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Abstract. With the steadily increasing abundance of omics data produced all over the world, some-
times decades apart and under vastly different experimental conditions residing in public databases, a
crucial step in many data-driven bioinformatics applications is that of data integration. The challenge

15 of batch effect removal for entire databases lies in the large number and coincide of both batches and
desired, biological variation resulting in design matrix singularity. This problem currently cannot be
solved by any common batch correction algorithm. In this study, we present reComBat, a regularised
version of the empirical Bayes method to overcome this limitation. We demonstrate our approach for
the harmonisation of public gene expression data of the human opportunistic pathogen Pseudomonas

20 aeruginosa and study a several metrics to empirically demonstrate that batch effects are successfully
mitigated while biologically meaningful gene expression variation is retained. reComBat fills the gap in
batch correction approaches applicable to large scale, public omics databases and opens up new avenues
for data driven analysis of complex biological processes beyond the scope of a single study.
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» 1 Introduction

Data-driven computational biology greatly depends on the availability of large, integrated data sets to provide
the necessary variety and statistical power for state-of-the-art machine and deep learning approaches, as
recently demonstrated by Alpha-Fold [24]. In particular, an in-depth understanding of general trends in
expression and transcription profiles are key to further the progress on important research questions such as

» overcoming microbial antibiotic resistance, [16, 3] or cancer therapy failure [27, 33]. By mining large databases
of individual experiments, it may be possible to identify novel biological mechanisms that cannot be found
by studying each individual, small-scale experiment alone. This possibility poses a problem shift towards the
need for integrating more biologically diverse data obtained from numerous independent experiments, rather
than drawing direct experimental comparisons.

3 To this end, public databases such as the Gene Expression Omnibus (GEO) [7,12], are essential data
sources. However, as the published independent studies originate from different laboratories, are collected
over a large time span, under different biological, and technical conditions, strong batch effects (i.e. unwanted
and biologically irrelevant variation) preclude a comprehensive analysis of pooled data. In order to be able
to compare individual entries of such databases the batch effects need to be mitigated. Additionally, desired

w biological variation (referred to in this paper as “ (experimental) design”) between different independent
experiments needs be conserved in any algorithm which aims to remove the batch effects.

Although a range of batch correction algorithms has previously been suggested [46, 28,40, 8], only a
small subset of these remains applicable in this large-scale setting. In particular, most previous algorithms
cannot incorporate high-dimensional experimental design information. Here, we present a simple, yet effective

»s adaptation of the popular empirical Bayes method [22] (ComBat) to account for a large amount highly
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correlated biological covariates (“design features”). ComBat is based on ordinary linear regression and,
therefore, will fail if the system is under determined.
We test our method on real-world microarray data evaluating the impact of culture conditions on the gene
expression profiles of Pseudomonas aeruginosa (PA). PA is a Gram-negative bacterium with a large genome
so  [44] that thrives in a variety of environments and has been declared a critical priority pathogen for the
development of new antimicrobial treatments [45]. A large range of studies have previously investigated the
impact of culture conditions (e.g. growth media, temperature, oxygenation) on the gene expression profiles
of PA. A comprehensive review of the perturbations caused by these different microenvironmental cues is
missing as a consequence of the lack of harmonised data allowing for a direct comparison. The contributions
ss of this paper can be summarised as follows.

e We extend the ComBat algorithm to handle many, highly correlated covariates, and (optionally) to
perform feature selection.
e We address the issue of assessing the efficacy of the batch correction by investigating a range of suitable
metrics.
o o We present a large, harmonised data-set of PA expression profiles in response to different microenviron-
mental cues, and validate that biologically meaningful differences in transcription profiles are retained.

The paper is organised as follows. After reviewing relevant literature in Section 1.1 we introduce our
reComBat algorithm in Section 2. In the second part of Section 2 we also introduce a large variety of
evaluation metrics to quantify batch correction efficacy. In Section 3 we apply reComBat on a real-world

e data set of PA gene expression profiles. We conclude Section 3 by demonstrating, as a proof of concept, the
biological validity of the harmonised data set. Our results are summarised and outlook on future research is
given in Section 4.

1.1 Related Work

A large variety of batch correction methods has previously been suggested for both bulk and single cell
o sequencing data (see e.g. [28,46,50]). Here, we focus on batch correction methods for bulk data. In general,
batch correction methods can be divided into the following categories:

Normalisation to reference genes or samples
Discretisation methods

Location-scale adjustments

Matrix factorisation

Deep learning based

75

Algorithms, such as cross-platform normalization [42] or reference scaling [25], which employ references, are
infeasible in the public data domain: “Reference” or “house keeping” genes may be impossible to define for
some organisms, particularly microbes, eliminating the possibility to harness these as common ground for

s batch effect analysis and correction. Given a large (i.e. hundreds of independent experiments) public data
set, it would be highly unlikely that overlapping samples or a common reference experiments are available
for all of these.

Approaches that discretise expression data into categories (e.g., “expressed” vs. “not expressed”) can be
hard to implement rigorously without a relevant control. Furthermore, the information loss due to discreti-

s sation may affect the results of any advanced downstream analysis of the harmonised data.

Location-scale (LS) methods adjust the mean and/or variance of the genes. The simplest such methods use
data standardisation [30] or batch mean-centring [43]. One of the most popular LS method is the empirical
Bayes algorithm, ComBat [22]. Data standardisation generally only works if the batch effect is a simple
mean/variance shift and it also does not account for additional confounders. Despite reasonable success for

w the correction of local, i.e. within one experiment, or moderate (i.e. comprising few, biologically correlated)
batch effects most location-scale adjustment methods either provide insufficient correction in the presence
of strong batch effects (e.g. standardisation) or are unable to account for highly correlated design features
(e.g. ComBat).

Matrix factorisation builds on decomposition approaches such as principal component analysis (PCA)

s or singular value decomposition (SVD) [2]. The aim is to identify and remove factors (singular vectors or
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principal components) characterising the batch. While this approach can work in small scale experiments, it
is unclear how to apply these methods when there is strong confounding of batch and biological variation. A
tangential approach to matrix factorisation is to estimate unwanted variation via surrogate variables (SVA)
[28]. Due to the fact that in our setting we assume that we know all sources of variation, we do not consider
100 SVA.
Recently, nonlinear models, often based on neural autoencoders, have gained popularity (e.g. normAE
[40], AD-AE [10], or scGEN [32]). Most models aim to find a batch-effect-free latent space representation
of the data via adversarial training. While an advantage of these methods is their flexibility in being able
to account for batches, but also desired biological variation, their major drawback is that the batch effect
s is only removed in a low-dimensional latent space and any downstream analysis is necessarily constrained.
Further, in order to fully leverage the deep learning machinery, data sets with thousands of samples are
needed.

2 Algorithm and Evaluation Metrics

In this section we introduce the mathematical and computational tools used in this paper. We start by
1o defining our modification to the popular ComBat algorithm, reComBat and then we proceed to introducing
a range of possible evaluation metrics to gauge the efficacy of data harmonisation.

2.1 Algorthim

ComBat: ComBat [22] is a well-established algorithm to perform batch correction of gene expression data.
The raw data is, in essence, adjusted in a three-step process.

us 1. The gene expressions are estimated via a linear model and the data is standardised.
2. The adjustment parameters are found by empirical Bayes estimates of parametric or non-parametric
priors.
3. The standardised data is adjusted to remove the batch effect.

The ComBat algorithm has seen many refinements and applications to domains outside of microarray data

2o (see e.g. [9,35,51]). However, most data sets have still been small and did not come with an extensive design
matrix. When the design matrix becomes large (many covariates to consider) and sparse, unexpected issues
can arise in step 1 of the algorithm. To illustrate the classic algorithm, we use the slightly modified ansatz
of [49],

Yijr = (XB%)jr + (CB)jk + oji + Yir + dir€ijk, (1)

15 where Yj;y, is the gene expression of the k' gene in the j'" sample of the i*!' batch. The matrices X and C are
design matrices of desired and undesired variation with their corresponding matrices of regression coeflicients
3% and 3¢. The matrix « is a matrix of intercepts, and « and § parameterise the additive and multiplicative
batch effects. The tensor € is a three-dimensional tensor of standard Gaussian random variables. Note, that
we implicitly encode batch- and sample-dependency by dropping the relevant indices, i.e. v depends on the

130 batch and gene, but is constant for each sample within the batch.
In the first step of the algorithm the parameters 3%, 3¢, and « are fitted via an ordinary linear regression

(OLR) on
Y = X3+ CB° +a= X8, (2)

where X € R™*™ where m is the number of features and n is the number of samples.

135 Once, the model is fitted, the data is standardised, then the batch effect parameters, 4 and b are estimated
using a parametric or non-parametric empirical Bayes method. Finally, the data is adjusted. For details,
please refer to the original publication [22].
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reCombat: Using standard results for OLR, we know that the optimisation of (2) is convex, if and only
if the matrix A = X X7 is non-singular. Therefore ComBat necessarily fails if A is rank-deficient, i.e. the
1o system is underdetermined.

Based on the popularity of ComBat this issue does not seem to be encountered frequently. One possible
explanation is that the sources of biological variation that are usually considered for batch correction of
samples within the same experiment are limited, that is m < n. When integrating entire databases, however,
the sources of biological variation are manifold and these can often only be encoded as categorical variables.

s One prominent example is taking all mutants of a particular wild type pathogen, which can number in the
hundreds. Encoding these as one-hot categorical variables creates a sparse, high-dimensional feature vector
and, when many such categorical features are considered, then m ~ n. If, either m > n or replicates (samples
with identical experimental design) exist, then, even for large-scale integration, A may be rank deficient.

To mitigate this issue, we use standard approaches from linear regression theory and fit the elastic net
model

Y =XpB"+CB+a, (3)
BB b6 = axgmin ||[¥ - Y5+ M8+ 118[1) + A (18715 + ||ﬁCH%)} , (4)

x
)

where |||, denotes the ¢, norm, and \; and A, are the LASSO and ridge regularisation penalties. Due to
150 this regularising modification of the algorithm we call our approach regularised-ComBat, in short reComBat.
Once the model is fitted the algorithm proceeds as usual.

2.2 Evaluating Batch Correction Efficacy

In the absence of a ground truth, quantification of the correctness of batch effect correction is difficult. Often,
efficacy of a batch correction is judged by visual inspection, however, rigorous, quantitative evaluation of
155 different aspects of the correction based on metrics are key.

This analysis is based on collections of samples with the same experimental design. Inspired by the graph
theoretical notion of n-hop neighbourhoods [31], we group samples into so-called Zero-Hops. Each Zero-Hop
defines a set of samples which share the exact same experimental design, a One-Hop would be a set of samples
which differ from another in exactly one design condition, and so on. To this end, data harmonisation efficacy

w0 can be quantified in terms of Zero-Hop purity and batch impurity.

We implemented seven evaluation metrics quantifying the sample distance measures, cluster (im-)purity
and batch/design classification performance on the obtained transcription profiles. Batch correction methods
were compared with respect to the following metrics with statistical significance being evaluated by Mann-
Whitney U test.

s Sample distance- and neighbourhood-based metrics

Cross-distances: We defined a simple metric which calculates the median distance between all samples
of a Zero-Hop and divides it by the median distance of all data points independent of batch or Zero-
Hop. Correction methods resulting in smaller distances for Zero-Hops and large distances for batch indicate
superior batch correction efficacy.

w  Distance Ratio Score: The cross-distance metric does not account for distances of individual samples but
gives scores the median distance only. To complement this analysis we further assess the distance ratio score
(DRS) [48]. The DRS quantifies the “closeness” of samples originating from the same condition versus the
closeness of samples which should not. The DRS metric for a data-set of n samples is defined as

1 d(Y5, Y a)
D _ 1 1 v T vnats
RSiog n ; o8 (d(Yin,db/S’f) 7 "

s where d(-,-) is a distance metric, Y; is the i*" sample and Yi at, Yiap/s: are the closest samples from a
different Zero-Hop (different type) and the same Zero-Hop (same type) but different batch respectively. A
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good correction of batch effects hence results in an increase in DRS)g.
To account for the fact that Y; g,/ = inf, i.e. no comparable inter-batch sample exists, we introduce the
exponential-form DRS,
R ( d(Y:, Y at)
180 DRSexp = — exp | V") — 1. (6)
P 2 d(Yi, Y av/st)

i=1
Here, a dataset with no comparable inter-batch points has a DRS of 0 and the larger the metric the better

the batch correction. Note, that modifications also exists when only comparing samples of the same type.
We report the DRS for all Zero-Hops.

Shannon Entropy: Following [8], we calculated the local Shannon entropy with respect to batch and Zero-

155 Hops within sets of IV nearest neighbours to a sample k. A good batch correction algorithm strives for high
batch entropy while maintaining a small Zero-Hop entropy. For each sample k the entropy S with respect to
batch b is defined locally as

Sk =— Zpb In(py), (7)
b=1

where p, denotes the locally estimated probabilities of the different batches and n; is the total number
1o of batches. The Zero-Hop entropy is defined analogously. We chose the number of nearest neighbours for
entropy calculation to be N = 14 corresponding to the median number of samples per Zero-Hop.

Cluster-based metrics

Minimum Separation Number: We define minimum separation number to be an integer quantifying the
overlap of Zero-Hop clusters. Based on agglomerative clustering, initially, all samples occupy a single cluster.

15 Then the number of clusters is increased in unit steps. The smallest number of clusters that assigns a Zero-
Hop to at least two clusters, is defined as the minimum separation number for this Zero-Hop. We report
mean values and standard deviations for the minimum number of separation steps required to separate all
Zero-Hops.

Cluster purity: We first cluster the (corrected) expression data into nzy clusters, where nzy is the number
20 of different Zero-Hops. The purity of each cluster ¢, purity(c), was calculated as the ratio of the number of
samples of the dominant Zero-Hop in ¢, n4 ., over the cluster size, n.,

purity(c) = n;,c . (8)

C

Gini impurity: The Gini impurity is a measure from decision tree learning [20, Section 9.2.3] and quantifies
the probability of mislabelling a randomly chosen element of a cluster according to the label distribution

25 of the cluster. Again, we create nzy clusters and use the Zero-Hop assignment as label. The output cluster
impurities are given by assigning a label to each cluster chosen by a majority vote and calculating the fraction
of majority labels in each cluster.

nzH

N
.. —1_ 2 ith = z,c, 9
gini(c) g p; with p . (9)

i=1

where n; . is the number of samples of Zero-Hop 7 in cluster c.

20 Classifier-based metrics

Linear Discriminant Analysis: The Linear Discriminant Analysis (LDA) optimises hyperplanes to maximally
separate data points according to their labels (here Zero-Hop) [20, Section 4.3]. We perform a stratified 10-
fold cross validation and compare the LDA score (classification rate) on the held out test set. Mean values
and standard deviations over the folds are reported.
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a5 Logistic-regression-based evaluation: This approach is inspired by the adversarial training of normAE [40].
In principle, any classifier should not be able to predict the batch from the gene expression profile of prop-
erly integrated data. Conversely, the prediction performance of the experimental design (Zero-Hop) should
increase. To this end, we used two logistic regression (LR) classifiers, one for batch and one for Zero-Hops.
Again, we perform a stratified 10-fold cross-validation and report the test set agglomerated balanced accuracy

20 and F1-Scores. Mean values and standard deviations over the folds are reported.

3 Experiments

In this section, we apply ridge reComBat to a microarray data set of Pseudomonas aeruginosa (PA) gene
expression data. We show quantitatively and qualitatively that reComBat is successful in removing the
substantial batch effects while retaining biologically meaningful signal.

»s 3.1 Data collection and preprocessing

Data was collected from the GEO database [7] (accessed October 2020). All entries on PA using the GPL84
Affymetrix GeneChip were considered. The GPL84 array comprises a total of 5900 probe sets including
annotated genome of PAO1 (5,568 genes) and other PA strains (117 genes), as well as 199 intergenic regions.
In total, n = 1260 samples within 150 independent batches (GSE identifiers) were identified. The expression
20 data were subjected to Robust Multi-array Averaging (RMA) using the justRMA function from the affy R-
package. The relevant experimental design regarding culture conditions and PA strain was extracted manually
and coarsened as outlined in Appendix A. For quality control (QC) we deleted all samples with incomplete
design information and single-sample batches. Due to the large quantity of unique modifications, we dropped
additional information regarding genetic alterations (mutations, plasmids, etc.) as part of the QC. As a final
25 step of the preprocessing, we pruned all single-batch Zero-Hops.

3.2 Overview of the compiled data pool

Given the the imposed exclusion criteria, we analysed a total of 887 samples, structured within 39 Zero-Hops
from 114 individual GSEs (i.e. batches) comprising 5 to 170 individual experiments each. An overview of
the data set before and after quality control can be found in Table 1. Figure 1 A-C gives an overview of the

a0 included, uncorrected data coloured by batch, Zero-Hops, and PA strain. A detailed overview of all design
categories contributing to the Zero-Hop definition is given in Appendix A Figure S1. As anticipated, we
observe clustering by batch, rather than by Zero-Hops, indicating the presence of batch effects in addition
to biologically meaningful variation.

Descriptor ‘Original‘After QC
No. of samples 1260 887

No. of batches 150 114

No. of unique experimental designs|179 39

Table 1. Overview of the included data obtained from the GEO database before and after quality control to account
for a minimum number of two samples per batch and a minimum number of two batches per unique experimental
design.

3.3 Batch correction methods

x5 Baselines: As baselines a broad array of applicable batch correction methods was used. In particular, we
chose one location-scale, one matrix factorisation and one feature-based baseline. As mentioned in Sub-
section 1.1, normalisation to reference samples and deep learning-based methods were not applicable and
discretisation would have resulted in too coarse features.


https://doi.org/10.1101/2021.11.22.469488
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.22.469488; this version posted November 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

reComBat: Batch effect removal in large-scale, multi-source omics data integration 7

Uncorrected Data

A) GSE B) Zero-Hops C) PA Strain
» . ® PROL .
'C' 5: .’ 100 B “ 35 : gﬂcm Isolate . o %, . “
P Oy - ¢ ‘e’ ° 30 ® PAO25 nd e’ .
< 0 & », . .
~ l. -..’-. PR . 80 s :‘.“‘: o 25 : ::2:;8339 L e ? f_. ..
. . ¢ v - ® MPAOL S @ o
. *° . N e P 2 L eee,
o P A e, S RN Cddo, <m0t
x, XN & a0 ?{s e '“.;’_ ® ':i‘"‘ ” .':‘....,0
s o WEIUHR R I K
.? 20 : . . i'. * e Se,
[Y - 5 -
@ (L) L
. o o o °
4 . - w °
Data processed with PC elimination
D) GSE E) Zero-Hops F) PA Strain
2, YRS
g 3 R » ¥ ¢
L 2. . ke
e & w LI * ¢ - &
25
. L) 5 . * 3
» .:‘ © a8 A 20 #-‘ 3 A
. o . ) . o
": . ' 40 P ‘:# 15 co: .':*
;‘.. .‘". 2 g & ‘3‘. 10 : zﬁ:iial Isolate % ;'. "* .'
. . o RO .
K e “ Walwtt Lot Rl
S TR . et EeN Dm0t e\
3 o 4 ® MPAOL o
Data processed with reComBat
G) GSE ", . H) Zero-Hops 1) PA Strain Y I : mlca‘ olate
‘ 35 % e PAl4
] 00 . & “tesd e PAO2S
L4 L4 PAOLlut
L ] 2 L d »* .4 L } ' : TBCF:OBBB
80 s ® MPAOL
14 o ¥ 20 L 4
@, o wey, o XY o
’9. :1 w© *'. * 15 g.. . #
& L, . )

2. v
F* & . 20 ¥ & ' »
CoThg g T L o %ﬁ”

N o e ® 0 N

Fig. 1. tSNE plots of the uncorrected (A-C) and corrected (PC elimination: D-F, reComBat with \; = 0, Ao = 107°:
G-I) data, coloured by batches (A, D, G), Zero-Hops (B, E, H), and PA strain (C, F, I). For uncorrected data
clustering is largely driven by the GSE, whereas the underlying culture conditions or microbial strains drive clusters
on corrected data.

Standarization: One of the simplest location-scale methods is standardisation of each sample. For each
0 sample we calculated the mean and standard deviation over all genes and z-scored the expression profiles
accordingly. All subsequent methods took the standardised data as input.

Marker Gene elimination: This approach aims to eliminate genes which are highlighted as indicative genes
of a batch. We first calculated marker genes between different batches and then eliminated the top eight
marker genes of each batch pair from the data. This reduced the features to 5150 out of 5900 genes.

s Principal component elimination: This method explicitly aims to bring Zero-Hops closer together. Samples
within on Zero-Hop should have the same design and, therefore, the same gene expression profile. The first
n principal components (PCs) of each Zero-Hop were calculated, with n being defined as 20% of the number
of samples in the Zero-Hop, but a minimum of three. PCs accounting for more than 10% of the variance
explained were subtracted from the data matrix.

x0 reComBat: We used parametric priors for the empirical Bayes optimisation and we tested a variety of
parameters for reComBat. In particular, we investigated pure LASSO (A = 0), pure ridge (A\; = 0), and
the full elastic net regression. The range of regularisation strengths tested were all possible combinations
(except for (0,0)) of A\; € {0,1072,107,1} and Xy € {0,10719 ... 1071, 1}. Note that the smaller values of
A1 yielded numerical instabilities. We report the best performing configuration only.
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s 3.4 Evaluation of the harmonised dataset

In addition to a quantitative comparison based on the metrics described in section 2.2, we provide a notion
of whether biologically meaningful expression profiles are retained following batch correction. Biological vali-
dation of the output is crucial as batch correction methods can be prone to overfitting [54]. As representative
examples we analysed data subsets differing either in terms of oxygenation status, culture medium richness,

oo growth phase, or clinical vs. laboratory PA strains. We find the marker genes for the Zero-Hops and evaluate
the top 50 genes driving the differences between selected pairwise comparisons. We then identify the relevant
underlying biological pathways driving differences.

Performance assessment from our metrics: We compared our batch correction baselines to the best
performing reComBat models. In order to quantify the correction success, we calculated the evaluation
a5 metrics of Subsection 2.2. Our results are summarised in Figure 2.

Data standardisation and marker gene elimination only had a minor, insignificant (all p-values > 0.05)
effect when compared to the raw data. PC elimination led to markedly improved evaluation metrics and,
hence, provided reasonable batch correction (see also Appendix B). However, despite significant (all p-values
< 0.001) improvement of PC elimination compared to raw data large variations were observed for different

20 Zero-Hops throughout all distance-based metrics for this correction method.

reComBat batch correction success depended on the regularisation type and strength imposed. Best
results for all evaluated metrics were obtained for ridge regularisation (A; = 0) with A < 0.001. Below
this threshold any observed improvements were minor. One possible explanation is due to the fact that, as
Ao — 0, the ridge regression approximates the OLR, i.e. an unregularised, solution. Whereas both LASSO

x5 and Elastic Net reComBat were inferior to PC elimination, ridge-reComBat outperformed PC elimination
in several of the assessed metrics with small variation across different Zero-Hops or clusters (see Figure 2).
We observe that stronger, particular LASSO, regularisation achieves superior batch heterogeneity (i.e. low
classification performance) but this comes at the cost of decrease in Zero-Hop performance. As such, ridge
regularisation was deemed most suitable for this experiment. Notice the LASSO-reComBat performs implicit

20 feature selection due the ¢; regularisation. This could hint to the fact that more balanced feature weighting
(as provided by ridge-reComBat) is beneficial.

These positive results for ridge reComBat can also be observed by visual inspection of tSNE plots (see Fig-
ure 1D-F). Separated clusters based on the underlying culture conditions and microbial strains are achieved.
Detailed tSNE plots coloured for all design matrix elements for all baselines and varieties of reComBat

25  addressed by evaluation metrics are provided in Appendix B, Figures S3 -S7.

In terms of the gauging of the metrics themselves for the ability to detect batch effects, we conclude that
classifier-based metrics are far superior to any other approaches. Shannon entropy can detect a larger spread
in batch vs. Zero-Hop entropy, however, the findings may strongly vary by the specific subset. It can also
be argued that entropy strongly depends on the choice of the number of nearest neighbours. Likewise, the

o median pairwise distance and DRS metrics show some ability to detect batch correction, but due to the strong
dependency on the Zero-Hop the spread in values may also be large. The minimum separation clustering
clearly shows when a batch correction can be considered effective. However, due to repeated clustering (up to
number-of-batches many clusterings), calculation of minimum separation number is computationally far more
expensive than distance based metrics. A good mid-point metrics between classifier-based evaluation and

ss  cluster-based evaluation seem to be the cluster-purity measures, which show good resolution and manageable
dependency on the Zero-Hop. Of course, any of these metrics could be accumulated to a single number via
averaging over the Zero-Hops.

Characterisation of the harmonised dataset In order to preclude over-correcting the data it is essen-
tial to demonstrate that biologically meaningful expression profiles are retained following batch correction.
s Indeed we were able to show that pathways previously known to be important in the relevant culture con-
ditions were identified (see Supplement for a complete lists of the extracted genes for each comparison).
For instance, when comparing standard growth conditions (PA grown in liquid LB, while shaking in aerobic
conditions at 37°C, in exponential growth phase) to hypoxia conditions, we find that genes involved in aero-
taxis (PA1561) [21], Fe-S cluster biogenesis (PA4615) [39] and iron acquisition (PA2391, PA2399, PA2407,
as  PA2948, PA3404-3405, PA3407-3408) [15,17,18,34, 36] are major drivers of differences. When comparing
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Fig. 2. Evaluation metrics scoring the impact of batch effects by evaluating the variety of different batches and/or
Zero-Hops of a specific sample. Box plots represent the lower and upper quartiles (box) together with the median
(central dents) and full range (whiskers) over all samples, clusters, or Zero-Hops depending on the relevant metric.
LDA scores and LR classification performance are given reported over ten cross validation folds (F, G, H).

cultures in exponential to stationary phase under hypoxia conditions, genes involved in pyoverdin (PA2412-
2413, PA2426) [11,47] and pyochelin (PA4221-4226, PA4228-4231) [4, 14, 38] biosynthesis and transport, iron
starvation (PA0197, PA2384, PA3407, PA4468-PA4469) [1, 19,52, 53] and quorum sensing (PA2512-2514) [26]
were relevant. Finally, for a comparison between exponential growth of the laboratory strain PAO1 vs. clin-

ical isolates

in rich media (37°C, aerobic) we find cup genes (PA4081-PA4084, PA0994) that are involved in

motility and attachment and with this in biofilm formation [41]. This indicates a difference in attachment
between those strains that might be coming form the environment the strains have adapted to grow in

(laboratory

vs. patient).


https://doi.org/10.1101/2021.11.22.469488
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.11.22.469488; this version posted November 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

10 Adamer&Briiningk et al.

In all cases, a large amount of hypothetical genes of unknown function also flagged up - an expected

s observation as roughly two thirds of the genes encoded in the PA genome have an unknown function. The

harmonised data set hence serves for hypothesis generation motivating further (experimental) validation. By

mining the harmonised data set, we can also perform comparisons that have, to the best of our knowledge,

never been directly performed before. For instance, when we compare growth in LB with growth in media

that have fewer nutrients than standard LB, we find that several nutrient uptake pathways are of particular

s importance. In particular, genes involved in phosphorous uptake and stress (PA0676, PA0680, PA0683,

PA0686, PA0690-0693, PA0842, PA3372, PA3375-3376, PA3378-3379, PA3381-3384, PA4350) [5,6,13,23,

29, 37] and metal uptake (PA2399, PA3407) [1,34] are deferentially regulated. As such, we were able to
demonstrate that biologically meaningful information was retained in the harmonised data.

4 Discussion

s Public databases play an increasingly important role for data-driven meta-analysis in the field of compu-
tational biology. Despite great efforts of harmonising data collection, considerable, yet unavoidable, biolog-
ical/technical variation may mask true signal if data are pooled from several sources. Aiming at drawing
generalisable conclusions from agglomerated data sets, it is essential to correct such batch effects in a set-
ting where overlapping samples, or standardised controls, are unavailable. Often large number of batches

uo coincides with desired biological variation, which renders a range of standard batch correction algorithms
inapplicable. Here, we presented a simple, yet effective, means of mitigating highly correlated experimental
conditions through regularisation and compared various elastic net regularisation strengths for this purpose.

reComBat outperformed standard approaches for large scale batch correction, including data standard-
isation, principal component and marker gene elimination with respect to the design subsets under study.
us  We demonstrate not only the superiority of reComBat compared to these baselines but by providing a large
variety of evaluation metrics also give a notion for the overall performance of our algorithm. Moreover, we
demonstrate adequate batch correction performance while retaining desired biological signals, as is confirmed

by manual inspection of the harmonised data.

A limitation of the biological evaluation is the fact that performing marker gene analysis between the

0 Zero-Hops is done on the corrected data. This procedure might implicitly bias the p — values obtained for
the marker genes as any batch correction method reduces the degrees of freedom of the data - as such we
specifically included all of the top 50 scoring genes in our literature search, irrespective of significance levels at
this point. Traditionally, differential gene expression analysis is performed on uncorrected data with relevant
confounders given as an input. However, given the complexity of the task it may be essential to correct batch

s effects first, before performing any marker gene analysis. Despite our simplified evaluation, it was possible
to show that biologically meaningful target pathways could be identified. Yet, our evaluation was limited to
literature-based validation of the identified driver pathways. Experimental validation of the proposed findings
is key in confirming information on the underlying biological mechanisms. Here, the identified differences in
gene expression may serve mostly the purpose of hypothesis generation.

360 Another possible use of reComBat is its application to RNA sequencing and other types of omics data.
Although similar numbers of samples are publicly available for bulk RNA sequencing of PA under varying
culture conditions, additional issues, including annotation standardisation between strains leads to great
preprocessing efforts which we are currently further investigating. We also would like to stress the time
intensive manual work involved in the collection of the experimental design to provide an optimal data

s annotation.

In this work, we deliberately decided against the application of deep or nonlinear models as in the setting
of bulk sequencing data the number of samples may be insufficient for model training (ranging in the order
of hundreds, rather than thousands). Hence, increasing model complexity may result in overfitting of the
batch correction. We would like to stress, that in case of e.g. single cell RNA sequencing experiments, or

s larger data sets, the situation may indeed be favourable for nonlinear approaches. Investigating non-linear
interaction in experimental design constitutes part of future research.

From an application perspective, however, we showed how a straightforward adaption of the popular
ComBat algorithm can drastically increase its usability. ComBat benefits from low computational cost and
rigorous underlying theory and it is easy to apply in practice. By further publishing reComBat as a python
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w5 package? our method is readily available to the community. We also make the harmonised data set with all
its metadata available to the wider research community.> This will allow researchers to gain novel insights
into the behaviour of the incredibly adaptable PA - a key for developing new drugs against this increasingly
resistant pathogen.

Data availability

0 We make reComBat available as python package (https://github.com/BorgwardtLab/reComBat.git) and
have also published the code, harmonized and uncorreced data in the following repository:
https://github.com/BorgwardtLab /batchCorrectionPublicData.git
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