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Characterizing macromolecular interactions allows better understanding of the inner workings of a 
cell. However, all methods available today have limitations: Some tell us whether two macro molecules 
interact, others provide atomic detail about the interaction partners or, at best, the structures of 
isolated assemblies without cellular context. On page 1340 of this issue, Humphreys et al. (1) describe 
a new computational approach, founded on the ongoing deep learning revolution in structure 
bioinformatics (2, 3), to predict the composition and model the three-dimensional (3D) structure of 
protein-protein interactions at the same time. They apply their approach to a eukaryotic system—
baker’s yeast (Saccharomyces cerevisiae)—and predict and accurately model more than 1500 protein-
protein interactions, 106 of which were not seen before, paving the way to high-throughput, high-
accuracy modeling of entire cells. 

Determining the 3D structures of macromolecules and their interactions provides important 
information about macromolecular mechanisms, which can be used, for example, in drug development 
or exploited in biotechnology. Experimental structural biology methods such as macromolecular 
crystallography (MX) and high-resolution cryo–electron microscopy (cryo-EM) provide atomic-level 
detail of macromolecular structures and their assemblies (4). Such experiments are laborious and 
require purification of the macromolecules from their cellular context. Although techniques such as 
yeast two-hybrid (Y2H) and cross-linking mass spectrometry (XL-MS) allow for large-scale detection of 
interaction partners, methods such as site-directed mutagenesis or Förster energy resonance transfer 
(FRET) experiments characterize individual interactions and interfaces. This information can be used 
to guide the modeling of assemblies by, for example, macromolecular docking in integrative (also 
known as hybrid) approaches that combine a variety of data types from low-resolution experiments 
with computational modeling to generate 3D representations of macromolecular assemblies (5). 

In recent years, structural biology has seen its horizons drastically expanded by computational 
techniques for structure prediction (see the figure), fueled by the evolution of machine learning 
algorithms (6) as well as a rapid increase of experimental information in open databases such as the 
Protein Data Bank, which celebrates its 50th anniversary this year. The Critical Assessment of Structure 
Prediction (CASP) experiment has, since 1994, provided a platform for testing protein structure 
prediction methods and, during its history, has lived through (and stimulated) several revolutions (7). 
For example, the development of sensitive methods for the detection of remote homologous 
relationships boosted homology-based modeling, and the use of coevolution information further 
improved the modeling of proteins without homologs of known structure. This latter method is based 
on the idea that residues close in space are evolutionarily coupled, and that coupling signals extracted 
from multiple sequence alignments can be used to predict close contacts in 3D. This not only proved 
to be useful for the prediction of protein 3D structures, but also readily expanded to the realm of 
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intermolecular interactions, acting as a fast and accurate method to screen and predict protein-
interacting pairs in, for example, the proteome of a bacterium (Escherichia coli) (8, 9). 

This year, a new breakthrough occurred and a new era in structural bioinformatics started (2, 3): 
DeepMind’s AlphaFold2 algorithm (6) became the first computational method to reach close-to-
experimental atomic accuracy for individual protein structures in CASP (10). The basis of this success 
was the combined use of state-of-the-art deep learning methods with massive amounts of computing 
power and the vast structure and sequence data accumulated over the past five decades. This 
promoted a quick and intense activity in the community, with RoseTTAFold rising shortly as a close 
academic competitor of AlphaFold2 (11). Both methods make use of state-of-the-art deep learning 
approaches but differ in their core architecture. Still, an important part of both is the use of 
evolutionary couplings from multiple sequence alignments, which are efficiently handled within their 
underlying networks to predict interatomic contacts and accurately compute 3D coordinates for the 
atoms in a target protein from its amino acid sequence. Given the previous success of such signals for 
the identification of protein-protein interactions (8, 9), it makes sense to explore such methods to 
improve the prediction and modeling of protein-protein interactions and their assemblies at the 
atomic level. 

Although most efforts focused on adapting the AlphaFold2 and RoseTTAFold workflows to model 
protein complexes of known composition and stoichiometry (12), Humphreys et al. combined the 
speed of RoseTTAFold’s contact prediction algorithm with the high accuracy of AlphaFold2’s folding 
engine and suggest a new method to accurately predict and model at the same time protein pairs 
across the baker’s yeast proteome, the first eukaryote to have its interactome modeled in such a high-
throughput fashion. Scanning through ∼8 million putative protein pairs, Humphreys et al. predicted 
those more likely to interact on the basis of strong coevolutionary signals and replaced 
macromolecular docking by protein structure prediction of the joint pair to model the 3D structure of 
the assembly. The method was able to accurately predict the composition and model the structure of 
more than 1500 interacting pairs spanning almost all key eukaryotic cell processes, including 106 
undescribed assemblies that may highlight previously unknown processes, as well as more than 600 
previously known interacting pairs (according to low-resolution biophysical data). 

The work by Humphreys et al. is a step closer to the modeling of entire cells at high resolution and has 
already inspired further studies into the interactome of the human mitochondrion (13). Currently, 
methods such as MX and electron microscopy (EM) provide high-resolution atomic representations of 
macromolecular machines in isolation. Cellular cryo–electron tomography (cryo-ET) has the potential 
to provide a detailed snapshot of the network of macromolecular interactions, but so far only 
subnanometer resolution can be obtained (14). Artificial intelligence (AI)–based highly accurate 
proteome-wide modeling of interactions may be able to compensate that resolution gap in a timely 
manner, especially for more complex organisms. Notwithstanding, methods such as AlphaFold2 and 
RoseTTAFold provide a static model; incorporating the transient and dynamic nature of 
macromolecular assemblies will need to be addressed in the future. 

This work also highlights the success of open science and community-based method development. 
AlphaFold2, developed by a commercial company, was made openly available to the entire 
community, including its source code. This promoted the quick development of different AI-based 
bioinformatic methods for various goals, such as the Humphreys et al. study. AI-based methods are 
clearly promoting a shift in the way life sciences research will be carried out in the future, where 3D 
computational models will routinely inspire new experimentally testable hypotheses. 
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