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ABSTRACT

During pre-mRNA maturation 3′′′′′ end processing can occur at different polyadenylation sites in the 3′′′′′ untranslated region
(3′′′′′ UTR) to give rise to transcript isoforms that differ in the length of their 3′′′′′ UTRs. Longer 3′′′′′ UTRs contain additional cis-
regulatory elements that impact the fate of the transcript and/or of the resulting protein. Extensive alternative polyade-
nylation (APA) has been observed in cancers, but themechanisms and roles remain elusive. In particular, it is unclear wheth-
er the APA occurs in the malignant cells or in other cell types that infiltrate the tumor. To resolve this, we developed a
computational method, called SCUREL, that quantifies changes in 3′′′′′ UTR length between groups of cells, including cells
of the same type originating from tumor and control tissue. We used this method to study APA in human lung adenocar-
cinoma (LUAD). SCUREL relies solely on annotated 3′′′′′ UTRs and on control systems such as T cell activation, and spermato-
genesis gives qualitatively similar results at much greater sensitivity compared to the previously published scAPAmethod.
In the LUAD samples, we find a general trend toward 3′′′′′ UTR shortening not only in cancer cells compared to the cell type of
origin, but also when comparing other cell types from the tumor vs. the control tissue environment. However, we also find
high variability in the individual targets between patients. The findings help in understanding the extent and impact of APA
in LUAD, which may support improvements in diagnosis and treatment.
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INTRODUCTION

The processing of most human pre-mRNAs involves 3′ end
cleavage and addition of a polyadenosine [poly(A)] tail.
Typically, there aremultiple cleavage and polyadenylation
sites within a gene, and alternative polyadenylation (APA)
has emerged as a major source of transcriptome diversity
(Reyes and Huber 2018). A prevalent type of APA isoforms
are those that differ only in the length of their 3′ untranslat-
ed regions (3′ UTRs). 3′ UTRs become shorter upon T cell
activation (Sandberg et al. 2008; Gruber et al. 2014), in
cancer cells (Mayr and Bartel 2009; Xia et al. 2014) and
upon induction of reprogramming in somatic cells (Ji and
Tian 2009). Although the responsible regulators are still
to be determined, core 3′ end processing factors under
the transcriptional control of cell cycle-related transcrip-
tion factors have been implicated, at least in the context
of cell proliferation (Elkon et al. 2012). Various RNA-bind-
ing proteins (RBPs) are also involved in specific cellular sys-

tems (Martin et al. 2012; Gruber et al. 2018b; So et al.
2019; Masuda et al. 2020; Lee et al. 2021).
While APA-dependent 3′ UTR shortening has been ob-

served in many cancers (Xia et al. 2014; Schmidt et al.
2018), it is presently unclear whether it is a manifestation
of the change in cell composition of the tissue or of func-
tional changes in all cell types within the tumor environ-
ment. As single cell RNA sequencing (scRNA-seq)
technologies specifically capture mRNA 3′ ends, and
data sets of tumor and matched control tissue samples
have started to become available, this question can now
be addressed, provided a few challenges are overcome.
First, the number of transcripts that can be reliably quanti-
fied is still low (Breda et al. 2021), because the total num-
ber of reads obtained from individual cells is in the 103–
104 range. Thus, quantifying gene expression at the iso-
form level is still very challenging. This issue can be partial-
ly circumvented by pooling the reads from cells of the
same type. Second, while 3′ biased, scRNA-seq reads do
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not always reach the polyadenylation site (PAS) and may
also result from internal priming. Thus, identifying which
reads correspond to the same 3′ end is also not trivial.
This problem can be mitigated by associating scRNA-seq
reads with already-annotated transcript 3′ ends.
However, the current annotation is still far from complete
(Gruber et al. 2018a), leading to PAS usage quantification
that is imprecise and incomplete. For this reason we devel-
oped a PAS-agnostic approach for quantifying changes in
3′ UTR length between samples, based on the entire
3′ end read distribution along the 3′ UTR. Applying the
method to single cell sequencing data from human lung
adenocarcinoma (LUAD), we found that 3′ UTR shortening
is not specific to a cell type but rather occurs in most cell
types that compose the tumor. Furthermore, our analysis
revealed that the targeted transcripts encode proteins
that are involved in various steps of proteinmetabolism, in-
cluding synthesis at the endoplasmic reticulum (ER), trans-
port between ER and the Golgi network and finally
secretion of proteins. Our data thus implicates APA in
the remodeling of protein metabolism in tumors.

RESULTS

A myeloid to lymphoid switch in lung tumors

While analyses of bulk RNA-seq data revealed the shorten-
ing of 3′ UTRs in virtually all studied cancers with respect to
matched control tissue, the shortening is especially pro-
nounced in lung tumors (Gruber et al. 2018b). Thus, to bet-
ter understand the mechanism and function of APA in
cancers, we identified two studies in which single cell se-
quencing of lung adenocarcinoma (LUAD) and matched
control tissue from multiple patients was carried out on
the same platform, 10x Genomics (Lambrechts et al.
2018; Laughney et al. 2020). These data enable us to not
only identify 3′ UTR changes in specific cell types, but
also to assess their generality between studies and pa-
tients. We followed the procedure described in Lam-
brechts et al. (2018) to annotate the type of individual
cells. Briefly,we integrated thedatawith theharmonypack-
age (see Materials and Methods; Supplemental Fig. 1),
clustered the normalized gene expression vectors of all
cells (Fig. 1A) with the Seurat package (Butler et al. 2018),
and annotated the type of 38,156 cells from 12 samples
of the Lambrechts et al. (2018) study (samples 3a–d, 4a–
d, 6a–d, representing three tumor samples and a matched
control for each of three patients) and 18,543 cells of the
Laughney et al. (2020) study (three pairs of tumor-matched
control samples) based on known markers. We used the
markers proposed in the Lambrechts et al. (2018) study,
but also added a few markers for mast cell (TPSAB1,
TPSB2, and CPA3; Table 1; Fig. 1B; Dwyer et al. 2016).
As described in the initial study (Lambrechts et al. 2018),
the most abundant cell types in the tumor samples were

T cells,myeloid andB cells, while thematched control sam-
ples were dominated by myeloid and alveolar cells (Fig.
1C).We further identified a small clusterofmast cells, anno-
tated as B cells in the initial study that did not considermast
cell markers.We observed a similar myeloid to T cell switch
between control and cancer samples from the Laughney
et al. (2020) study (Fig. 1D). In addition, the matched con-
trol samples from this latter study had amore homogenous
cell-type composition compared to those from the Lam-
brechts et al. (2018) study, consisting almost exclusively
of lymphocytes and myeloid cells (Fig. 1D).

Given that T cells are the most numerous cell type in tu-
mor samples and that T cell activation leads to 3′ UTR short-
ening (Sandberg et al. 2008; Gruber et al. 2014), we
wondered whether the pattern of 3′ UTR usage that was
previously inferred from “bulk” samples can be attributed
to the infiltration of the tumor with activated T cells. To in-
vestigate this possibility, we first determined the distribu-
tion of RNA molecules (unique molecular identifiers, UMI)
per cell in various cell types in the two studies
(Supplemental Fig. 2A) and the total number of UMIs ob-
tained from each cell type in each data set (Supplemental
Fig. 2B). While T cells were the most numerous cell type
in tumors, their relatively small RNA content per cell led
to a smaller overall contribution to the total RNA pool com-
pared to the less numerous myeloid cells, which have sub-
stantially more RNA molecules per cell (Supplemental Fig.
2A). Thus, the “bulk” RNA obtained from tumor samples is
not dominated by RNAoriginating fromT cells, suggesting
that other cell types also contribute to the 3′ UTR shorten-
ing that was previously described in tumors. We therefore
carried out a cell-type-specific analysis of 3′ UTR usage in
tumors relative to matched controls.

A PAS-agnostic approach to quantify 3′′′′′ UTR
shortening and APA events

A few approaches have been proposed for assessing APA
in scRNA-seq data sets (Shulman and Elkon 2019; Patrick
et al. 2020; Wu et al. 2020). However, their robustness
with respect to the sparsity of the data and the incomplete-
ness of PAS annotation has not been checked (Ye et al.
2020). Thus, we developed a novel approach (single cell
analysis of 3′ untranslated region lengths, SCUREL) (Fig.
2A), specifically designed to circumvent these issues and
implemented in a Snakemake (Koster and Rahmann
2012) workflow. SCUREL enables two different compari-
sons of 3′ UTR length: between two different cell types in
a data set (“cell type”mode), or for the same cell type be-
tween two different conditions (e.g., tumor and matched
control tissue, “condition”mode). We frame the detection
of changes in 3′ UTR length between two groups of cells as
a problem of identifying the cell group from which the
reads originated by inspecting the positions where the
reads map in the terminal exons (TEs). That is, read 3′
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ends are tabulated and the cumulative coverage along in-
dividual TEs is calculated and normalized (Fig. 2B). Then,
analyzing each TE individually, we record the fraction of
reads from the two cell groups that map within an extend-
ingwindow of the TE starting from the 3′ end (Fig. 2C). This
yields a curve in the plane defined by the proportions of
reads in the two cell groups, which is similar to a receiver
operating characteristic (ROC). The area under this curve
(AUC) indicates the similarity of TE length between the
compared cell groups. The curve is anchored at coordi-
nates (0,0), corresponding to the end of the TE, where no
reads have been observed yet, and (1,1), corresponding
to the start of the TE, where all reads from the TE have
been accounted for. If the coverage of a TE by read
3′ ends were similar between the two groups of cells and
thus the cell group cannot be identified from the position

of the reads, the curve would trace the diagonal line. Devi-
ations above the diagonal indicate higher coverage of the
distal region of the TE in the cell group represented on the
y-axis, while deviations below the diagonal line indicate
higher coverage of the distal TE region in the cell group
represented on the x-axis.When the number of readsmap-
ping to a given TE is small, the curve will show discrete
jumps of 1/n step size (where n is the number of readsmap-
ping to the TE), as individual reads are encountered along
the TE. This could lead to AUC values that deviate strongly
from the 0.5 value expected under the assumption of sim-
ilar coverage in the two cell groups. To avoid false positives
that are caused by these finite sampling effects, we con-
structed a background coverage data set by randomizing
the labels indicating the cell group from which each read
originated. This preserves the depth of coverage of each

C

A

D

B

FIGURE 1. Cell-type composition of lung adenocarcinoma and matched control samples. (A) Two-dimensional projection (Uniform Manifold
Approximation and Projection, UMAP) of gene expression vectors. The projections were obtained with the RunUMAP function from Seurat
v3.2.3 (Butler et al. 2018), based on the first 10 principal components. The two data sets were integrated with harmony. Cell clustering was
done on the shared nearest neighbor (SNN) graph (see Materials andMethods). (B) Dot plot of marker gene expression across the clusters shown
in panel A. Shown is the average expression and percent of expressing cells per cluster for the markers used in Lambrechts et al. (2018) (see also
Table 1). The dot plot was created with Seurat. (C ) Two-dimensional projection (created with Seurat) of gene expression vectors as in A, but high-
lighting only cells from one study in each panel. (D) Box plot of relative proportion of each cell type in control (green) and tumor (red) samples from
individual patients from the Lambrechts and Laughney data sets.
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TE in each group of cells while randomizing the location of
each read, thus allowing us to determine changes in 3′ UTR
length that cannot be explained by the sparsity of the data.
For considerations of efficiency,wecarriedout the random-
izationonce, andused the information fromTEswith similar
average coverage to detect significant AUC values. That is,
the distribution of AUC values being wider for TEs with low
coverage (in counts per million, CPM) compared to TEs
with high coverage (Fig. 2D), webinned TEs by the average
coverage in the two cell groups [in log(mean CPM)] and
within each of the 20 bins, we used the 1% quantile of
the randomized read data as the threshold for significant
AUC values. Finally, noting that in some cases the differ-
ence in the TE exon was small and unlikely to be due to
APA, we selected only those TEs for which the read 3′

ends span a sufficiently large distance. That is, we calculat-
ed the interquartile range (IQR) of read 3′ end positions
and, if the union of these intervals for the two cell clusters
that were analyzed was larger than 200 nt, we considered
the range of 3′ end variation sufficient to be indicative of
APA (Fig. 2D).

SCUREL detects 3′′′′′ UTR length changes in previously
characterized systems

To validate our approach, we analyzed the dynamics of 3′

UTR length in two well-characterized cellular systems,
namely T cell activation, where 3′ UTRs become shorter,
and sperm cell development, where the 3′ UTRs are known
to become longer. Furthermore, we compared our results
with those generated on these data sets by the previously
published scAPA method (Shulman and Elkon 2019).

We annotated the mouse T cell scRNA-seq data (Pace
et al. 2018) with Seurat, obtaining 1605 activated and
1535 naïve T cells (Fig. 3A), with 5.8 and 1.8 million reads
mapped to TEs, respectively. Applying SCUREL, we identi-
fied 261 TEs whose length changed significantly upon
T cell activation, of which 218 (84%) became shorter (Fig.
3B). These results recapitulate those obtained from bulk
RNA sequencing in a similar system (Gruber et al. 2014).
Applying the previously published scAPA method (Shul-
man and Elkon 2019) (see Materials and Methods) we
only obtained 14 TEs with a significant length change, 12
of which (85%) became shorter (Fig. 3C). Two-thirds of
the scAPA-identified targets (eight of 12 TEs) were also
identified by our method, while the four cases missed by
SCUREL involved either very small TE length changes
(three cases) or a difference in the annotation of the TE,
because scAPA also quantifies PAS downstream from an-
notated TEs. In contrast, inspection of nine randomly cho-
sen TEs identified only by SCUREL indicated that
they correspond to genes with relatively low expression,
which are overlooked by scAPA (Supplemental Fig. 3). Ex-
amples of TEs from each of these categories are shown in
Figure 3G.

We carried out a similar analysis on a mouse spermato-
genesis data set (Lukassen et al. 2018), as it is well known
that 3′ UTRs become progressively longer during the mat-
uration of germ cells to elongating, condensing, round
spermatids and finally spermatocytes. We used the mark-
ers described in the original publication (Lukassen et al.
2018) to annotate 386 elongating spermatids (ES) and
667 spermatocytes (SC), with 8 and 12 million reads in
the TE regions, respectively (Fig. 3D). Applying SCUREL,
we found 2060 TEs whose length changed significantly
from ES to SCs, almost all of which (1992, 97%) became
longer (Fig. 3E). scAPA yielded a similar proportion of
shortened TEs (but fewer in absolute number), 96% (165
of 171 significant APA events, Fig. 3F). As in the case of
T cells, most of the scAPA-identified TEs were also found
by our method (146 of 165 TEs), while TE annotation and
small changes in PAS usage accounted for the cases that
were unique to scAPA. Inspection of nine randomly chosen
TEs identified only by SCUREL indicated that they corre-
spond to genes with relatively low expression or exclusively
express one PAS or the other (Supplemental Fig. 4).

Genes involved in protein metabolism are targets
of 3′′′′′ UTR shortening in lung cancer cells

Having established that ourmethod reproduces previously
reported patterns of 3′ UTR length change in physiological
settings, we then turned to the question of whether 3′ UTRs
are also different in lung cancer cells compared to their
nonmalignant counterpart, the alveolar epithelial cells.
We identified 1330TEs thatwere shorter in the 3607 cancer
compared to the 851 alveolar cells in the Lambrechts data

TABLE 1. Marker genes for cell-type annotation

Cell type Marker genes Cell type Marker genes

Alveolar CLDN18 Fibroblast C1R

Alveolar FOLR1 B cell CD79A
Alveolar AQP4 B cell IGKC

Alveolar PEBP4 B cell IGLC3

Endothelial CLDN5 B cell IGHG3
Endothelial FLT1 Myeloid LYZ

Endothelial CDH5 Myeloid MARCO

Endothelial RAMP2 Myeloid CD68
Epithelial CAPS Myeloid FSGR3A

Epithelial TMEM190 T cell CD3D

Epithelial PIFO T cell TRBC1
Epithelial SNTN T cell TRBC2

Fibroblast COL1A1 T cell TRAC

Fibroblast DCN Cancer EPCAM
Fibroblast COL1A2

Based on Lambrechts et al. (2018).
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set (with 22 and 3.7 million reads in TEs, respectively), rep-
resenting 98%of 1357 significant events (Fig. 4A, top). Sim-
ilarly, we identified 188 shortened TEs from the Laughney
data set of 489 cancer and 292 alveolar cells (with 6 and
1.3 million reads in TEs, respectively), representing 85%
of 219 significant events (Fig. 4A, bottom).Whilemuch few-
er events were found in the Laughney data set, themajority

(105 of 188 TEs, 56%) were shared
with the Lambrechts data set. To
determine whether specific biological
processes are subject to APA-depen-
dent regulation in cancer cells, we
submitted the set of 105 shared genes
to functional analysis via the STRING
web server (Szklarczyk et al. 2019).
This revealed that the corresponding
proteins are associated with mem-
branes, vesicles and granules (Fig.
4B,C). Interestingly, theseAPA targets
cover the entire lifecycle ofmembrane
and secreted proteins, from synthesis
(i.e., translation initiation factors and
ribosomal proteins), to traffic into the
ER (e.g., SSR1, SPCS3, SEC63) and
Golgi (e.g., TRAPPC3, KDELR2), to
proteasome-mediated degradation
(PSMD12). Some of the APA targets
are surface receptors with well-known
involvement in cancers (CD44, CD47,
and CD59). These results indicate
that APA contributes to the orchestra-
tion of protein metabolism and traffic
in cancer cells. Examples of TEs from
Figure 4B are shown in Figure 4D.

Conserved targets of 3′′′′′ UTR
shortening in individual cell types

The next question we wanted to an-
swer is whether 3′ UTR shortening
affects all cells in the tumor environ-
ment, or it is rather restricted to specif-
ic cell types. We thus carried out the
SCUREL analysis for each individual
cell type for which we had at least
∼20 cells in each data set, comparing
TE lengths between cells of the same
type, from the tumor sample and
matched control sample. We found
many more TEs becoming signifi-
cantly shorter than longer (Fig. 5A,B),
across almost all cell types and in
both data sets. This is summarized in
Figure 5C, which shows that the pro-
portion of shortened among signifi-

cantly changed TEs is almost always greater than 0.5. By
grouping all reads from the tumors and frommatched con-
trol samples, respectively, we also recapitulated the result
of previous “bulk” RNA-seq data analyses (Fig. 5D). Thus,
3′ UTR shortening is not restricted to a specific cell type,
but seems to generally take place in all cell types, associat-
ed with the tumor environment.

B

A

C

D

FIGURE 2. Overview of SCUREL. (A) Schematic representation of the workflow for detecting
significant changes in 3′ UTR length between two cell populations. Input data (blue) consist of
mapped reads from cellranger count and a table of annotated cell barcodes. The genome an-
notation is used to extract TEs, their cumulative 3′ end coverage in the two cell groups yielding
the AUC value, which we used as a measure of APA. Dashed box: Alternative start of the work-
flow, from scRNA-seq reads in FASTQ format. The cell-type annotation is done semiautomati-
cally, based on marker gene expression (see Materials and Methods). (B) Cumulative 3′ end
coverage of the TE of mouse Mettl4 gene in activated (red) and naive (green) T cells from
the Pace et al. (2018) study. For each cell type, the first track shows the read coverage along
the TE, the second track the location of read 3′ ends and the third track the reverse cumulative
of the 3′ end coverage. The gene is on the negative strand of the chromosome. (C ) Summary of
the cumulative 3′ end read distribution along the TE ofMettl4 in activated versus naive T cells,
from the 3′ (at 0,0) to the 5′ (at 1,1) end. Points correspond to individual nucleotides of the TE
where 3′ end reads are observed. The upwards deviation of the curve relative to the diagonal
line indicates higher coverage of the distal region of the TE in naive T cells, quantified by the
AUC value of 0.582. (D) Distribution of AUC values as a function of log10(mean CPM) per TE in
the mouse T cell activation data set (Pace et al. 2018). A total of 9099 TEs are represented, 218
showing significant shortening and 43 TEs significant lengthening (green points) attributed to
APA.
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Moreover, in spite of thedifferences
between the studies, therewas a high-
ly significant overlap between the tar-
gets of TE shortening in individual cell
types (Fig. 5E,F). To gain further in-
sight into the processes that may be
regulated by APA, we submitted the
intersection sets of genes exhibiting
TE shortening in T lymphocytes and
myeloid cells in these studies to func-
tional enrichment analysis. We found
significant enrichments especially in
cellular components such as mem-
branes, vesicles and granules (Fig.
5G,H), similar to what we observed in
cancer cells.

Variability in 3′′′′′ UTR shortening
among individuals

Finally, we asked to what extent are
the targets of 3′ UTR shortening similar
across patients. To answer this ques-
tion, we analyzed individually the cells
obtained from three patients in the
Lambrechts study. Interestingly, in
spite of the similar histopathological
classification of the samples, one of
the three sampleswasmarkedly differ-
ent from the others, not exhibiting any
tendency toward 3′ UTR shortening
(Fig. 6A–D). The other two samples
showed highly significant overlaps be-
tween shortened 3′ UTRs in different
cell types (Fig. 6E). Analysis of biolog-
ical process enrichment in individual
cell types based on the genes target-
ed in both of these patients reinforced
the concept that transport processes
are affected in multiple cell types
(Fig. 6F). It also provided further gran-
ularity. For example, leukocyte activa-
tion and secretion are terms enriched
in the myeloid cell data, whereas met-
abolic processes are enriched in
T cells, interaction with immune cells
in endothelial cells and interaction
with endothelial cells and angiogene-
sis in fibroblasts. Altogether these
data demonstrate the power of
SCUREL identifying changes in APA-
related changes in 3′ UTR length, re-
vealing common functional themes,
despite substantial variability between
samples. A complete table of genes

E F

BA C

D

G

FIGURE 3. Analysis of APA in T cell activation and spermatogenesis. (A) UMAPprojection of the
T cell activation data set (Pace et al. 2018) showing activated (red), naive (green), and unassigned
(gray) T cells. (B) Scatter plot of AUC in function of log10(mean CPM) for 9099 TEs. The 1%quan-
tiles (red lines) of the distributions obtained from the randomized data set were used to identify
TEs whose length changed significantly. AUC values >0.5 indicate shorter 3′ UTRs in activated T
cells.TEswhose lengthchangeswereattributed toAPAbasedon thespanof the read3′ ends (see
Materials andMethods) are shown in green. (C ) Cumulative distribution of proximal peak usage
index (proximal PUI) for genes deemed by scAPA to undergo significant 3′ UTR length changes.
Activated T cells (red) generally have higher proximal PUI compared to naive T cells (blue), indi-
cating3′ UTRshortening inactivatedTcells. (D) UMAPprojectionof the spermatogenesisdata set
(Lukassen et al. 2018), with highlighted elongating spermatids (purple) and spermatocytes (or-
ange). (E) ScatterplotofAUC in functionof log10(meanCPM) for 7875TEs (seepanelB fordetails).
AUC values>0.5 indicate longer 3′ UTRs in spermatocytes. (F ) As inC, but comparing elongating
spermatids (red) with spermatocytes (blue). (G) Examples of genes deemed to exhibit significant
change in3′ UTR lengthbybothmethods (left), bySCURELonly (middle), or by scAPAonly (right).
For each example, the tracks are as follows: read coverage and cumulative distribution in the two
conditions (activated—red—and resting—green—Tcells for Tcell examples,elongatingsperma-
tids—purple—and spermatocytes—orange—for the spermatogenesis examples), followed by
coverage tracks fromscAPA for the same two conditions in gray. The threeblue tracks on thebot-
tom denote in order, the Refseq annotation of the gene, the TE region analyzed in SCUREL, and
the peaks identified by scAPA.
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with significant 3′ UTR shortening across all LUAD compari-
sons we conducted is available in Supplemental Table 1.
The data further indicate that protein transport processes
and intercellular communication are preferential targets of
APA across multiple cell types.

DISCUSSION

The remodeling of gene expression in cancers involves,
among other processes, alternative polyadenylation. A
tendency toward 3′ UTR shortening has been generally ob-
served, though to different extents, in virtually all studied

cancers (Xia et al. 2014; Schmidt
et al. 2018). Whether this is the result
of changes in the cell-type composi-
tion of the tissue or to cancer-related
changes in functionality in all cell types
has not been investigated so far. We
set out to answer this question, taking
advantage of single cell sequencing
data sets obtained from human lung
adenocarcinoma. As the sparsity of
the scRNA-seq data poses some chal-
lenges (Lähnemann et al. 2020) we
sought two distinct studies that used
the same sequencing platform, to
identify shared patterns of variation.
Furthermore, we developed an ap-
proach that controls for both imper-
fect annotation of transcript isoforms
and low read coverage in scRNA-seq.

Comparing data from cells of the
same type, but originating either
from tumor samples or from matched
control tissue, we found similar ten-
dencies toward 3′ UTR shortening in
the tumor environment for most cell
types. Furthermore, the proteins en-
coded by the transcripts that are af-
fected in various cell types cluster
into specific functional classes, specif-
ically the synthesis, traffic, secretion
and degradation of proteins. This im-
plicates APA in the regulation of pro-
tein metabolism and the organization
of subcellular structure.

Initial studies that described the
phenomenon of 3′ UTR shortening in
T cells and cancer cells proposed a
role in the regulation of protein levels,
as short 3′ UTR isoforms are more sta-
ble than those with long 3′ UTRs
(Sandberg et al. 2008; Mayr and
Bartel 2009). However, when the de-
cay rates of 3′ UTR isoformsweremea-

sured, they turned out to be rather similar (Spies et al. 2013;
Gruber et al. 2014), leaving open the question of functional
differences between 3′ UTR isoforms (Mayr 2018). More re-
cent work uncovered additional layers of 3′ UTR-mediated
regulation. For example, a role of 3′ UTRs in the localization
of the translated protein (UDPL) has been described for a
number of membrane proteins, including the immuno-
globulin family member CD47, whose localization to the
cell membrane protects host cells from phagocytosis by
macrophages (Berkovits and Mayr 2015). Interestingly,
CD47 is a conserved APA target in both LUAD data sets
that we analyzed here, its 3′ UTR becoming shorter in

BA
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D

FIGURE 4. APA in lung adenocarcinoma cells. (A) Scatter plot of AUC in function of log10-

(mean CPM) for cancer and alveolar cells in the Lambrechts (top) and Laughney (bottom)
data sets. TEs with significant APA-induced length changes are highlighted in green (num-
bers shown in insets). (B) The interaction network (from the STRING web server) of proteins
whose transcripts undergo 3′ UTR shortening in both data sets. (C ) Functional enrichment
analysis for genes whose TEs undergo shortening in cancer cells. Shown are the top 10
GO biological process terms (sorted by the false discovery rate, FDR). Analysis was per-
formed with STRING web server, using as background the set of genes found to be ex-
pressed in the lung samples. (D) Read coverage along TEs for a few example genes from
panel B (EIF1, CD44, and CD59). Each panel shows four tracks per data set, blue: cancer
cells, red: alveolar cells, coverage of the TE by reads (top track) and the cumulative coverage
of the TE by read 3′ ends (bottom track). In all cases, the 3′ UTRs are shorter in cancer com-
pared to alveolar cells.
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cancer cells compared to lung alveolar
cancer cells. This would predict
decreased localization of CD47 to
the surface of cancer cells, making
them more susceptible to apoptosis
compared to normal alveolar cells.
This may explain why increased levels
of CD47 are associatedwith increased
cancer-free survival of patients with
lung cancers (kmplot.com [Nagy
et al. 2021]). It will be very interesting
to apply methods for simultaneous
profiling of protein andmRNA expres-
sion in single cells (Stoeckius et al.
2017) to better understand the inter-
play between APA, gene expression,
and membrane localization of CD47
in cancers.

The concept that 3′ UTR shortening
is associated with proliferative states
was challenged in a recent study that
instead demonstrated its association
with the secretion of proteins, both
in trophoblast and in plasma cells
(Cheng et al. 2020). Our data fully
support this notion, extending the
data to cancer cells as well as T lym-
phocytes and myeloid cells. As the
protein production apparatus is pre-
sent in all cells, APA is a well-suited
mechanism for fine-tuning the expres-
sion of various components in a cell-
type- and cell-state-dependent man-
ner (Lianoglou et al. 2013). Associat-
ing APA with protein metabolism
rather than cell proliferation makes
the question of its upstream regula-
tion ever more puzzling because the
shortening of 3′ UTRs in proliferating
cells has been attributed to an in-
creased expression of 3′ end process-
ing factors mediated by cell cycle-
associated E2F transcription factors (Elkon et al. 2012). It
will be interesting to revisit this issue in a system where
the increased protein production and secretion can be de-
coupled from cell proliferation, as the B cell maturation sys-
tem (Cheng et al. 2020).

In conclusion, among the many applications of scRNA-
seq, analysis of cell-type-dependent polyadenylation re-
veals the relevance of APA as a general mechanism for reg-
ulating the metabolism and traffic of proteins within cells.
With SCUREL we provide a robust method for detecting
changes in 3′ UTR length for even low-expression genes
between cell types, in a manner that does not rely on accu-
rate PAS annotation.

MATERIALS AND METHODS

Data sets

Lung cancer samples

Lung adenocarcinoma (LUAD) andmatched control samples were
downloaded from the GEO database (Barrett et al. 2013), based
on the accession numbers in the original publications.
Specifically, from the Lambrechts et al. (2018) data set we used
the LUAD samples listed in Table 1 of the original publication (cor-
responding to patients 3, 4, and 6, three tumor samples and one
matched control sample for each patient). scRNA-seq data
(ArrayExpress [Athar et al. 2019] accession numbers E-MTAB-
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FIGURE 5. APA events in individual cell types. (A) Number of genes with APA-associated 3′

UTR shortening in the Lambrechts (green) and Laughney (orange) data sets. (B) Number of
genes with APA-associated 3′ UTR lengthening, same colors as A. (C ) Fraction of 3′ UTR short-
ening events in individual cell types, among all significant events. (D) Number of genes whose
TEs undergo significant length change in quasi-bulk samples, shortening and lengthening
events being shown separately. (E) Venn diagram of TE shortening events in T cells from the
two studies. Calculation of odds ratio and P-value of overlap with hypergeometric distribution
(seeMaterials andMethods). (F ) Similar for myeloid cells. (G) Biological process enrichment for
TEs undergoing significant shortening in T cells and myeloid cells from the Lambrechts (LB)
and Laughney (LN) studies. No process was specifically enriched in myeloid cells from the
Laughney data set. Plot generated with pheatmap (v 1.0.12). (H) Cellular component enrich-
ment for TEs undergoing significant shortening in T cells and myeloid cells from the two stud-
ies. No component was specifically enriched in T cells from the Laughney data set. Plot
generated as in G.
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6149 and E-MTAB-6653) were generated
in this study with the 10x Genomics
Single Cell 3′ V2 protocol. From the
Laughney et al. (2020) study we also used
LUAD and matched control samples,
which originated from three donors.
These samples were also generated with
the 10x Genomics Single Cell 3′ V2 proto-
col (accession number GSE123904).

Mouse testis samples

scRNA-seq data from the testes of two
8-wk-old C57BL/6J mice (Lukassen et al.
2018) were downloaded from theGEOda-
tabase (accession number GSE104556).

Mouse T cell samples

scRNA-seq data of FACS sorted T cells
from the lymph nodes and spleen of
C57BL/6J mice, three infected with OVA-
expressing Lysteria monocytogenes and
one naive (Pace et al. 2018) were down-
loaded from the GEO database (accession
number GSE106268).

Execution of scAPA

scAPA (Shulman and Elkon 2019) was
downloaded from the github repository
and executed with the same genome se-
quence that was used throughout the
study. For compatibility, the “chr” prefix
in the chromosome names was removed.
The lengths of the chromosomes were ob-
tained with samtools faidx. The homer
software (v4.11.1) required by the scAPA
package was manually downloaded from
http://homer.ucsd.edu/homer/. We col-
lected all other requirements specified
on scAPA github page in a conda environ-
ment. The removal of duplicate reads was
done by adjusting the existing umi_tools
dedup command in scAPA.shell.script.R
for 10x Genomics, using the following op-
tions “ –per-gene,” “ –gene-tag=GX,” “ –

per-cell.” This was necessary because ac-
cording to the protocol, one RNA frag-
ment could result in reads that do not
map at identical positions.

Extraction of terminal exons

Terminal exons were obtained from the RefSeq genome annota-
tions (gff), GRCm38.p6 for mouse and GRCh38.p13 for human,
with a custom script, as follows. Chromosome names from the
RefSeq assembly were converted to ENSEMBL-type names
based on the accompanying “assembly_report.txt” file. Only au-

tosomes, allosomes and mitochondrial DNA were retained.
Based on the genome annotation file, protein-coding and long
noncoding transcripts were retained, while model transcripts
(“Gnomon” prediction; accession prefixes XM_, XR_, and XP_)
were discarded. From this transcript set, the 3′-most exons (i.e.,
terminal exons, TEs) were retrieved. Overlapping TEs on the

E F
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FIGURE 6. APA events in individual cell types from individual patients. (A) Number of genes
with 3′ UTR shortening inferred frompatient 3 (green), patient 4 (orange), and patient 6 (purple)
samples from the Lambrechts data set. (B) Number of genes with 3′ UTR lengthening, same
colors as A. (C ) Fraction of 3′ UTR shortening events in individual cell types, among all signifi-
cant events. (D) Number of genes whose TEs undergo significant length change in quasi-bulk
samples, shortening and lengthening events being shown separately. (E) Venn diagrams of sig-
nificantly shortened TEs in myeloid, T, endothelial, and fibroblast cells from tumor relative to
matched control samples from distinct patients. Calculation of odds ratio and P-value of over-
lap with hypergeometric distribution (see Materials and Methods). (F ) Biological process en-
richment for TEs found to be shorter in cancer compared to matched control cells of
individual cell types, from patient 3 and patient 6. Plot generated with pheatmap (v 1.0.12).
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same chromosome strandwere clusteredwith intervaltree (v3.0.2;
python package) and from each cluster, the longest exon was
kept. The resulting set of TEs was sorted by chromosome and start
position and saved to a BED-formatted file. TE IDs were convert-
ed to gene names with biomaRt (v 2.46.3) using the ensembl
BioMart database. Duplicate gene names were discarded.

Processing of scRNA-seq reads

The workflow can start from mapped reads in cellranger-compat-
ible format, a file with cell barcode-to-cell-type annotation and a
genome annotation file. Alternatively, the cellranger count func-
tion can be used to map reads from FASTQ input data. Reads
from the FASTQ files were mapped with the function count
from the cellranger (v5.0.0) package to the reference human ge-
nomeGRCh38-3.0.0 sequence obtained directly from the 10x ge-
nomics website. This genome is a modified version of the
GRCh38 genome, compatible with the cellranger analysis pipe-
line. Reads are also aligned to the transcriptome. In this step,
cell barcodes and UMIs correction also takes place. Aligned reads
(BAM) with mapping quality (MAPQ) scores >30 were selected
with samtools (v1.12 [Li et al. 2009]). Reads without a cell barcode
“CB” tag were removed with samtools view, as were duplicated
reads using umi_tools dedup (v1.1.1 [Smith et al. 2017]). The
mapped reads are filtered, deduplicated and grouped by cell
type in the “cell type” mode or by cell type and tissue of origin
in the “condition” mode. In the latter case, quasi-bulk samples
are also constructed from the filtered reads that come from indi-
vidual conditions.

Cell-type annotation

The annotation of cell types in all data sets was carried out with the
approach described in Lambrechts et al. (2018). Filtered data (so as
to remove artifacts such as empty droplets) consisting of cellular
barcodes and countmatrices from individual data sets were loaded
in R (v4.0.3) with Read10X (from Seurat v3.2.3 [Butler et al. 2018]),
and Seurat objects were created with CreateSeuratObject. For
the lung cancer data sets, cells with <201 unique molecular identi-
fiers (UMIs), with <101 or >6000 genes or with >10%UMIs frommi-
tochondrial genes (whichmay indicate apoptotic or damaged cells)
were removed. For all data sets, genes with zero variance across all
cells (i.e., sum=0) were discarded. The gene expression counts for
each cell were log-normalized with NormalizeData with a default
scale factor of 10,000. In Seurat, 2000–2500 most variable genes
are used to cluster the cells. Here we used the 2192 variable most
variable genes, as in Lambrechts et al. (2018). These were selected
with FindVariableFeatures, with normalized expression between
0.125 and 3, and a quantile-normalized variance exceeding 0.5
for lung cancer and mouse T cell samples, and normalized expres-
sion between 0.1 and 8 for mouse testis samples. Gene expression
levels were then centered and scaled across all cells. After principal
component analysis (PCA) on themost variable genes, the number
of relevant dimensions n for each data set was determined by as-
sessing the variance explained by individual principal components
(PC) with ElbowPlot from Seurat. UMAP (McInnes et al. 2018) was
used to visualize the data projected on the n dimensions. For T
cell activation and LUAD samples, batch correction and data inte-
gration were performed with harmony (v1.0) (Korsunsky et al.

2019). Harmony was run on the first 30 PCs and set to group by
data set. The transformed data set was used for downstream analy-
sis (i.e., clustering of cells, visualization in 2D).

Various Seurat functions were used to identify the cell type of
individual cells. Cells were clustered using the shared nearest
neighbor (SNN) algorithm, which aims to optimize modularity.
First, FindNeighbors was executed using the first n dimensions
from PCA or harmony and with otherwise default settings (k=
20). Then, FindClusters with resolution parameter 0.6 for LUAD,
0.2 for T cells and 0.3 for spermatocytes was run, so as to retrieve
a number of clusters similar to those in the original publications
(Lambrechts et al. 2018; Lukassen et al. 2018; Pace et al. 2018;
Laughney et al. 2020). The expression of cell-type markers in
each cluster was assessed with FindAllMarkers. This function finds
genes that are differentially expressed between cells from one
cluster and all other cells, by applying a Wilcoxon rank sum test
on the log-normalized expression. Individual clusters were down-
sampled to the number of cells in the smallest cluster or to at least
100 cells. Only genes expressed in a minimum of 10% of the cells
in either population and with a log (base e) fold-change of at least
0.25 (default values in Seurat) were tested. Markers with adjusted
P-value <0.01 were considered significant and those with higher
expression in the selected cluster were considered as potential
markers for that cell cluster. For each cluster we counted the num-
ber of significant markers that matched known cell-type markers
(Table 1) and assigned the cell type to be the one for which a pro-
portion of >0.6 of known markers were specifically expressed in
the cell cluster. Generally, this assignment was unambiguous,
and when it was not, the cell-type assignment was donemanually,
taking into account the adjusted P-value and average log-fold-
change of all considered marker genes as well as the cell-type an-
notation from the Supplemental Table 3 of Lambrechts et al.
(2018), which contains additional cell-type markers. At least three
marker genes were required to assign a cluster to the correspond-
ing cell type, except for cancer cells that were annotated only
based on the expression of EPCAM.

Assessing 3′′′′′ UTR length differences with the AUC
measure

To assess changes in 3′ UTR length between groups of cells we
used the following approach. For simplicity, the analysis is carried
out for terminal exons (TEs) rather than 3′ UTRs, as 3′ UTRs are
generally contained in TEs, covering almost the entire length of
the TEs. We started from the BAM files of mapped reads from
two groups of cells. We computed the 3′ end coverage of individ-
ual TEs per strand with bedtools genomecov and parameter
“-bga.” The BED file with read 3′ end positions was used to obtain
the normalized reverse cumulative coverage of individual TEs,
that is, starting at the TE 3′ end and ending at the 5′ most nucle-
otide. Individual TEs were traversed from the end to the begin-
ning, recording the reverse cumulative coverage in the two
groups of cells as a function of position. The area under the result-
ing curve (AUC) was then calculated. An AUC of 0.5 corresponds
to identical position-dependent coverage of the TE by 3′ end
reads in the two groups of cells, that is, no difference in TE length.
An AUC value of 1 corresponds to all the 3′ end reads from the
group of cells indicated on the y-axis being clustered at the end
of the TE, before any reads from the other group are observed,
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thus the TEs are longest in this group of cells. Vice versa, an AUC
value of 0 corresponds to all the 3′ end reads from the group in-
dicated on the x-axis are observed before any reads of the other
group, thus the 3′ UTRs are longest in this group of cells.

If the read coverage of a TE is very sparse, the curve represent-
ing the coverage in the two cell groups will not be smooth, but
rather change in steps of 1/nwhere n is the number of reads map-
ping to the TE; deviations from the diagonal line of identical cov-
erage in the two groups will be common, due to the stochastic
sampling of the reads. To mitigate this effect and identify TEs
whose coverage cannot be explained by stochastic sampling of
low-expression genes, we generated a background data set, in
which we randomized the cell group label of the reads. This pro-
cedure preserves the number of reads obtained in each TE in each
group, but randomizes their position in the TE.

Finally, we identified TEs with AUCs indicating significant shifts
in PAS usage. For this, we extracted TEs with a normalized read
count (CPM)≥ 2 in both cell groups, roughly corresponding to
TEs with at least one count in each of the groups. As AUC values
depend on the overall expression of the TE, we used an expres-
sion-dependent AUC cutoff to identify the TEs significantly
changing length. This corresponded to the two-tailed 1% quan-
tile of the background distribution in each of the 20 equal-sized
log(mean expression between cell groups) bins, smoothened us-
ing the median over a running window of five values. Finally, to
ensure that the change in read coverage was due to APA, we
only retained significantly changed TEs for which the union of
the interquartile range of TE positions that were covered by 3′

end reads in the two samples spanned at least 200 nt.

Analysis of overlaps between data sets

We used a sample-specific background for the calculation of the
probability of overlap of genes and for the pathway enrichment
analysis carried out on the STRINGweb server. All TEs considered
in the AUC analysis, that is, TEs with CPM≥ 2, in each samplewere
combined and the unique set of TEs was used as background. In
particular, for the cell-type analysis of the Lambrechts data set, we
used the cell-type-specific union of TEs from patients 3, 4, and 6
and obtained 10,966 genes for myeloid cells, 10,473 for T cells,
11,269 for endothelial cells, and 11,857 for fibroblasts. For the
cell-type analysis of lung cancer data sets, the union of TEs con-
sisted of 10,177 genes in T cells and 9970 genes in myeloid cells.
We used the hypergeometric distribution to calculate the odds ra-
tio and associated P-value of the overlap between gene sets.

Pathway analysis

The gene symbols for TEs with significant APA events were ana-
lyzed via the STRING web server, which provides enriched
Gene ontology (GO) terms, KEGG and reactome pathways. As a
background gene set for the enrichment analysis we provided
the data set-specific list of expressed genes (CPM≥ 2).

Workflow execution

SCUREL was packaged in Snakemake and can be obtained from
https://github.com/zavolanlab/SCUREL.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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