mismatches, while allowing for
3 mismatches (-v 3). Multi mapping reads are then distributed across their matching
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positions n , we keep a weight for each read as w = 1/n. We call this format bedweight
and it is used later in the pipeline to estimate exact read counts for specific regions
on the genome. Typically, more than 70-80% of the input reads are mapped. We don’t
take into consideration chrM, to avoid contamination of reads stemming from mito-
chondrial DNA. In case Paired-end data is available, we treat every read as a separate
observation (ATAC and DNase data), whereas in ChIP-seq, we use paired-end data to
infer the exact middle of each fragment.

Fragment size estimation

As most of the datasets we looked at are sequenced according to a single end proto-
col, they don’t contain any information about the fragment length. For ChIP seq, we
follow the approach denoted in [9]. Note that this procedure is different for ATAC
and DNase seq: here, the reads are not shifted by the fragment length. Other than for
ChIP seq (described above), where we want to estimate the position of a TF, we use the
mapped position of each read without shifting this position to the estimated middle
of the fragment. This is based on the length of DNA that is typically wrapped around
one nucleosome. For ATAC/DNase seq we set the fragment length to 150 (see also
paragraph "Counting fragments in sliding windows".

Counting fragments in sliding windows

We slide a window of 500bp across the genome, shifted by 250bp in each step. The
length of the window is in accordance with the expected signal: the typical width of a
ChIP peak is usually ±75 around the TSS, which is the length of DNA that is wrapped
around the nucleosome, as well as the ATAC/DNase insert size [?, ?, 9]. The length
of 500bp thus provides good resolution and will capture most of the binding events
and accessible regions. Nevertheless, histones can span longer regions on the DNA,
we account for this, as our approach dynamically merges enriched regions before
scanning for peaks. The background is fluctuating much slower and the read density
is typically lower. We account for this by taking a larger window for the background
samples, 2000bp by default.
When we run those two sliding window across the whole genome we simply count
all the reads that fall into this window each for foreground n and background m. In
the case of replicates, the raw counts for all foreground and background replicates
are summed up. If we lack background data, we generated a set of background data
out of pooled ChIP background datasets (available for human, [9] and mouse (Control
ChIP-seg data from the Bing Ren Lab for the 11 tissues at up to 7 timepoints in dataset
2, see supplement Table S1 for accessions). In case of ATAC or DNase-seq, we use a
constant background, meaning 100 reads per background window.

Peak calling

For peak calling, we use CRUNCH for each sample separately. For details please refer
to the methods and supplemental methods used for CRUNCH [9]. Next we estimate
the probability of a region to be significantly enriched (foreground counts significantly
higher than background counts) using a bayesian mixture model fitted to the regions.
An individual zScore for each identified region is calculated and regions passing a pre-
viously defined threshold make it into final peak calling step, to find the exact location
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of the binding event (ChIP-seq) or open region (ATAC-seq/DNase-seq).
To call the peaks, we fit the read coverage at each region in base-pair resolution to a
mixture of multiple gaussians and a constant background. After selecting for signifi-
cant peaks, we are left with an individual peak set for each sample.

Determination of the number of fitted peaks

as in [9], we use the following estimation, for N the number of possible peaks, Rl the
length of the region and fraglen the fragment length:

N =
Rl

fraglen ∗ 2
(24)

Construction of the common CRE set

After calling the peaks for each sample, a common set of regulatory regions which
captures all the peaks in all samples is created. We retain all the peaks which were
significantly enriched in at least one of the samples. Then all the peaks from all dif-
ferent samples are overlapped and merged to cis regulatory elements (CREs), if their
centers are closer than 75bp. In the case of merging, the resulting CRE thus spans all
the centers of peaks belonging to it ±75 bp up and downstream. We chose 75bp as
cutoff as one nucleosome approximately spans 150bp on the DNA, which fits with the
general width of a transcription factor binding peak as well.
The analysis of genomic data imposes challenges in the analysis and comparison across
different samples: For ChIP-seq we aim to estimate the strength of the binding of the
TF to the DNA from the height of the peak, for DNase and ATAC seq it is the fraction
of cells that have increased accessibility at the same region. The inferrence of these pa-
rameters implies an accurate estimation of the read density and its fluctuations along
the genome. We compute a signal (peak height) Scs for each CRE c in each sample s,
which is normalized for background and inter-sample library size differences.

Scs = log
(fcs
Fs
· F̃+ 1

)
− log

(bcs
Bs
· F̃+ 1

)
− log

(
lc/Lc

)
(25)

For ATAC-seq and DNase, we use:

Scs = log
(fcs
Fs
· F̃+ 1

)
(26)

where fcs and bcs is the readcount across CRE c in sample s. Fs and Bs are the li-
brary size of background and foreground in each sample s. F̃ denotes the median of
library sizes in the foreground. lc and Lc are the length of the CRE c in the foreground
and the corresponding background CRE, these are similar across samples s. If a fore-
ground region is shorter than 750bp, we choose the background region to be fixed to
750bp. As in the step before, we account for slow fluctuations and smooth the ideally
uniform background distribution. Is the CRE bigger than 750bp we use the same size
for foreground and background CRE.

Predicting binding sites genome-wide

To rigorously find binding sites in our set of CREs, we use MotEvo [1], which has been
developed earlier in our group. MotEvo calculates the probability for each motif m to
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occur in sequence of CRE c. Note that the binding sites are non-overlapping. Motevo is
run without information on the genomic coordinate (without alignment) and without
background model (UFE). To account for the missing background model, we change
the background prior bgp to 1-((1-bgpwithUFE)/100). We store the probabilities for
each CRE and each motif in our sitecount matrix Ncm. If one sequence has multiple
binding sites for one motif, the probabilities are summed up.

The ISMARA model

We now assume that the signal Scs for each CRE c and each sample s, can be explained
by the TFBS for motif m in CRE c, stored in matrix Nc,m and an unknown motif activ-
ity Ams. This approach is adapted from the previously in our group developed MARA
model [49], which models RNA-seq data in terms of binding sites in the promoters of
expressed genes. We can now fit the linear model

Scs =
∑
m

Ncm ·Ams + c̃c + cs +noise (27)

to estimate the activity Ams of each motif in each sample. The CRE- and sample-
dependent constants c̃c and cs are CRE and sample dependent constants which are
estimated in the next step. The noise term accounts for measurement errors in Scs plus
biological fluctuations throughout the samples and the error in the model. For more
details see also supplemental methods.

Target annotation

To estimate which CREs are most important to explain the motif activity, we calculate
a target CRE score ζmc for each CRE c and each motif m. To do so, we remove the
binding site of motif m in region CRE c (Ncm = 0) and estimate the amount by which
the relative square deviation between the model without this binding site (mutated
version) and the one with all binding sites (full version), decreases. We only consider
CREs for further analyses which have a positive target CRE score. To calculate the
squared-deviation between the observed peak height in our signal matrix Scs and the
predicted value

∑
NcmAms, we define:

χ2cs = (Scs −
∑
m

N′cmA
′
ms)

2 (28)

and calculate this value for both the full (χ2cs and the mutated version χ2csm) of the
model. Using the fact that we have much more CREs than motifs, we can calculate the
average square deviation per sample/CRE pair as:

〈χ2〉 = 1

CS

∑
i,s

χ2cs (29)

with C as the total number of CREs and S the number of samples. In the output table
we show for each motif and targeted CRE the following target score:

ζcm =

∑
s χ
2
csm − χ2cs
〈χ2〉

(30)

Targets are then assigned as the closest gene found on the genome, up or downstream.
We indicate the distance (middle of the region - promoter start) in the report page
Figure S4,S8.
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Assigning genes to CREs: CRE score and gene score

As we find for each dataset around 60000 - 500000 CREs, every gene may be associated
with multiple CREs, and thus even more regulatory motifs. Therefore we calculate a
score for each gene to be regulated by a certain motif. Every CRE gets a score for a
gene depending on their distance dCG, which is the distance from the middle of the
CRE to the start of the promoter of a gene. For more information on our library of
promoters please refer to [6].

wc(G) =
0.95

1+ (dCGdp )2
+

0.05
1+ (dCGdd )2

(31)

Promoters that are only dp = 150bp away should get the CRE assigned with 95%
probability. If there is no CRE close to the promoter, we assume that the weight de-
creases on a 50kb scale with dd = 50, 000pb. Having assigned the weight wCRE(G)
we can now calculate the probability that CRE c regulates gene G. We call this score
CRE/gene association score (Pcg):

Pc(G) =
wc(G)

w0 +
∑
gwc(g)

(32)

Here, we set w0 = 1/100. Now, the gene targeting score ξ for a gene to be regulated
by a motif is the sum of the nearby CREs and the corresponding target CRE score ζmc
for the CRE c with motif m.

ξm(G) =
∑
c

ζcmPc(G) (33)

Gene Ontology Analysis

We populate all the categories in the hierarchies "biological process", "cellular compo-
nent" and "molecular function" with genes associated with CREs with motif m. Then
we apply iteratively the following procedure: Until each gene has found a category:

• we calculate a total enrichment score as SGO,m = 1/N
∑
g ξm(g) for each cate-

gory in each hierarchy, with N the number of genes mapping to category GO.

• the top scoring category is reported.

• the top scoring category is removed and all the genes mapping to it are removed
from other categories.

This procedure is done similarly for the cellular component (CP) and REACTOME
categories of the Molecular Signature Database (MSigDB) [?, ?].

Sample Averaging

We grouped the samples in different ways (Table S4): For averaging the samples we
use a dedicated procedure outlined in detail in the supplementary methods and [6]
and start from the activity table including all samples.
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Fit to sinusoidal curve

As the majority of CREs are accessible in a time-dependent manner, we checked for
the significance of circadian cycling using a sinusoidal function for time t, with A the
amplitude, ω the frequency and φ the phase.

y(t) = A sin(ωt+φ) (34)

This function can be written as (with ω = 2π/24):

y(t) = α sin(2π/24 · t) +β cos(2π/24 · t) (35)

with, written in polar coordinates α = r cos(φ)andβ = r sin(φ), we can calculate the
phase φ = arctan(β/α) and the amplitude r =

√
α2 +β2

Calculation of the Phase Distribution

To determine the phase shift of motifs, we calculated the following function f(φ) for a
sequence of φ ∈ [−π,π].wm is a motif-associated weight which depends on how much
the phase of the motif’s activity pattern φm deviates from φ and the second weight
is the CREMA-inferred zScore for this motif. That is, we show the phase distribution
across all motifs weighted by their zScore.

wm =
1√
2πσ

· exp
(
−
1

2

(∆φ)2

σ2

)
(36)

f(φ) =
∑
m

z2mwm∑
m z

2
m

(37)

with ∆φ = min(φm −φ, 2π+φ−φm).

SVD / PCA on the motif activities

SVD is a generalization of matrix diagonalization to non-square matrices and can be
used for lower-dimensional representation of high dimensional data. We applied it to
the activities of 503 motifs across all tissues and time-points (samples). For example,
for our second dataset, our matrix Ams contains 55 x 503 (samples x motifs) entries.
SVD decomposes the matrix as

A = UΛV (38)

where V and U are the right and left singular vectors, respectively. Λ contains the
singular values sk. The vectors ~vk create a new orthonormal basis pointing to the
directions that capture most of the variance in across all motifs. For more details,
please refer to the supplemental methods.

Output

CREMA provides an extensive report which can be accessed online and downloaded
to the users hard drive for analysis. We here provide an overview of the plots and
analysis provided (see Figure S2 - S10), note that for the calculation of the PCA in this
paper we use the R svd.
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The main page shows all motifs sorted by their zvalue. Additionally given in this table
is the associated transcription factor, a small activity profile plot and the sequence logo
of the motif. For further investigation, a click on each motif opens a separate page with
more detailed information:

• a logo of all associated motifs

• a list of all associated motifs and their corresponding transcription factors (Gene
ID)

• a detailed activity plot and PCA across motif activity and CRE signal

• a barplot showing the zScores of the activity Ams of the selected motif m across
all samples

• the targeted CREs and the associated genes with information on the distance and
the target CRE score ζmc and the CRE/gene association score Pcp.

• information on the location of CREs containing a binding site for this motif across
the whole genome: a distance histogram showing the log10(distance) of CREs
weighted by the target CRE score ζmc and a piechart which shows the fraction
(without and with weighting by ζmc) of CREs mapping to UTRs, exons, intron,
promoters and intergenic regions.

Consistent with the notion of ISMARA, we use promoters (transcription start sites
(TSS)). These were identified by CAGE data analysis for mouse and human and one
promoter may include several co-regulated TSS if they locate close to each other. For
details please refer to the supplemental material of the ISMARA paper published
earlier [6].

data access Accession numbers can be found in Table S1 and on crema.unibas.ch

acknowledgements This research was supported by SystemsX.ch with the iPhD
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Supplementary Methods

Sample Averaging

We assume that we can write the activities As as As = Ag + δs. Thus, the probability
of having activity As in group g is:

P(As|A
g,σg) =

1√
2πσg

exp
[
−

(As −A
g
)2

2σ2

]
As the activity Ag is the expected value A∗s ± δAs we can write:

P(D|As) =
1√

2πδAs
exp

[
−

(As −A
∗
s)
2

2(δAs)2

]

crema.unibas.ch
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The mean and errorbar of the averaged activity in each group is then:

〈Ag〉 =

∑
s∈G

A∗s
(σg∗)2+σ2s∑

s∈G
1

(σg∗)2+σ2s

δA
g
=

√√√√ 1∑
s∈G

1
(σ∗g)

2+σ2s

and a zScore can be calculated in the following:

zm =

√√√√ 1

|G|

∑
g

(
〈Ag

δA
g

)

with |G| the number of groups. When there is little variance between samples in each
group for a motif, this motif will have a high significance zm.

ISMARA model

In detail, MARA makes use of a bayesian procedure assuming the noise is gaussian
distributed with variance σ2 and equal for all CREs and samples. The likelihood of
obtaining the signal table Scs is then given by:

P(S|A) ∝
∏
c,s

1

σ
exp

[
−

(
Scs − c̃c − cs −

∑
mNcmAms

)2
2σ2

]
We maximize this likelihood in terms of the CRE- and sample-dependent constants
and replace them with the maximum likelihood estimations. Which gives:

P(S|A) ∝ σ−CS exp
[
−

∑
c,s
(
S′cs −

∑
mN

′
cmA

′
ms

)2
2σ2

]
with C the total number of CREs. Note that the table S′cs is now centralized, such that
mean of all the rows and the mean of all columns is zero. The sitecount values in Ncm
is normalized in such way that the average count across all CREs is zero (

∑
iN
′
cm = 0).

This way we obtain activity values A′ that the average across all sample for each motif
is zero. To avoid the overfitting, each activity gets a gaussian distributed prior

P(A′|λ,σ) ∝
∏
s

exp
[
−
λ2

2σ2
A′2ms

]
With this, the posterior distribution becomes:

P(A|EN) ∝ exp
[
−

∑
i,m

((
S′cs −

∑
mN

′
cmA

′
ms

)2
+ λ2

∑
mA

′2
ms

)
2σ2

]
the parameter lambda is fitted through a cross validation approach, using 80% of
the CREs as train; and the remaining 20% as testset. The lambda that minimizes the
average square deviation of the expression levels int the test set versus those predicted
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by the fit of the train set is chosen as optimal lambda. This posterior probability can
be calculated via a ridge regression procedure, in this case SVD is used. The resulting
activities are then sorted by their z-score

zm =

√√√√1

S

∑
s

(
A′ms
δA′ms

)2

SVD / PCA on the motif activities

SVD decomposes the matrix as

A = UΛV

where V and U are the right and left singular vectors, respectively. Λ contains the sin-
gular values sk. The vectors ~vk create a new orthonormal basis pointing to the direc-
tions that capture most of the variance in across all motifs. Any motif activity pattern
(~am)s can now be represented in a linear combination of the right singular vectors ~vk.
The coordinates of the motifs in the sample space thus depict the contribution of each
sample to the motif activity pattern. As the singular vectors vk point in the direction
of highest variance in the dataset, they capture consecutively the pattern contributing
to the variation in the dataset, e.g. the first component captures the highest amount of
variance, followed by the second component. The projection of the motif activities ~ams
can be obtained by calculating ~qmk = ~am · vk or qmk = (AV)mk. When plotted across
samples, the singular vectors show the distinct pattern of motif activities detected by
the SVD. Note that this approach is the same as principal component analysis (PCA):
The singular vectors vwe obtain in SVD are the same as those obtained by PCA, which
is performed on the covariance matrix C, with n the number of samples:

C = ATA/(1−n) = VΛUTUΛVT/(1−n) = VΛ2VT/(n− 1)

The only difference is now that the eigenvalues ei of the covariance matrix C relate
to the singular values si as ei = s2i /(n− 1), with the fraction of explained variance
FOV = s2i /

∑
i(s
2
i ).

To know which pattern of ~am are following which singular vector, we make use of
a geometric approach which allows to identify vectors in am that follow the direction
of the principal components.
As now, the vectors am are vectors in the principal component space, their projection
on each of the axes (=principal components) indicates how strongly the vector am
overlaps with the singular vector vk. We an now calculate the projections according to
qmk = ~am ·~vk, and as, according to the SVD, AV = UΛ it can be written in matrix
multiplication qmk = (UΛ)mk.
Note that the projection captures also how strongly the vector am follows a sin-
gular vector, e.g. how ’long’ it is. Still, short vectors can still correlate pretty well
with the singular vectors. The correlation p can be obtained by calculating: pmk =

qmk/
√∑

k(qmk)
2. Note that the singular vectors v form a new orthogonal basis and

are thus independent of each other, each capturing another pattern in the data.
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supplementary material

Figure S1: Length of inferred CREs, ordered from short to long. CREs were taken from dataset
2.
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Figure S2: The main page of the report: For each motif, we provide zScore, associated genes,
the weight matrix of the motif and a small motif activity profile. The image is a
screenshot from crema.unibas.ch.

Figure S3: A click on one motif opens the motif-specific page. We provide information about
the weight matrix (motif binding site) and associated transcription factors. The im-
age is a screenshot from crema.unibas.ch.

crema.unibas.ch
crema.unibas.ch
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Figure S4: Activity profile. Users are able to zoom into the plot and exact values of activities
Ams and the errorbars δAms are given by sliding the mouse over the dots in the
plot. The image is a screenshot from crema.unibas.ch

.

crema.unibas.ch
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Figure S5: We compute, for this motif, a zScore for each sample. The barplot shows the zScore
and hence the importance of this motif across all samples. The exact value of zScores
is given by sliding the mouse over the bars. The image is a screenshot from crema.

unibas.ch.

crema.unibas.ch
crema.unibas.ch
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Figure S6: A list of all inferred target CREs. We annotate those CREs with the gene yielding the
highest CRE/gene association probability. The target CREs are sorted by the target
CRE score. Further information of this associated gene (Gene Info) as well as the
distance from the CRE to its promoter is indicated. Users sort the table according
to each column by clicking on the arrows on top. The image is a screenshot from
crema.unibas.ch.

crema.unibas.ch
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Figure S7: For further insight into the location of CREs targeted by a specific motif (in this
case, Mef2b): A) histogram of distances of the CRE to the closest associated gene.
The CREs is weighted with the inferred target score. B) Target scores for a specific
motif, in comparison to all motifs (blue bars). CREs are weighted by their target
score. C) Piechart of locations that the CREs map to: UTR, intron, CDS, promoter
and intergenic regions. D) Enrichment of genomic categories with target scores the
selected motif relative to all CREs E) Enrichment of genomic categories with CRE
score. The image is composed of screenshots from crema.unibas.ch.

crema.unibas.ch
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Figure S8: On all associated target genes, we calculate gene ontology categories. Users can
choose by themselves how to sort the table, either on the log-likelihood per tar-
get or the total log-likelihood. The categories are sorted by their total enrichment
score. We also include the log likelihood per target which shows the fold enrich-
ment compared to random selection into the table. The image is a screenshot from
crema.unibas.ch.

crema.unibas.ch
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Figure S9: As part of the pipeline we show a PCA plot for principal components 1-4 (shown are
PC1 and PC2) of the motif activities. The image is a screenshot from crema.unibas.

ch.

Figure S10: As part of the pipeline we show a PCA plot for principal components 1-4 (shown
are PC1 and PC2) of the motif activities. The image is a screenshot from crema.

unibas.ch.

crema.unibas.ch
crema.unibas.ch
crema.unibas.ch
crema.unibas.ch
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Figure S11: Supplementary Information for dataset 1: Motif activity plots for motifs indicated
in 4.2D. Offset (off) is given in hours on top of each plot.

Figure S12: Supplementary information for dataset 2. A) PC3 and PC4 including all samples.
B) Tissue - specific PC1 including all samples. C) Fraction of explained variance
for the PCA shown A and in 4.3B, D. D) Fraction of explained variance when
performing SVD on separate subsets of the activity table for each tissue.



crema 79

Figure S13: Supplementary information for dataset 2. First Component for all tissues, across
measured timepoints
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Figure S14: Supplementary information for dataset 2: Averaging over time and tissues. We av-
eraged the MARA run in two ways: 1) average across all tissues for each timepoint
2) average across all timepoints for each tissue A) time-specific motifs: Activity pro-
files of top 8 motifs averaged across all tissues for each timepoint. B) tissue-specific
motifs: Motif activities averaged across all timepoints for each motif.
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Figure S15: Analysis of Histone modifications in primary cells shows separation of lineages
and higher variability in enhancer regions. A) Correlation of zScores of motif ac-
tivity derived by CREMA analysis of ChIP-seq data for H3K4me1 and H3K4me3.
B) left: Sum of variance in activity across all motifs in the H3K4me3 and H3K4me1

analysis. right: Number of significant CREs found uniquely for H3K4me1 and
H3K4me3 and overlapping CREs. As long as one basepair was overlapping, the
CRE was counted as overlapping. C) PCA on the activity matrix for H3K4me1.
Plotted vectors were chosen to have the highest projection on PC1 and/or belong
to one of the top significant motifs yielding highest zScores.
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Figure S16: Supplementary information for dataset 3. A) Pearson correlation coefficient vs.
ATAC zScore. B) Fraction of explained variance in the SVD shown in Figure S15,C.

Figure S17: Supplementary information for dataset 3. Activity Pattern for
BACH1_NFE2_NFE2L2 across all conditions, taken from the example results
at crema.unibas.ch. The activity peaks at myeoloid progenitor (CMP).

crema.unibas.ch
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Dataset Accession

Dataset 1 DNase seq of murine liver of mice left in darkness for 50-70h

(by John Stamatoyannopoulos, UW)

accession: ENCSR904DTN

Dataset 2 ATAC seq for 11 different tissues and at 4-7 different timepoints from

11.5 days until birth in the embryos in mice (Bing Ren, UCSD)

accessions: ENCSR012YAB, ENCSR023QZX, ENCSR031HDN, ENCSR032HKE,

ENCSR068YGC, ENCSR079GOY, ENCSR088UYE, ENCSR096JCC,

ENCSR102NGD, ENCSR150EOO, ENCSR150RMQ, ENCSR154BXN,

ENCSR176BYZ, ENCSR204ZTY, ENCSR211OCS, ENCSR217NOA,

ENCSR255XTC, ENCSR261ICG, ENCSR273UFV, ENCSR282YTE,

ENCSR302LIV, ENCSR310MLB, ENCSR312LQX, ENCSR335VJW,

ENCSR343TXK, ENCSR358MOW, ENCSR371KFW, ENCSR377YDY,

ENCSR382RUC, ENCSR384JBF, ENCSR389CLN, ENCSR451NAE,

ENCSR460BUL, ENCSR465PYP, ENCSR468GUI, ENCSR486XAS,

ENCSR551WBK, ENCSR552ABC, ENCSR559FAJ, ENCSR603MWL,

ENCSR609OHJ, ENCSR618HDK, ENCSR623GSD, ENCSR627OCR,

ENCSR652CNN, ENCSR662KNY, ENCSR668EIA, ENCSR690VOH,

ENCSR700QBR, ENCSR732OTZ, ENCSR758IRM, ENCSR785NEL,

ENCSR798FDL, ENCSR810HQR, ENCSR819QOJ, ENCSR820ACB,

ENCSR836PUC, ENCSR876SYO, ENCSR896XIN, ENCSR903GMO,

ENCSR961SMM, ENCSR966ORC, ENCSR976LWP, ENCSR983JWA

Dataset 2.1 RNA seq for 11 different tissues and at 4-8 different timepoints

from E10.5 - birth in the embryos in mice (Barbara Wold, Caltech)

accessions: ENCSR004XCU, ENCSR017JEG, ENCSR020DGG, ENCSR039ADS,

ENCSR049UJU, ENCSR062VTB, ENCSR080EVZ, ENCSR096STK,

ENCSR115TWD, ENCSR150CUE, ENCSR160IIN, ENCSR173PJN,

ENCSR185LWM, ENCSR216NEG, ENCSR284AMY, ENCSR284YKY,

ENCSR285WZV, ENCSR304RDL, ENCSR307BCA, ENCSR331XCE,

ENCSR337FYI, ENCSR343YLB, ENCSR347SQR, ENCSR362AIZ,

ENCSR367ZPZ, ENCSR370SFB, ENCSR401BSG, ENCSR420QTO,

ENCSR448MXQ, ENCSR457RRW, ENCSR504GEG, ENCSR508GWZ,

ENCSR526SEX, ENCSR537GNQ, ENCSR538WYL, ENCSR541XZK,

ENCSR557RMA, ENCSR559TRB, ENCSR579FCW, ENCSR597UZW,

ENCSR611PTP, ENCSR636CWO, ENCSR647QBV, ENCSR648YEP,

ENCSR667TOX, ENCSR691OPQ, ENCSR719NAJ, ENCSR727FHP,

ENCSR750YSX, ENCSR752RGN, ENCSR760TOE, ENCSR764OPZ,

ENCSR792RJV, ENCSR809VYL, ENCSR823VEE, ENCSR826HIQ,

ENCSR830IVQ, ENCSR848GST, ENCSR848HOX, ENCSR851HEC,
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ENCSR867YNV, ENCSR906YQZ, ENCSR908JWT, ENCSR921PRX,

ENCSR928OXI, ENCSR932TRU, ENCSR943LKA, ENCSR946HWC,

ENCSR968QHO, ENCSR970EWM, ENCSR982MRY, ENCSR992WBR

Dataset 3 ChIP seq for H3K4me1 and H3K4me3 across 9 primary cell lines in
cultured human cells.

(by Bradley Bernstein, Broad Institute)

accessions: ENCSR000ALI, ENCSR000AOT, ENCSR000APJ, ENCSR000ARV,

ENCSR170NCG, ENCSR324EFP, ENCSR523BMU, ENCSR586POT,

ENCSR660WQO, ENCSR777RWW, ENCSR826VJY, ENCSR887ESB,

ENCSR911BCA

Table S1: Accession list for the datasets. Datasets are linked in addition on the webpage
crema.unibas.ch. Accession list for the backgound datasets to calculate the pooled
background for mouse, data is given in a supplementary table.

crema.unibas.ch
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Motif Reference

Arnt_Tfe3_Mlx_Mitf

_Mlxip_Tfec_Egr1 https://doi.org/10.1371/journal.pbio.1000595

Egr1 https://doi.org/10.1038/srep15212

Elf1_Elf2_Etv2_Elf4

Esr2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5393318/

Etv1_Etv5_Gabpa

Foxi1_Foxo1 https://doi.org/10.1073/pnas.0701599104

Foxp1_Foxj2

Hcfc1_Six5_Smarcc2_Zfp143

Hnf1b https://doi.org/10.1172/JCI96138

Hnf4a https://doi.org/10.1172/JCI96138

Hnf4g https://doi.org/10.1172/JCI96138

Irf2_Irf1_Irf8_Irf9_Irf7

Irx6_Irx2_Irx3 https://www.nature.com/articles/s41598-019-52215-4

Mecp2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395115/

Mnt https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6910219/

Nfia

Nfil3_Tef https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5702268/

Nr2f6 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066320/

Rorc_Nr1d1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750502/

Stat5a

Tcf7_Tcf7l2

Tfeb_Usf1_Srebf1_Usf2_Bhlhe41_Srebf2 https://doi:10.7150/jca.13748

Ybx1_Nfya_Nfyb_Nfyc_Cebpz https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5351623/

Table S2: The kown/novel circadian regulators which are indicated in (Figure 4.2,C). Motifs
were assigned as "known" when they could be associated with circadian regulation
either being a regulator or being regulated.
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face forebrain

Decreasing Increasing Decreasing Increasing

Tal1 Tead1 Esr2 Nfatc2

Nr2f1_Nr4a1 Nrf1 Gata5 Meis1

Nr1h4 Rfx5 Tead3_Tead4 Nfia

Vdr Gmeb2 Nr1h4 Cdc5l

Pparg_Rxrg Atf4 Pitx1 Nkx1.1_Nkx1.2

Klf1 Elf5 Hoxb13 Yy1_Yy2

Tbr1 Zbtb33_Chd2 Hnf4a Tfdp1_Wt1_Egr2

Hoxc9 Myog_Tcf12 Zbtb18 Hcfc1_Six5_Smarcc2_Zfp143

Zfp423 Rela_Rel_Nfkb1 Erg Foxp2_Foxp3

heart hindbrain

Decreasing Increasing Decreasing Increasing

Gata3 Mef2b Mef2b Hoxa11_Hoxc12

Snai1_Zeb1_Snai2 Srf Hsf2 Zbtb18

Foxk1_Foxj1 Tead3_Tead4 Maf_Nrl Nr1h4

Pou1f1 Mef2c Nfatc2 Zbtb12

Hmga2 Stat4_Stat3_Stat5b Hey2 Pax1_Pax9

Foxa3 Hes1 Pou6f2_Pou4f2 Hmbox1

Nr1i3 Gmeb2 Rela_Rel_Nfkb1 Rxra

Zfp784 Mnt Gata2_Gata1 Onecut1_Cux2

Onecut1_Cux2 Hsfy2 Vsx2_Dlx3 Snai1_Zeb1_Snai2

intestine kidney

Decreasing Increasing Decreasing Increasing

Pou2f1 Thrb Prdm14 Gsx1_Alx1_Mixl1_Lbx2

Ppara Rarg Obox3 Neurod1

Hmga1 Vsx1_Uncx_Prrx2_Shox2_Noto Irf5_Irf6 Bsx

Glis2 T Hoxa7_Hoxc8 Sox14

Prop1 Nr1i2 Hoxd11_Cdx1_Hoxc11 Barhl2

Sox2 Gmeb1 Sin3a Zkscan1

Max_Mycn Atoh1_Bhlhe23 Mef2b Gli3_Zic1

Msx2_Hoxd4 Barhl2 Hinfp Hoxb2_Dlx2

Hoxa1 Nr2f1_Nr4a1 Runx2_Bcl11a Ddit3

limb liver

Decreasing Increasing Decreasing Increasing

Nr1h4 Taf1 Nkx6.1_Evx1_Hesx1 Spic

Rarg Nrf1 Foxp2_Foxp3 Cebpa_Cebpg

Lhx2_Hoxc5 Tfap4 Mecom Cebpe

Tal1 Irf2_Irf1_Irf8_Irf9_Irf7 Zfp691 Hlf
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Stat1 Tcf3 Cebpd Nr1h4

Nr4a2 Tcf21_Msc Dmc1 Pparg_Rxrg

Nkx2.5 Neurod1 Prox1 Ets1

Esr1 Nfatc2 Etv3_Erf_Fev_Elk4_Elk1_Elk3 Spib

Gata5 Ascl2 Nkx3.2 Onecut1_Cux2

lung textbfneural tube

neg. correlation pos. correlation Decreasing Increasing

Onecut1_Cux2 Tead1 Tlx1 Nfe2l2

Klf8 Tead3_Tead4 Mecp2 Stat4_Stat3_Stat5b

Smad2 Ehf Sox3_Sox10 Rest

Figla Tfcp2 Tcf7_Tcf7l2 Foxo4

Mybl2 Ppara Rreb1 Hcfc1_Six5_Smarcc2_Zfp143

Irx6_Irx2_Irx3 Hsf2 Ovol1 Nr4a3

Six6 Sox13 Hbp1 Mga

Nkx1.1_Nkx1.2 Prdm1 Sox17 Lhx8

Gata6 Grhl1 Pbx2 Dlx5_Dlx4

Table S3: Motifs correlating positively or negatively strongest with the first principal compo-
nent for each tissue separately: their activity pattern is either increasing or decreasing
with time. (see Figure S13)We use the subset for each tissue of the activity matrix to
calculate the correlation to the corresponding PC1. Top ten motifs, according to their
correlation value (negative and positive), are selected.
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Name Averaging Configuration

Mesenchymal-Hematopoietic astrocyte, keratinocyte, fibroblast of dermis, osteoblast against

reg T cell, T cell mem T cell, common myeloid progenitor, neutrophil.

osteoblast osteoblast against keratinocyte, fibroblast of dermis and astrocyte

astrocyte astrocyte against keratinocyte, fibroblast of dermis and osteoblast

fibroblast fibroblast against keratinocyte, osteoblast and astrocyte

keratinocyte keratinocyte against fibroblast of dermis, osteoblast and astrocyte

CLP-CMP regulatory T cell, mem Tcell and T cell against CMP and neutrophil

reg T cell reg T cell against T cell

neutrophil neutrophil against CMP

Table S4: Averaging configuration for dataset 3.
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GATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG

ACACTCTTTCCCTACACGACGCTCTTCCGATCT

TGGAATTCTCGGGTGCCAAGG

GATCGGAAGAGCACACGTCTG

TCGTATGCCGTCTTCTGCTTG

CAAGCAGAAGACGGCATACGAGAT

AATGATACGGCGACCACCGAGATCTACAC

GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG

GATCGGAAGAGCACACGTCTGAACTCCAGTCAC

Table S5: Illumina Adapter sequences, selected from Illumina Adapter Sequences [34]
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5
A N A LY S I S O F A C U T E E X E R C I S E R E S P O N S E U S I N G S V D A N D
I S M A R A

The lack of sufficient physical activity is one of the main causes of death
worldwide. In actual fact, the medicine here is cheap and easy: regular
exercise has been shown to improve and prevent most of the modern-society
diseases and is also beneficial in chronic and age related diseases. One of
the nodal regulators of exercise is Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha Pgc1α, a co-activator investigated thoroughly
during the last decades. Here, we provide computational predictions of the
gene regulatory network induced by an acute bout of exercise in mouse,
which – in part – depends on Pgc1α: We sequenced the quadriceps of wild
type and Pgc1α muscle knock out mice which were killed immediately, 4h,
6h, and 8h after an acute bout of exercise. Then we combined computational
modeling to predict important regulators from RNAseq data with singular
varlue decomposition to disentangle most important regulators and their
activities during this post exercise time-course. We find that early immediate
genes play an important role in kicking off the exercise response, followed
by downstream autophagy and immune response pathways. Interestingly we
find Pgc1α being not mandatory for this immediate response, however, in the
long run wild type mice benefit from a sustained high level of Pgc1α induced
gene programs.

Anne Krämer1,2, Regula Furrer1, Erik van Nimwegen2, Christoph
Handschin1
1 University of Basel, Biozentrum, Basel, Switzerland
2 Swiss Institute for Bioinformatics, Basel, Switzerland

5.1 introduction

exercise Individuals in our society often experience lifestyle-associated diseases
such as heart disease and stroke, obesity and type 2 diabetes (T2D) and hypertension.
One of the main causes of those diseases is the lack of appropriate amount of phys-
ical activity. About 1/3 of adults and even 4/5 of teens worldwide do not exercise
enough, although regular training has been shown to dramatically improve and even
prevent lifestyle-related diseases, other chronic diseases and age-related muscle waist-
ing [32, 33].
For instance, just a short bout of exercise reversed the symptoms of metabolic disease
[2]. In T2D and sarcopenia, exercise and a healthy diet outperforms any pharmacologi-
cal treatment [3, 4]. In recent years, lots of efforts have been undertaken to disentangle
the complex gene regulatory network induced by acute and chronic exercise, but we
still lack full understanding of all the connections and regulators.
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pgc1α One of the nodal regulators of exercise has been investigated for several
years: Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1α).
This co-activator is implied in multiple cellular processes, for instance in adaptive ther-
mogenesis, fatty acid oxidation, gluconeogenesis and mitochondrial biogenesis [9] and
the adaptation to endurance exercise. Pgc1α mRNA is found to be highly elevated af-
ter bouts of endurance exercise in rats and humans [6, 7]. Additionally, it is higher
expressed in slow, oxidative fibers than in fast twitch fibers [5]. Only overexpression
of Pgc1α in skeletal muscle is enough to improve exercise performance by improving
mitochondria and mediating the switch of fast to slow twitch muscles [5, 8].
A single exercise bout changes the expression level of a myriad of genes, all tightly
regulated by a network of transcription factors. These factors can enable or disable
transcription by modifying chromatin structure and allocating the transcriptional ma-
chinery to the regulatory site. As the number of factors is far less than the number
of responding genes, it reduces the dimensionality of the data tremendously if we as-
sume that the observed gene expression is a result of transcription factor activity. We
then can express the global gene expression in terms of regulators.
In this study, we aimed to elucidate the gene regulatory interactions following acute ex-
ercise and how they depend on Pgc1α. We sequenced the RNA of murine quadriceps
muscle at different timepoints after the mice completed an acute exhaustion exercise
protocol. This was equally done with two groups of mice, one wild type (WT) and
one lacking Pgc1α in the muscle (KO). This provided us with an extensive dataset to
investigate the temporal sequence of molecular mechanisms happening after an acute
bout of exercise. As exercise is a strong inducer of gene expression, a multitude of
genes was found to be differentially expressed directly and hours after the bout.
The key challenge thus was to explain the observed gene expression changes in terms
of a few important regulators. Further, we needed to associate the factors with their
potential target genes. This was done by using Motif Activity Response Analysis (IS-
MARA) [5]. ISMARA uses sophisticated statistical methods to infer the regulatory ac-
tivity of transcription factors taking into account the measured gene expression pattern
and predicted regulatory binding sites in promoters of the measured genes. ISMARA
has been applied with great success in a number of studies previously [10, 54].
Here we used ISMARA combined with singular value decomposition (SVD) to in-
vestigate the regulatory mechanisms in exercise response. We were able to identify
key regulatory factors responsible for the induction of stress response, growth related
mechanisms and identify metabolic pathways as major difference between the geno-
types. Our findings may lead to a better understanding of the temporal pattern of
transcription factor activity and gene expression in exercise response.

5.2 results

transcriptional changes following acute exercise To disentangle the
contribution of Pgc1α in acute exercise response, we used WT and KO mice. Both
groups performed an exercise protocol until exhaustion and were sacrificed at 0h, 4h,
6h and 8h after the exercise, with the control being sacrificed subsequently through-
out 0h-8h time-course to account for eventual circadian fluctuations in gene expression.
Tissue was taken from the quadriceps muscle, RNA extracted and sequenced (Figure
1A and Methods).
We performed differential gene expression (DE) analysis to find the differences be-
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Figure 1: The genotype difference dominates the ISMARA model across WT and KO ani-
mals. A) Experimental set up B) Venn diagram of differential expressed genes for
knockout (KO) and wild type (WT) animals. Comparison was always the mice which
didn’t perform exercise (rest). C) Top 10 motifs explaining the dataset, inferred by
ISMARA. Numbers above the plots are the corresponding zScores

tween exercised and resting mice for all timepoints in both groups. The resulting gene
expression changes were vast, in the WT group up to 5000 (FDR < 0.05) genes changed
and in almost the whole Pgc1α mice, the number of DE genes exceeded 1000. Interest-
ingly, the common set of genes which depicts all genes once expressed differentially
compared to the WT mice is rather small, only 43 for the KO mice and 140 for the WT
animals.
What could already be observed is that the number of total DE genes dropped in the
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KO mice after the 6h timepoint. This indicates that most of the genes are induced at
the beginning or directly after the exercise. However, when comparing just the geno-
types, the largest difference in DE expressed genes is found at the 8h timepoint (see
Figure 1B and S1). This could be explained by the long duration of transcription of the
Pgc1α gene: It takes, for the gene around 5h to be transcribed into mRNA (taken into
account the current release of NCBI its location is chr5 : 51454249− 52115853, thus the
length of 661604bp and a speed of the polymerase of 34bp/sec [14]). This means that
Pgc1α was induced by the exercise bout, but it takes until 5h after the exercise that
the mRNA is transcribed fully and even longer until the protein is translated and the
targets are expressed. That is, where changes due to the difference in genotypes then
become more apparent on the transcriptomic level.

detection of most important regulators driving the variance in the

whole dataset As it is very challenging to find important regulatory genes from
this extensive set of DE genes, we used ISMARA on the whole dataset to infer tran-
scription factor activities using the observed gene expression data and information on
binding sites in the promoters. Notably, ISMARA infers the activity of a transcriptional
regulator, which is not necessarily correlated with its mRNA expression. This is very
useful as rapid gene induction often relies on ubiquitously expressed factors which
only need to be activated, for instance by phosphorylation or translocation to the nu-
cleus. ISMARA estimated the significance of inferred motifs by rigorously ranking the
inferred transcriptional regulators then according to their variation across samples and
consistency across target promoters (see zScore in Methods).

known motifs associated previoulsy with exercise response and / or

pgc1α

We ran ISMARA on the whole dataset, including KO and WT animals. Figure 1C
shows the 6 top ranked motifs and their corresponding zScores. Obviously, the dif-
ference in genotypes dominates the activity changes. Interestingly, while most of the
pattern show higher activity in the KO animals, Errα (Esrrb,Esrra) is more active in the
WT. We find several factors which have already been found with respect to exercise or
Pgcα:
Nfatc1 / Nfatc2 (Nuclear factor of activated T-cells) is the most important motif driv-
ing the difference in gene expression between the genotypes. A study [1] showed that
reduced Nfat activity resulted in reduced expression of slow-twitch muscle gene ex-
pression. However, in our hands, Nfatc1 is more active in the KO animals, suggesting
Pgc1α may be downstream of Nfatc1, hence if it is abundant, the activity of Nfatc1

may shut down.
Irf (Interferon regulatory) factors are known to be stress sensors and act in immune re-
sponse but also in metabolism related diseases. Irf6 was found to interact with Pgc1α

as well [51].
Esrra / Esrrb (Estrogen related receptor alpha) is a well studied partner of Pgc1α, also
its activity seems to be higher in the WT animals. It has been associated with control-
ling whole body lactate levels in exercise when being co-activated by Pgc1α [54]. It’s
activity was found to be higher in the WT compared to the KO.
Srf (Serum response factor) is a factor known to be involved in acute stress response,
stress in our case is the exercise. Immediately after (or even during) exercise it increases
rapidly, inducing several pathways [16], which is reflected in its activity pattern.
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Esr1 (Estrogen receptor alpha): Pgc1α has been shown to co-activate Esr1 and induce
antioxidant genes [53]. As Esrra, it is more active in WT.

predicted motifs not yet associated with exercise or pgc1α Tbp (TATA
binding protein) is a TATA-Box associated element which has not been implicated with
the response to exercise or Pgc1α before.
Hdx (Highly divergent homeobox) transcription factor, its function is not known.
Taf1 (The TATA-box binding protein associated factor 1) is a key unit of the transcrip-
tion factor II D complex that has not been investigated deeply. One study found it to
serve a vital function in embryogenesis in zebrafish [52].
Sp100 is part of the Promyelocytic leukemia protein (Pml) complex and was not inves-
tigated with respect to exercise or Pgc1α. Our analysis suggested an elevated activity
of SP100 in KO mice.

identification of general pattern of motif activity in exercise re-
sponse When we had expressed all DE genes in terms of ≈ 500 regulators, we
still wanted to assess whether there are groups of motifs which could induce others or
respond in a similar manner to the stimulus. To perform this in a completely unbiased
manner, we applied SVD (see Methods and Figure 2B) on the activity table we had ob-
tained previously (Figure 2A). Around 70% of the variance was explained by the first
3 singular vectors and each of them explained more than 10% of the data, such that we
proceed our analysis with the first three singular vectors S2. The first singular vector
captured the highest amount of variance, (referred to as PC1) clearly distinguished
between WT and knockout animals, whereas PC2 (the second singular vector) showed
more variation in time

detection of motif groups following the same dynamics How exactly
did the pattern look like and how much different pattern existed in the dataset? In
figure 2C we plotted the values of the first three components at each timepoint as
outlined in the Methods section. Top correlating motifs (pearson correlation value >
0.8) are sorted by zScore and plotted in Figure 2D. Note that SVD is invariant under
point reflection, meaning that the inverse pattern of the one shown here is equally im-
portant. This component was thus representative for the top motifs already shown in
1C. However, the second and third component depicted the exercise response, interest-
ingly, those pattern were very similar for both KO and WT animals. Motifs correlated
with PC2 may be downstream targets of motifs in PC3. Notably, most of the motifs
correlated to PC3 were genes involved in the early immediate gene response, like Srf
and Jun Proto-Oncogene (Jun). We thus looked into the predicted targets of motifs
following the pattern in PC3.

motifs following the second singular vector The second component
captured a time-dependent pattern which is quite similar for both genotypes: Motifs
which change slowly during and after exercise to come back after 8h to the original
level.
Nfya, Nfyb, Nfyc (Nuclear transcription factor Y): Factors of this group were found
previously to be implicated in the exercise response [23].
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Figure 2: Regulation of exercise response for wildtype (WT) and Pgc1α muscle knock out
(KO) mice. A) The first singular vector show clear separation of genotypes but also
a time-induced pattern on singular vector 2. B) Schematic explanation of the , cor-
relation and projection. C) The first three singular vectors plotted across time (blue
and lightblue). Note that PCA is invariant under point reflection, which makes the
presented pattern equally important to its inverse pattern. D) Motifs whose activity
pattern correlates at least 80 % to the singular vectors. Sorted by the zScore inferred
by ISMARA. E) KEGG categories associated with target genes of the motifs in each
group characterized by the singular vectors.

Nfic Nfi (Nuclear Factor I )-factors are important factors in in development and differ-
entiation of cells in the nervous system, lung and muscle [56].
Chd1, Pml (Chromodomain Helicase DNA Binding Protein 1) and Pml was shown to
reduce acetylation of Pgc1α which increases its activity [24].
Fos (Fos Proto-Oncogene) is part of the Ap1 complex which has been associated with
Pgc1α before [30]. It belongs to genes involved in the early immediate gene response.

motifs following the third singular vector PC3 showed an interesting
pattern: A rapid increase in motif activity followed by a slower decrease. Here, we saw



5.2 results 105

that the response in KO animals is slightly dampened compared to the WT animals.
The motifs behaving this way are:
Srf is known to be an activator of immediate early genes and its activity is induced
rapidly in response to external stimuli [16]. It was found to be involved in many cellu-
lar programs, mostly related to muscle structure/function/generation and repair and
cardiovascular development and maintenance, but also in a multitude of other organs
[17].
Junb and Jund are part – as Fos too – of the Ap1 complex which has been found to
be targeted by Pgc1α before [30]. Ap1, too, is responsible for the activation of early
immediate genes, e.g. in response to cardiac hypertrophic stimuli [18, 19].
Nfκb (Nuclear factor κ B) plays critical roles in inflammation, cell proliferation, differ-
entiation. Its activity relies on the degradation of its inhibitors (kappa B proteins). It
has been implicated with binding to Pgc1α to inhibit its function in cardiac pathologi-
cal processes [20].
Rreb1 is associated with Ras-signaling and cancer, there has not been any profound
association with exercise or even Pgc1α yet.

clustering the motifs for functional annotation We grouped all mo-
tifs which correlate positively or negatively more than 80% to each singular vector,
and extracted their top 20 target genes. This yielded 3 groups of genes which followed
specific pattern. The advantage of using SVD to extract the clusters rather than using
common clustering methods was that the principal components are mutually inde-
pendent because they build an orthonormal basis. To get further information about
the biological functions of the gene groups, we performed Gene Ontology (GO) for
biological process and KEGG functional analysis. ISMARA reports, for each motif,
promoters which contain a site for this motif (=target). The targets were sorted accord-
ing to their target score (see Methods). We refer to the genes of targeted promoters by
motif m from now on as target genes of motif m. We took the target genes of all motifs
which correlate more than 80% to the singular vectors extracted the genes that were
predicted to be regulated by these motifs. This yielded 3 groups of genes which each
were regulated in the same manner. Figure 2E shows an excerpt of the top ten KEGG
pathways.

metabolic pathways The first component depicted the genotype difference. Our
target genes in the first group associated with KEGG pathways related to metabolic
terms. In the GO analysis, we also observed terms related to energy derivation, cellular
respiration and metabolic pathways (Figure S4). Pgc1α has been found previously to
play a decisive role in numerous metabolic processes, e.g. oxidative phosphorylation
was associated with Pgc1α before, as was shown in a study where overexpression of
Pgc1α rescued OXPHOS in mitochondrial DNA (mtDNA) - defective cells [35] and
several genes of the tricarboxylic acid (TCA) cycle, mitochondrial fatty acid beta oxida-
tion and the krebs cycle were upregulated by Pgc1α [36, 37]. Notably, the expression
of mitochondrial genes is mediated by co-activation of Errα and Nuclear receptor fac-
tor (Nrf1/2) by Pgc1α, the former was ranked among the top motifs in our ISMARA
analysis.



106 analysis of acute exercise response using svd and ismara

tissue regeneration and growth The second component comprised motifs
which get activated with and after the 4h timepoint. KEGG analysis yielded categories
related to growth of the cell, like the PI3K-Akt-, HIF- or Hippo signaling pathway. The
PI3K-Akt pathway for instance was directly activated following exercise [38]. Although
it is known that Pgc1α plays a direct role in the Akt pathway, as it is phosphorylated
and deactivated by Akt upon exposure to insulin, we did not see a significant differ-
ence between WT and KO mice in most pattern belonging to the second group of
motifs. Especially the Hippo pathway and its implication in exercise adaptation has
been investigated, as it is known to promote tissue growth. It has been postulated that
the Hippo pathway plays a role in proliferation and renewal of myogenic cells [40],
further it has even been proposed to be important for muscular adaptation i.e. hyper-
trophy to resistance exercise [39]. Hypoxia-inducible factor 1-alpha (Hif-1) enables the
expression of genes involved in the hypoxia response of most mammalian cells and,
Pgc1α has been found to stabilize Hif-1 and hence upregulate its target genes [41].

stress response The third group contained genes targeted by the fastest respond-
ing motifs in our analyis. Among these is Srf, which is a known inducer of early im-
mediate gene response and targets the promoters of several other factors involved in
the rapid response to external stimuli. The corresponding KEGG pathway analysis re-
vealed mainly stress-related and immune response terms such as Mitogen-activated
protein kinase (Mapk) and p53. Top terms in the GO analysis corresponded to gene
programs in response to compounds or external input (see Figure S4). Tumor pro-
tein p53 (p53) has been associated with exercise before and was found to eventually
counteract cancer by the activation of tumor protein p21 (p21), Insulin like growth
factor binding protein 3 (Igfbp-3), and Phosphatase and tensin homolog (Pten) [42].
The TNF pathway was suggested to provoke insulin resistance and dyslipidemia. Ex-
ercise in turn was observed to downregulate one of the key factors in this pathway,
Tumor necrosis factor alpha (TNFα), which resulted in anti-inflammatory effects. [43]
The Mapk pathway has been associated with growth and development [44] and is
activated by cytokines, growth factors and cellular stress [45]. It is found also in the
KEGG pathway analysis of the second group, however in the third group it is the top
pathway, suggesting that it is turned on quickly but retains its activity for a longer
period of time after the exercise bout. Taking all together, the first singular vector was
responsible for the large amount of variance in our data and captured the genotypic
differences and induces metabolic pathways. The second and third singular vectors
denoted the time-dependent response to exercise (e.g. stress and immune response)
which was only partly altered by the presence of Pgc1α.

reconstruction of gene regulatory pathways in early response to ex-
ercise using ismara’s target predictions Looking at the component pat-
tern with respect to the time-course nature of the data, we imagined that motifs whose
activity follows PC3 could be downstream targets of motifs following pattern PC2. (see
Figure S3 for an exemplary pathway inferred by motif activities and target genes). GO
and KEGG analysis suggested that genes involved in stress response are upstream in-
ducers of genes related to growth response in the second group. As one target gene
can have multiple transcripts and thus promoters, we summed up expression pattern
of transcripts belonging to the same gene. Srf was one of the top factors in our anal-
ysis whose activity pattern showed rather a time-dependent than a genotype depen-
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dent behavior. We thus start off with the construction of our network with Srf (Figure
3A). Interestingly, opposed to its highly significant activity profile, Srf mRNA was not
changed during the time-course (see Figure S3), suggesting that it was ubiquitously ex-
pressed, waiting to be activated by an external stimuli. That confirms that Srf is indeed
a regulator required to kick off genetic programs in the response to perturbations.
We checked the first top target genes which ISMARA predicted to be regulated by
Srf: Egr1/2, Fos and Fosb are transcription factors themselves and their mRNA tran-
scription and are rapidly initiated. However, transcription takes its time and the target
genes of Egr1, Fos and Fosb were expressed time-delayed.
Figure 3C shows the expression level of the top ranking target genes for each of the
motifs in Figure 3B. Targets shown here were manually chosen according to their rank-
ing by target score and their expression level had to reach log2(tpm) = 2 at least.
Egr1 was denoted as the most important target of Srf. Among its targets were the
Heat shock factor Hspa1b, which has been associated with exercise response earlier,
its expression was found to correlate with the exercise intensity in rat soleus [46]. In-
terestingly, also Kruppel like factor 4 (Klf4) which was predicted to be downstream
of Egr2 targets another heat shock protein - DnaJ Heat Shock Protein Family (Hsp40)
Member B1 (Dnajb1). Fos1 is predicted to induce Ankrd1 and 1700101l11Rik, a lnc
RNA close to GABA Type A Receptor Associated Protein Like 1 (Gabarpl1), which is
associated with autophagy. Fosb itself activates presumably Irf5, which leads to the
activation of immune-related pathways.

influence of the genotype in the response to exercise Concerning the
differences in genotypes, we found that the rapid acute stress response is not affected
by the lack of Pgc1α. This suggests that Pgc1α was not implicated directly in the early
immediate gene response. However, it was found before that the lack of Pgc1α resulted
in an overall reduction of oxidative phenotype in skeletal muscle [29]. We suggest that
this superior adaptation is not depending on the rapid gene activation seen in our
time-course.
From 4h on, we saw that the expression level of most target genes is more elevated in
the WT animals. This holds for the top target genes of Srf (Egr1,2 and Fos, Fosb), as
well as for most of their target genes.
Here, the WT animals sustained the level of mRNA expression of rapidly induced
genes longer than the KO animals. We suggested that exactly these sustained mRNA
levels induce the Pgc1α-mediated phenotype in response to exercise. What biological
functions do those genes have?
As we assumed that the gene expression of the sustained genes is due to the sustained
pattern of their regulators, we ran KEGG analysis on the target genes of the 4 factors
depicted in Figure 3B.

heat shock factor gene expression is dampened in pgc1α muscle knock-
out mice A target gene that was ranked as highly important in Egr1 and Egr2, as
well as in Srf, was Hspa1b. As outlined above, heat shock proteins are involved in
the exercise response. Our data suggested that they are as well regulated or stabilized
by Pgc1α - as we saw the mRNA expression of Hspa1b and Dnajb1 to be elevated in
the WT for a longer period of time compared to the KO. As Heat shock proteins are
thought to have cytoprotective functions, this could be one of the explanations why
Pgc1α-lacking animals do not cope as well as WT animals with the stress induced
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Figure 3: Pathways induced by the early immediate gene program in response to actute ex-
ercise in wildtype (WT) and Pgc1α muscle knock-out (KO) mice. A) Srf is induced
immediately following exercise. B) Among its top targets are Early Growth Response
1/2 (Egr1/2), Fos, Fosb which are transcription factors themselves. C) Targets of the
factors depicted in B) are genes highly induced 4h after the exercise bout. D) Some of
the factors in B) were transcription factors themselves ant thus had predicted down-
stream targets, such as Egr2 which targets the promoter of Kruppel like factor 4 (Klf4)
which targets DnaJ Heat Shock Protein Family (Hsp40) Member B1 (Dnjab1), Heat
shock protein family a 1b (Hspa1b) and Fosb which targets Irf5 which in turn acti-
vates the transcription of other genes.
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by exercise [47]. For instance, postischemic mice overexpressing Hspa1b showed en-
hanced contractile and metabolic myocardial recovery, underlining its protective func-
tion [48]. One suggestion is that Pgc1α can sustain the levels of this protein which
superior exercise-adaptation of the organism.

autophagy pathway induced by fos and fosb Fos and Fosb both showed a
sustained mRNA expression from 4h after exercise intervention onwards. Among the
KEGG pathways associated with their target genes were autophagy and growth path-
ways. Surprisingly, one of the top target genes of Fos was 1700101l11Rik, a lncRNA
which starts in close vicinity to the GABA Type A Receptor Associated Protein Like 1

(Gabarapl1) gene. Gabarapl1 is a known autophagy marker but has only been studied
sparsely, it has been associated with cell proliferation, invasion, and autophagic flux
and accumulation of damaged mitochondria, though [49].
Also Irf5, a predicted target gene of Fosb was predicted to activate BAG Cochaperone
3 (Bag3), another autophagy related gene, involved in the protein quality control [57].
As autophagy is a catabolic process that provides the degradation of altered/damaged
organelles through the fusion between autophagosomes and lysosomes, it is indispens-
able for skeletal muscle health [50]. Our data suggested here that Pgc1α played a role
in maintaining high levels of autophagy after an acute bout of exercise.
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5.3 discussion

This study was designed to answer two questions: 1) to disentangle the complex regu-
latory network of acute exercise response in WT mice, and 2) to gain insight into the
the role of transcriptional co-activator Pgc1α during exercise response. Therefore, wild
type and Pgc1αmuscle knockout mice underwent an exhaustion exercise protocol and
were killed at rest before the bout and then 0h, 4h, 6h and 8h afterwards. By RNA se-
quencing of their quadriceps muscle, we obtained an extensive dataset for the follow
– up computational analysis. We used ISMARA, a linear model to express the highly
dimensional dataset in terms of active transcription factors, which reduces the amount
of variables drastically. We then used SVD to find the most important pattern of tran-
scription factor activity. Taking into account the target predictions of ISMARA, we
were able to reconstruct the parts of the regulatory network induced by our protocol,
and found time-dependent induction of pathways. The genotype difference allowed to
disentangle Pgc1αs role in the direct response to exercise.
We found that most of the variance in the dataset was driven by the genetic difference
of the groups. Our model reported the activity of factors associated previously with
Pgc1α, e.g. Errα to be dramatically reduced in KO animals, whereas other factors like
Irf or Nfatc showed higher activity levels in the mice lacking Pgc1α.
Among the top active factors, two were changing their activity rather with time than
because of the genotype: Tbp and Srf. While Tbp is rather unknown in the context of
exercise response, Srf is a known regulator of early immediate gene response. Here,
our model predicted Srf to act as first inducer of the following gene response by acti-
vating several factors, (Fos, Egr1/2 and Fosb) which - in turn start the transcription of
their targets, including heat-shock proteins and immune-response related factors.
Further, we functionally associated the pattern of activity: The first pathways to hap-
pen were response to stimuli external stimuli and stress, followed by autophagy, im-
mune response growth and development related pathways.
The lack of Pgc1α induced a strong phenotype which clearly separated the KO mice
from the WT mice, mainly metabolic (e.g. OXPHOS, TCA cycle, Carbon metabolism)
and tissue developmental were associated with the difference in transcription factor
activity. In the direct response to exercise we didn’t find any differences in the WT
compared to the KO mice. The induction by Srf and the following activity of its top
targets, Egr1/2, Fos and Fosb remained unchanged.
Notably, Pgc1α has been found to be dispensable for the exercise response earlier. Le-
ick et al. [28] conducted a similar study using whole body Pgc1α knockout mice and
WT mice and killed them immediately, 2h and 6h after the exercise bout. They claim
that Pgc1α is not mandatory for exercise-induced adaptations in murine skeletal mus-
cle directly after the exercise or that other mechanisms can take over its function if
it is diminished. However, they still agree that it is needed at all to maintain normal
RNA/protein expression levels in skeletal muscle.
In our hands, we found the same dispensability for Pgc1α in terms of immediate gene
response: The KO animals responded in the same manner as the WT. However, Pgc1α

was still necessary in the acute exercise response: Important pathways maintaining the
sanity of the muscle were maintained at a higher level. This may help organisms to
recover faster and ameliorate the adaptation of the muscle to exercise. The elevated
response could be the result of positive feed-forward loops mediated by myocyte en-
hancer factor 2 (MEF2), as proposed in [55]. An important characteristic to check in
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future work is whether genes with sustained expression yield a MEF2-binding site
in their promoter. Another very interesting follow up study could focus on how this
sustained activity is achieved: It may be because the proteins of regulators themselves
are stabilized and thus initiate the transcription much longer, or it may be because the
regulatory region of their downstream targets are silenced later (e.g. by DNA methyla-
tion). A view on methylation and accessibility of regions (Methyl-seq and ATAC-seq)
would be the appropriate answer to these questions, plus analyzing the same regions
in the muscle of chronically trained mice. This would further give the possibility to
investigate the muscle memory, an effect which facilitates retraining in trained athletes,
but has not been understood profoundly to date.
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5.4 methods

view from the regulator side : ismara on the rna time-course IS-
MARA models genome-wide gene expression pattern in terms of predicted functional
Transcription Factor Binding Sites (TFBSs) in the respective gene’s promoters. Pro-
moter regions are either annotated or taken to be -500 +500 of the TSS defined by Cap
analysis gene expression (CAGE) analysis. In the model, the expression of promoter
p in sample s, Eps is assumed to follow a linear function of the binding sites Npm in
promoter p and motif m times an unknown activity Ams of a motif binding site m in
sample s. Summing across all motifs gives the core ISMARA equation:

Eps =
∑
m

Npm ·Ams + cp + cs

whereas cp and cs account for the promoter related basal expression and for the
sample-dependent normalization constant, respectively.
The matrix Npm contains information on the binding sites in each promoter and has
been inferred using the algorithm MotEvo, previously developed in our group [11].
MotEvo calculates the posterior probability of a site to occur in a promoter, depend-
ing on a background prior (which accounts for the site to be found randomly in any
sequence) and the conservation of the site in the promoter. We have collected an exten-
sive library of positional weight matrices (PWM) for around 600 motif binding sites
in mouse, for which we predict binding sites. ISMARA also calculates, for each mo-
tif, a zScore which denotes the importance of the motif in explaining the observed
gene expression data. In other words, a change in activity represents the change in the
expression Eps of promoter p in sample s, when motif m exactly in this promoter p
would be removed. This means that the higher the activity, the higher the expression
of genes having this motif in the promoter.

target predictions The target promoters pm of motif m are genes that are ex-
pressed in the dataset and have a binding site for motifm in their sequence. To estimate
the importance of each promoter, ISMARA calculates a target score which is the rela-
tive square deviation between the model without this binding site (mutated version)
and the one with all binding sites (full version). which is the difference how worse the
fit would be if the site for motif m in promoter p would be missing.

svd on the motif activities We applied SVD it to the activities of 503 motifs
across WT and KO samples. Our matrix Ams thus contains 10 x 503 (samples x motifs)
entries. SVD decomposes the matrix as A = UΛV , where V and U are the right and
left singular vectors, respectively. Λ contains the singular values. Any motif activity
pattern (~am)s can now be represented in a linear combination of the right singular
vectors ~vi.

interpretation of the singular vectors The coordinates of the motifs in
the are sample space thus depict the contribution of each sample to the motif activity
pattern. As the singular vectors point in the direction of highest variance in the dataset,
they capture consecutively the pattern contributing to the variation in the dataset,
e.g. the first component captures the highest amount of variance, followed by the
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second component. We plot the coordinates for each component across the samples
(=timepoints) to visualize the pattern.

inferring motifs following the principal components As now the mo-
tif activities are vectors in the principal component space, their projection on each of
the axes (=principal components) indicates how strongly the motif overlaps with the
bases, thus, how significantly it changes following the pattern. We calculate the pro-
jections according to qmk = ~am ·~vk, and as, according to the SVD, AV = UΛ it can
be written in matrix multiplication qmk = (UΛ)mk (see also suppl Figure S2) We are
interested in the pearson correlation of the motif vectors to the principal components
as they indicate how accurately the motif activity pattern follows the one depicted by
the principal components. As the new orthogonal basis is mean centered, such as the
motif activities, we can readily compute the correlation as: pmk = qmk/

√∑
k(qmk)

2.
The Pearson correlation coefficients pmk and the projection values qmk do not overlap
in information content. Motifs with large activity changes will have higher projections
than a motif whose activity changes are minor, whereas they could have the same Pear-
son correlation coefficient. Here, only use the pearson correlation to decide whether a
motif follows the pattern. We usually ask for a minimal value of 0.8. To evaluate its
significance, we make use of the in-built calculation of the zScore which also gives, for
each motif, information about how strongly it is changing its activity across samples.

gene ontology enrichment analysis We used the R package STRINGdb
1.24.0 [12] in R version 3.6.0 to compute functional categories for the target genes
of motifs or motif groups. We used it directly on Ensemble Gene Ids, as a reference
set we used all the genes expressed in the dataset in at least one timepoint and one
genotype. We extracted GO categories for the biological process and KEGG category
and filtered for terms with a FDR < 0.05.

differential gene expression analysis To detect differentially expressed
genes, we mapped the reads using kallisto [15] and summed the transcript raw
counts for each gene, followed by standard edge R 3.26.1 analysis. We used the seden-
tary group for both WT and KO as a control to detect differential genes at each time-
point after the exercise bout. We only use genes with an FDR < 0.05 for further analysis.
To draw the venn diagram, we used all gene names of differentially expressed genes
and calculated the overlap using InteractiVenn [13].

animals Male mice at the age of 20 weeks were used and housed in a 12h light/-
dark cycle. They had ad libitum access to food and water. The Pgc1α muscle specific
knockout (KO) mice were generated as depicted in [31], floxed littermates were used
as control [58]. The mice were acclimatized to the treadmill with the following proce-
dure:
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day1 day2 day3 day4 day5

time speed time speed time speed time speed time speed

min m/min min m/min min m/min min m/min min m/min

5 0 5 0 5 0 5 0 5 0

5 5 5 5 5 5 5 5 5 5

5 8 5 8 5 8 5 8 5 8

10 10 15 10 15 10 15 10 10 10

5 12 5 12 5 12 5 12

2 14 2 14 2 14

Table 1: Acclimatization protocol for the mice undergoing the exhaustion test. The treadmill
had 5◦ inclination

exercise protocol For the exhaustion exercise a treadmill was used (Columbus
Instruments). The exercise protocol was

time speed

5min 0m/min

5min 5m/min

5min 8m/min

every 15min +2m/min

final 26m/min

Table 2: Protocol for the final exhaustion treadmill training. The treadmill was inclined by 5◦.

The speed increased 2m/min every 15 min until a final velocity 26m/min was
reached before exhaustion. Immediately (0h), 4h, 6h and 8h the mice were killed with
CO2 and the quadriceps muscle was collected. The control mice were not exposed to
any exercise.

preparation of the library and sequencing Then, RNA was extracted
from quadriceps muscle and purfied with the Direct-zol RNA MiniPreo Kit (R2050).
1µg of purified RNA was used to construct the library with the Illumina TruSeq RNA
library Prep Kit. Single end RNA sequencing was performed in 50 cycles with a High-
Seq 2500 Illumina machine.
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5.5 supplementary material

Figure S1: Differential Gene expression Analysis reveals large gene expression changes in re-
sponse to exercise. The venn diagrams show the number of genes which are differ-
entially (DE) expressed when comparing WT-KO at all the timepoints. Numbers in
brackets show the overall DE expressed genes. We only report genes with a FDR
< 0.05. A) Pgc1α muscle knock out (KO) animals. We compare the timepoints after
exercise, 0h,4h,6h and 8h to the sedentary control (rest).
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Figure S2: Fraction of explained variance in the SVD across all timepoints and both genotypes.
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s

Figure S3: The output of ISMARA and reconstruction of regulatory networks (Srf-Fos-Ankrd1

as an example: Srf mRNA was constant across the time. Most likely its activity
is induced by any posttranslational modification like phosphorylation (proposed in
[15]) or gets activated by translocation into the nucleus. Its activity is highly induced
by exercise, meaning that starts with the initation of transcription of its target genes.
One of the target genes is Fos, whose mRNA responds in the same way as the
activity pattern of SRF. However, looking at its activity, meaning the expression of
its targets, it gets active one timepoint later. This is perfectly understandable, as the
translation process of Fos and the transcription process of the target genes takes
time. Here, the mRNA of Ankrd1 peaks at 4h, consistent with the activity of Fos.
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Figure S4: Gene Ontolgoy (red) and Kegg pathways (yellow) derived for associated genes of
motifs correlating with singular vectors 1-3 (PC1-3).
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6
P R E D I C T I O N O F T H E R E S P O N S E T O I M M U N O T H E R A P Y I N
C A N C E R

Immune checkpoint blockade (ICB) therapy has recently evolved to be one of
the most promising therapies in a number of cancers. Patients undergoing this
therapy experience a decrease or even the cure of their disease and a dramat-
ically prolonged survival. Unfortunately, only a subset of patients respond
to the therapy in a positive way, others might suffer from serious side effects
caused by autoimmune responses. Given the versatile structure of most can-
cers is is challenging to find reliable genetic markers to predict the response of
patient to the therapy. Thus researchers make use of the growing amount of
sequencing data on different cancer types. However, even with computational
tools and growing datasets with clinical annotation, it remains a huge chal-
lenge to disentangle the needed information in those complex datasets. In this
study we use microarray and RNA-seq data of melanoma and neuroblastoma
to predict the possibility of a patient to respond to ICB therapy in a positive
way by testing and applying machine learning strategies.

Anne Krämer1,2, Christoph Handschin1, Erik van Nimwegen1 and
Jung Kyoon Choi2
1 University of Basel, Basel, Switzerland
2 Korea Advanced Institute of Science and Technology, Daejeon, South
Korea

6.1 introduction

spontaneous regression The sudden healing of cancer has been described
since hundreds of years. Spontaneous (without any apparent cause) regression (de-
crease of the size of the tumor) was standardly defined as the partial or complete dis-
appearance of a malignant tumor in the absence of treatment or in the presence of therapy
considered inadequate to exert a significant influence on the disease in the 1960s [14, 15].
Spontaneous regression is caused by the human immune system which makes use
of immune checkpoint regulatory pathways. In the case of cancer the auto defense
fails as these pathways – when activated – dampen the immune response in order to
prevent the immune system to arbitrarily kill cells. Cancer cells trick this system by
activating important genes in the checkpoint regulatory pathway [16, 17]. Like this, the
malignant cells escape the defense mechanism of the body, and even trigger immune
system suppression. Otherwise, if the immune cells would recognize cancer cells as
hostile, the biologic defense system against the tumor would be started and counteract
or even stop the disease.
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immune checkpoint blockade Cancer cells use the ability of the innate im-
mune system to dampen the immune response by activating so-called immune check-
point blockades. Immune checkpoint therapy (ICB) is a very successful approach to
target malignant cancer cells by usage of the cytotoxic potential of the immune system.
As cancer cells use the ability of the innate immune system to dampen the immune
response by activating so-called immune checkpoint blockades, the therapy targets
the cytotoxic T lymphocyte antigen 4 (CTLA4) or the programmed cell death ligand
1 (PD-L1) to stop the blockade. ICB has had several successes across different cancer
types. Numerous other targets for negative regulation between tumor cells and T-cells,
or myeloid cells and T-cells are in clinical and preclinical study. However, only a small
fraction of patients is likely to respond to the therapy, imposing a big challenge on
clinicians to decide a priori which patient should be treated in which way. The poten-
tial factors discerning a responsive from a non-responsive patient range from patient-
related parameters such as weight, age and sex, tumor-intrinsic parameters such as the
host immune system and tumor-associated stroma and biological parameters, such as
the gut microbiota [17, 11].

machine learning strategies RNA profiling followed by computational anal-
ysis is becoming increasingly important. In the treatment of cancer, getting information
about the genetic signature of the cancer can help deciding which therapy to use. Nat-
urally, these large transcriptomic datasets are highly dimensional and often very hard
to interpret. Machine Learning (ML) algorithms use statistical and optimization tech-
niques to learn from past examples and detect otherwise hard to discern patterns in
unknown new data. This makes it especially applicable for cancer detection and clas-
sification. More recently, the field of personalized medicine uses ML to predict which
therapy fits best to the patients and tumours genetic signature [18]. In this study, we
apply a combination of self-written machine learning algorithms and published tools
to detect the possibility that a patient would respond to immune blockade therapy.

neuroblastoma and melanoma cells Here, we focused on melanoma, a can-
cer type that frequently shows spontaneous regression. We included neuroblastoma
(NB) cells, as they have the same common origin as melanoma cells and show fre-
quent spontaneous regression, especially in children [1, 19]. We made use of a public
transcriptomic dataset with clinical annotation. Moreover, spontaneous regression is
seen in NB patients, and very frequently in children less than 18 months of age [12].
Further, NB is the first type of cancer to be treated with ICB with approval of the US
Food and Drug Administration. Thus, we assumed that building up a predictor on
spontaneous regression in NB will be an exact predictor for the response to immune
therapy.

6.2 results

overview of the data We then followed loosely the approach of Auslander et
al [1] to construct a powerful predictor of immune response (IMPRS) and test it on
various other datsets. We used 4 published datasets on neuroblastoma and melanoma
cancers:
1) An extensive microarray set of primary neuroblastoma taken from patients of differ-
ent ages up to 24 years old [27] (NB).
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2) A transcriptome data from pretreatment tumor samples of melanoma tumor biop-
sies from 40 patients [21] (vanAllen).
3) A dataset of whole exome sequencing samples of 68 patients pre- and during ther-
apy [6] (Riaz) and
4) transcriptomes of responding (n = 15) and non-responding (n = 13) pretreatment
melanoma tumors (total 27 of 28 pretreatment; 1 of 28 early on-treatment) [5] (Hugo).

All the datasets are publicly available. As the vanAllen and Hugo datasets were too
sparse to perform an appropriate analysis, we merged those datasets with others: The
vanAllen and Hugo Datasets were combined (anti-PD-L1 and anti-CTLA4 datasets)
respectively, this dataset is referred to as vanAllen. The Hugo/Riaz datasets were
combined (both anti PD-L1), this dataset is referred to as Hugo. The Riaz and the
NB dataset included enough patients which makes the analysis possible on the single
datasets (NB and Riaz).

neuroblastoma dataset It was necessary to reduce the amount of samples in
the dataset, as in total 489 samples were provided and we hypothesized that not all
of them are equally important to find a signature for spontaneous regression and im-
mune response. Therefore, we tried to pre-select samples which behave similarly.
The data was annotated with information on the age, sex and whether spontaneous
regression took place. To discern important parameters shaping the structure of the
data, we performed SVD and included the given annotation to see whether we could
explain the formation of clusters.
Our SVD clearly showed a separation of patients along the first singular vector. To ex-
plain the clusters, we first looked at four different characteristics, age, sex, spontaneous
regression and progression of the cancer. None of those factors clearly distinguished
the prominent clusters along the first singular vector (Figure 1). Hence, we needed to
perform another type of feature selection.
Different approaches for the selection of meaningful samples have been applied by
Auslander et al. [1]. We followed their approach partwise.
First a SVD was performed on all samples. 2-3 clusters appeared in the 1st and 2nd
component. Auslander et al. chose samples with PC2+PC3>0 to get a unbiased subset
of samples. However, in our approach the association of SVD clusters with clinical
features was not as clear as stated in the corresponding paper. Therefore we focused
on the feature reduction using literature and clinical data.
Spontaneous regression has been almost exclusively observed in younger patients < 18
months. Older patients often show metastases or unresectable tumors which would
confine the analysis ([1], suppl. Material). We thus chose only those samples. Further
we classified the remaining samples into two groups: Spontaneous Regression: ’no high
risk’ and ’no cancer progression’; and No Spontaneous Regression: ’high risk’ and ’can-
cer progression’. This results in our case in 236 samples (17 ’high risk’, 219 ’not high
risk’).

feature selection As in [1], we focused on in total 26 immune checkpoint
genes (BTLA, PDCD1, CD200, CD200R1, CD27, CD276, CD28, CD40, CD80, CD86,
CEACAM1, CTLA4, HAVCR2, IDO1, IL2RB, LAG, PD1LG2, PVR, PVRL2, TIGIT, TN-
FRSF14, TNFRSF18, TNFRSF4, TNFRSF9, OX40L, CD137) (Table S1). which reduced
the massive feature (=gene) space in the datasets and restricts the predictions to be
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Figure 1: SVD of the neuroblastoma (NB) data: No obvious cluster was found to be defined
by important clinical features.

done entirely in regard to the immune response.
As gene expression levels can vary across patients, we generalized the data in the
following way: For each gene-pair out of the immune checkpoint genes above, we con-
structed a pairwise comparison matrix which took into account the expression levels
of gene i and j across all genes:

Fi,j =

expi(x) < expj(x)

0, otherwise
(see Figure 3A,B)

This principle of a binary feature table is used in all following approaches for all
datasets.

performance of different approaches First we tested different already pub-
lished tools to make our predictions on the datasets.

neuralnet Neural networks have been applied successfully to cancer classifica-
tion problems. The first attempts started about 20 years ago [7, 8].
In brief, neural networks first transform the input data into a feature space, consist-
ing of h linear combinations and an activation function. Transformation can be done
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in each layer differently. The output layer then transforms the data e.g. by regression
back into the desired format, e.g. binary classification (see Figure S1B).
The essential steps of a neural network are:

• Forward Propagation The initial input (e.g. gene expression, microarray) propa-
gates through the layers, taking into account the number of hidden nodes and
the activation function which determines how much weight each node gets.

• Backward Propagation In the backward propagation, the likelihood of the outcome
is maximized with respect to the weights each node gets.

• Training is the process of fore- and backpropagating through the layer while
optimizing the layers each time until the defined stopping criterion is reached

• Prediction To classify yet unknown samples, the samples are fed forward through
the network. If the true classes of the samples are known, the networks perfor-
mance can be assessed by quantifying the dependence of true positive to false
positive rate (ROC curve) or the area under the ROC curve (AUC).

We aimed to start from a very basic implementation of a neural network consisting
of the steps mentioned above and used cross validation to quantify its performance.
As this neural network yielded moderate performance when applied to our datasets
(Figure S1A), only some iterations reached an AUC above 0.5. Hence, we tried a more
sophisticated model provided by the R package neuralnet.
When applying neuralnet with the same parameters as used in the self-implemented
model, it showed immediately higher AUC values while cross-validation (Figure 2A
and Table 1) However, as seen previously in applying the ML approach to the datasets
of Riaz, van Allen and Hugo et al, we saw weaker performance of neuralnet in those
datasets.
We used the neural network with two hidden layers and changed the number of nodes
in the layers. The number of used neurons in each layer is given on the right side of
figure 2A.

svm SVMs are used heavily in cancer classification tasks, the first successful appli-
cation dates back to the early 2000s [9]. As a next test, we used an SVM proposed by
Vapnik [13], which is implemented as R package kernlab and has been studied exten-
sively for classification, regression and density estimation.
Briefly, SVMs find hyperplanes maximizing the distance to points of different classes
which are closest to each other, which results in a quadratic programming problem
(a complete description of the algorithm is beyond the scope of this report, for more
information, refer to [2]).
We applied SVM to the 3 datasets to estimate its performance. To find out the best sets
of parameters for the SVM, we performed grid search on the following parameters:

• kernel: A kernel function maps features in the initial space to a space which just
depends on the dot product of the vectors of two features. kernlab allows the
use of six different kernels: rbfdot, polydot, laplacedot, besseldot, anovadot,
vanilladot.

• cost: The cost parameter is used to control for overfitting. Increasing its value will
result in finding a separating hyperplane which will classify as many datapoints
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Figure 2: Performance of standard approaches. A) Neuralnet Performance on all datasets,
numbers on the right denote the number of neurons used in each of the two layers.
Numbers above are the mean AUC achieved across cross validation sets. B) Perfor-
mance of the SVM. We first chose the right kernel (left), then we adjusted the cost
parameter and then the sigma parameter.

as possible in the right way. Contrariwise, choosing a smaller value results in
higher classification errors, but will be safer with regards to overfitting [10].
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• sigma: As the best performing kernel for all the datasets was the rbfdot gaus-
sian kernel, we can additionally adjust for σ which specifies the variance of our
gaussian kernel. The highest AUC for each dataset is listed in table (Table 1 and
Figure 2B).
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Figure 3: Sketch of the Algorithm Design: A
Construction of the Binary Table: For
each patient pwe calculate the the gene-
pairs gg and the table is in the shape
of ggxgg. Then we reshape the table
to have a pxgg shape (B), n is set to
20 in our case. Then we calculate an
AUC using a random sampling of gene-
pairs as features. The feature maximiz-
ing our AUC will be taken into account
for the final selected gene set. Gene-
pairs in iterations with an AUC > 0.6
are counted as one, otherwise 0. We
then use a threshold of p < 0.05 above
which we take the genes as selected.

the imprs approach As the above
presented methods yielded moderate
performance, we referred to a recently
published [1] sophisticated approach
developed specifically to predict the
response of immune checkpoint ther-
apy in metastatic melanoma. Briefly, we
first find gene-pairs (=features) which
are highly predictive for the outcome
of the therapy.
Based on these features, the predic-
tion of spontaneous regression of a tu-
mor sample from its expression data
is simply made by counting the num-
ber of predictive feature pairs that are
fulfilled (true) in that sample given
its transcriptomics data. This number,
ranging from 0 to 15, denotes its IM-
PRS score, with higher scores predict-
ing spontaneous regression. The result-
ing predictor obtains an value of 0.81

(in terms of the area under the re-
ceiver operator curve (AUC) in the NB
dataset.

computational steps We started
from the same generalized table con-
taining as in the previous approaches.
We then applied a hill climbing strat-
egy in 500 iterations which consists of
the following steps (Figure 3).

• initialize the current set of fea-
tures to an empty list.

• select randomly 26 samples (13

in each class) for the trainingSet
and 6 (3 in each class) for the
testSet.

• select randomly n features, initial-
ize the variable trainingAUC to
0

while the current trainingAUC< 1:

• Add 1 feature from the randomly selected features at a time to the trainingSet
set and calculate the the ROC curve and the corresponding AUC = trainingAUC

• after having added all the features select the one which had the highest AUC
and add it to the current group of features
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• update the current AUC with the new AUC

when AUC == 1was reached, we calculated the AUC for the current group of features
on the testSet and stored this value in a matrix in the row for this iteration and all the
involved gene-pairs in the group of features (Figure 3C).

To extract patients with high vs low risk, we simply summed up the number of fea-
tures that are true for every patient and extract the patients IMPRS score (Figure 3D)
The most important features were extracted by calculating a score for each of the fea-
tures: score(f) = score+(f) − score−(f), where score+ and score− is the number of
successful iterations with AUC > 0.6 and unsuccessful iterations, AUC < 0.4, respec-
tively, in which feature f was selected to be in the test group.
We extract the most important features using a p-value cutoff of 0.05. The features
found by this procedure are listed in table S2. Note that some gene-pairs occured
twice, meaning their relation was actually not important for the prediction - in con-
trast to what our model said for different training sets. To provide a more sophisticated
solution to this, the algorithm should be adapted to treat redundant features as one
feature. To extract patients with high vs low risk, we simply summed up the number of
features that are true for every patient and extracted the patients IMPRS score (Figure
3D). Here we summed, every gene-pair which is selected and where the comparison
is 1 (that means that expression(X) > expression(Y) in gene-pair (X, Y)). This gave a
patient score, the higher the score, the higher the patient was predicted to respond to
the therapy.

auc and immune response To validate the predictions made by our IMPRS im-
plementation we included the clinical annotations of the samples. For the NB dataset
we saw that patients with higher IMPRS score tend to show higher immune response
than those with smaller IMPRS score. We achieve an AUC of 0.81 on the NB dataset
with the predicted IMPRS score. Patients showing low immune response tend to have
lower IMPRS scores. (see Figure 4B). The other datasets weren’t performing best when
using the predictor of the NB dataset. When computing the predictor for the Riaz (Fig-
ure 4C) and a combined dataset of vanAllen/Hugo (Figure 4E), the AUC improved
in the cross validation test. We also computed the AUC of the prediction of our tar-
get genes. When running the IMPRS approach directly on the data itself, considerable
high AUCs were achieved. (for the NB and Riaz dataset: Figure 4B and for the van
Allen dataset: Figure 4E). Note that the van Allen and Hugo dataset were combined.
For the Riaz dataset, patients were tested twice, once before the anti-PD1 therapy
started and once during therapy. We computed the IMPRS score for both groups of
patients. Those on therapy showed higher IMPRS scores, which means that the gene
expression changes significantly and immune response checkpoint genes change their
expression patterns due to the therapy (Inlay Figure 4C). In conclusion, the IMPRS
approach yielded higher AUCs as the other standard approaches.

survival curves High IMPRS scores predict a good response to the immunother-
apy, so we expected those samples to survive for a longer time. The clinical data
provided access to the overall survival times for two of the datasets. In the Riaz
dataset (Figure 4D), we observe a distinct survival for groups defined by “high” if IM-
PRS>median(IMPRS), and “low” if IMPRS<=median(IMPRS). The survival of Patients
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Dataset Neural net neuralnet kernlab IMPRS

NB 0.5 0.76 0.77 0.81

Riaz 0.51 0.55 0.63 0.7

vanAllen 0.52 0.59 0.62 0.68

Hugo 0.52 0.64 0.67 0.71

Table 1: Overview over the AUC values obtained by 10-fold cross validation (1-3) and IMPRS
prediction across the datasets

showing higher IMPRS scores differs significantly from those having lower scores.
The survival rate in the van Allen dataset (Figure 4F) was slightly less significant,
still there was a shift towards longer survival in patients with a higher IMPRS score.
That underlines again the importance of immune therapy in cancer, which is about
extending the lifespan.

6.3 discussion

We conducted a study on 4 different datasets to find out how to predict the response to
immune therapy efficiently and robustly in two different cancer types. Algorithms off
the shelf like the R packages neuralnet and kernlab provided considerable accurate
predictions. We followed, the customized – self implemented approach proposed by
Auslander et al [1] loosely which yielded higher AUC values for most of the datasets
(Table 1).
We obtained AUC values above 0.7 with cross validation for the datasets that we based
our predictor on. This predictor however didn’t perform that well when applied to the
other datasets as opposed to the study of Auslander et al [1], it was enough to base
the predictor on the NB dataset, and still the AUC for other datasets was around 0.8.
Certainly, they used a more sophisticated feature selection and used mRNA data to
construct the predictor. In our case, it would be interesting computing the predictor on
a combination of all 4 datasets and check the AUC when using this predictor on the
single datasets. All in all, the approach is very powerful, considering that it achieved
the highest AUC values across most datasets. With calculation of the IMPRS score,
we were able to capture patients that would respond to a immune blockade therapy,
and generally patients with higher IMPRS scores also survived longer. In conclusion,
one guideline to predict the possibility of response to ICB is to look at the immune
checkpoint genes we found. Further studies on sufficiently large datasets could be
based on this approach to further ameliorate the predictive performance with respect
to ICB.

6.4 methods

datasets We analyse four different publicly available datasets:

• Neuroblastoma dataset (NB) [3]: An extensive set of primary neuroblastoma
taken from patients of ages up to 24 years old (GSE49710). Figure 1 shows the
complexity of the dataset: None of the clinical parameters are clearly separating
the first components from each other.
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• van Allen et al [21]: transcriptome data from pretreatment tumor samples of
melanoma tumor biopsies from 40 patients.

• Hugo et al (H) [5]: transcriptomes of responding (n = 15) and non-responding (n
= 13) pretreatment melanoma tumors (total 27 of 28 pretreatment; 1 of 28 early
on-treatment)

• Riaz et al [6]: whole exome sequencing of 68 patients pre- and during therapy

the log transformed data was quantile normalized before any analysis with the R
package preprocessCore and the function quantile.normalize. Then we reduced the
number of genes to in total 26 immune checkpoint genes (BTLA, PDCD1, CD200,
CD200R1, CD27, CD276, CD28, CD40, CD80, CD86, CEACAM1, CTLA4, HAVCR2,
IDO1, IL2RB, LAG, PD1LG2, PVR, PVRL2, TIGIT, TNFRSF14, TNFRSF18, TNFRSF4,
TNFRSF9, OX40L, CD137L). which reduces the massive feature space in the datasets
and restricts the predictions to be done entirely in regard to the immune response. The
SVD is performed using the svd function of the R base package.

neural net We implemented a network following the instructions given by [20]
and implemented it in R version 3.5.1. Then we used the R package neuralnet and
textttNeuralNetTools for visualization [22, 23, 24]. We used neuralnet for a sequence
of different layers: 1,5,10,20,30 the function neuralnet::neuralnet(mF,TRAINING, hidden=c(layer,(layer+5)/5),

threshold=0.01)

imprs We used the the R packages caret, stats and pROC. We used the functions
caret::train for training our training data set, stats::predict for the prediction on
the test set, caret::varImp to calculate the most important feature and pROC::auc to
draw the ROC curve.

survival curves We use the R package survival [25] to draw the survival curves
with survival::Surv and survival::survfit and survminer::ggsurvplot [26] for
drawing the curves.
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Figure 4: Performance of the IMPRS approach across different datasets A) Using the pre-
dictor trained on the neuroblastoma dataset (NB) B) IMPRS scores of patients with
high response and low response to therapy in the NB dataset. C) Performance of the
IMPRS approach using the predictor trained on the Riaz dataset. Inlay shows the IM-
PRS score of patients already on therapy and before the onset of therapy. D) Survival
curve of patients in the Riaz dataset, ’high IMPRS’ means patients with IMPRS score
above the mean and ’low IMPRS’ below the mean. Shaded area denotes the 95% con-
fidence interval. E) Performance of the IMPRS approach using the predictor trained
on the vanAllen/Hugo dataset. F) Survival curve for the vanAllen/Hugo dataset for
high and low IMPRS scores, computed as in D).
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6.5 supplementary material

Figure S1: A) Neuralnet performance for all 4 datasets separately. B) Neuralnet Performance
on all datasets, numbers on the right denote the number of neurons used in each of
the two layers. Numbers above are the max AUC achieved across different training
sets.
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Gene Publication

BTLA https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

PDCD1 https://www.ncbi.nlm.nih.gov/pubmed/29076134

CD200 http://www.cell.com/immunity/pdf/S1074-7613(16)30151-0.pdf

CD200R1 http://www.cell.com/immunity/pdf/S1074-7613(16)30151-0.pdf

CD27 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

CD276 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

CD28 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

CD40 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

CD80 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

CD86 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

CEACAM1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481276/

CTLA4 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

HAVR2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

IDO1 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

IL2RB http://www.cell.com/immunity/pdf/S1074-7613(16)30146-7.pdf

LAG3 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

PD1LG2 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

PVR http://www.cell.com/immunity/pdf/S1074-7613(16)30146-7.pd

PVRL2 http://www.cell.com/immunity/pdf/S1074-7613(16)30146-7.pd

TIGIT https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

TNFRSF14 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

TNFRSF18 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

TNFRSF4 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

TNFRSF9 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

OX40L https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786574/

CD137L https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6607944/

Table S1: Immune checkpoint genes taken from literature for feature selection
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NB vanAllen Hugo Hugo Riaz

CD200R1<CD27 BTLA<CD200R1 BTLA<CD80

CD200R1<PDCD1 BTLA<CTLA4 CD200<CD40

CD27<CD200R1 BTLA<HAVCR2 CD200<CD86

CD27<IL2RB CD200<CD200R1 CD200<HAVCR2

CD40<CD200R1 CD200<CD40 CD200R1<BTLA

CTLA4<BTLA CD200<HAVCR2 CD200R1<TNFRSF18

CTLA4<TNFRSF9 CD200<IL2RB CD276<CD80

IL2RB<CD27 CD276<CD200R1 CD276<PDCD1

IL2RB<PDCD1 CD276<CEACAM1 CD28<IL2RB

IL2RB<CD27 CD40<TNFRSF18 CD40<PDCD1

PDCD1<IL2RB CD80<BTLA CD40<TNFRSF18

PDCD1<TNFRSF4 CD80<HAVCR2 CD80<CD200

TNFRSF18<CD200R1 CD80<PDCD1 CD80<IL2RB

TNFRSF4<PDCD1 CD80<TNFRSF14 CEACAM1<CD276

CEACAM1<TNFRSF18 CEACAM1<IL2RB

CTLA4<CD86 CEACAM1<TNFRSF18

CTLA4<PVR CTLA4<CD276

CTLA4<TNFRSF14 HAVCR2<CEACAM1

HAVCR2<BTLA IDO1<BTLA

HAVCR2<TNFRSF18 IDO1<CD28

PVR<CD200 IDO1<CD86

IL2RB<CEACAM1 IL2RB<CD80

IL2RB<TNFRSF18 PVR<CTLA4

PDCD1<HAVCR2

PVR<PDCD1

TIGIT<CD28

TNFRSF14<CD200

TNFRSF18<CD200

TNFRSF18<HAVCR2

TNFRSF18<TNFRSF14

TNFRSF4<CD40

Table S2: Selected Genes for IMPRS computed on a combination of Hugo/vanAllen and
Hugo/Riaz Dataset p < 0.1. Note that sometimes the features are redundant. We
propose an additional superior approach which just takes into account single gene
pairs.

immune checkpoint genes from literature



140



B I B L I O G R A P H Y

[1] Auslander, N., Zhang, G., Lee, J. S., Frederick, D. T., Miao, B., Moll, T., ... Boland,
G. (2018). Robust prediction of response to immune checkpoint blockade therapy
in metastatic melanoma. Nature medicine, 1.

[2] Sweilam, N. H., Tharwat, A. A., & Moniem, N. A. (2010). Support vector machine
for diagnosis cancer disease: a comparative study. Egyptian Informatics Journal,
11(2), 81-92.

[3] Su, Z., Fang, H., Hong, H., Shi, L., Zhang, W., Zhang, W., ... & Yang, X. (2014). An
investigation of biomarkers derived from legacy microarray data for their utility in
the RNA-seq era. Genome biology, 15(12), 1.

[4] Van Allen, E. M., Miao, D., Schilling, B., Shukla, S. A., Blank, C., Zimmer, L., ... &
Utikal, J. (2015). Genomic correlates of response to CTLA4 blockade in metastatic
melanoma. Science, aad0095.

[5] Hugo, W., Zaretsky, J. M., Sun, L., Song, C., Moreno, B. H., Hu-Lieskovan, S., ...
& Seja, E. (2016). Genomic and transcriptomic features of response to anti-PD-1
therapy in metastatic melanoma. Cell, 165(1), 35-44.

[6] Riaz, N., Havel, J. J., Makarov, V., Desrichard, A., Urba, W. J., Sims, J. S., ... &
Bhatia, S. (2017). Tumor and microenvironment evolution during immunotherapy
with nivolumab. Cell, 171(4), 934-949.

[7] Cicchetti, D. V. (1992). Neural networks and diagnosis in the clinical laboratory:
state of the art. Clinical chemistry, 38(1), 9-10.

[8] Simes, R. J. (1985). Treatment selection for cancer patients: application of statistical
decision theory to the treatment of advanced ovarian cancer. Journal of chronic
diseases, 38(2), 171-186.

[9] Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., ...
& Bloomfield, C. D. (1999). Molecular classification of cancer: class discovery and
class prediction by gene expression monitoring. science, 286(5439), 531-537.

[10] Phan, J., Moffitt, R., Dale, J., Petros, J., Young, A., & Wang, M. (2006, January). Im-
provement of SVM algorithm for microarray analysis using intelligent parameter
selection. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Confer-
ence (pp. 4838-4841). IEEE.

[11] Kalbasi, Anusha, and Antoni Ribas. "Tumour-intrinsic resistance to immune
checkpoint blockade." Nature Reviews Immunology (2019): 1-15.

[12] Diede, Scott J. "Spontaneous regression of metastatic cancer: learning from neu-
roblastoma." Nature Reviews Cancer 14.2 (2014): 71-72.

[13] Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab – An S4 Pack-
age for Kernel Methods in R.” Journal of Statistical Software, 11(9), 1–20.
http://www.jstatsoft.org/v11/i09/.

141



142 Bibliography

[14] Jessy, Thomas. "Immunity over inability: The spontaneous regression of cancer."
Journal of natural science, biology, and medicine 2.1 (2011): 43.

[15] Ogawa, Ryoko, et al. "Lung cancer with spontaneous regression of primary and
metastatic sites: A case report." Oncology letters 10.1 (2015): 550-552.

[16] Salman, Tarik, Journal of Oncological Science Volume 2, Issue 1, April 2016, Pages
1-4

[17] Pardoll, Drew M. "The blockade of immune checkpoints in cancer immunother-
apy." Nature Reviews Cancer 12.4 (2012): 252-264.

[18] Kourou, Konstantina, et al. "Machine learning applications in cancer prognosis
and prediction." Computational and structural biotechnology journal 13 (2015): 8-
17.

[19] Morandi, Fabio, et al. "Novel immunotherapeutic approaches for neuroblastoma
and malignant melanoma." Journal of immunology research 2018 (2018).

[20] David Selby (9 January 2018),Building a neural network from scratch in R, re-
trieved from https://selbydavid.com/2018/01/09/neural-network/

[21] Van Allen, Eliezer M., et al. "Genomic correlates of response to CTLA-4 blockade
in metastatic melanoma." Science 350.6257 (2015): 207-211.

[22] R Core Team (2019). R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/.

[23] Beck MW (2018). “NeuralNetTools: Visualization and Analysis Tools for Neural
Networks.” Journal of Statistical Software, 85(11), 1–20. doi: 10.18637/jss.v085.i11.

[24] Beck MW (2018). “NeuralNetTools: Visualization and Analysis Tools for Neural
Networks.” Journal of Statistical Software, 85(11), 1–20. doi: 10.18637/jss.v085.i11.

[25] Terry M. Therneau, Patricia M. Grambsch (2000). Modeling Survival Data: Ex-
tending the Cox Model. Springer, New York. ISBN 0-387-98784-3.

[26] Alboukadel Kassambara, Marcin Kosinski, Przemyslaw Biecek, Scheipl Fabian,
survminer, R package, downloaded 2018

[27] Zhang, Wenqian, et al. "Comparison of RNA-seq and microarray-based models
for clinical endpoint prediction." Genome biology 16.1 (2015): 133.

https://selbydavid.com/2018/01/09/neural-network/


7
C O N C L U S I O N , D I S C U S S I O N A N D O U T L O O K

7.1 conclusion

High throughput sequencing techniques have opened up a whole new field of research.
Now it is possible to get a complete snapshot of the regulatory state of cells or tissues
by sequencing the DNA or RNA, which can even be supplemented by screening for ac-
cessible regions, transcription factor binding or modification of histones. Thus, during
the last decade, the amount of researchers using high throughput sequencing tech-
niques has increased drastically. As a result, a multitude of computational tools have
been developed, dealing with all the different steps of the analysis. Yet those tools
rely on a number of parameters that are individual for each dataset and that users
have to supply. This results in an increased problem of reproducibility, when the exact
documentation of parameters, version control and architecture of the operating sys-
tem is missing. Moreover, after the successful analysis, most researchers investigating
genome wide chromatin changes are left with highly dimensional data containing in-
formation about single regions where accessibility or binding changes. It is very hard
to solely determine potential interesting candidates for downstream analysis from this
kind of data.

In this thesis, we applied three different strategies to analyse high-throughput sequenc-
ing data. The focus is our CREMA tool, which provides the first complete pipeline
to analyze and compare genome wide chromatin state across samples by concretely
modeling the data in terms of key regulators being active in the system (chapter 4). We
combined sophisticated statistical models for the determination of regulatory relevant
regions, CRUNCH [2], with a powerful linear modeling approach, ISMARA [1]. Our
method allows to express the genome wide changes in DNA accessibility or transcrip-
tion factor binding across any number of datasets in terms of regulatory key players.
The highly dimensional data becomes thus much easier to interpret by narrowing
down the list of potential key players driving the observed system.
To our understanding, no similar approach has yet been performed. We then applied
different computational strategies to two other important questions: We use ISMARA
[1] and SVD to predict the temporal response of exercise invention on mice (chapter 5)
and contemporary machine learning techniques to dive into the classification of cancer
patients (chapter 6). Our different approaches show the variety of applications of com-
putational tools in biology. I strongly believe that this is only the advent of a whole
new field of science and that it will open our eyes to numerous new observations and
enhance our understanding of biological processes and diseases tremendously.

7.2 discussion

The novelty of our CREMA tool is clearly the genome-wide scanning for regulatory
relevant regions across a non-restricted number of samples and further setting them
into context by finding binding sites for transcription factors and predicting targeted
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genes and associated pathways. The genome wide approach allows the inclusion of
unknown, yet important enhancer elements to rigorously explain the underlying sys-
tem. CREMA successfully infers known regulators in already investigated systems
and provides an extensive collection of potential new regulatory key players and cir-
cuits in proximal and distal regions. We believe that the application of CREMA to
the increasing amount of genomic sequencing data can contribute substantially to our
understanding of gene regulatory networks, epigenetic regulation and the roles of en-
hancer elements.

The quantitative comparison of sequencing data across samples is always a very chal-
lenging task, given that some systems are much harder to treat as others and thus
are more likely to show biases due to experimental errors or sampling issues. Given
the complexity of the underlying systems, it is often very hard to disentangle which
fluctuations relate to real biological differences and which ones are due to experimen-
tal errors or biases in sequencing. Our normalization strategy includes three steps
throughout the pipeline and we hope to get rid of most biases introduced at the ex-
perimental or sequencing level. Especially in ChIP seq, differing efficiency of the anti-
body and real biological binding strength changes cannot be uncoupled by modeling
so far. An experimental validation to keep the level of efficiency approximately at the
same level would help to get rid of this uncertainty and help interpreting the data.
As the amount of paired end-sequencing is increasing drastically, a future refinement
of the algorithm would be to use the actual fragment size uniquely for shifting the
corresponding reads. As the observed regions are usually larger than the expected in
fragment length across the reads for each sample, we don’t see this as ultimately nec-
essary. Moreover, we find a high reproducibility of the model when changing e.g. the
sliding window size or even taking fixed region lengths for all our CREs.

For our predictions, we make use of a set of selected weight matrices for mouse and
human. It is estimated that roughly 1000-1500 transcription factors exist in mammals
and up to 3000 in human [3, 4]. Hence, we are fully aware, that our collection of ≈ 600
transcription factor binding sites cannot represent the whole regulatory apparatus.
Note that it is not our intention to model and predict regulatory circuits in detail, our
tool can be applied to get an overview over the general mechanisms explaining parts
of the data to facilitate picking potential interesting candidates for an experimental
follow up analysis. The linear model is easily solvable but of course limited in terms
of complexity of the predictions. However, a true advantage of this ’simple’ model is
its robustness. As we sum over a large amount of regions, small fluctuations in po-
tentially false positively predicted CRE regions have only a minor effect on the final
predictions. This is true in the region size as well: enlarging the regions or even set-
ting them all to the same length yields only in slight aberrations from the initial results.

To assess the performance of our tool, we applied it to several published datasets:
Our results show that our algorithm successfully infers activities of transcription fac-
tors, that have been known to steer regulatory processes in the examined conditions.
By analysis of published ATAC seq of liver samples taken from mice left in darkness
for several days, we are able, firstly, to reconstruct important key players in the cir-
cadian oscillation of the liver transcriptome and, secondly, to predict new potential
circadian regulators. Fitting a harmonic curve underlines the current hypothesis, that
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the liver clock is uncoupled from the optical input of light and darkness, because most
regulators continue cycling. We are aware, that inclusion of more data points (e.g. two
24h periods) would drastically increase our confidence in predicted factors.
In embryonic development, a process highly regulated by chromatin state, we find
some transcription factors almost exclusively in few tissues, whereas others seem to
take a general function in development and increase their activity with time in almost
all tissues. However, we find that most motifs either increase or decrease their activity
(almost monotonically), these pattern explain almost half of the variance across the
dataset. With integration of mRNA seq data we were able to compare the resulting ac-
tivity pattern between ATAC seq and RNA seq, and could underline the importance of
looking at gene regulation genome wide: We explicitly find motifs occurring predom-
inantly at distal regions, whereas others seem to drive transcription from promoters
and do not rely on opening or closing of the DNA.
Also our last dataset encourages looking at distal regulatory regions: ChIPped regions
for the histone mark H3K4me1 were much more variable across cell types, suggesting
a large portion of the cell-specific regulation happens at enhancers. Consistent with
previous findings, H3K4me1 marked regions lay further away than promoter regions
marked by H3K4me3.
These results confirm the various possibilities of applying CREMA to experimental
data to find and quantify all the regulatory elements that drive the system.
One limit here, of course, is that some of the motif sequences are quite similar or
very abundant, what could lead to a false positive prediction. One way to counter-
act this from the beginning would be to include only factors that have been found to
by expressed by RNAseq for exactly the same experiment (which needs to be done
very thoughtful, as a change in activity doesn’t necessarily imply a change in mRNA
expression). An experimental validation of the predictions would be essential to confi-
dently claim the involvement of this factor in the regulation of the underlying system.
Next, we applied computational strategies to answer two very different questions.
First, we were interested in the temporal regulation of exercise response after an acute
training. We let mice perform an intensive exercise bout and sequenced the quadri-
ceps mRNA at different timepoints after. Using ISMARA [1] and SVD, we find three
dominant pattern across our timepoints. Further, our cohort consisted of wild type
animals and PGC1a knockout animals. PGC1a is known to be a key node in exercise
adaptation, so we expected differences between the WT and KO mice following acute
exercise. However, we didn’t find PGC1a to be mandatory for the very first step of
gene regulation but, we saw that PGC1a is able to keep up important factors involved
in immune response and autophagy at a higher level than the KO at later timepoints.
This may be one explanation of the inferior ability of mice lacking PGC1a to adapt to
exercise.
A very interesting follow up study could focus on how this sustained activity is
achieved: It may be because the proteins of regulators themselves are stabilized and
thus initiate the transcription much longer, or it may be because the regulatory region
of their downstream targets are silenced later (e.g. by DNA methylation). We could
even suggest to tackle the question of how muscle memory works, an effect that facili-
tates retraining in trained athletes which has not been understood until now.

In our last study, we applied machine learning techniques to four different patient
datasets on melanoma and neuroblastoma. The data was clinically annotated and the
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goal was to predict whether a patient will respond to immune checkpoint blockade
therapy. We built an algorithm to calculate a score for each patient and our predictions
were mostly right, but the AUC depended strongly on the dataset that was used for
training. Also, our features (marker gene pairs) were sometimes redundant. A fur-
ther approach could improve this by just taking one genepair at once in consideration.
Lastly, with the amount of data rising, it would be very interesting to train the algo-
rithm on a larger set of data and make predictions accordingly.

7.3 outlook

We believe that the fully automated implementation of CREMA will encourage exper-
imental groups to use our predictions to analyse their datasets and that this will help
in uncovering new parts of the implication of chromatin state in the regulation of gene
expression. Integration of ATAC seq and RNA seq would yield high potential in clas-
sifying functions of transcription factors. Our tool could be interesting for the pharma
industry as well: Knowing key regulators in certain diseases would be the first step in
reconstructing causal dependencies which shape the pathologic phenotype – and with
this knowledge – construct follow up studies and finally a therapy.

With new techniques arising constantly, we are confident that the understanding of
gene regulation will increase further. We have shown that the chromatin state is highly
variable across tissues, timepoints and cell types. However, our analysis has been based
on the assumption that these tissues are homogeneous. Yet, multicellular eukaryotic
tissues are often a convolute of many different cell types with different physiologi-
cal functions, morphological features and molecular markers [5]. Especially in cancer
and stem cell development, it is important to capture subgroups of cells. For exam-
ple, a cancerous tumor is made up of diverse cells, including malignant, immune, and
stromal subsets, whose precise characterization is masked by bulk genomic methods
[6]. By scRNA seq, those cells can be annotated based on the level of gene expres-
sion of certain marker genes along with point mutations, and fusion proteins. Current
research already adjusts the ISMARA model to function with scRNA seq. Very likely,
the difference measured in gene expression is governed by the chromatin state of these
cells. Therefore, methods to measure chromatin accessibility in single cells have been
developed [7]. We strongly think that the adaptation of or method CREMA would be
very insightful for the analysis and regulatory circuits of single cells, and even help
classifying the underlying cell types according to their chromatin state.
Our approach could further be refined by having exact information on enhancer re-
gions and associated genes. Even though sole determination of enhancers is nowadays
possible by measuring histone modifications, enhancer RNA (eRNA) or intraspecies
sequence conservation, no reliable general database exists. Plus, although several new
techniques and experiments are constantly emerging [9, 10, 11], the functional associa-
tion of enhancers to genes imposes a big challenge. Using our model already supplies
the researcher with possible functions of an enhancer by reporting the binding sites
for specific transcription factors whose function is – sometimes – well studied. Given
our finding that distal regions are much more variable in terms of regulatory activity,
it would add a lot of precision to our predictions and deepen our understanding of
the underlying systems.
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Taken together, our novel ways of analysis of high - throughput data brings us one
step closer to understanding the complex and versatile structure of gene regulatory
networks. Given recent insights that regulation happens genome wide, even in distal
regions, we analyse the whole genome and predict which transcription factors may be
responsible for the observed chromatin state. Given the increasing amount of next gen-
eration sequencing data, and the easily accessible interface, we can provide researchers
with a dedicated tool to investigate their samples. Hopefully, this will add a important
piece to the highly dimensional puzzle of gene regulation.
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Figure 1.1 Schematic representation of the three modes of co-regulators.
Chromatin remodeling factors help unwind the DNA and pro-
vide access to the DNA (light blue). Nuclear Receptors (NR,
orange) have been shown to recruit co-activators with histone
acetyltransferase activity (HATs) (purple) to help enabling the
transcription. Factors that recruit or are part of the mediator
complex (light purple) are needed to interact with the whole
transcriptional machinery, for instance the sterol regulatory element-
binding protein (SREBP, blue-green). RNA Polymerase II (PolII,
green) can initiate the transcription together with general tran-
scription factors (GTFs,blue) and Transcription factor II D (TFIID,
pink). Activators like Sp1 (dark blue) help forming the this pre-
initiation complex. Taken from [21]. . . . . . . . . . . . . . . . . 6

Figure 1.2 Schematic visualization of the genomic location of different
histone modifications. The arrow denotes the transcription start
site (TSS), NDR is the nucleosome depleted regionand TTS is
the transcription termination site. Taken from [29]. . . . . . . . . 8

Figure 1.3 The three suggested principle states of enhancers and the re-
sulting chromatin landscape: A) Active enhancer: H3K27ac/H3K4me1

is deposited at the enhancer flanking regions and H3K4me3 at
the promoter. Hypermobile H3.3/H3A.Z nucleosomes are often
incorporated at enhancer locations. A transcription-initiation com-
plex (P300/PolII/Mediator) can bind to the enhancer to en-
able transcription of the target gene. B) Primed enhancer: Only
H3K4me1 is present at the enhancer and no H3K4me3 at the
promoter, C) Poised enhancer: H3K27me3 and H3K4me1 can
locate both at the enhancer while the promoter may be marked
with H3K4me3. PRC binds to the enhancer and communicates
with the promoter, but transcription is repressed. Taken from [24]. 10

Figure 2.1 Schematic explanation of the workflow for ChIP seq, DNase
seq and Histone ChIP seq. left: ChIP seq, middle: Histone mod-
ification ChIP seq, right: DNase seq/ATAC seq, basic concept
taken from [18]. Blue bullets are the nucleosome complexes, TF
is an arbitrary transcription factor, the Y-shaped structure is the
antibody against the TF. Tn5 is the transposase enzyme. . . . . 18

Figure 2.2 Representation of the NGS technique for sequencing. Upper
panel: Ligation to the anchors. Middle Bridge amplification, Lower
panel: Single strands bend over and are copied. Detailed se-
quencing process. Each cycle a new nucleotide is incorporated,
its color is recorded and the chain reaction stops. Taken from [22]. 21
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Figure 3.1 Inference of the log read density. Sketch of the foreground and
background read densities and sliding windows across a piece
of the genome. By sliding a window across the genome, we
count all fragments in this window. Note that the window in
the background is 2000bp. We expect most of the reads in the
foreground to map to bound regions, which reduces the amount
of reads in unbound regions. We therefore infer the difference
of foreground and background levels in unbound regions µ. . . 29

Figure 3.2 Distribution of zScores for one the dataset of ATAC-seq in
murine embryos. Red line denotes the standard distribution,
black is the real data. Note that we plot the histogram in log
scale. Clearly visible is the deviation of real data from the stan-
dard distribution on the right. . . . . . . . . . . . . . . . . . . . . 30

Figure 3.3 Length of inferred CREs. Reverse cumulative distribution of
the lengths of all CREs. CREs were taken from dataset 2 in the
CREMA paper (see chapter (4). . . . . . . . . . . . . . . . . . . . 31

Figure 3.4 Schematic representation of SVD. Left panel shows how we ob-
tain the singular vectors ~vk from the initial table A. Right panel
shows the proportion of variance that the singular vectors ex-
plain. Taken from [10]. . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.5 Classification of nonlinear data. Using kernel methods, non-
linear data can be classified: Non-linear data is transformed in
such a way that it is possible to separate it linearly. . . . . . . . 37

Figure 4.1 From raw data to genome-wide identification of cis regulatory el-
ements (CREs) and motif activities. Analysis and modeling steps:
A) Detection of significant peaks genome-wide is performed for each
sample independently (colored read density profiles), followed by the
construction of a universal set of cis regulatory elements (CREs) (grey
boxes) by merging close peaks from all samples. Black vertical lines
represent the centers of peaks used to construct the common CRE set.
B) Normalized log read density for each CRE c and each sample s is
stored in a signal matrix Scs. C) We computationally predict transcrip-
tion factor binding sites for a large collection of regulatory motifs in
all CREs. This generates the sitecount matrix Ncm which contains the
number of sites for each motif m in each CRE c. E) Using the matrices
from B) and D) we fit a linear model to explain the observed signal
across samples Scs in terms of regulatory sites Ncm and an unknown
motif activity Ams. c̃c and cs are CRE and sample-dependent constants. 43
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Figure 4.2 Sustained oscillation of previously known and prediction of novel
potential circadian regulators in murine liver after exposure to dark-
ness for multiple days. A) upper panel: Highly active motifs which
were previously identified as circadian regulators (Arntl, Egr1 and
Nfil3) or show strong circadian behavior (Hnf1b); lower panel: Highly
active motifs which are predicted to oscillate with 24h period, but
have not been associated to act as circadian regulation or being circa-
dianly. regulated before. B) PCA on the activity matrix shows a clear
distinction of the inactive and active phases of the mice. Values on
the axes represent the fraction of explained variance of the respective
component. C) Correlation of R2 correlation coefficient of the fit of a
sinusoidal curve to the activity pattern versus the zScore of our model.
Known and novel circadian regulators (including those in A) are de-
noted as blue (known) and orange (novel) dots. D) Phase distribution
f(φ), showing which phases of motif activity occur most frequently
in the dataset. Phase shifts (offsets) are calculated for a sequence of
φ ∈ [−π,π] (oscillation period 24h). An offset of 0h corresponds to
CT0=6am. Motifs contributing most to the two local maxima of f(φ)
are indicated in the boxes. . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 4.3 Motif activities are tissue and time dependent and the variability
across tissues increases with time. A) Motifs selected from the top 30

motifs to represent known TFs and to show the variety of activity pat-
terns in a single or multiple tissues. Some motifs are changing their
activity in multiple tissues, whereas others are more tissue-specific.
B) The first two PCA components show that most of the variation in
DNA accessibility patterns are associated with differences between
tissues rather than developmental time. Plotted vectors represent the
projection of activity profiles of the top 9 significant motifs according
to CREMAs zScore into PCA space. Rfx represents Rfx3_Rfx1_Rfx4

and Rfx2_Rfx7. C) Variation in motif activity along the third and
fourth PCs is associated with time-dependence. Big dots: activities at
11days (or 14days for intestine, kidney and neural tube). Small dots:
activities at intermediate timepoints. Stars: activities at birth. Several
tissues which represent the overall behavior have been selected to sim-
plify the plot. Plotted vectors represent the 2 motifs with highest pro-
jection score on PC3 and 3 motifs with highest projection on PC4.
Several tissues have been preselected to simplify the plot. All samples
are shown in S12A. continued on next page . . . . . . . . . . . . . . . 51

Figure 4.3 continued D) Despite of the specificity for some tissues (groups), around
50% of the variance of motif activities in each tissue can be explained
by the first principal component for a PCA across activities in this tis-
sue (tissue specific PC1) which is an increasing or decreasing pattern
(Figure S12D). This holds for all the tissues. Several tissues have been
selected to simplify the plot, all samples are shown in Figure S12B. . 52
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Figure 4.4 Integration of RNA seq data with the previously analyzed ATAC
seq data reveals loci-dependent activity of motifs. A) Variance of the
signal at CREs across samples. The samples taken into account to com-
pute the variance for each CRE are stratified by timepoints B) CREs
are grouped depending on the distance to the closest promoter, the
box whisker plots show the variance at CREs across all samples (right)
C) Scatter plot of the correlation of CREMA and ISMARA-inferred ac-
tivity pattern and CREMA-inferred zScore. Motifs selected in C) are
denoted by orange dots. D) Motifs selected to represent the 4 possi-
ble scenarios when comparing ISMARA and CREMA-inferred motif
activities: well correlated (Rfx3), only significant changes in the IS-
MARA analysis (Rest), inverse correlation (Mbd2) and only significant
changes in the CREMA analysis (Rara). Opacity of the dots increases
with developmental time. Inlays (piecharts) show the fraction of tar-
get CREs locating to promoters, untranslated regions (UTR), coding
sequences (CDS) and intronic or intergenic regions, weighted by the
target score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.5 Differentiation of hematopoietic and mesenchymal primary cells.
Inferred motifs driving the changes in H3K4 monomethylation be-
tween cell types. Activities were obtained by sample-averaging (Meth-
ods). Colors in barplots correspond to the cell types. Table in the left
lower corner displays the averaging configurations matched with col-
ors represented in the barplots. Abbreviations in the table are: hem-
mes=hematopoietic-mesenchymal. CLP-CMP=common lymphoid pro-
genitor/common myeloid progenitor, ast=astrocyte, ker=keratinocyte,
ost=osteoblast, fib=fibroblast of dermis, T=CD4+ T cell, regT= CD4+

regulatory T cell, memT = CD4+ memory T cell. The length of the
black lines is not related to similarity of cell types and is only used to
visualize cellular differentiation paths. . . . . . . . . . . . . . . . . . 57

Figure S1 Length of inferred CREs, ordered from short to long. CREs were
taken from dataset 2. . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure S2 The main page of the report: For each motif, we provide zScore,
associated genes, the weight matrix of the motif and a small
motif activity profile. The image is a screenshot from crema.

unibas.ch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure S3 A click on one motif opens the motif-specific page. We provide
information about the weight matrix (motif binding site) and
associated transcription factors. The image is a screenshot from
crema.unibas.ch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure S4 Activity profile. Users are able to zoom into the plot and ex-
act values of activities Ams and the errorbars δAms are given
by sliding the mouse over the dots in the plot. The image is a
screenshot from crema.unibas.ch . . . . . . . . . . . . . . . . . 72

Figure S5 We compute, for this motif, a zScore for each sample. The barplot
shows the zScore and hence the importance of this motif across
all samples. The exact value of zScores is given by sliding the
mouse over the bars. The image is a screenshot from crema.

unibas.ch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
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Figure S6 A list of all inferred target CREs. We annotate those CREs with
the gene yielding the highest CRE/gene association probability.
The target CREs are sorted by the target CRE score. Further
information of this associated gene (Gene Info) as well as the
distance from the CRE to its promoter is indicated. Users sort
the table according to each column by clicking on the arrows on
top. The image is a screenshot from crema.unibas.ch. . . . . . 74

Figure S7 For further insight into the location of CREs targeted by a spe-
cific motif (in this case, Mef2b): A) histogram of distances of the
CRE to the closest associated gene. The CREs is weighted with
the inferred target score. B) Target scores for a specific motif,
in comparison to all motifs (blue bars). CREs are weighted by
their target score. C) Piechart of locations that the CREs map
to: UTR, intron, CDS, promoter and intergenic regions. D) En-
richment of genomic categories with target scores the selected
motif relative to all CREs E) Enrichment of genomic categories
with CRE score. The image is composed of screenshots from
crema.unibas.ch. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure S8 On all associated target genes, we calculate gene ontology cate-
gories. Users can choose by themselves how to sort the table, ei-
ther on the log-likelihood per target or the total log-likelihood.
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also include the log likelihood per target which shows the fold
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Figure S9 As part of the pipeline we show a PCA plot for principal com-
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The image is a screenshot from crema.unibas.ch. . . . . . . . . 77

Figure S10 As part of the pipeline we show a PCA plot for principal com-
ponents 1-4 (shown are PC1 and PC2) of the motif activities.
The image is a screenshot from crema.unibas.ch. . . . . . . . . 77
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Figure S14 Supplementary information for dataset 2: Averaging over time
and tissues. We averaged the MARA run in two ways: 1) average
across all tissues for each timepoint 2) average across all time-
points for each tissue A) time-specific motifs: Activity profiles
of top 8 motifs averaged across all tissues for each timepoint. B)
tissue-specific motifs: Motif activities averaged across all time-
points for each motif. . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure S15 Analysis of Histone modifications in primary cells shows separa-
tion of lineages and higher variability in enhancer regions. A) Cor-
relation of zScores of motif activity derived by CREMA analysis of
ChIP-seq data for H3K4me1 and H3K4me3. B) left: Sum of variance
in activity across all motifs in the H3K4me3 and H3K4me1 analysis.
right: Number of significant CREs found uniquely for H3K4me1 and
H3K4me3 and overlapping CREs. As long as one basepair was over-
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matrix for H3K4me1. Plotted vectors were chosen to have the highest
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Figure S17 Supplementary information for dataset 3. Activity Pattern for
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Figure 1 The genotype difference dominates the ISMARA model across
WT and KO animals. A) Experimental set up B) Venn diagram
of differential expressed genes for knockout (KO) and wild type
(WT) animals. Comparison was always the mice which didn’t
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Abstract: Epigenetic changes are a hallmark of short- and long-term transcriptional regulation, and hence
instrumental in the control of cellular identity and plasticity. Epigenetic mechanisms leading to changes
in chromatin structure, accessibility for recruitment of transcriptional complexes, and interaction of
enhancers and promoters all contribute to acute and chronic adaptations of cells, tissues and organs
to internal and external perturbations. Similarly, the peroxisome proliferator-activated receptor γ

coactivator 1α (PGC-1α) is activated by stimuli that alter the cellular energetic demand, and subsequently
controls complex transcriptional networks responsible for cellular plasticity. It thus is of no surprise that
PGC-1α is under the control of epigenetic mechanisms, and constitutes a mediator of epigenetic changes
in various tissues and contexts. In this review, we summarize the current knowledge of the link between
epigenetics and PGC-1α in health and disease.

Keywords: peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α); exercise;
metabolism; epigenetics; histone modification; DNA methylation; micro RNA; gene regulation;
thermogenesis; metabolic diseases

1. Introduction

The term epigenetics originally described how phenotypic traits could be inherited without
alterations in the DNA sequence of the genome [1,2]. In recent years, this term has been expanded
and used in a more inclusive way to include non-heritable, even short-term plastic events. Often, the latter
are triggered by changes in the environment and drive the adaptations to external stimuli, e.g., those
exerted by exercise, fasting or high-fat diet [3–5]. In fact, in many of these contexts, epigenetic changes
are integral to an adequate transcriptional response, and dysregulation of such changes have been
linked to the etiology and/or pathology of various diseases. The peroxisome proliferator-activated
receptor γ coactivator 1α (PPARGC1A, also called PGC-1α) is a central regulator of mitochondrial
function and cellular metabolism, important for the adaptation of different tissues to increased energetic
demand [6,7]. Accordingly, the gene expression of PGC-1α is strongly regulated when phenotypic
changes of an organ require an increased production of ATP. Once activated, PGC-1α coordinates complex
and tissue-specific transcriptional networks that mediate cellular plasticity. Soon after its discovery,
epigenetic mechanisms have been linked to the action of PGC-1α as a transcriptional coactivator [8–10].
More recently, epigenetic changes have been identified to control the gene expression of PGC-1α in
physiological and pathological contexts [11–13]. In this review, we summarize the current understanding
of the epigenetic regulation of PGC-1α gene expression, and the epigenetic contribution to the activity of
the PGC-1α-containing transcriptional complexes in health and disease.

Int. J. Mol. Sci. 2019, 20, 5449; doi:10.3390/ijms20215449 www.mdpi.com/journal/ijms
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2. Epigenetic Mechanisms

Epigenetic regulation has originally been defined as heritable changes in gene expression that do
not involve DNA sequence alterations, hence mostly focused on DNA methylation and histone protein
modifications [1,2,14]. However, more recent work has clearly demonstrated that these and other
epigenetic changes can also occur short-term and in a transient manner. Thus, other mechanisms,
for example microRNAs (miRNAs), mRNA modifications, long non-coding RNAs (lncRNAs)
or nucleosome positioning are now included under the umbrella term epigenetics [15,16]. For many
of these, both stable as well as transient effects have now been demonstrated. Of note, many of
the recent insights have been made possible by the breakthrough advances in next generation
sequencing techniques.

2.1. Histone Modifications and Nucleosome Positioning

DNA strands are compacted in several layers into chromosomes, with the nucleosomes, the wrapping
of the DNA around eight core histones, as the first layer [17]. A condensed packaging is intrinsically
repressive in regard to the binding of transcription factors, and thereby prevents unwanted transcriptional
activity. Histone proteins can be posttranslationally modified at various residues, leading to changes
in the chromatin structure [18,19]. The integration of the consequences of methylation, acetylation,
phosphorylation and/or ubiquitination of histones thereby determines DNA accessibility for transcription
factors, the degree of condensation of the chromatin, or long-range interactions between distal regulatory
elements. Histone modifications can be stable as well as transient, the latter being an obligatory
event in transcriptional regulation of gene expression. Many of the histone modifying enzymes have
been identified, in particular those involved in histone acetylation (histone acetyl transferases, HATs)
and methylation. Histone acetylation events have been linked to relaxation of chromatin packing, and thus
facilitation of transcription factor and RNA polymerase binding [20]. The functional outcome of histone
methylation is more complex and dependent on the modification of specific sites [21]. Histone lysine
residues can be mono-, di- or tri-methylated, and act as activating or repressing marks. For example,
mono-methylation of lysine 9 or lysine 27 of histone 3 (H3K9 and H3K27) is generally associated with
transcriptional activation, di- or tri-methylated H3K4me2/3 with transcription factor binding regions
and increased gene expression, whereas mono-methylated H3K3me1 often marks enhancer regions,
and H3K27me3 or H3K9me3 are repressive marks [22,23]. For many of the known histone modifications,
the exact consequence is still unclear, and additional mechanisms have been proposed, e.g., regulation of
splicing or priming of promoters. Finally, histone modifications and DNA methylation events can act in
a cooperative manner, e.g., DNA methylation-promoted methylation of H3K9 [21].

Even though the nucleosome is a stable DNA-protein complex, nucleosomes can reposition on
the genomic DNA, a process called nucleosome sliding, which is independent of histone complex
disruption [24]. The CCCTC-binding factor (CTCF) anchors nucleosome positions and thereby
affects large transactivation domains (TADs). Moreover, nucleosome sliding is controlled by various
ATP-dependent chromatin remodeling proteins, for example the SWItch/Sucrose Non-Fermentable
(SWI/SNF) complex [25], leading to transcriptional activation such as large scale expression of
tissue-specific genes.

2.2. DNA Methylation

Most often, DNA methylation has been linked to silencing of transcription [26,27]. Methylation events
have primarily been described on the cytosine nucleotide, resulting in the formation of 5-methylcytosine
(5mC) [27]. Hydroxymethylation of cytosines (5hmC) has been considered as an intermediate step towards
demethylation. However, 5hmC marks are now recognized as an epigenetic marker [28]. Recently,
methylation of adenosine, as originally observed in bacterial genomes, has also been found and attributed
to functional outcomes in eukaryotic cells, potentially counteracting the effects of cytosine methylation [29].
Whole genome bisulfite sequencing has revealed that specific elements and regions exhibit marked
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differences in methylation events. For example, transposon-derived sequences are highly methylated in
the human genome, presumably as a mechanism to silence these elements. In contrast, regions with a high
CpG content, called CpG islands, can by hypomethylated, in particular when found in promoters or first
exons. CpG islands in intergenic regions may act as distal regulatory elements, or, in particular when found
in repeat regions, be important for chromosome stability [21,26,27]. Finally, CpG islands in gene bodies can
affect differential promoter usage, transcription elongation or splicing. The methylation event on cytosines
is mediated by a group of enzymes called DNA methyltransferases (DNMTs) [30]. Transcriptional
silencing is subsequently achieved by preventing transcription factor binding and the recruitment of 5mC
binding proteins, which in turn sequester histone deacetylases (HDACs). Inversely, DNA de-methylation
is exerted by Ten-eleven translocation methylcytosine dioxygenases (TETs), which play an important role
in the spatiotemporal control of opening genomic regions, e.g., in embryonic development [31].

2.3. miRNAs, lncRNAs, mRNA Modifications

Epigenetic changes might also be conferred by different types of RNAs [32]. miRNAs are small
RNAs, of around 22 nucleotides in length, which can interact with mRNAs and thus modulate
the activity of their targets in a posttranscriptional manner [33]. Long non-coding RNAs (lncRNAs)
affect cellular functions in a number of different ways, for example by affecting promoter activity
or mRNA translation [34]. Both types of RNAs not only act intracellularly, but are also delivered to other
cells via exosomal transport [35]. Moreover, an overlap between RNA activity and other epigenetic
mechanisms exists. In Arabidopsis, the miRNAs mir165 and mir166 are involved in the regulation
of DNA methylation [36]. Similarly, DNMT1, -3 and -3a are all predicted targets of miRNAs [37],
while miR-140 affects HDAC4 [38]. Furthermore, miR-132 fine-tunes circadian gene expression by
modulation of chromatin remodeling and protein translation [39]. Finally, mRNAs are also targets
for methylation events [40]. For example, the fat mass and obesity-associated protein (FTO) has been
strongly associated with human obesity, and acts as an N6-methyladenosine demethylase on mRNAs,
thereby affecting RNA metabolism and hence protein expression [41].

3. The Transcriptional Coactivator PGC-1α

PGC-1α is a transcriptional coactivator that was initially identified in an interaction screen with
the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) [42]. However, it is now
clear that PGC-1α binds to and coactivates a large number of different transcription factors, both of
the nuclear receptor superfamily as well as non-nuclear receptor-type of DNA binding proteins [6,43].
PGC-1α is the founding member of a small family of similar coactivator proteins, which also includes
PGC-1β and the PGC-1-related coactivator (PRC) [44]. The PGC-1α gene is transcribed from two
different promoters, and several transcript variants have been described, even though their exact
regulation and function remains to be elucidated [7]. In higher mammals, PGC-1α is expressed
in all tissue with a high energetic demand, e.g., brain, kidney, cardiac and skeletal muscle, brown
adipose tissue and liver [45]. In most of these organs, PGC-1α gene expression and post-translational
modifications are strongly regulated in a context-dependent manner, resulting in higher PGC-1α
levels and activity upon internal and external stimuli that evoke an increased ATP demand, such
as fasting in the liver, physical activity in cardiac and skeletal muscle, or cold exposure in brown
adipose tissue [44,46]. Once activated, PGC-1α controls complex transcriptional networks that control
cellular plasticity, resulting in tissue-specific gene programs controlling hepatic gluconeogenesis,
thermogenesis in brown adipose tissue, or endurance exercise adaptation in skeletal muscle [6].
However, the core function of PGC-1α consists of the strong promotion of mitochondrial biogenesis
and function, coupled to enhanced oxidative phosphorylation of energy substrates [47,48].

As a transcriptional coactivator, PGC-1α contains no discernable DNA binding domain.
Moreover, no enzymatic activity has been attributed to this protein. Thus, mechanistically, PGC-1α
relies on selective interaction with transcription factors to be recruited to target genes, and then serves
as a protein docking platform to recruit other complexes. For example, via N-terminal interaction,
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PGC-1α binds to HAT complexes by interacting with p300/cAMP-responsive element binding protein
(CREB), binding protein (CBP) and the sterol-receptor coactivator 1 (SRC-1) [8]. The ensuing acetylation
of histones contributes significantly to the transcriptional activation of PGC-1α target genes. Similarly,
recruitment of the thyroid hormone receptor-associated protein (TRAP)/vitamin D receptor interacting
protein (DRIP)/mediator complex to the C-terminus of PGC-1α facilitates the interaction of the PGC-1α
transcriptional complex with RNA polymerase II [9]. Moreover, the direct interaction between PGC-1α
and the PPARγ interacting mediator subunit TRAP220 facilitates preinitiation complex formation
and function. Finally, PGC-1α binds to the BRG1-associated factor 60A (Baf60a), and thereby promotes
nucleosome remodeling and chromatin opening via SWI/SNF activity [10]. The recruitment of these
different complexes are linked. For example, a mutant version of PGC-1α lacking the C-terminal
domain not only lacks binding to the mediator complex, but also fails to enhance p300/CBP-dependent
transcription via the still intact N-terminus [9].

The strong transcriptional regulation of PGC-1α gene expression, and the recruitment of several
protein complexes that exert effects on histones and chromatin hint at a strong epigenetic control of
PGC-1α expression and action. In the following paragraphs, we have summarized the current knowledge
about the epigenetic regulation of PGC-1α in different physiological and pathophysiological contexts.

4. Regulation of Physiological PGC-1α Expression and Action by Epigenetic Mechanisms

4.1. Skeletal Muscle and Exercise

PGC-1α gene expression is strongly induced by multiple signaling pathways and stimuli in
the contracting muscle fiber (Figure 1) [6]. Interestingly, PGC-1α induces its own transcription in
a positive autoregulatory loop by coactivating myocyte enhancer factors 2 (MEF2) binding in the proximal
promoter region [49]. However, the PGC-1α-mediated recruitment of HATs, and the resulting acetylation
of histones, competes in the absence of active protein kinase D (PKD) with binding of HDAC5 to
MEF2, which then mediates deacetylation of histones and transcriptional repression [50,51]. Indeed,
different histone marks have been linked to the transcriptional activity of PPARGC1A—the gene encoding
PGC-1α—in skeletal muscle after exercise. For example, the expression of transcript isoforms that are
initiated from the distal promoter coincides with the deposition of the activation mark H3K4me3 one
hour after training in murine quadriceps muscle [52]. Similarly, elevated acetylation of histone 3 was
reported at the proximal promoter of rat PGC-1α in a muscle fiber type-dependent manner [53]. PGC-1α
promoter activity furthermore is strongly influenced by DNA methylation events. In ex vivo stimulation
experiments of mouse soleus muscle, enhanced expression of PGC-1α after 180 minutes was preceded by
a decrease in DNA methylation at the promoter already after 45 minutes of stimulation [12]. In skeletal
muscle in vivo, a similar reduction in promoter methylation of the PGC-1α gene was associated with
elevated transcription [12]. Finally, a combination of H3K4me3 and H3K27me3 was found at the distal
promoter, indicative of a poised promoter ready for rapid transcriptional activation in skeletal muscle,
suggestive of the usage of poised promoters for isoform and tissue-specific expression of PGC-1α [52].
Then, the changes in DNA methylation in the PGC-1α promoter have been associated with nucleosome
repositioning in this locus. Thus, after an acute endurance exercise bout, the –1 nucleosome in the PGC-1α
promoter is repositioned away from the transcriptional start site by exercise and hypomethylation of
the –260 nucleotide, leading to increased transcription of the PGC-1α gene [54]. Importantly, this
mechanism has been linked to decreased ectopic lipid deposition in muscle, but only in high responders
in regard to PGC-1α induction by exercise. Finally, the levels of muscle PGC-1α are affected by different
RNAs. For example, miR-23, a putative repressor of PGC-1α, is strongly downregulated after 90 min of
acute exercise in mouse muscle [55]. In chronically trained and casted mice, the expression of miR-696
and PGC-1α negatively correlated with higher and lower expression of PGC-1α in training and unloading,
respectively [56]. The repressive effect of miR-696 on PGC-1α was subsequently confirmed in cultured
myocytes. Furthermore, the presence of an upstream open reading frame (uORF) in the 5′ untranslated
region of PGC-1αmediates translational repression in an evolutionary conserved manner [57]. Absence of
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a functional uORF in the genome of the Atlantic bluefin tuna correlates with high abundance of muscle
mitochondria, slow-twitch, oxidative muscle fibers, and an exceptionally high endurance.

In addition to the effects on PGC-1α gene expression, epigenetic mechanisms are involved in
modulating the activity of the PGC-1α protein in this tissue. For example, the coactivation of the nuclear
receptor estrogen-related receptor α (ERRα) by PGC-1α correlates with the relative GC and CpG
content of ERRα binding sites in PGC-1α target genes, implying a potential role of DNA methylation
in controlling the interaction between these two partners in the regulation of PGC-1α-dependent
metabolic gene expression [58]. Second, as described above, by recruiting HAT, mediator and SWI/SNF
protein complexes, PGC-1α promotes various epigenetic changes to regulate a complex transcriptional
network [59]. Then, the nuclear receptor corepressor 1 (NCoR1) competes with PGC-1α for binding to
ERRα, and represses PGC-1α target gene expression by recruiting HDAC complexes to the respective
regulatory sites [60]. Finally, the activity of PGC-1α is activated and repressed by deacetylation by sirtuin
1 (SIRT1) and acetylation by K(lysine) acetyltransferase 2A (Kat2a/Gcn5) [61], which are also involved
in the acetylation and, in the case of Kat2a, succinylation of histones. However, whether and how
posttranslational modifications of PGC-1α and histones by these enzymes are coordinated is unknown.
Of note, while many of these mechanisms up- and downstream of PGC-1α have been studied
and described in skeletal muscle, they might also be important for PGC-1α action in other tissues.

Figure 1. Overview of epigenetic changes on the peroxisome proliferator-activated receptorγ coactivator
1α (PGC-1α) in skeletal muscle and exercise: a) In an inactive state, the promoter of PGC-1α is methylated
(MMM). PGC-1α induces its own transcription in a positive autoregulatory loop by coactivating
the myocyte enhancer factor 2 (MEF2); b) Protein kinase d (PKD) represses histone deacetylase
(HDAC) and retains the acetylation marks and elevation of PGC-1α transcription; (c) a combination of
trimethylation of histone 3 at lysine 4 (H3K4me3) and H3K27me3 is deposited at the distal promoter of
PGC-1α suggesting a fast switch of gene programs if necessary; d) nucleosome repositioning enhances
PGC-1α transcription; e) Micro RNA (miR)-696 and miR-23 are putative repressors of PGC-1α; f) NCoR1
competes with PGC-1α for binding to estrogen-related receptor α (ERRα), to repress PGC-1α target
gene expression; g) the activity of PGC-1α is activated and repressed by deacetylation by sirtuin 1
(SIRT1) and acetylation by K(lysine) acetyltransferase 2a (KAT2a).

4.2. Brown Adipose Tissue and Thermogenesis

Numerous studies with gain- and loss-of-function have underlined the central role of PGC-1α
in controlling non-shivering thermogenesis in brown adipose tissue (Figure 2) [62]. Besides creatine
cycling, mitochondrial uncoupling is the major mechanism by which thermogenesis in brown adipose
tissue is achieved. Upon stimulation by β-adrenergic signaling, the expression and activity of
the uncoupling protein 1 (UCP-1) is upregulated, which then produces heat by uncoupling the proton
gradient across the inner mitochondrial membrane from ATP production [63]. PGC-1α gene expression
is stimulated by β-adrenergic signaling in brown adipocytes, and PGC-1α subsequently coactivates
PPARγ and recruits SRC-1/p300 in regulatory elements of the UCP-1 gene to induce transcription [8,42].
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The regulation of PGC-1α gene expression in this context is mediated by different mechanisms. First,
the transcription factor ATF-2 is recruited to cAMP-responsive elements (CRE) in the PGC-1α promoter
upon phosphorylation by the p38 mitogen-activated protein kinase [64]. Second, in response to
β-adrenergic signaling, HDAC1 association with the CRE element in the PGC-1α promoter is reduced
and replaced by binding of the H3K27 lysine-specific demethylase 6A (KDM6A) together with the HAT
CBP, leading to lower methylation and higher acetylation of H3K27 and subsequently enhanced
PGC-1α gene expression [65].

Figure 2. Regulation and activity of PGC-1α in the regulation of UCP-1 in brown adipose tissue
and thermogenesis: a) PGC-1α recruits peroxisome proliferator-activated receptor γ (PPARγ)
and sterol-receptor coactivator 1/E1A binding protein (SRC-1/p300) to regulatory elements of
the uncoupling protein 1 (UCP-1) gene; b) AMP-dependent transcription factor (ATF-2) is recruited to
cAMP response element (CRE) elements in the PGC-1α promoter upon phosphorylation by the p38
mitogen-activated protein kinase which enables PGC-1α transcription; c) Histone 3 lysine 27 (H3K27)
is demethylated by H3K27 lysine-specific demethylase 6A (KDM6A), higher acetylation of H3K27
subsequently leads to enhanced PGC-1α gene expression; d) interaction of PGC-1α with the JmjC
domain-containing histone demethylase 2 (JHDM2) affects the recruitment of the PPARγ complex
containing retinoid X receptor α (RXRα), PGC-1α, p300 and SRC-1 to the PPAR-response elements
in the UCP-1 promoter; e) interaction of twist-related protein 1 (TWIST1) and PGC-1α represses
UCP-1 expression.

In addition to the regulation of PGC-1α gene expression in brown adipocytes, different epigenetic
mechanisms have been implied in the PGC-1α-dependent regulation of UCP-1 expression in
thermogenesis [62]. First, PGC-1α interacts with the H3K9 JmjC domain-containing histone demethylase
2 (JHDM2), which affects the recruitment of the PPARγ complex containing the heterodimerization
partner retinoid X receptor α (RXRα), PGC-1α, p300 and SRC-1 to the PPAR-response elements in
the UCP-1 promoter [66]. Consistently, JHDM2 knockout mice accumulate fat in adulthood and fail to
adapt to cold exposure, lacking adequate regulation of UCP-1 in brown fat tissue. PGC-1α-mediated
induction of UCP-1 is also influenced by the twist-related protein 1 (TWIST1) [67]. While both proteins
are recruited to the UCP-1 promoter, TWIST1 associates with HDAC5, reduces PGC-1α-induced
histone 3 acetylation and thereby represses the expression of UCP-1 and other target genes of PGC-1α.
Interestingly, TWIST1 transcription is positively regulated by PPARβ/δ, a transcription factor binding
partner for PGC-1α in the control of mitochondrial and other metabolic genes, and thereby exerts
a negative feedback loop on PGC-1α activity in brown adipose tissue.
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5. PGC-1α and Epigenetic Mechanisms in Disease

Many diseases are characterized by wide-spread epigenetic changes that could either contribute
to, or be a consequence of the pathological changes [68]. Similarly, dysregulation of mitochondria
is observed in numerous pathologies, often associated with changes in PGC-1α expression and/or
activity [69]. In the following sections, we have therefore summarized the current knowledge about
epigenetic mechanisms that control PGC-1α in different diseases (Figure 3).

5.1. Obesity

In skeletal muscle, obesity results in an altered gene expression profile that is associated with
wide-spread changes in DNA methylation events [13]. As one of these genes, the promoter of PGC-1α
is hypermethylated in obese subjects, and the methylation pattern is restored after gastric bypass
surgery, comparable to that observed in lean individuals. Similar methylation changes of almost half of
the CpG sites in the PGC-1α promoter could be triggered by short-term overfeeding of young, healthy
men with a high fat diet in skeletal muscle [70], or of low-birthweight individuals in white adipose
tissue [70]. In the latter cohort, PGC-1α gene expression was restored after insulin injection. Changes in
the methylation status of the PGC-1α promoter were furthermore described in cultured human primary
myocytes exposed to fatty acids, in a DNMT3B-dependent manner [11]. A link between fatty acid
oxidation and PGC-1α promoter methylation was likewise proposed by the effect of decreased flavine
adenine dinucleotide (FAD) levels leading to a loss of histone 3 acetylation and H3K3me2/3 deposition
near the PGC-1α gene [71]. Of note, methylation of four specific CpG loci in the PGC-1α promoter in
blood of children was predictive of adiposity later in life, independent of sex, age, pubertal timing,
and activity [72].

5.2. Type II Diabetes

Hypermethylation of non-CpG sites at the PGC-1α promoter negatively correlated with PGC-1α
expression in skeletal muscle of type 2 diabetic subjects compared to glucose-tolerant individuals [11].
This reduction was linked to DNMT3b activity in cultured myotubes treated with tumor necrosis factor
α (TNFα) or free fatty acids, both leading to hypermethylation of the PGC-1α promoter. In particular,
the methylation site at –260 nucleotide location was responsible for the transcriptional repression in
that context. Moreover, a study in monozygotic twins showed higher methylation levels in the PGC-1α
promoter in skeletal muscle and adipose tissue in type 2 diabetic subjects [73]. Similarly, a 2-fold
increase in PGC-1α promoter methylation was described in human pancreatic islet cells of type
2 diabetic individuals compared to normal individuals [74]. Finally, placental PGC-1α promoter
methylation correlated both with maternal hyperglycemia and newborn leptin levels [75].

5.3. Non-Alcoholic Fatty Liver Disease (NAFLD)

A comprehensive DNA methylation profiling of liver biopsies of morbidly obese patients with
NAFLD revealed broad changes in the methylation pattern compared to healthy individuals [76].
Motif prediction implied an enrichment in methylation changes in DNA regions of PGC-1α
recruitment. Moreover, bariatric surgery reversed some of the NAFLD-associated methylation changes,
with a high enrichment of predicted binding sites for ERRα, a strong interaction partner for PGC-1α.
However, whether methylation changes modifying predicted PGC-1α and ERRα recruitment sites really
contribute to the degree of NAFLD remains to be shown. In line with this hypothesis, NAFLD-related
insulin resistance is correlated positively with PGC-1α promoter methylation, and negatively with
PGC-1α gene expression [77].

5.4. Parkinson’s Disease

Adequate PGC-1α levels are indispensable for mitochondrial activity in the brain, and loss-of-function
of PGC-1α promotes neurodegenerative events in this organ [78,79]. In an extensive study incorporating
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322 samples from the brain and 88 samples from blood, non-canonical cytosine methylation of the PGC-1α
gene was found to be significantly increased in Parkinson’s patients compared to controls [80]. In line,
treatment of mouse primary cortical neurons, microglia and astrocytes with palmitate caused PGC-1α
promoter methylation at non-canonical cytosines. Likewise, the intracerebroventricular injection of
palmitate into mice with transgenic expression of human α-synuclein triggered increased PGC-1α
promoter methylation, reduced expression of PGC-1α and diminished the mitochondrial number in
the substantia nigra. Moreover, PGC-1α promoter methylation correlated with increased endoplasmatic
reticulum (ER) stress and inflammatory signaling.

5.5. Kidney Diseases

The lncRNA taurine-upregulated gene 1 (Tug1) interacts with PGC-1α in the kidney, and promotes
the binding of PGC-1α to its own promoter [81]. Activation of this mechanism in podocytes improves
mitochondrial function and reduces apoptosis as well as endoplasmic reticulum stress in diabetic
nephropathy [81,82]. In acute kidney injury, the TNF-related weak inducer of apoptosis (TWEAK)
stimulates HDAC recruitment to nuclear factor κB (NF-κB) on the PGC-1α promoter, resulting in
histone deacetylation and repression of PGC-1α gene transcription [83]. Thereby, an inflammatory
response is boosted while mitochondrial function is repressed in this pathological context.

Figure 3. Overview of the epigenetic changes on the PGC-1α in a pathological context: Increased
methylation of the PGC-1α promoter has been found to occur in obesity, diabetes, non-alcoholic fatty
liver disease (NAFLD) and Parkinson’s disease. Obesity and decreased flavin adenine dinucleotide
(FAD) levels lead to a loss of histone 3 acetylation and thus a decreased gene expression of PGC-1α.
Exposure to TNFα or FFA (free fatty acids) leads to a hypermethylation of the PGC-1α promoter
by the activation of DNA methyltransferase 3b (DNMT3b). In NAFLD, a decreased expression of
PGC1α target genes was associated with higher methylation of the respective promoters. In kidney
diseases, the micro RNA taurine upregulated gene (TUG1) promotes the binding of PGC-1α to its own
promoter. In acute kidney injury, histone deacetylase (HDAC) recruitment to nuclear factor κB (NF-κB)
on the PGC-1α promoter promotes deacetylation and thus repression of PGC1α. Increased methylation
of the PGC-1α promoter has been found to occur in diabetes, NAFLD and Parkinson’s disease.

6. Conclusions and Perspectives

With the inclusion of transient, short-term changes, the traditional distinction between epigenetics
and transcriptional regulation becomes blurry. It is thus of little surprise that a strong transcriptional
regulator such as PGC-1α is not only controlled by, but also uses various epigenetic mechanisms to
modulate complex transcriptional networks in acute settings. The more persistent changes in PGC-1α
promoter methylation in numerous diseases however hint at a more long-term control of PGC-1α to be
important for health and disease. Future studies will hopefully aim at elucidating these effects not only
in the pathological, but also physiological context. For example, even though clear evidence exists,
the hereditary aspects of exercise training remain enigmatic [5,84]. Intriguingly, the selection of high-
and low-capacity runners of rats demonstrated the heritability of treadmill exercise, and was associated
with higher PGC-1α protein levels in the muscles of high- compared to low-capacity runners [85]. It will
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be interesting to study whether epigenetic regulation of PGC-1α underlies this effect. These and other
similar studies will ultimately help to understand cell plasticity over different time scales in health
and disease.
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