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ABSTRACT 43 
 44 
Neurogenesis comprises many steps from progenitor proliferation to neuronal differentiation and 45 
maturation. These processes are highly regulated, but the landscape of transcriptional changes 46 
underlying brain development are poorly characterized. Here, we describe a developmental 47 
single-cell RNA-seq catalog of ~220,000 zebrafish brain cells encompassing 12 stages from 12 48 
hours post-fertilization to 15 days post-fertilization. We characterize known and novel gene 49 
markers for ~800 clusters and provide an overview of the diversification of neurons and 50 
progenitors across these timepoints. We also introduce an optimized version of the GESTALT 51 
lineage recorder that enables higher expression and recovery of Cas9-edited barcodes to query 52 
lineage segregation. Cell type characterization indicates that most embryonic neural progenitor 53 
states are transitory and transcriptionally distinct from neural progenitors of post-embryonic 54 
stages. Reconstruction of cell specification trajectories reveals that late-stage retinal neural 55 
progenitors transcriptionally overlap cell states observed in the embryo. The zebrafish brain 56 
development atlas provides a resource to define and manipulate specific subsets of neurons and 57 
to uncover the molecular mechanisms underlying vertebrate neurogenesis. 58 
 59 
 60 
INTRODUCTION 61 
 62 
The vertebrate brain develops from a limited pool of embryonic neural progenitor cells that cycle 63 
through rounds of proliferation, diversification, and terminal differentiation into an extensive 64 
catalogue of distinct neuronal and glial cell types. A central goal in developmental neurobiology 65 
is to investigate how neuronal complexity arises through molecular specification and commitment 66 
by studying the origins and fates of cells during development. Fundamental insights into these 67 
processes have been gained via classic approaches using genetic markers, perturbations and 68 
fate mapping (Cepko, 2014; Kretzschmar and Watt, 2012; Ma et al., 2017; Wamsley and Fishell, 69 
2017; Wilson et al., 2002; Woo and Fraser, 1995; Woodworth et al., 2017). These approaches 70 
have recently been complemented by single-cell genomics technologies in the developing 71 
nervous system, including the spinal cord (Delile et al., 2019; Rosenberg et al., 2018); cortex 72 
(Nowakowski et al., 2017; Zhong et al., 2018); olfactory system (H. Li et al., 2017); cerebellum 73 
(Carter et al., 2018; Tambalo et al., 2020); retina (Clark et al., 2019; Hu et al., 2019; Xu et al., 74 
2020); and whole animal (Farnsworth et al., 2020). These studies have provided transcriptome-75 
level views of the rich heterogeneous states that cells progress through as they proliferate, 76 
migrate and differentiate. Nevertheless, existing datasets are limited in their scope as they focus 77 
on specific brain regions, survey limited timepoints or do not enrich for neural cell types, thereby 78 
missing transitions and cellular diversity. Thus, there is a need for a large-scale 79 
neurodevelopmental single-cell resource that profiles whole brain development across a range of 80 
closely-spaced embryonic and post-embryonic stages. In addition, such an atlas would help 81 
address fundamental questions about the dynamics of brain development. For example, it is 82 
poorly understood how embryonic neural progenitors are molecularly related to post-embryonic 83 
neural progenitors. Furthermore, the transcriptional programs that are activated or suppressed as 84 
neural progenitors become fate-restricted and differentiate are largely unknown. 85 
 86 
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Here we present resources to obtain global views of neurogenesis, cell type heterogeneity, 87 
specification trajectories and lineage relationships in the developing zebrafish brain. We 88 
generated a single-cell RNA-seq (scRNA-seq) atlas consisting of ~220,000 cells from 12 hours 89 
post fertilization (hpf) to 15 days post fertilization (dpf). We also created a new version of the 90 
scGESTALT CRISPR-Cas9 lineage recorder (Raj et al., 2018b) with improved barcode capture 91 
and used it to query early lineage decisions. Using the cell type atlas, we analyzed the expansion 92 
of neuronal diversity, the loss of transitory embryonic progenitors, and the maintenance of distinct 93 
larval progenitor states. We reconstructed cell specification trajectories of the zebrafish retina and 94 
hypothalamus, revealing gene expression cascades and distinct specification programs. 95 
Collectively, the zebrafish brain development atlas reveals molecular and cellular changes at an 96 
unprecedented scale and resolution, and lays the foundation for the detailed analysis of neuronal 97 
diversification. 98 
 99 
 100 
RESULTS 101 
 102 
Building a developmental atlas of the zebrafish brain with single-cell transcriptomics 103 
  104 
To reveal the landscape of cell states and cell types during brain development, we profiled 105 
223,037 cells across 12 stages of zebrafish embryonic and larval development using the 10X 106 
Chromium scRNA-seq platform. Samples spanned from 12 hpf (shortly after gastrulation), when 107 
the embryo is undergoing early developmental patterning, to 15 dpf, when larvae are mature, 108 
exhibit complex behaviors, and are expected to exhibit substantial cell type diversity (Figure 1A). 109 
To enrich for brain cell types, we dissected the heads of animals from 12 hpf to 3 dpf, and the 110 
brains and eyes from 5 dpf to 15 dpf (Figure 1B). To determine cell type diversity in the head and 111 
brain of zebrafish, data from each stage was analyzed individually using Louvain clustering 112 
(Figure 1C and Sup Figure 1). This approach identified a total of 815 cell clusters across all 12 113 
timepoints (Sup Table). To classify each cluster, we compared enriched gene markers with 114 
existing gene expression annotations in the ZFIN database and literature, as described previously 115 
(Raj et al., 2018b). Plotting expression of known cell type markers identified clusters 116 
corresponding to neural progenitors (sox19a), dozens of neuron subtypes (elavl3, gad2, 117 
slc17a6b), eye cells (foxg1b, lim2.4, pmela, ca14, gnat1, opn1mw1), radial glia (mfge8a, s100b), 118 
neural crest (sox10), oligodendrocytes (mbpa), blood cells (cahz, etv2, cd74a), cartilage (matn4, 119 
col9a2), pharyngeal arches (pmp22a, prrx1b, barx1), sensory placodes (dlx3b, six1b), and 120 
epidermal cells (epcam, cldni), among others. As expected, cell type complexity increased with 121 
developmental time. We validated new marker expression across several cell types identified in 122 
our dataset, such as sdpra in the trigeminal placode, sox1a in the hypothalamus, and ompa in the 123 
retina (Figure 1D-F). Our analysis also revealed groups of embryonic clusters that were absent 124 
or transcriptionally distinct from larval clusters, suggesting that many embryonic cell states are 125 
transitory. Several of these transitions are known developmental changes (e.g. loss of placodes 126 
and rhombomeres), but changes in neural progenitor cell states are poorly understood (see 127 
below).  128 
 129 
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To enable direct comparison of cell types across our time course, we subsetted the 12 hpf dataset 130 
to only comprise neural populations and blood cells found in the brain, eliminating non-relevant 131 
head cells from earlier stages, such as mesoderm, placodes, and periderm. This approach 132 
resulted in an initial set of 21 clusters at 12 hpf (Figure 2A) that diversified into 98 clusters by 15 133 
dpf (Figure 2C). Notably, most clusters could be uniquely identified using a minimal group of 2-3 134 
enriched gene markers (Figure 2B, 2D). For example, at 12 hpf, the optic vesicle is identified by 135 
expression of rx2 and rx3; hindbrain rhombomeres 5/6 by hoxb3a and eng2b; and ventral 136 
diencephalon by nkx2.4a and dbx1a. Similarly, at 15 dpf, the cerebellar granule cells are marked 137 
by expression of oprd1b and zic2a; optic tectum by pax7a and tal1; and a new retinal cell type by 138 
kidins220a, foxg1b (exclusively detected in retinal cells) and tbx3a. We did not find unique gene 139 
combinations for cycling progenitors, differentiating progenitors and newly born neurons, as many 140 
of these subtypes had similar expression signatures of pan neuronal or pan progenitor marker 141 
genes, such as elavl3 and tubb5 in neurons, and rpl5a and npm1a in progenitors (Figure 2D, grey 142 
box).  143 
 144 
At 12 hpf, the early demarcation of multiple brain regions is already apparent and by 15 dpf these 145 
regions expand and diversify further. For example, the optic vesicle at 12 hpf is defined by one 146 
cluster and is the origin of 18 retinal cell types at 15 dpf. Similarly, a single cluster of ventral 147 
diencephalon cells (expressing shha, nkx2.4a, nkx2.1, rx3) at 12 hpf develops into 7 major 148 
hypothalamus cell types at 15 dpf. An exception to this diversification is the loss of rhombomeres 149 
(r1-r7) in the hindbrain (Moens and Prince, 2002).  150 
 151 
To further explore brain neuronal subtypes at 15 dpf, we analyzed the expression of transcription 152 
factors, neuropeptides and their receptors, and genes involved in neuronal physiology (e.g. 153 
neurotransmitters, transporters, receptors, and channels) (R. Chen et al., 2017; Pandey et al., 154 
2018; Tiklová et al., 2019; Zeisel et al., 2018). Our results indicate that nearly all identified neuron 155 
subtypes can be distinguished from one another via the expression of individual or combinations 156 
of genes belonging to these categories (Figure 3A-C). For example, cluster 2 and 84 neurons are 157 
GABAergic forebrain neurons that express dlx2a and dlx5a, while cluster 84 neurons additionally 158 
express six3b, gria1a and gria2b.  159 
 160 
We next asked if neuron clusters detected at 15 dpf are found in the earlier larval stages, when 161 
most behavioral experiments are performed (Sup Figure 2). 68% (23/34 clusters) and 74% (25/34 162 
clusters) of 15 dpf neuron clusters have a closely matching counterpart at 5 dpf and 8 dpf (based 163 
on enriched marker gene expression), respectively (Figure 3D). Sampling issues might have 164 
prevented the identification of additional overlapping clusters, but our data indicate a large overlap 165 
between identified cell types from 5 to 15 dpf. These results suggest that the zebrafish brain 166 
already has considerable cell type diversity at early larval stages. Furthermore, 97% (33/34) of 15 167 
dpf clusters overlapped with clusters identified in our previously described 23-25 dpf juvenile brain 168 
dataset (Raj et al., 2018b). Thus, by 15 dpf late larval stage, nearly all of the brain cell types that 169 
persist into the early juvenile stage have already been established. Notably, among cell types that 170 
are “missing” or under-represented at 15 dpf but readily detected at 23-25 dpf are cell types in 171 
the optic tectum, cerebellum and the torus longitudinalis, suggesting that these structures undergo 172 
further diversification after 15 dpf. In contrast, many cell types in the pallium, habenula (Pandey 173 
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et al., 2018), hypothalamus and preoptic area are detected across these stages, suggesting that 174 
they develop earlier. 175 
 176 
In summary, we generated a zebrafish brain development cell type atlas spanning 12 stages of 177 
brain organogenesis. The complete dataset can be explored using the accompanying app:  178 
https://github.com/brlauuu/zf_brain.  179 
 180 
Neurogenic expansion during brain development 181 
 182 
During development, cell composition shifts from predominantly progenitor populations to more 183 
differentiated cell types (Schmidt et al., 2013). To better characterize how differentiation varies 184 
during neuronal development, we first asked if our dataset captured the two neurogenic phases 185 
(primary and secondary) before and after 2 dpf that have been traditionally defined through 186 
histological analyses (Allende and Weinberg, 1994; Korzh et al., 1998; Mueller and Wullimann, 187 
2003). We considered neural progenitors as non-differentiated neuronal precursor cells that may 188 
or may not be proliferating, and express a subset of classical progenitor markers e.g. sox19a, dla, 189 
s100b, and cell cycle genes. Since the brain is undergoing substantial molecular changes during 190 
these developmental windows, we defined the transcriptional programs and cells that exhibit 191 
these programs as progenitor cell states. We calculated the percentage of the dataset that 192 
corresponds to neural progenitor cells, neurons (expressing markers such as elavl3, elavl4) or 193 
other cell types across each timepoint in our dataset. Since the earlier stages (12 hpf to 3 dpf) 194 
contained non-brain and non-eye cell types, while later stages were restricted to these tissues, 195 
we subsetted the early timepoints to only brain and eye cells. With increasing developmental time, 196 
we observed a progressive decrease in the fraction of the dataset comprising neural progenitor 197 
cells (from 53.8% to 18.3%) with a concomitant increase in neurons (from 4.5% to 58%) (Figure 198 
4A). For example, we observed an initial increase in the number of distinct progenitor clusters 199 
from 12 hpf to 18 hpf (early embryo stages), while the number of neuron clusters remained low 200 
(Figure 4A, right panels). From 20 hpf to 3 dpf (intermediate stages), the total progenitor clusters 201 
decreased while neuron clusters started to increase. For example, neuronal clusters expanded 202 
from 11 at 20 hpf to 23 at 36 hpf. This burst coincides with the presumed timing of late-stage 203 
primary neurogenesis in zebrafish (Mueller and Wullimann, 2003). Notably, by 5 to 15 dpf (late 204 
larva stages), a second expansion of neuronal populations, corresponding to the secondary 205 
neurogenic phase (Mueller and Wullimann, 2003), had occurred (53 neuronal subtypes at 5 dpf). 206 
At 5 dpf, we detected cell types identified as early as 36 hpf (e.g. tal1+, gata3+ neurons in the optic 207 
tectum, and tfap2e+, barhl2+ neurons in the thalamus), as well as subtypes only observed during 208 
the second phase, such as nrgnb+ prkcda+ neurons in the forebrain and cone bipolar cell 209 
subtypes in the retina. Collectively, our dataset captures both phases of neurogenesis and reveals 210 
the diversification of neurons in multiple brain structures. 211 
 212 
Dampening of spatial and developmental signatures during the transition from 213 
embryonic to larval neural progenitors 214 
 215 
We next analyzed our dataset to determine how cell states change during the transition from the 216 
embryonic to post-embryonic brain. The zebrafish brain undergoes lifetime constitutive 217 

https://github.com/brlauuu/zf_brain
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neurogenesis due to the persistence of neural progenitor pools distributed along the brain’s axis 218 
(Schmidt et al., 2013). However, the embryonic origins and transcriptional programs that underlie 219 
their development are poorly understood. Furthermore, how the molecular identities of embryonic 220 
and post-embryonic neural progenitor cell states compare have not been well characterized. To 221 
address these questions, we asked how neural progenitor gene expression signatures globally 222 
change from embryo to larva. Based on the results described above, we defined early embryonic 223 
brain progenitors as neural cell transcriptional states from 12 hpf to 18 hpf, intermediate stage 224 
brain progenitors as neural cell transcriptional states from 20 hpf to 3 dpf, and larval brain 225 
progenitors as neural cell transcriptional states from 5 dpf to 15 dpf (Figure 4B, Sup Figure 3). 226 
We determined the greatest sources of variation within these populations. For embryonic brain 227 
progenitors we found that the top 3 principal components comprise genes implicated in spatial 228 
and developmental patterning (Gibbs et al., 2017; Moens and Prince, 2002; Wilson et al., 2002; 229 
Wilson and Rubenstein, 2000). Cells exhibit characteristic anteroposterior and dorsoventral axial 230 
signatures (Figure 4C, top panel). For example, the telencephalon (anterior forebrain) is marked 231 
by foxg1a and emx3a expression, the midbrain by pax2a and eng2a, and the hindbrain is 232 
segmented into rhombomeres marked by distinct combinatorial patterns of egr2b and hox gene 233 
expression. Furthermore, all cells are in a highly proliferative state with strong expression of cell 234 
cycle genes such as pcna, mki67 and cdca7a. Collectively, the expression signatures are 235 
reflective of a developmental state during which the embryo is orchestrating a rapid expansion of 236 
neural progenitor populations concurrent with their acquisition of positional information and overt 237 
absence of differentiation (Schmidt et al., 2013; Stigloher et al., 2008).  238 
 239 
In contrast, larval neural progenitors comprised two major groups: proliferating (expressing cell 240 
cycle genes pcna and top2a) and non-proliferating (depleted expression of cell cycle markers) 241 
(Figure 4D, bottom panel). Indeed, the top 3 principal components in the larval progenitors 242 
comprised genes that mark stem cells (PC1, PC3) and differentiation (PC2). The non-proliferating 243 
group is subdivided into radial glia (stem cells) and her2+ neural progenitors expressing proneural 244 
genes insm1b and scrt2. The proliferating group is subdivided into her2+ and scrt2- neural 245 
progenitor cells, her2- progenitors, her2+ and neurod1+ progenitor cells, and upper rhombic lip 246 
progenitors (localized to cerebellum) expressing atoh1c and oprd1b. 247 
 248 
Strikingly, most larval progenitors were characterized by a reduced spatial signature (except for 249 
the cerebellar upper rhombic lip pool), such that cells were less enriched in region-specific 250 
transcription factors relative to embryonic progenitors (Figure 4D, top panel). For example, radial 251 
glia exist in multiple pools along the brain axis (Than-Trong and Bally-Cuif, 2015), but they formed 252 
a single cluster in our dataset (marked by expression of fabp7a, cx43, s100b and aqp1a.1). This 253 
result suggests that radial glia are largely transcriptionally similar. Although some expression of 254 
region-specific transcription factors was detected in larval progenitor clusters, these signatures 255 
were not sufficiently strong to resolve clusters as they were during embryonic stages.  256 
 257 
To explore the apparent dearth of spatial signatures further, we calculated pairwise correlation 258 
scores for 79 transcription factors and signaling proteins with known spatial expression patterns 259 
in the forebrain and midbrain based on previously described histological analysis (ZFIN), and 260 
which were identified as gene markers for neuronal clusters in our dataset. These genes showed 261 
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strongest correlations in embryonic progenitors, followed by intermediate stage progenitors, and 262 
were weakly correlated in larval progenitors (Figure 4E).  263 
 264 
Since spatial signatures are encoded by a combinatorial code of genes with overlapping 265 
expression patterns, we asked whether the same subsets of genes co-varied with each of the 79 266 
spatial markers across embryonic, intermediate, and larval neural progenitors. We found that 267 
intermediate stage progenitors showed overlap in co-varying genes with both embryonic and 268 
larval progenitors. For example, 44/79 genes had >40% overlap in their top 20 co-varying genes 269 
between embryonic and intermediate stage progenitors, and 23/79 genes had >40% overlap 270 
between intermediate and larval stage progenitors. In contrast, we found low overlap across 271 
embryonic and larval stages (3/79 genes had >40% overlap in their top 20 co-varying genes). 272 
Additionally, when we searched for genes that strongly co-varied with these 79 spatial markers 273 
(Pearson correlation >0.4), we found 38 genes during embryonic stages, 17 genes during 274 
intermediate stages, but only 4 genes during larval stages (Figure 4F).  275 
 276 
Taken together, these results demonstrate that intermediate stage progenitors resemble a hybrid 277 
of early embryonic and late larval progenitor signatures. Furthermore, the overall spatial code 278 
between embryonic and larval progenitors are distinct, and the embryonic spatial code involves a 279 
larger collection of genes. Notably, the signatures of larval progenitors resemble juvenile neural 280 
progenitor pools (Raj et al., 2018b), indicating developmental switches in neural progenitor 281 
identities from embryo to larva that are maintained to at least juvenile stages. Thus, embryonic 282 
states that existed in early progenitors are largely altered in late-stage progenitors: while spatial 283 
patterning signals are the greatest source of variation between embryonic neural progenitors, 284 
these signals are dampened in post-embryonic neural progenitors.  285 
 286 
An optimized scGESTALT lineage recorder  287 
 288 
A long-term goal in developmental neurobiology is to understand the lineage relationships of 289 
neurons. As a first step to derive lineage relationships of the cell types identified in the brain 290 
development atlas, we performed lineage recording experiments with scGESTALT. This lineage 291 
recorder enables simultaneous cell type and cell lineage identification by combining scRNA-seq 292 
with CRISPR-Cas9 barcode editing (McKenna et al., 2016; Raj et al., 2018b). To enable higher 293 
recovery of edited barcodes from single cells, we optimized the design and library preparation of 294 
the lineage recording cassette, including barcode editing of a transgene coding region and 295 
compatibility with the 10x platform (see Methods). To test the performance of this new recording 296 
cassette, we barcoded early embryonic lineage relationships by injecting Cas9 protein and target 297 
guide RNAs into 1-cell embryos (Figure 5A) and then isolated four 15 dpf larval brains. We 298 
recovered barcodes and transcriptional profiles of 5,794 cells total (barcode recovery rate 30-75% 299 
compared to 6-28% of our previous scGESTALT version (Raj et al., 2018b)). Edited barcodes 300 
showed no overlap between animals, displayed a diverse spectrum of repair products that 301 
spanned single and multiple sites, and were of varying clone sizes (Figure 5B-D, Sup Figure 4A). 302 
These features closely resembled the editing patterns obtained with our previous recorders 303 
(McKenna et al., 2016; Raj et al., 2018b). Using the recovered barcodes and associated 304 
transcriptomes, we reconstructed lineage trees representing cell lineage segregations formed 305 
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during early embryogenesis (for one example see Sup Figure 4B). These lineage trees 306 
accompany our transcriptional cell type atlas and are available to explore at 307 
https://scgestalt.mckennalab.org/    308 
 309 
Since the injection of editing reagents into 1-cell embryos saturates editing within 4-6 hours 310 
(McKenna et al., 2016) , we expected early lineage divergences to be overrepresented in our 311 
dataset. We first asked if our recorder captured diverse multi-lineage tissue origins of the eye, 312 
which is derived from neuroectoderm, surface ectoderm and mesoderm (Figure 5E). Eye cell 313 
types were identified as clusters that contained cells from scRNA-seq samples comprising eye 314 
tissue exclusively. Retinal cell types were defined as clusters expressing the pan-retinal marker 315 
foxg1b (Figure 1F), whereas non-retinal cell types were depleted in foxg1b. We performed 316 
pairwise comparisons of all eye clusters with at least 4 independent barcodes (each with at least 317 
2 cells). Since <1% of all barcoded cells were captured by scRNA-seq, we asked if there is cell 318 
type-specific barcode enrichment greater than expected by chance (“lineage segregation” in 319 
Figure 5E). For cluster pairs where we did not observe significant lineage segregation, we asked 320 
if this was due to a lack of sampling (“lineage status undefined”) or true lack of cell type-specific 321 
barcode enrichment (“no lineage segregation”). The latter case would indicate that two cell types 322 
shared a more recent common ancestor than cell types that segregated earlier. We found that 323 
multiple retinal and non-retinal cell types segregated from each other, as would be expected due 324 
to early separation of their tissue origins. Interestingly, however, a few non-retinal cell types (e.g. 325 
clusters 34, 44, 49) did not fully segregate from retinal cell types, suggesting that they shared a 326 
common progenitor. Furthermore, there was extensive lineage segregation between various non-327 
retinal cell types (e.g. clusters 45, 47, 86). In contrast, we did not observe lineage segregation 328 
between the different retinal cell types, likely due to the termination of barcode editing prior to 329 
terminal divisions. The exception was cluster 28 (cones), which segregated from clusters 15 and 330 
32 (cone bipolar cells) and 28 (retinal ganglion cells). Thus, lineage splits between retinal and 331 
non-retinal cell types, and within non-retinal subtypes preceded most splits within retinal subtypes. 332 
 333 
Next, we asked if our recorder captured lineage divergences between neurons across brain 334 
regions and the retina. Although the hindbrain and retina formed distinct lineages early in 335 
development, forebrain and midbrain neurons continued to share progenitors across the same 336 
barcoding period (Figure 5F). Pairwise comparisons of all forebrain and midbrain clusters 337 
revealed examples of emerging segregation along multiple spatial axes (Figure 5G). For example, 338 
we saw evidence of dorsal-ventral split: cluster 9 pallium (dorsal) separated from cluster 25 sub-339 
pallium (ventral). Furthermore, barcode enrichments confirmed rostral-caudal splits: cluster 64 340 
habenula separated from clusters 9 and 25 pallium (telencephalon, rostral) and clusters 0 and 13 341 
optic tectum (caudal). Overall, the lineage segregations agreed with classic fate mapping 342 
experiments (Woo and Fraser, 1995) and correlate with the anteroposterior and dorsoventral 343 
gene expression signatures of early progenitors (Figure 4). 344 
 345 
To query the lineage relationships of brain progenitor cell types, we performed pairwise 346 
comparisons of progenitor clusters at 15 dpf (Figure 5H). Notably, the upper rhombic lip (URL) 347 
progenitors (cluster 12) formed a separate lineage from all progenitor classes except cluster 74, 348 
a cycling progenitor subtype expressing pif1. Since URL progenitors give rise to granule cells in 349 
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the cerebellum, we asked if the two cell types shared barcodes. We found that the proportion of 350 
barcode overlap was highest between granule cells and URL progenitors (Figure 5I). The URL 351 
progenitors formed a distinct cluster as early as 12 hpf (cluster 9) in our transcriptional dataset. 352 
Thus, URL progenitors become discrete in both lineage and transcriptional signature relatively 353 
early in development.  354 
 355 
In summary, we present an optimized scGESTALT cassette with improved lineage barcode 356 
expression and recovery by scRNA-seq. The barcodes display high sequence diversity, which is 357 
important for generating large-scale distinct labels in a developing animal. The scGESTALT 358 
transgenic line is available as a resource for the community and can be paired with other 359 
transgenic lines for temporal, spatial or cell-type specific control of barcode editing (see 360 
Discussion).  361 
 362 
Cell specification trajectories in the retina and hypothalamus 363 
 364 
With the exception of a few model systems (Clark et al., 2019; Delile et al., 2019; Guo and J. Y. 365 
H. Li, 2019; Holguera and Desplan, 2018; Kim et al., 2019; Tambalo et al., 2019), little is known 366 
about gene expression cascades that accompany the development of progenitors into terminally 367 
differentiated neurons. To address how different neuronal populations become molecularly 368 
specialized, we reconstructed gene expression trajectories from 12 hpf to 15 dpf. We first tested 369 
our approach on the subsetted retina dataset in which cell types expand from a single cluster at 370 
12 hpf to 18 clusters at 15 dpf (Figure 2). UMAP embedding of the subsetted dataset revealed 371 
progressive paths from the embryonic state to defined cell types at 15 dpf (Figure 6A, Sup Figure 372 
5A). One outlier cluster that expressed kidins220a and whose progenitor state may not have been 373 
captured in our timepoints, was excluded from further analysis. Although UMAP represents 374 
continuity in the data, it does not order individual cells according to their relative developmental 375 
time (i.e. pseudotime). Therefore, we also used URD (Farrell et al., 2018) to construct a branching 376 
specification tree that represents the developmental trajectories in the retina at a higher resolution 377 
(Figure 6B, Sup Figure 5B, Sup Figure 6A-B). Many of the major branching features agreed with 378 
the UMAP representation. For example, the trajectories revealed the early segregation of RPE, 379 
shared branching of photoreceptor cells, a path towards multiple cone bipolar cell subtypes, and 380 
a common branchpoint between amacrine and retinal ganglion cells (RGC).  381 
 382 
Plotting gene expression of known early regulators of eye development and terminal cell type 383 
markers on the URD tree supported the inferred specification branches (Figure 6C, Sup Figure 384 
7). For example, pax6a was most enriched in the amacrine and RGC branches, and vsx1 marked 385 
cone bipolar cells with fezf2 marking one specific subtype. Notably, our analysis also revealed 386 
previously unknown markers and characteristics of horizontal and amacrine cells. Zebrafish 387 
horizontal cells are GABAergic (gad2+, gad1b+), but unlike mammals where these cells do not 388 
express GABA membrane uptake transporters (Deniz et al., 2011), zebrafish cells expressed 389 
slc6a1l (likely a duplication of slc6a1 involved in GABA uptake from the synaptic cleft), suggesting 390 
that they may be capable of uptake. Additionally, whereas slc32a1 GABA transporter is expressed 391 
in mouse horizontal and amacrine cells (Cueva et al., 2002), we observed restriction of slc32a1 392 
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to amacrine cells and slc6a1l to horizontal cells. Finally, we detected several novel horizontal cell 393 
markers such as ompa and prkacaa (Figure 1F).   394 
 395 
To discover the gene expression trajectories from precursors to different retinal cell types, we 396 
used differential gene expression approaches that characterize pseudotime-ordered molecular 397 
trajectories. This analysis revealed known and novel regulatory steps (Figure 6D, Sup Figure 8). 398 
For example, RGC specification trajectories confirmed several known differentiation regulators 399 
including sox11a, sox11b, sox6, irx4a, and pou4f2 (Rheaume et al., 2018). Similarly, known 400 
regulators of photoreceptor differentiation such as isl2a (Fischer et al., 2011), prdm1a (Brzezinski 401 
et al., 2010), otx5 (Viczian et al., 2003), and crx (Shen and Raymond, 2004) were expressed early 402 
in our photoreceptor trajectories, while known regulators of cone versus rod fate, such as six7 403 
(Ogawa et al., 2015), nr2f1b (Satoh et al., 2009), and nr2e3 (J. Chen et al., 2005) were expressed 404 
as those trajectories diverged. Furthermore, our analysis revealed novel transcription factors 405 
within the gene expression cascades. For example, we detected runx1t1, foxp1b, mef2aa in the 406 
RGC pathway; tfap2a in horizontal cell trajectory; and tbx3a and tbx2a in amacrine cell branches. 407 
Interestingly, among signaling pathways, we found that both apelin receptors (aplnra, aplnrb) 408 
were expressed in photoreceptor progenitors, while one of their ligands (apln) was expressed in 409 
differentiating cones; this suggests a potential cell autonomous role for apelin signaling in 410 
photoreceptor cells in addition to its role in preventing photoreceptor degeneration via vascular 411 
remodeling (McKenzie et al., 2012).  412 
 413 
A surprising result from this analysis was that a Muller glia pathway was detected earlier in 414 
zebrafish than expected based on studies in mouse, where these cells are detected late (Centanin 415 
and Wittbrodt, 2014; Clark et al., 2019). We found a cluster of cells as early as 20 hpf (cluster 50) 416 
that expresses markers (e.g. cahz, rlbp1a) that are shared with the Muller glia cluster (cluster 33) 417 
at 15 dpf (Sup Table). smFISH analysis of Muller glia markers validated their expression at 36 hpf 418 
and 2 dpf (Sup Figure 9). Similarly, in our transcriptional trajectories (Figure 6B), the Muller glia 419 
expression program is the earliest non-epithelial retinal program to diverge, commencing with the 420 
expression of several her-family transcription factors (her4, her12, and her15), then proceeding 421 
through a cascade of intermediate overlapping expression states such as onset of fabp7a, 422 
s100a10b, and later connexin genes that are characteristic of Muller glia fate (Sup Figure 8). Cells 423 
from all timepoints can already be found in the early part of the Muller glia branch. These 424 
observations suggest that cells early in development transition from a naive progenitor state to a 425 
Muller glia-like transcriptional state, and do so continually during larval development.  426 
 427 
To extend our analysis to a central brain region, we reconstructed specification trajectories and 428 
expression cascades for hypothalamic neurons. These cells expanded from a single ventral 429 
diencephalon cluster at 12 hpf to 7 clusters at 15 dpf (Figure 6E-H, Sup Figure 6C-D, Sup Figure 430 
10). The earliest branchpoint denoted segregation of prdx1+ and prdx1- cells. Committed 431 
hypothalamic progenitors in the prdx1- trajectory gave rise to neuronal precursors expressing 432 
proneural transcription factors such as ascl1a, scrt2, insm1a and elavl3 (early neuron fate marker) 433 
(Sup Figure 11). The specified cell types then matured over time and were characterized by 434 
expression of neuronal maturation markers such as tubb5, gap43, ywhag2, snap25a, scg2b and 435 
elavl4. The prdx1- group further diverged into two major groups: nrgna+ and nrgna- trajectories 436 
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(Figure 6F). The nrgna+ branch segregated into GABAergic tac1+, synpr- subtype and GABAergic 437 
tac1+, synpr+ positive subtype. The nrgna- branch subdivided into glutamatergic pdyn+ neurons 438 
and a GABAergic branch that further resolved to sst1.1+ and tph2+ neuron subtypes. We detected 439 
expression of known regulators of hypothalamus development in the early branches such as 440 
shha, rx3, nkx2.4b. We also identified new candidate regulators in later branches including nrgna 441 
in the synpr+ and synpr- trajectories, and sox1a, sox1b and sox14 in the pdyn+ trajectory (Sup 442 
Figure 12,  Figure 1E). The results in the retina and hypothalamus demonstrate that the brain 443 
development atlas can be used to reconstruct neuronal differentiation trajectories and define the 444 
underlying gene expression cascades 445 
 446 
 447 
Differences in progenitor specification strategies between retina and hypothalamus  448 
 449 
Pseudotime analysis represents cell trajectories in relative but not absolute time (Bendall et al., 450 
2014; Trapnell et al., 2014). Therefore, comparing the developmental and pseudotime age of cells 451 
can define whether molecular states are unique to a given developmental stage or persist through 452 
development (Figure 6B, 6F). For example, mapping RGC and pdyn+ neurons from different 453 
developmental stages onto the pseudotime trajectory showed the expected maturation of these 454 
cell types with developmental age (Sup Figure 13). In addition, even at 15 dpf some RGC and 455 
pdyn+ neurons were still in an immature state, consistent with the continuous growth and 456 
differentiation in the zebrafish retina and brain (Centanin and Wittbrodt, 2014; Schmidt et al., 457 
2013). 458 
 459 
To systematically analyze the relationships of pseudotime state and developmental stage, we 460 
mapped differentiated cells, precursors and progenitors found in different pseudotime windows to 461 
their origin in developmental time. We found that the proportion of differentiated cells increased, 462 
whereas the number of early progenitors in both retina and hypothalamus decreased with 463 
developmental age. In contrast, precursor cells from an intermediate pseudotime window were 464 
present in embryo and larva. These precursor cells expressed genes that were an intermediate 465 
of progenitor (e.g. insm1a, her4.1  in hypothalamus (Xie and Dorsky, 2017); hes2.2, rx2 in retina) 466 
and early differentiation genes (e.g. tubb5, gap43 in hypothalamus; foxg1b in retina). In addition, 467 
a second class of retinal progenitors mapped to an earlier pseudotime trajectory but was also 468 
present from embryonic to late larval stages (Figure 7, Sup Figure 14). Comparison of these 469 
progenitors between 24-36 hpf and 15 dpf identified only 71 differentially expressed genes. The 470 
majority of these genes (56/71) increased in all cells of the retina between these stages, while a 471 
few (15/71) were only upregulated in the 15 dpf group. A similar population was not detected in 472 
the hypothalamus. These observations suggest that as the retina grows, some progenitor cell 473 
states observed in the embryo persist later in development without extensive maturation.  474 
 475 
 476 
DISCUSSION 477 
 478 
As the brain develops, embryonic neural progenitor pools transition through many cellular states 479 
as they become more committed, diversify into post-embryonic neural progenitors, and undergo 480 
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terminal differentiation. Although regulators and transcriptional changes of this process have been 481 
identified (e.g. using specific driver lines and in situ detection of select genes), the global 482 
transcriptional networks mediating the sequential activation and maturation of neurogenic 483 
programs from embryo to later stages are largely unknown. To help address this question, we 484 
used scRNA-seq to generate a zebrafish brain development atlas. This resource supports the 485 
identification of marker genes, the comparison of cell types, and the dissection of cell specification 486 
and differentiation trajectories during vertebrate brain development. 487 
 488 
Our data address how the transcriptional programs of neural progenitors vary and contribute to 489 
fate-restriction during development. Different models to explain these processes have been 490 
proposed. For example, neural progenitors of the medial and lateral mouse ganglionic eminence, 491 
which give rise to cortical interneurons, have been found to converge to a shared mitotic signature 492 
regardless of their region of origin, followed by expression of cardinal fate-specific transcription 493 
factors post-mitotically (Mayer et al., 2018). In contrast, the spinal cord has dedicated pools of 494 
domain-specific neural progenitors that retain domain-specific signatures (Delile et al., 2019; 495 
Jessell, 2000; Lee and Pfaff, 2001; Sagner and Briscoe, 2019). Our results indicate that early 496 
embryonic neural progenitors in the brain are transcriptionally distinct from late larval neural 497 
progenitors. Gene expression profiles of neural progenitors switch from strong spatially 498 
segregated signatures in early embryos to proliferative and non-proliferative states in late larvae. 499 
These cell state changes might reflect developmental shifts from an establishment program during 500 
gastrulation, where strong spatial patterning cues set up regional boundaries, to a maintenance 501 
program at late stages, where progenitors are geographically confined and express dampened 502 
regional restriction signatures. Although expression of some spatially-enriched transcription 503 
factors (e.g. pax6a, eng2a, nkx2.4a) and signaling proteins detected in embryonic progenitors are 504 
also detected in late progenitors, the overall signatures are different, as these factors co-vary with 505 
different sets of genes in larva relative to embryo.  506 
 507 
The expression of pan-progenitor markers at larval stages raises the question of how neural 508 
progenitor pools remain or become fate restricted. There are several different scenarios that might 509 
address this question. First, it is conceivable that embryo and larva share a minimal core set of 510 
regionally-restricted transcription factors that are sufficient to ensure spatial restriction, despite 511 
differences in their relative expression levels and downstream targets. Spatial genes that are 512 
highly expressed in the embryo may be lowly expressed in the larva, and be sufficient to maintain 513 
regionally-restricted cell states. Second, cell-type specific transcription factors rather than 514 
spatially defined regulators might guide specification and differentiation at these stages, 515 
independent of positional information. Such signatures would be difficult to analyze via scRNA-516 
seq, which is biased towards recovering highly expressed genes. Third, it is also possible that 517 
restrictions at the genomic level, such as chromatin accessibility, may ensure that cells maintain 518 
the signature of their spatial origin. Fate mapping experiments of early and late neural progenitors, 519 
profiling open chromatin states of neural progenitors, and transcriptome analyses that recover 520 
lowly expressed genes will provide further insight into these questions.  521 
 522 
Our reconstruction of specification trajectories for cell types in the retina and hypothalamus 523 
revealed several findings. First, our data supports a multipotent progenitor model whereby 524 
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multiple differentiated cell types can be traced to common post-embryonic progenitors. For 525 
example, all retinal neurons can be traced to an early pseudotime progenitor branch containing 526 
cells from larval stages, consistent with multipotency and fate stochasticity of zebrafish retinal 527 
progenitors (Boije et al., 2015; He et al., 2012).  The early emergence of Muller glia observed in 528 
both the time course atlas and eye trajectory reconstruction is particularly interesting in light of 529 
clonal analyses. For example, single retinal progenitor cells in zebrafish give rise to clones 530 
comprised of neurons and one Muller glia cell (Rulands et al., 2018). This observation has been 531 
interpreted as evidence for a progenitor that first gives rise to neurons and then differentiates into 532 
a Muller glia cell. However, it is also conceivable based on our data that an early common 533 
progenitor divides, with one daughter expanding to give rise retinal neurons while the other 534 
daughter forms Muller glia. Second, our results reveal that whereas progenitor cell types in the 535 
rest of the brain appear molecularly distinct between the embryo and larva, there are progenitor 536 
cell states in the eye that are maintained from the embryo to larva (Figure 4 and Figure 7). A 537 
subset of 15 dpf retinal progenitors have similar transcriptional states as observed in the 538 
embryonic eye. This observation raises the possibility that a subset of long-term retinal 539 
progenitors may be “frozen” in an embryonic phase that could possibly underlie the multi-fate 540 
potential of these cells. An independent study of zebrafish retinal stem cells has proposed a 541 
similar conclusion (Xu et al., 2020). Collectively, these findings highlight differences in neurogenic 542 
programs in the central nervous system, and underscore the power of investigating multiple 543 
specification trajectories simultaneously. 544 
 545 
Our results also highlight differences between zebrafish and mammalian neurogenesis. For 546 
example, we detected pan-neuronal transcriptional signatures (e.g. neurod1, ascl1a, insm1a, 547 
neurog1) in zebrafish radial glia and other progenitors at late stages of development, suggesting 548 
that neurons remain the principal output of these cells. This is consistent with fate mapping studies 549 
that have shown that zebrafish radial glia persist into adulthood and contribute to neurogenesis 550 
(Schmidt et al., 2013). In contrast, radial glia progenitor cells in the developing embryonic mouse 551 
brain shift from neurogenic to gliogenic programs (Mission et al., 1991; Schmechel and Rakic, 552 
1979).  553 
 554 
While developmental atlases and trajectories can help identify cellular differentiation paths, a full 555 
understanding of cell type specification requires lineage tracing experiments. To catalyze such 556 
approaches we introduced improvements to scGESTALT through a redesigned recorder cassette 557 
for optimized mRNA expression and library compatibility with the 10X Chromium scRNA-seq 558 
platform. The resulting higher recovery of barcodes allows more dense reconstruction of lineage 559 
trees. Our analysis revealed differences between the timing of segregation between different brain 560 
regions: neuronal lineages in the retina and hindbrain diverged earlier than the forebrain and 561 
midbrain. These results complement classic zebrafish fate maps of brain compartmentalization 562 
(Woo and Fraser, 1995) and recent analysis of clonal cells in forebrain and midbrain (Solek et al., 563 
2017). Furthermore, our findings support early transcriptional and lineage segregation of 564 
cerebellar upper rhombic lip progenitors relative to other classes of progenitor cells. To query 565 
additional lineage divergences and combine with cellular trajectories, our optimized recorder can 566 
be readily adapted for barcoding lineages at developmental windows that correspond to different 567 
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branches of the specification trees (Raj et al., 2018b) or combined with cell- or tissue-specific 568 
Cas9 driver lines to introduce lineage labels in populations of interest.  569 
 570 
The resources presented here lay the groundwork for characterizing lineage histories and 571 
transcriptional changes underlying the development and diversification of the vertebrate brain. 572 
Future extensions include the generation of transgenic reporters to select populations of interest 573 
and perform deeper analyses of cell type heterogeneity and differentiation (Pandey et al., 2018). 574 
Cell specification trajectories can be extended to include additional subregions of the brain to 575 
generate increasingly complex trees and combined with other zebrafish scRNA-seq datasets 576 
(Cosacak et al., 2019; Farnsworth et al., 2020; Farrell et al., 2018; Lange et al., 2020; Pandey et 577 
al., 2018; Tambalo et al., 2020; Wagner et al., 2018; Xu et al., 2020) to trace complete trajectories 578 
from gastrulation to adulthood. Finally, it will be interesting to perform comparative studies by 579 
using our atlas in conjunction with data described in a recent preprint (La Manno et al., 2020). 580 
 581 
 582 
METHODS 583 
 584 
Zebrafish husbandry 585 
All vertebrate animal work was performed at the facilities of Harvard University, Faculty of Arts & 586 
Sciences (HU/FAS). This study was approved by the Harvard University/Faculty of Arts & 587 
Sciences Standing Committee on the Use of Animals in Research & Teaching under Protocol No. 588 
25–08. The HU/FAS animal care and use program maintains full AAALAC accreditation, is 589 
assured with OLAW (A3593-01), and is currently registered with the USDA. 590 
 591 
Chromogenic in situ hybridization  592 
Embryos were dechorionated with forceps and then fixed in 4% PFA in 1X PBS (pH 7.4) overnight 593 
at 4°C. After fixation, embryos were dehydrated in methanol series (0%, 25%, 50%, 75% and 594 
100% MetOH in PBSTween 0.3% (PBST)) and stored in 100% methanol at −20°C. Embryos were 595 
rehydrated by reversing the methanol series for 10 min in each step at room temperature (RT) 596 
and washed 2 × 5 min in PBST. To bleach pigment in 2 dpf fish, larvae were incubated for 10 min 597 
in bleaching solution (3% H2O2/0.5% KOH in ddH2O) at room temperature and washed 3 x 5 min 598 
in PBST (Thisse et al., 2004). For permeabilization, 2 dpf larvae were incubated with Proteinase 599 
K (10 μg/ml in PBST) for 2 min at RT and postfixed in 4% PFA in 1X PBS for 30 min at RT. 600 
Afterwards, embryos were washed 3 x 5 min in PBST at RT, prehybridized in HYB+ solution (50% 601 
Deionized Formamide (Amresco), 5X SSC (Ambion), 0.1% Tween-20, 5mg/ml Torula RNA 602 
(Sigma) in ddH2O) for 3 hours at 69°C, and hybridized overnight with the antisense probes diluted 603 
in HYB+ at 69°C. The rest of the steps were performed as described previously, by hand (Navajas 604 
Acedo et al., 2019). Before imaging, embryos were cleared using an increasing MetOH series. 605 
For imaging of 12 hpf embryos, the yolk was dissected away, and the embryos were flat mounted 606 
on a microscope slide and covered with a cover slip. Larvae were photographed on a Zeiss 607 
AxioZoom.V16.  608 
The antisense probes were synthetized from DNA fragments amplified from TLAB zebrafish 609 
cDNA using the following primers: klf17 (Fw GAAGGAAAGACTGCATCCTGAC; Rv 610 
CTGCTGTCCCAAAATAGGAGTT), ptgs2a (Fw CGAGGACTATGTTCAGCACTTG; Rv 611 
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TGCACATCGATCACAATACAAA), tp63 (Fw TGCTTTGCTAAATTGTGCTGTC; Rv 612 
ATTGCCGCTTATGAGAATCAAG), cavin2a (Fw GAGCCTTCTCGTGCTAACAAGT; Rv 613 
CAGGCATTTCAGTTCAATTTCA), sox1a (Fw AATCAAGACCGCGTAAAGAGAC; Rv 614 
TTTGGTGGAGTGTTTCTGAATG), pdyn (Fw AAGAGAACGCCATACTGAAAGG; Rv 615 
GCAGTTACGAATTGCCATGATA), dlx1a (Fw AAGGAGGAGAGGTTCGTTTCA; Rv 616 
AGTGTGTGTCAGCAGGTGTCTT). 617 
 618 
smFISH staining and imaging 619 
 620 
Single-molecule FISH probe sets were generated as previously described and coupled to either 621 
Atto 647N NHS ester (Millipore Sigma #18373) (foxg1b, cahz) or Atto 550 NHS ester (Millipore 622 
Sigma # 92835) (ompa, rlbp1a) (Lord et al., 2019). Sectioned larvae were affixed to polylysine-623 
coated #1.5 coverslips, and staining was carried out as previously described (Lord et al., 2019), 624 
with each coverslip contained in a well of a plastic 6-well plate. During the probe hybridization 625 
step, coverslips were placed upside-down onto a 100µl droplet of probe solution on Parafilm 626 
(Farack and Itzkovitz, 2020). Sample mounting was performed as previously described (Lord et 627 
al., 2019). Mounted samples were imaged on an Olympus spinSR spinning disk microscope 628 
fitted with a UPLAPO 60X/1.5 oil immersion objective using 0.3µm slices.  629 
 630 
smFISH image processing 631 
 632 
All image processing was performed in Fiji (Schindelin et al., 2012). Rolling-ball background 633 
subtraction (radius 25 pixels) was performed on smFISH channels before maximum intensity 634 
projections were produced from 30 slices (Figure 1F) or 50 slices (Sup Figure 9) of processed z-635 
stacks. Channels were scaled individually, maximizing for visibility.   636 
 637 
Optimization of scGESTALT lineage cassette 638 
In our previous iteration of scGESTALT, the barcode capture rate by scRNA-seq was 6-28%. (Raj 639 
et al., 2018b), thereby limiting the density of lineage tree reconstruction. To improve recovery we 640 
adapted a different transgenic cassette (Yoshinari et al., 2012) for lineage recording. This cassette 641 
has the following modifications compared to our previous recorder: (1) The heat-shock inducible 642 
(hsp70l) promoter of the previous version is now replaced with a constitutive ubiquitous promoter 643 
(medaka beta-actin) to drive strong widespread expression of the barcode mRNA. Expression of 644 
the cassette was confirmed by fluorescence and the signal was more intense than that obtained 645 
with the heat shock promoter. Furthermore, this version eliminates the requirement to heat shock 646 
edited animals to express the barcode prior to scRNA-seq experiments. (2) We adapted the 3’ 647 
end of the DsRed open reading frame as a lineage recorder cassette with up to 8 sgRNA target 648 
sites positioned next to each other. This vastly improved expression of the construct compared to 649 
our previous version where the recording cassette was placed downstream of the DsRed open 650 
reading frame. (3) We made library preparation compatible with the 10X Genomics platform. 651 
 652 
To generate scGESTALT.2 barcode founder fish, one-cell embryos were injected with zebrafish 653 
codon optimized Tol2 mRNA and pT2Olactb:loxP-dsR2-loxP-EGFP vector (gift from Atsushi 654 
Kawakami (Yoshinari et al., 2012) ). Potential founder fish were screened for widespread DsRed 655 
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expression and grown to adulthood. Adult founder transgenic fish were identified by outcrossing 656 
to wild type fish and screening clutches of embryos for ubiquitous DsRed expression. Single copy 657 
scGESTALT.2 F1 transgenics were identified using qPCR, as described previously (McKenna et 658 
al., 2016; Pan et al., 2013; Raj et al., 2018b).  659 
 660 
SgRNAs specific to sites 1-8 of the scGESTALT.2 array were generated by in vitro transcription 661 
as previously described (Raj et al., 2018a). To initiate early barcode editing, single copy 662 
scGESTALT.2 F1 male transgenic adults were crossed to wildtype female adults and one-cell 663 
embryos were injected with 1.5 nl of Cas9 protein (NEB) and sgRNAs 1-8 in salt solution (8 µM 664 
Cas9, 100 ng/µl pooled sgRNAs, 50 mM KCl, 3 mM MgCl2, 5 mM Tris HCl pH 8.0, 0.05% phenol 665 
red). Since editing results in loss of DsRed signal, transgenic animals were distinguished from 666 
wild type animals by amplifying the scGESTALT.2 barcode by PCR using genomic DNA from the 667 
tail fin at 15 dpf. In the experiments presented in this study, early lineage decisions were barcoded 668 
by injecting reagents at the one-cell stage. It is worth noting that the scGESTALT.2 barcode can 669 
be readily paired with a two-step barcoding protocol. This would require the establishment of a 670 
second stable transgenic line for in vivo expression of Cas9 and a subset of sgRNAs matching 671 
the target sequences of the new barcode cassette to enable sequential barcoding at early and 672 
late stages. Such a line can be established using a similar step-by-step guidance that is detailed 673 
in (Raj et al., 2018a). 674 
 675 
Processing of samples for scRNA-seq time course 676 
Wild type embryos (12 hpf, 14 hpf, 16 hpf, 18 hpf,  20 hpf, 24 hpf, 36 hpf) and larvae (2 dpf, 3 dpf, 677 
5 dpf, 8 dpf) were used for scRNA-seq analysis. Samples for 15 dpf had a mix of wild type and 678 
barcode edited larvae. Two of the 15 dpf samples consisted of only eye cells (no brain). Embryos 679 
from 12 hpf to 36 hpf were first de-chorionated by incubating in 1 mg/ml pronase (Sigma-Aldrich) 680 
at 28 C for 6-7 min until chorions began to blister, and then washed three times in ~200 ml of 681 
zebrafish embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, 0.1% 682 
methylene blue) in a glass beaker. Embryos were de-yolked using two pairs of watchmaker 683 
forceps, and the heads were chopped just anterior of the spinal cord. All processing steps were 684 
done using 100 mm Petri dishes coated with Sylgard (Raj et al., 2018a). Samples from 2 and 3 685 
dpf were processed similarly to the embryos, except they were not de-chorionated as they had 686 
hatched out of the chorions. Larvae from 5 dpf to 15 dpf were dissected to remove whole brains 687 
and eyes as described previously (Raj et al., 2018a). The following numbers of embryos and 688 
larvae were used for each timepoint: 12 hpf – ~20 embryos; 14 hpf – ~20 embryos; 16 hpf – ~18 689 
embryos; 18 hpf – ~18 embryos; 20 hpf – ~30 embryos; 24 hpf – ~30 embryos; 36 hpf – ~15 690 
embryos; 2 dpf – ~30 larvae;  3 dpf – ~30 larvae;  5 dpf – ~25 larvae; 8 dpf – ~ 25 larvae; 15 dpf 691 
– ~15 larvae. Tissues were dissociated into single cells using the Papin Dissociation Kit 692 
(Worthington) as described previously (Raj et al., 2018a). Cells were resuspended in 50 µl to 150 693 
µl of DPBS (Life Technologies) depending on anticipated amount of material, and counted using 694 
a hemocytometer. Samples were run on the 10X Genomics scRNA-seq platform according to the 695 
manufacturer’s instructions (Single Cell 3’ v2 kit). Libraries were processed according to the 696 
manufacturer’s instructions. Transcriptome libraries were sequenced using NextSeq 75 cycle kits.  697 
 698 
scGESTALT.2 library prep 699 
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To generate scGESTALT.2 libraries, lineage edited 15 dpf samples post cDNA amplification and 700 
prior to fragmentation were split into two halves. One half was processed for transcriptome 701 
libraries as instructed by the manufacturer. The other half was processed for lineage libraries as 702 
follows. To enrich for scGESTALT.2 lineage barcodes, 5 µl of the whole transcriptome cDNA 703 
was PCR amplified using Phusion polymerase (NEB) and 10XPCR1_F (CTACACGACGCTCTT 704 
CCGATCT) and GP10X2_R (GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT GCTGCTTC 705 
ATCTACAAGGTGAAG). The reaction (98 C, 30 s; [98 C, 10 s; 67 C, 25 s; 72 C, 30 s] x 14-15 706 
cycles; 72 C, 2 min) was cleaned up with 0.6X AMPure beads and eluted in 20 ul EB buffer 707 
(Omega). Finally, adapters and sample indexes were incorporated in another PCR reaction 708 
using Phusion polymerase and 10XP5Part1long (AATGATACGGCGACCACCGA 709 
GATCTACACTCTTTCC CTACACGACGCTCTTCCGATCT) and 10XP7Part2Ax 710 
(CAAGCAGAAGACGGCATACGAGAT-xxxxxxxx-GTGACTGGAGTTCAGACGTGT), where x 711 
represents index bases. These include A1: GGTTTACT; A2: TTTCATGA; A3: CAGTACTG; A4: 712 
TATGATTC. Thus, up to 4 scGESTALT.2 samples were multiplexed in a sequencing run. 713 
Libraries were sequenced using MiSeq 300 cycle kits and 20% PhiX spike-in. Sequencing 714 
parameters: Read1 250 cycles, Read2 14 cycles, Index1 8 cycles, Index2 8 cycles. Standard 715 
sequencing primers were used.  716 
 717 
Bioinformatic processing of raw sequencing data and cell type clustering analysis 718 
Transcriptome sequencing data were processed using Cell Ranger 2.1.0 according to the 719 
manufacturer’s guidelines. scGESTALT.2 sequencing data were processed with a custom 720 
pipeline (https://github.com/aaronmck/SC_GESTALT) as previously described (Raj et al., 2018b). 721 
The scGESTALT.2 barcode for each cell was matched to its corresponding cell type (tSNE cluster 722 
membership) assignment using the cell identifier introduced during transcriptome capture. Cells 723 
with fewer than 500 expressed genes, greater than 9% mitochondrial content or very high 724 
numbers of UMIs and gene counts that were outliers of a normal distribution (likely 725 
doublets/multiplets) were removed from further analysis. Clustering analysis was performed using 726 
the Seurat v2.3.4 package (Butler et al., 2018) as described previously (Raj et al., 2018b). For 727 
Figure 3 and Sup Figure 2, we selected the list of transcription factors, neuropeptides and their 728 
receptors, and genes involved in neuron electrophysiology from our enriched marker analysis and 729 
previous literature (R. Chen et al., 2017; Pandey et al., 2018; Tiklová et al., 2019; Zeisel et al., 730 
2018).  731 
 732 
Construction of lineage trees from GESTALT barcodes. 733 
All unique barcodes were then encoded into an event matrix and weights file, as described 734 
previously (McKenna et al., 2016; Raj et al., 2018b), and were processed using PHYLIP mix with 735 
Camin-Sokal maximum parsimony (Felsenstein, 1989). Individual cells were then grafted onto the 736 
leaves matching their barcode sequence. After the subtrees were attached, we repeatedly 737 
eliminated unsupported internal branching by recursively pruning parent-child nodes that had 738 
identical barcodes. Cell annotations are then added to the corresponding leaves. The resulting 739 
tree was converted to a JSON object, annotated with cluster membership, and visualized with 740 
custom tools using the D3 software framework. 741 
 742 
Lineage segregation analysis between cell types 743 

https://github.com/aaronmck/SC_GESTALT
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We combined all barcodes obtained from 4 fish. For our analysis, we only considered barcodes 744 
with at least two cells, and we only analyzed cell types with at least 4 barcodes. To test 745 
segregation between any two cell types/clusters, we first retrieved all barcodes that were present 746 
in at least one of the two cell types. Then, we split these barcodes into two categories: “shared 747 
barcode” or “specific barcode”. A shared barcode was defined as one that contains cells from 748 
both cell types. In contrast, a specific barcode was defined as one that only contains cells from 749 
one of the two cell types. Our null hypothesis is that the two cell types come from the same 750 
ancestor at the time of Cas9 editing. Thus, we asked whether the number of observed specific 751 
barcodes can be explained by chance under the null hypothesis. If it cannot be explained by 752 
chance, it indicates that the two cell types have segregated.  753 
 754 
To do so, we performed a randomization test as below: 755 

1. We generated a pool of cells. The size of the pool is the total number of cells from the two 756 
cell types. The ratio of the two cell types in the pool is equal to the ratio observed in the 757 
real data. Under the null hypothesis, the pool of cells come from the same ancestor, so 758 
they would share the same barcode. 759 

2. For each barcode, we randomly sampled the same number of cells of this barcode from 760 
the pool of cells.  761 

3. We repeated this for all the barcodes, and then calculated the number of barcodes that 762 
only contain one cell type (i.e. “specific barcode”). 763 

4. We repeated steps 2 and 3 5000 times. 764 
5. We calculated how many times (for example n times) the number of specific barcodes 765 

from the random sampling process is greater than or equal to the number of specific 766 
barcodes from the real data.  767 

6. The probability that the number of specific barcodes can be explained by chance under 768 
the null hypothesis is n/5000.  769 

7. If the probability < 0.01 (pvalue < 0.01), we rejected the null hypothesis.  770 
 771 
Next, for each cell type we split its corresponding pairwise comparison cell types into two 772 
categories: “with segregation” or “other”. For the “other” category, we considered two 773 
interpretations. First, it could signify that there is no segregation between the two cell types. 774 
Second, it could suggest that we did not recover enough cells with barcode information, such that 775 
there is not enough power to detect lineage segregation (low sampling). To distinguish between 776 
the two scenarios, for each cell type in the two categories, we calculated the ratio between the 777 
number of cells with barcodes and the number of all cells from scRNA-seq. If the ratio of one cell 778 
type from the “other” category is greater than or equal to the smallest ratio from the first category 779 
(“with segregation”), it indicates this cell type did not have low sampling issues. Thus, it supports 780 
the interpretation that there is no segregation between the queried cell types. Otherwise, we 781 
assign the cell type pair as “undefined” (i.e. insufficient sampling power to query lineage 782 
segregation).  783 
 784 
Granule cell analysis 785 
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For each progenitor cell type, we used barcodes that did not include any cells from the other nine 786 
progenitor cell types. The Jaccard Index between each progenitor cell type and granule cell was 787 
calculated as below: 788 

Jaccard Index =
the number of shared barcodes between the two cell types

the number of barcodes in either cell type
 789 

 790 
Analyzing dampened spatial correlations in progenitors 791 
Progenitors were isolated by subsetting the data to include clusters expressing markers such as 792 
sox19a, her genes, pcna, mki67, fabp7a, gfap, id1, etc (Supplementary Table). Cells from 12 hpf 793 
– 18 hpf were considered embryonic progenitors, cells from 20 hpf – 3 dpf were considered 794 
intermediate progenitors, and cells from 5 dpf – 15 dpf were considered larval progenitors. 795 
Variable genes were calculated for embryonic, intermediate and larval progenitors separately 796 
using the FindVariableGenes function from Seurat v2.3.4 with parameters: x.low.cutoff = 0.015, 797 
x.high.cutoff = 3, y.cutoff = 0.7. Then, a list of 79 transcription factors with known spatial signatures 798 
was assembled by consulting previously described histological analysis (ZFIN) together with 799 
those that were identified as gene markers for neuronal clusters in our dataset.. Separately in the 800 
three progenitor groups, the pairwise Pearson correlation was calculated pairwise between all 801 
genes detected as variable in each progenitor group. For several thresholds between 0.2–0.8, 802 
the number of genes that correlated more strongly than the threshold with any of the 79 spatial 803 
transcription factors (excluding self-correlation) were determined. The strongest correlations were 804 
observed in the embryonic population, followed by the intermediate population, and for any 805 
threshold, more genes correlated with the spatial TFs in the embryonic progenitors than the larval 806 
progenitors. 807 
 808 
Construction and analysis of branching transcriptional trajectories using URD 809 
We built branching transcriptional trajectories from cells of the retina and hypothalamus to 810 
determine the molecular events that occur as cells diversify and differentiate in these tissues. 811 
First, cells from the retina and hypothalamus were isolated from each stage by determining 812 
clusters that belonged to these tissues by expression of marker genes. 813 
 814 
Determination of variable genes 815 
For URD trajectory analyses, a more restrictive set of variable genes was calculated on each 816 
subset of the data, as previously described (Farrell et al., 2018; Pandey et al., 2018) using the 817 
URD findVariableGenes function, with parameter diffCV.cutoff = 0.3. Briefly, a curve was fit that 818 
related each gene’s coefficient of variation to its mean expression level and represents the 819 
expected coefficient of variation resulting from technical noise, given a gene’s mean expression 820 
value; genes with much higher coefficients of variation likely encode biological variability and were 821 
used downstream. 822 
 823 
Removal of outliers 824 
Poorly connected outliers can disrupt diffusion map calculation and so were removed from the 825 
data. A k-nearest neighbor network was calculated between cells (Euclidean distance in variable 826 
genes) with 100 nearest neighbors. Cells were then removed based on either unusually high 827 
distance to their nearest neighbor or unusually high distance to their 20th nearest neighbor, given 828 
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their distance to their nearest neighbor using the URD function knnOutliers (retina: x.max = 40, 829 
slope.r = 1.05, int.r = 4.3, slope.b = 0.75, int.b = 11.5; hypothalamus: x.max = 40, slope.r = 1.1, 830 
int.r = 3, slope.b = 0.66, int.b = 11.5). 831 
 832 
Removal of doublets by NMF modules 833 
To remove putative cell doublets (i.e. where two cells are encapsulated into a single droplet and 834 
processed as one cell), which can disrupt trajectory relationships, we removed cells that 835 
expressed multiple NMF (non-negative matrix factorization) modules characteristic of different 836 
expression programs, as previously described (Siebert et al., 2019). NMF modules were 837 
computed using a previously published NMF framework (https://github.com/YiqunW/NMF) 838 
(Farrell et al., 2018). The analysis was performed on log-normalized read count data for a set of 839 
variable genes using the run_nmf.py script with the following parameters: -rep 5 -scl “false” -miter 840 
10000 -perm True -run_perm True -tol 1e-6 -a 2 -init “random” -analyze True. Several k 841 
parameters were evaluated for each tissue, and k was chosen to maximize the number of 842 
modules, while minimizing the proportion of modules defined primarily by a single gene (retina, k 843 
= 45; hypothalamus, k = ). Modules were used downstream that (a) had a ratio between their top-844 
weighted and second-highest weighted gene of < 5, and (b) exhibited a strong cell-type signature, 845 
as determined by plotting on a UMAP representation and looking for spatial restriction. Pairs of 846 
modules that were appropriate for using to remove doublets (and that did not define transition 847 
states) were determined using the URD function NMFDoubletsDefineModules with parameters 848 
module.thresh.high = 0.4, and module.thresh.low = 0.15. Putative doublets were identified using 849 
the URD function NMFDoubletsDetermineCells with parameters frac.overlap.max = 0.03, 850 
frac.overlap.diff.max = 0.1, module.expressed.thresh = 0.33 and were then removed. 851 
 852 
Choice of root and tips 853 
Branching transcriptional trajectories in the retina and hypothalamus were constructed using URD 854 
1.1.1 (Farrell 2018). Briefly, cells from the first stage of the time course (12 hpf) were selected as 855 
the ‘root’ or starting point for the tree. Terminal cell types comprised the clusters at 15 dpf from 856 
these tissues, with the exception of clusters that were clearly progenitor or precursors based on 857 
known gene expression (retina: 29, 39, 43). Additionally, in the retina, one cluster (96) was 858 
excluded because it did not seem that any related cell types had been recovered in previous 859 
stages. 860 
 861 
Construction of branching transcriptional trajectories 862 
A diffusion map was calculated using destiny (Haghverdi et al., 2015; 2016), using 140 (retina) or 863 
100 (hypothalamus) nearest neighbors (approximately the square root of the number of cells in 864 
the data), and with a globally-defined sigma of 14 (retina) or 8 (hypothalamus) — slightly smaller 865 
than the suggested sigma from destiny. Pseudotime was then computed using the simulated 866 
‘flood’ procedure previously described (Farrell et al., 2018), using the following parameters: n = 867 
100, minimum.cells.flooded = 2. Biased random walks were performed to determine the cells 868 
visited from each terminal population in the data as previously described (Farrell et al., 2018), 869 
using the following parameters: optimal.cells.forward = 40, max.cells.back = 80, n.per.tip = 50000, 870 
end.visits = 1. The branching tree was then constructed using URD’s buildTree function with the 871 
following parameters: divergence.method = "ks" (hypothalamus) or divergence.method = 872 
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"preference" (retina), save.all.breakpoint.info = TRUE, cells.per.pseudotime.bin = 40, 873 
bins.per.pseudotime.window = 5, p.thresh = 0.0001 (hypothalamus) or , p.thresh = 0.01 (retina), 874 
and min.cells.per.segment = 10. The resulting trees were then evaluated using known marker 875 
genes and branch regulators. 876 
 877 
Finding genes that vary during differentiation 878 
Genes were selected for inclusion in gene cascades based on their differential expression relative 879 
to other cell types in the tissue. See the Supplementary Analysis for the full set of commands 880 
used. Within each tissue, cells were first compared in large populations that defined major cell 881 
types (retina: cone bipolar cells, photoreceptors, amacrine cells, retinal ganglion cells, horizontal 882 
cells, Muller glia, retinal pigmented epithelium; hypothalamus: prdx1+ neurons, pdyn+ neurons, 883 
GABAergic dlx+ neurons, nrgna+ neurons). Comparisons were performed pairwise, and genes 884 
were considered differential in a population if they were upregulated compared to at least 2 885 
(hypothalamus) or 3 (retina) other groups. Genes were considered differentially expressed based 886 
on their expression fold-change (retina: ≥1.32-fold change, hypothalamus: ≥ 1.41-fold change) 887 
and their performance as a precision-recall classifier for the two cell populations compared (≥ 1.1-888 
fold better than a random classifier). Additionally, the aucprTestAlongTree function from URD was 889 
used to select additional genes by performing pairwise comparisons, starting from a terminal cell 890 
type and comparing at each branchpoint along the way, back to the root (Farrell et al., 2018). 891 
Genes were selected based on expression fold-change between branchpoints (hypothalamus: 892 
≥1.74-fold upregulated; hypothalamus, populations with small cell numbers (GABAergic dlx+ 893 
cells): ≥1.51-fold upregulated; retina: ≥1.32-fold upregulated), their function as a precision-recall 894 
classifier between branchpoints (hypothalamus: ≥1.2-fold better than a random classifier; 895 
hypothalamus, populations with small cell numbers (GABAergic dlx+ cells): ≥1.15-fold better than 896 
a random classifier; retina: ≥1.1-fold better than a random classifier), their function as a precision 897 
recall classifier globally (i.e. between the entire trajectory leading to a cell type and the rest of the 898 
tissue): ≥1.03-fold better than a random classifier, and their upregulation globally (i.e. between 899 
the entire trajectory leading to a cell type and the rest of the tissue): ≥1.07-fold upregulated. 900 
Mitochondrial, ribosomal, and tandem duplicated genes were excluded. Cells were ordered 901 
according to pseudotime, split into groups of at least 25 cells that differ at least 0.005 in 902 
pseudotime, and the mean expression was determined with a 5-group moving window. A spline 903 
curve was fit to the mean expression vs. pseudotime relationship of selected genes, using the 904 
smooth.spline function from R’s stats package, with the parameter spar = 0.5. Genes were then 905 
sorted according to their peak expression in pseudotime, normalized to their max expression 906 
observed in the tissue, and plotted on a heatmap. 907 
 908 
Analyzing progenitor populations 909 
To determine whether retinal progenitors mature transcriptionally over time, we looked for genes 910 
that were differentially expressed between young and old progenitors. We chose cells that 911 
occupied the same region of the URD tree from either early (24 / 36 hpf) or late (15 dpf) stages. 912 
We looked for genes that were differentially expressed in 15 dpf progenitors that: (1) were 1.1-913 
fold better as a precision-recall classifier than random, (2) changed ≥1.32-fold in expression, (3) 914 
were expressed in at least 20% of progenitors, (4) had a mean expression value ≥ 0.8, and (5) 915 
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were more differentially expressed than equally sized cell populations chosen at random at least 916 
99% of the time. 917 
 918 
To determine whether cells were found in progenitor or precursor states long-term, we first defined 919 
progenitor and precursor states by cells’ assignment in the URD tree, cross-referenced with the 920 
expression of progenitor / precursor markers. We then determined how many cells from different 921 
stages fell into each of these different states. 922 
 923 
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 1187 
 1188 
Figure 1. Developmental compendium of zebrafish head and brain cell types 1189 
A. Schematic of the developmental stages profiled. Red hatched line represents head regions that were 1190 
selected for enrichment of brain cells in early development. Samples from 5 to 15 dpf were dissected to obtain 1191 
brain and eye specifically. h, hours post fertilization; d, days post fertilization  1192 
B. Schematic of scRNA-seq using 10X Genomics platform. 1193 
C. Cell type heterogeneity within each stage. Clusters at each stage were assigned to a region or tissue type 1194 
based on known markers and color coded to reflect their classification. tSNE implementations: Barnes-Hut (12h 1195 
to 3d), Fourier transform (5d and 15d).  1196 
D. In situ hybridization for novel markers in the trigeminal placode at 12 hpf. klf17 is expressed on the anterior 1197 
polster and ventral mesoderm, delineating the border of the embryo. Trigeminal ganglia markers ptgs2a, tp63 1198 
and sdpra (cavin2a) are expressed bilaterally (asterisks) posterior to the eye. Eyes are delineated by dotted 1199 
lines. A: Anterior; P: Posterior. Scale bar equals 100 µm. 1200 
E. In situ hybridization validation of novel marker sox1a in the hypothalamus at 2 dpf. Top panels, lateral view 1201 
of brain; Bottom panels, ventral view of brain. dlx1a and pdyn are known hypothalamus. Eyes are delineated by 1202 
dotted lines. VHyp: Ventral Hypothalamus; TVZ: Telencephalic Ventricular Zone; ADi: Anterior Diencephalon; 1203 
AFb: Anterior Forebrain; VDi: Ventral Diencephalon; Le: Lens. Scale bar equals 200 µm. 1204 
F. smFISH validation of novel marker ompa in horizontal cells of the retina at 5 dpf. Left panel, retina section 1205 
stained with DAPI (grey), pan-retinal foxg1b (cyan) and ompa (yellow). Strong yellow signal in photoreceptors 1206 
represent autofluorescence. White box indicates area that was zoomed in for the right panels. Dotted lines 1207 
indicate the horizontal cell layer. PR, photoreceptor cells; HC, horizontal cells; BC, bipolar cells; AC, amacrine 1208 
cells; RGC, retinal ganglion cells 1209 
 1210 
Figure 2. Brain cell type diversification from 12 hpf to 15 dpf 1211 
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A. tSNE plot of 12 hpf dataset. Only clusters corresponding to neural and blood cell types are shown. Inferred 1212 
identities of each cluster are described. 1213 
B. Dot plot of gene expression pattern of select marker genes (columns) for each cluster (row).  Dot size 1214 
indicates the percentage of cells expressing the marker; color represents the average scaled expression level. 1215 
C. tSNE plot of 15 dpf dataset. Inferred identities of each cluster are described. 1216 
D. Dot plot of gene expression patterns of select marker genes for each cluster. Layout is same as (B). Grey 1217 
box represents generic neuronal and progenitor genes.  1218 
tSNE implementations: Barnes-Hut (A), Fourier transform (C) 1219 
 1220 
Figure 3. Neuron subtype diversity at 15 dpf 1221 
A-C. Violin plots of select marker gene expression in identified brain neuron subtypes from 15 dpf. Retina 1222 
neurons and nascent neurons are omitted from the analysis. Cluster numbers are indicated at the bottom along 1223 
with their inferred spatial location in the brain. Cluster 76 has unknown spatial location. Detailed cluster 1224 
descriptions are in Supplementary Table 1 and can be explored interactively in the accompanying app at 1225 
https://github.com/brlauuu/zf_brain. 1226 
A. Expression of transcription factors. 1227 
B. Expression of neuropeptides and their receptors. 1228 
C. Expression of genes involved in neuron electrophysiology including neurotransmitters, transporters, 1229 
receptors, and channels. 1230 
D. Matrix showing whether neuron subtypes identified at 15 dpf are also detected in earlier larval (5 and 8 dpf) 1231 
and later juvenile (25 dpf (Raj et al., 2018b)) stages. Clusters were matched across stages by comparing 1232 
marker gene expression. The cluster number at 15 dpf is shown and an orange circle indicates that the subtype 1233 
is detected in another stage.    1234 
 1235 
Figure 4. Developmental diversification of neurons and progenitors 1236 
A. Area plot of the percentage of dataset at each timepoint corresponding to neural progenitors, neurons, and 1237 
other cell types. Right panels, Total number of clusters of progenitors and neurons at each stage of brain 1238 
development.    1239 
B. tSNE plot of embryonic, intermediate and larval neural progenitors. All progenitor cells were analyzed 1240 
together after subsetting from the whole dataset. 1241 
C-D. Heatmaps of select gene expression in early embryonic (C) and late larval (D) brain neural progenitors. 1242 
Top panel, genes enriched in embryonic progenitors. Bottom panel, genes enriched in larval progenitors. 1243 
Embryonic progenitors have a strong spatial signature (forebrain, midbrain, hindbrain) and are depleted in 1244 
genes that distinguish larval progenitor subtypes (C). Larval progenitors segregate into non-proliferative and 1245 
proliferative groups that can be resolved into additional subtypes characterized by expression of various gene 1246 
combinations (D). TF, transcription factor. *pax6a is expressed in multiple regions 1247 
E. Heatmap of Pearson correlation values of 79 spatial markers in embryonic, intermediate and larval neural 1248 
progenitors. Spatial markers were selected based on existing literature. Groups of co-varying genes in the 1249 
midbrain and forebrain are highlighted with dashed boxes. 1250 
F. Plot showing number of highly variable genes that co-vary with any of the selected 79 spatial markers in 1251 
embryonic and larval progenitors. Co-variation was determined by Pearson correlation, with several thresholds 1252 
(from stringent to relaxed) displayed along the x-axis.  1253 
 1254 
Figure 5. Optimization of scGESTALT lineage recorder for better barcode recovery 1255 
A. Schematic overview of CRISPR-Cas9 lineage recording. Optimized scGESTALT comprises a barcode 1256 
cassette in the 3’end of DsRed transgene (single copy) and the medaka beta-actin promoter. Embryos are 1257 
injected with Cas9 protein and DsRed sgRNAs and animals are profiled at 15 dpf by scRNA-seq. 1258 
B. Pairwise comparisons using cosine dissimilarity of barcode edit patterns from four (ZF1-4) edited 15 dpf 1259 
larval brains. 1260 
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C. Chord diagram of the nature and frequency of deletions within and between target sites. Each colored sector 1261 
represents a target site. Links between target sites represent inter-site deletions; self-links represent intra-site 1262 
deletions. Link widths are proportional to the edit frequencies.  1263 
D. Type of edit at each target site within the barcode from edited ZF1-4 larval brains.  1264 
E. Heat map of lineage relationships between non-retinal and retinal cell types in the eye. All clusters with >3 1265 
cells and all barcodes with >1 cell were used to determine if there is enrichment of cell type-specific barcodes 1266 
across each cluster pair. Blue indicates significant enrichment and lineage segregation. Purple indicates no 1267 
significant enrichment and no lineage segregation. Grey indicates insufficient sampling power and undefined 1268 
lineage status. Cluster numbers are indicated (e.g. C45) and either cell type gene markers (e.g. cldna+) or the 1269 
exact name of the cell type (e.g. cone bipolar cells) are indicated along the rows. Along the columns, the 1270 
numbers within the brackets indicate the number of barcodes and number of cells, respectively, for that cluster.  1271 
F. Heat map of lineage relationships between brain regions and the retina. Neuron clusters that could be 1272 
pseudospatially assigned to the each region were used (see Supplementary Table). Analysis, layout and color 1273 
code are same as in E.  1274 
G. Heat map of lineage relationships between neuronal cell types in the forebrain and midbrain. Analysis, 1275 
layout and color code are same as in E. The brain region each cluster belongs to is indicated (e.g. pallium, 1276 
hypothalamus), and for clusters where a more precise location could be inferred a gene marker is indicated 1277 
(e.g. pitx2+). 1278 
H. Heat map of lineage relationships between brain progenitor clusters. Analysis, layout and color code is same 1279 
as in E. Cell type marker genes are indicated along with the cluster number. URL, upper rhombic lip 1280 
I. Bar plot of the proportion (based on Jaccard Index) of granule cell (cerebellum neurons) barcodes that are 1281 
shared with each brain progenitor cluster. Cluster numbers are the same as in H.  1282 
 1283 
Figure 6. Cell specification trajectories in the retina and hypothalamus 1284 
A. UMAP visualization of retinal cell types. Retinal cells (based on clustering analysis) from 12 hpf to 15 dpf 1285 
were subsetted from the full dataset and analyzed together. Cells are color coded by stage. 1286 
B. Cell specification tree of zebrafish retinal development. Trajectories were generated by URD and visualized 1287 
as a branching tree. Cells are color coded by stage. 12 hpf cells were assigned as the root and 15 dpf 1288 
differentiated cells were assigned as tips. CBP, cone bipolar cells (6 subtypes are numbered); RGC, retinal 1289 
ganglion cells; RPE, retinal pigment epithelium  1290 
C. Expression of select genes are shown on the retina specification tree.  1291 
D. Heat maps of gene expression cascades of photoreceptor cell trajectories and retinal ganglion cell 1292 
trajectories. Cells were selected based on high expression along trajectories leading to these cell types, 1293 
compared to expression along opposing branchpoints. Red, high expression. Yellow, low expression 1294 
E. UMAP visualization of hypothalamus cell types. Hypothalamus cells (based on clustering analysis) from 12 1295 
hpf to 15 dpf were subsetted from the full dataset and analyzed together. Cells are color coded by stage. 1296 
F. Cell specification tree of zebrafish hypothalamus development. Trajectories were generated by URD and 1297 
visualized as a branching tree. Cells are color coded by stage. 12 hpf cells were assigned as the root and 15 1298 
dpf differentiated cells were assigned as tips. 1299 
G. Expression of select genes are shown on the hypothalamus specification tree.  1300 
H. Heat map of gene expression cascade of nrgna+ cell trajectories. Red, high expression. Yellow, low 1301 
expression  1302 
 1303 
Figure 7. Progenitor differences between retina and hypothalamus 1304 
Retinal and hypothalamus cells were divided into progenitor (purple), precursor (orange), and differentiated 1305 
(blue) cells, as shown on the URD tree. The fraction of cells in each of these transcriptional states was then 1306 
determined for three developmental periods (12–24 hpf, 36 hpf – 3 dpf, and 5–15 dpf). In the retina, cells can 1307 
be found in a progenitor state (light purple) that persists post-embryonically. 1308 
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Sup Figure 1. Zebrafish brain cell types identified at each stage of time course 
tSNE plots of cell types at each stage of the time course. Cells are color coded by stage. 
tSNE implementations: Barnes-Hut (12 hpf to 3 dpf, 8 dpf), Fourier transform (5 dpf and 15 dpf). Cluster numbers are 
indicated on each plot. Detailed cluster descriptions are in Supplementary Table 1 and can be explored interactively in 
the accompanying app at https://github.com/brlauuu/zf_brain. 
 
Sup Figure 2. Neuron subtype diversity at 5 and 8 dpf 
Violin plots of select marker gene expression in identified brain neuron subtypes from 5 dpf (left) and 8 dpf (right). 
Retina neurons and nascent (immature) neurons are omitted from the analysis. Cluster numbers are indicated at the 
bottom along with their inferred spatial location in the brain. Clusters 69 (5 dpf) and 51 (8 dpf) have unknown spatial 
location. Detailed cluster descriptions are in Supplementary Table 1 and can be explored interactively in the 
accompanying app at https://github.com/brlauuu/zf_brain. 
 
Sup Figure 3. Embryonic, intermediate and larval stage neural progenitor populations 
tSNE plots showing embryonic (12 hpf – 18 hpf), intermediate (20 hpf – 3 dpf) and larval (5 dpf – 15 dpf) stage 
progenitor clusters that were subsetted from the dataset. Cluster numbers match plots shown in Sup Figure 1. Detailed 
cluster descriptions are in Supplementary Table 1 and can be explored interactively in the accompanying app at 
https://github.com/brlauuu/zf_brain. 
 
Sup Figure 4. Optimized scGESTALT lineage recorder enables reconstruction of more dense 
lineage trees 
A. Size and diversity of clones from edited ZF1-4 larval brains. Each colored rectangle represents a unique clone and 
the area represents the size of the clone.  
B. A reconstructed scGESTALT brain lineage tree from one zebrafish 15 dpf brain. 302 barcodes recovered from ZF1 
were assembled into a lineage tree. Barcode edits are represented as red (deletions), blue (insertions), and black 
(substitutions). Associated cells are color coded by cell type and region. Interactive trees are presented at: 
https://scgestalt.mckennalab.org/. Each tip on the tree has an associated cell type assignment (color coded), a lineage 
barcode schematic, and a cluster number. For reasons of space, the tree is split into multiple columns and dashed lines 
connect subsections of the tree together. 
 
Sup Figure 5.  
Retinal cell type marker expression and trajectory analysis  
A. UMAP plots highlighting expression of select genes enriched in retinal cell types. rx3, vsx2, hes2.2 are enriched in 
early embryonic retinal progenitors; foxg1b is enriched in differentiated cells;  pax6a is enriched in progenitors, retinal 
ganglion cells (RGC) and amacrine cells; crx is enriched in photoreceptor cells and cone bipolar cells; gngt2a is 
enriched in cones; gnat1 is enriched in rods; ompa is enriched in horizontal cells; tfap2a is enriched in RGCs and 
horizontal cells; apoeb is enriched in early progenitors and muller glia; rbpms2a is enriched in amacrine cells; vsx1 is 
enriched in cone bipolar cells; cabp5b is enriched in cone bipolar cells; rpe65a is enriched in retinal pigment epithelium; 
kidins220a is enriched in new retinal subtype.   
B. tSNE plot of 15 dpf brain and eye cell types. Retinal cell types used as the endpoint cell types (tips) for URD analysis 
are color coded. Cluster number and cell type description are indicated on the legend. Cluster 96 was discarded from all 
analysis, see Results.  
 
Sup Figure 6. 
Retina and hypothalamus URD trajectory analysis 
A. Cell specification tree of zebrafish retinal development generated with URD, reproduction of Figure 6B for 
comparison. CBP, cone bipolar cells (6 subtypes are numbered); RGC, retinal ganglion cells; RPE, retinal pigment 
epithelium  
B. Assessing robustness of cell assignment on URD retina trees. Trees were recalculated with random subsets of 50% 
of the cells from the original retinal dataset (sampled per stage so that proportions of cells from each stage remained 



constant). The parameters used were the same, except the number of nearest neighbors used was reduced to reflect 
the smaller dataset. The position of cells on trees was compared to the original tree. Cells assigned the same segment 
are colored blue (“Same”), cells that moved to a parent or child segment (“Parent/Child”) are colored green, cells that 
changed assignment to a different location are colored red (“Changed”), and cells that were not assigned a location in 
the original tree are colored grey. 82.1% cells retained their original assignment, 12.5% cells shifted to either parent or 
child segments (reflects small shifts in pseudotime of branchpoint assignment), and 5.5% cells shifted to a different 
location.   
C. Cell specification trees of zebrafish hypothalamus development generated with URD, reproduction of Figure 6F for 
comparison. 
D. Assessing robustness of cell assignment on URD hypothalamus trees. Trees were recalculated with random subsets 
of 50% of the cells from the original hypothalamus dataset (sampled per stage so that proportions of cells from each 
stage remained constant). The parameters used were the same, except the number of nearest neighbors used was 
reduced to reflect the smaller dataset. The position of cells on trees was compared to the original tree. Cells assigned 
the same segment are colored blue (“Same”), cells that moved to a parent or child segment (“Parent/Child”) are colored 
green, cells that changed assignment to a different location are colored red (“Changed”), and cells that were not 
assigned a location in the original tree are colored grey. 80.1% cells retained their original assignment, 13.6% cells 
shifted to either parent or child segments (reflects small shifts in pseudotime of branchpoint assignment or small 
changes in tree structure), and 6.3% cells shifted to a different location.   
 
Sup Figure 7. Gene expression along retina cell trajectories 
Expression of select genes are shown on the retina URD specification tree. Cell types: 1. Cone bipolar cell (CBP_3); 2. 
Cone bipolar cell (CBP_6); 3. Cone bipolar cell (CBP_1); 4. Cone bipolar cell (CBP_4); 5. Cone bipolar cell (CBP_5);  6. 
Cone bipolar cell (CBP_2); 7. Cones; 8. Rods; 9. Amacrine cells (Amacrine_1); 10. Amacrine cells (Amacrine_2); 11. 
Retinal ganglion cells (RGC); 12. Horizontal cells;  13. Muller glia; 14. Retinal pigment epithelium (RPE)      
 
Sup Figure 8. Gene expression cascades of retinal cell trajectories 
Heat maps of gene expression cascades of photoreceptor cell, amacrine cell, retinal ganglion cell, muller glia, horizontal 
cell and retinal pigment epithelium cell trajectories. Cells were selected based on high expression along trajectories 
leading to these cell types, compared to expression along opposing branchpoints. Red, high expression. Yellow, low 
expression. X-axis represents cell states along the cascade progression.  
 
Sup Figure 9. Müller glia-like cells are detected early in zebrafish retina development 
Detection of Muller glia markers cahz and rlbp1a in the retina at A. 36 hpf and B. 2 dpf 
A. Left panel, retina section stained with DAPI (grey), cahz (cyan) and rlbp1a (yellow). White box indicates area that 
was zoomed in for the right panels.  
B. Left panel, retina section stained with DAPI (grey), cahz (cyan) and rlbp1a (yellow). White and red boxes indicate 
area that were zoomed in for the middle and right panels, respectively. Middle panels denote cells that co-express 
rlbp1a and cahz. Right panels denote cells that are rlbp1a+ and cahz- 
 
Sup Figure 10. Hypothalamus cell type marker expression and trajectory analysis  
A. UMAP plots highlighting expression of select genes enriched in hypothalamus cell types. dbx1a, fezf2, rx3 are 
enriched in early embryonic hypothalamus progenitors; fezf1 is enriched in pdyn+ subtype; nrgna is enriched in two 
subtypes (synpr+ and synpr-), dlx2a is expressed in several subtypes; nkx2.4a is expressed in early progenitors and 
prdx1+ subtype; synpr, npy, tph2, pdyn and prdx1 are enriched in specific subtypes 
B. tSNE plot of 15 dpf brain and eye cell types. Hypothalamus cell types used as the endpoint cell types (tips) for URD 
analysis are color coded. Cluster number and cell type description are indicated on the legend.  
 
Sup Figure 11. Gene expression along hypothalamus cell trajectories 
Expression of select genes are shown on the hypothalamus specification tree. Cell types: 1. GABA tac1+, nrgna+; 2. 
synpr+; nrgna+; 3. sst1.1+; 4. tph2+;  5. GABA dlx+; 6. pdyn+; 7. prdx1+ 



 
Sup Figure 12. Gene expression cascades of hypothalamus cell trajectories 
Heat maps of gene expression cascades of profiled hypothalamus cell trajectories. Cells were selected based on high 
expression along trajectories leading to these cell types, compared to expression along opposing branchpoints. Red, 
high expression. Yellow, low expression. X-axis represents cell states along the cascade progression. 
 
Sup Figure 13. Cell type maturation along URD trajectories 
Retinal ganglion cells (A) and pdyn+ hypothalamic neurons (B) cells were plotted (red circles) on URD cell specification 
trajectories across the stages indicated. The cell types matured with developmental age, as expected. Additionally, later 
stages also contained immature cell states (early pseudotime) consistent with continuous neurogenesis.  
 
Sup Figure 14. Gene markers of embryonic and larval progenitors in retina and hypothalamus 
Dot plot of gene expression pattern of select marker genes that were used to define progenitor and precursor states 
(rows) for segments (columns) of the retina (left) or hypothalamus (right) cell specification trees (see Figure 7E).  Dot 
size indicates the percentage of cells expressing the marker; color represents the average scaled expression level. 
 
 



Sup Figure 1
12 hpf 14 hpf 16 hpf 18 hpf

20 hpf 24 hpf 36 hpf 2 dpf

3 dpf 5 dpf 8 dpf 15 dpf



5eomesa
4tbr1b
5dlx2a
5dlx5a
6otpa
4nkx2.4a
4nkx2.1
4fezf1
4six6b
5six3b
5pitx2
4neurod6a
5neurod6b
4irx1a
6tal1
5sox14
4pax7b
4sox1a
4gata3
5foxb1a
6tcf7l2
5barhl2
5lhx9
4barhl1a
5pax2a
5cebpa
5onecut1
5shox2
6pou3f1
5eng1b
4neurod2
6pou4f2
4otx1b
5pou4f1
4isl1
5phox2bb
5zic5
6zic2a
4pax6a
5pax6b
4tlx3b
6hoxb5a
5

1 24 29 9 10 54 52 35 34 28 22 78 87 62 0 18 39 11 56 20 69

skor1b

6adcyap1a
7adcyap1b
4bdnf
5penkb
6kiss1
5pnoca
8galn
6pdyn
8sst1.1
8sst3
5sst6
6tac1
6cart2
5vgf
8npy
7pyyb
4adcyap1r1a
4

1 24 29 9 10 54 52 35 34 28 22 78 87 62 0 18 39 11 56 20 69

oprd1b

5gad1b
5gad2
4slc6a1a
5slc6a1b
4slc32a1
4slc17a6a
4slc17a6b
4slc5a7a
5gria1a
4gria2b
4grin1b
4gabrb2
4cacng2a
4cacng2b
4cacng8a
4kcnf1b
4kcnd3
5

1 24 29 9 10 54 52 35 34 28 22 78 87 62 0 18 39 11 56 20 69

gsg1l

5eomesa
4tbr1b
5dlx2a
5dlx5a
5otpa
5nkx2.4a
4nkx2.1
4fezf1
4six6b
5six3b
5pitx2
5neurod6a
5neurod6b
5irx1a
6tal1
4sox14
4pax7b
4sox1a
4gata3
4foxb1a
5tcf7l2
5barhl2
5lhx9
4barhl1a
4pax2a
5cebpa
4onecut1
5shox2
5pou3f1
5eng1b
5neurod2
6pou4f2
4otx1b
5pou4f1
4isl1
6phox2bb
5zic5
6zic2a
5pax6a
4pax6b
4tlx3b
5hoxb5a
4

3 53 11 8 2 14 65 63 55 38 19 50 77 82 62 0 60 40 15 24 47 36 51

skor1b

6adcyap1a
7adcyap1b
4bdnf
6penkb
6kiss1
5pnoca
7galn
6pdyn
8sst1.1
8sst3
5sst6
7tac1
6cart2
5vgf
8npy
6pyyb
5adcyap1r1a
5

3 53 11 8 2 14 65 63 55 38 19 50 77 82 62 0 60 40 15 24 47 36 51

oprd1b

5gad1b
6gad2
4slc6a1a
6slc6a1b
5slc32a1
4slc17a6a
4slc17a6b
5slc5a7a
6gria1a
4gria2b
4grin1b
4gabrb2
4cacng2a
4cacng2b
4cacng8a
4kcnf1b
4kcnd3
5

3 53 11 8 2 14 65 63 55 38 19 50 77 82 62 0 60 40 15 24 47 36 51

gsg1l

Forebrain

5 dpf 8 dpf

Midbrain Hindbrain

Neuropeptides

Receptors

Neurotransmitters

Transporters

Receptors

Channels

Clusters

Sup Figure 2



12 hpf 14 hpf

5 dpf 8 dpf 15 dpf

16 hpf 18 hpf

20 hpf 24 hpf 36 hpf

2 dpf 3 dpf

Sup Figure 3



63

2
67
68

28
33
14

21
24
70
2
18
18
58
63
73
0
5
14

35
38
85
9
63
0

34
57
35
2
8
25
56
75
68
55
3
11
5
5
7
7
14
1

16
19
52

20
42
55

46
4
6

5
22
15

38
69
23

54
9
4
22
8
20
58

63
0
31

15
32
4
4
4
12
12
12
12
12
11

8
20
25
41
100
0
5
5
5
6
14

28
10
63

25
12

16
22
74

3

30
50
50
69
69
10
20
53
11
1

33
0
33
6
28
38
79
0
5
34
15

21
0
0
3

34
34
34
44
15
9
1

42
9
5
11
33

34
34
34
34
44
66
28
28
30
35
50
25
42
68
12
0
13
5
14

2
3
7
19

34
34
34
57
83

86
15
2

82
2
84

17
36

33
54
2
2
2
10
0
26
6
7
16
16
16
48
48
1

37
28
28
30
35
43
42
17
73
31
6
19

3
66

34
66
10

25
59
3
0

52
25
4
12
12
73
3
26

44
49
15
15
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
25
25
25
67
42
17
73
26
26
6
7
7
14
16
16
16

2
3
3

21
24
24
81
59
15
15
28
28
28
30
30
32
33
33
33
33
38
38
50
50
54
69
70
2
2
2
2
2
2
2
2
2
2
2
2
2
8
8
8
10
10
10
10
18
18
18
18
18
18
18
18
18
20
20
20
20
41
41
46
58
58
58
58
61
61
61
61
63
63
63
63
63
63
63
63
63
63
63
63
63
64
64
67
75
42
53
68
68
100
4
4
4
4
12
12
12
12
12
17
17
17
17
27
55
55
55
73
78
0
0
0
51
51
11
23
23
23
26
26
5
5
5
5
5
5
6
6
6
6
6
6
7
7
7
7
14
14
14
14
16
16
16
16
16
16
16
16
16
19
19
22
22
48
74
74
74
1
1
1
1

21
24
49
65
35
52
54
2
2
8
8
8
8
18
18
18
18
18
18
25
58
58
61
61
61
61
61
61
91
12
27
13
3
26
5
5
5
6
16
19
1

21
54
2
2
9
9
9
20
20
25
25
41
58
63
42
53
0
0
3
11
23
23
5
7
14
48
1

57
59
70
2
2
2
2
18
18
25
56
93
23
6
6
7
16
16
74

3

58
63
23

2
8
3

36

59
9
56
42
51
16

67

38
52
18
0

37
57
28
30
38
79
2
2
8
9
10
25
92
42
4
4
12
12
12
12
17
27
55
0
36
51
3
11
11
23
80
7
14
14
19
19
22

2
63

2
8
78
31
14

52
52
40

59
9
18
20
40
61
67
0
51
23
7

9
66

44
44
50

28
26
26

34
54
25
40
12
12
31
3
5
5

16
5
10
18
5

53
11

40
6
6
14

5
24

34
45
28
28
30
30
30
32
35
38
50
52
52
69
85
9
18
63
42
68
4
4
4
78
31
80
7
19
19
19
19

52
8
91
3
3
26
6

2
56
64
99

21
30
69
8
10
10
20
20
25
64
67
84
71
4
4
4
27
36
51
51
51
3
3
3
23
87
6
6
6
7
14
14
16
16
1

24
2
64
64
64
64
64
64
27
0
5
22
1

8
42
36

34
66
2
8
9
10
10
63
27
55
0
3
3
3
11
23

81
59
65
65
53

99
5
2
93
47
26
2
5

9
9
91
1

99
0
11
93
5
59
27
23
26

42
12
0
13
6

33
85
20
27
7

54
85
2
2
8
9
92
0
3
3
6
16

2

21
34
44
59
59
15
32
33
33
33
35
35
35
52
54
2
8
8
8
8
8
8
8
10
10
10
10
10
10
10
10
18
18
20
20
20
20
20
25
25
40
40
40
40
40
40
40
41
46
58
58
58
63
63
63
67
92
42
42
42
53
68
68
71
4
4
4
4
4
17
27
27
27
0
0
0
0
0
0
0
0
0
13
13
31
31
31
31
36
51
51
3
3
3
3
3
3
3
3
3
3
11
11
11
11
26
26
76
76
5
5
5
6
6
6
6
6
6
6
6
6
7
7
7
14
14
14
14
14
14
14
16
16
16
19
22
22
74
74
74
74
74
1
1

2
10
26
5

68
68

57
30
52
2
2
2
2
2
10
10
18
18
18
18
18
18
56
61
93
53
73
31
11
11
23
5
5
6
7
14
14
16
16
16
16
1

86
18

44
52
46
31
5

18
4
4
4
4
12
19
74
74

26
26
2
6
48
26
14

34
28
28
30
30
30
33
35
52
79
2
2
2
2
8
10
18
18
18
25
25
61
61
63
63
63
84
42
53
91
100
4
4
12
12
12
0
0
0
13
13
3
11
23
26
26
76
97
5
5
5
5
5
6
7
7
14
14
14
19
22
1
1

50
52
54
40
16

3
59
6

15
30
33
2
55

21
61
42
4

28
30
30
33
33
38
50
50
52
79
2
46
27
0
0
5
16
48

0
28
2

65
65
2
4
0
3
3
23
7
14

4
3
5
16
74

28
35
41
12
0
0
31
11
19

34
33
35
2
8
9
10
18
20
25
25
25
25
25
75
4
36
3
23
5
7
7
16
16
16
19
19

46
99
2
83
6

65
2
42

21
17
26
61
91

30
9
58
78
0
11
26
76
16

24
2
2
18
41
63
63
63
63
63
63
4
0
6
16

9

28
28
28
28
30
30
30
32
32
33
33
33
35
38
38
52
54
79
79
8
10
25
40
67
27
3
11
19

28
33
35
54
18
3
7

28
28
33
38
38
43
54
2
8
10
18
18
0
0
3
11
23
23
26
7
22

26
65

34
65
38
50
9
18
18
20
40
41
56
68
4
4
12
12
17
27
73
73
73
73
0
31
31
3
3
94
5
6
6
7
22

7
48
5
2
6
18
12
5
0
0
19
59
65
42
59
53
59
25
13
5

28
18
20
1

18
48
48
15
8
87
53

93
17
0
13
13
31
36
3
48

4
12
0
37

59
66
66
83
83
83
83
10
67
75
84
26
14
1
1

67

44
65
15
15
28
50
69
2
2
8
8
9
9
18
18
41
41
56
63
64
64
4
4
31
51
3
3
3
11
5
5
7
16
74
1

28
30
30
30
33
52
54
70
2
46
42
16

50
24
24

24
49
8

90

33
2
20
78
0
3
11
5

28
59
38
28
16
30
52
76

2
8
0

3
2
80
5
49

24
72
72
34
34
44
44
57
59
15
15
15
15
15
15
15
28
28
28
28
28
30
33
33
33
33
33
33
33
33
35
35
35
35
38
38
38
38
39
43
50
50
50
52
52
52
52
52
54
54
54
54
54
69
70
79
85
2
2
2
2
2
2
2
8
8
8
8
8
8
8
9
9
9
9
10
10
10
10
10
18
18
20
20
20
20
25
25
25
25
25
40
40
41
41
41
56
56
56
56
61
64
64
64
64
84
92
53
68
68
68
91
4
4
4
4
12
12
12
12
17
17
17
17
17
27
27
27
27
27
55
73
78
0
0
0
0
0
0
0
0
0
0
13
36
36
51
51
3
3
3
3
11
11
23
23
26
26
80
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
14
14
14
14
14
14
14
16
16
16
16
16
16
16
19
19
19
19
22
48
48
48
74
1
1
1
1

7

2
8
20
7
19
48
48

20
66

24
24
24
24
24
28
50
4
4
17
27
31
11
14

30
27
14

32
61
4
4
4
12
12
17
17
31
3
3
7
14
19

24
24
10
12
36

30
30
85
4

24
49
41
4
4
4
4
4
12
73
0
0
31
3
23
23
6
7
19

44

32
35
8
20
41
53
12
12
12
17
0
13
51
51
3
3
11
11
23
5
6
6
6
14
74

18
20
61
27
78
0
0
26
16
1

75
42
27
5

21
40
4

35
27
2
27
36
80
80
80

34
66
83
12
17

30
38
31

27
14
76
26
26

65
65
38
43
43
69
8
8
10
10
40
41
64
4
4
12
27
0
0
51
51
11
5
6
6
7
7
7
7
14
14
16
19
19

46
73

34
66
28
12
55
55
55
55
55
26
5
1

6

65
65
65

0
5
59
81
0
6

44
8
8
68
5
6
14
16

34
70
2
8
53
11
16

28
48
48

18
7

28
33
38
10
3

11

30
35
8
12
3
11
5

80
0
80

8
20
11
22

5
5
54
26
52
24
61

3449
1543
5469
22
22
28
88
1010
1020
2020
2025
2540
4041
4656
6384
4291
44
1212
1212
1727
2727
730
00
00
00
1313
3131
3136
3651
513
33
1111
1111
1123
7676
55
55
56
66
66
77
77
77
714
1414
4848
741
11

2432
852
88
99
99
1020
2025
2525
4064
427
5573
00
013
363
311
235
55
56
67
1414
1416
1616
11

6687
87

0

2869
24
44
019

1520
1717

4810
590

4459
6615
2828
2830
3030
3232
3538
432
22
22
22
88
89
99
910
1010
1018
1820
2020
2025
4040
5656
5861
6367
9342
4242
4242
5368
7171
412
1212
1717
1727
2727
5555
5573
00
00
00
013
1313
1331
3131
3131
3131
3651
5151
5151
5151
33
33
33
33
33
323
2323
2676
55
55
66
66
77
714
1414
1416
1616
1619
1919
2222
4874
741
11

3434
3434
3434
3434
4444
4444
4445
4957
6682
1515
3033
3335
3838
4350
28
88
99
99
99
2020
2025
2525
2525
2540
4646
5867
8484
9342
4268
6871
427
2727
2755
5578
7878
00
3151
33
33
311
1126
2626
7676
8080
8087
8787
8787
875
66
77
714
1619
1922
4848

159
2041
5853
412
1212
1213
1119
19

18

2424
2424
2490
10

75

2424
24

376

212
011

6

1510
44
783
2614
74

7234
3434
3444
7

4193
47
1448

261
00
31

344412541841

Sup Figure 4

ZF1 lineage tree
2124728188899095343744454749575965667782838615282930323335383943505254626970798596289101820254041465658616364677584929399425368719110041217275573780133136513112326607656714161922487418087949798 unknown

other

progenitors

neurons

midbrain

hindbrain

glia

forebrain

retina

eye
(non-retina)

blood-immune

ZF1

ZF2

ZF3

312 clones
1,685 cells
largest clone = 96 cells

106 clones
812 cells
largest clone = 202 cells

302 clones
2,331 cells
largest clone = 207 cells

216 clones
968 cells
largest clone = 130 cells

ZF4

A B



Sup Figure 5

● 15

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

28

29

30

32

33

35

38

39

43

50

52

54

69

70

79

85

96

cone bipolar cells (CBP_1)

cones

pax6a+ cells (not used as tip)

amacrine cells (amacrine_1)

cone bipolar cells (CBP_2)

muller glia

cone bipolar cells (CBP_3)

RGC
retinal neural prgenitors (not used as tip)

photoreceptor precursor cells (not used as tip)

RPE

rods

cone bipolar cells (CBP_4)

horizontal cells

cone bipolar cells (CBP_5)

starburst amacrine cells (amacrine_2)

cone bipolar cells (CBP_6)

kidins220a+ cells (not used in analysis)

A

B

FItSNE

FI
tS
N
E



C
on
es

R
od
s

A
m
ac
rin
e_
1

R
G
C

H
or
iz
on
ta
l

M
ul
le
rg
lia

R
P
E

A
m
ac
rin
e_
2

C
B
P
_3

C
B
P
_6

C
B
P
_5

C
B
P
_2

C
B
P
_1

C
B
P
_4

C
on
es

R
od
s

A
m
ac
rin
e_
1

R
G
C

H
or
iz
on
ta
l

M
ul
le
rg
lia

R
P
E

A
m
ac
rin
e_
2

C
B
P
_3

C
B
P
_6

C
B
P
_5

C
B
P
_2

C
B
P
_4

C
B
P
_1

C
on
es

R
od
s

A
m
ac
rin
e_
1

A
m
ac
rin
e_
2

R
G
C

H
or
iz
on
ta
l

M
ul
le
rg
lia

R
P
E

C
B
P
_3

C
B
P
_6

C
B
P
_5

C
B
P
_2

C
B
P
_1

C
B
P
_4

A

C D

Sup Figure 6

G
A
B
A

ta
c1
+

sy
np
r+

ss
t1
.1
+

pd
yn
+

pr
dx
1+

tp
h2
+

G
A
B
A

dl
x+

G
A
B
A

ta
c1
+

sy
np
r+

ss
t1
.1
+

pd
yn
+

pr
dx
1+

tp
h2
+

G
A
B
A

dl
x+

G
A
B
A

ta
c1
+

sy
np
r+

ss
t1
.1
+

pd
yn
+

pr
dx
1+

tp
h2
+

G
A
B
A

dl
x+

B



Sup Figure 7

1 2 3 4 5 6
7
8 910

11
12
13
14



rcl1
ccm2l
ubap1la
si:ch211−195b15.7
aipl1
vps36
fam150a
si:ch211−207j7.2
gchfr
aanat1
trpm1b
unc119.2
guca1a
rgs9bp
epb41l4a
camk1db
pkib
zgc:162144
pde6b
rgs9b
zgc:109934
cplx4c
si:dkey−246i21.1
samd11
grk1a
pik3r3a
tmem9
zgc:112320
pde6a
gucy2f
guca1b
gnb1a
pdca
gpsm2
alpl
saga
cnga1
nat10
map1ab
gnat1
kri1
eno2
sagb
pex5
nr2e3
ndufs8b
zgc:77752
kcnv2a
rhol
rom1b
si:ch211−113d22.2
zgc:112334
dnajc5ga
rom1a
si:ch211−133l5.5
zdhhc2
rbp2a
si:dkey−94e7.2
aanat2
foxo1a
rnf34a
lrrfip1a
ubap1lb
slc4a4b
kera
cnga3b
frya
si:ch211−237l4.6
si:dkey−85k7.7
camk1gb
slc38a5a
si:dkey−97a13.12
clul1
si:dkeyp−57d7.4
si:cabz01078386.1
arhgap12b
ankrd33ab
nr2f6b
samsn1b
si:dkey−61n16.5
si:ch73−6k14.2
slc12a7b
ppp1r14bb
si:dkey−65b13.13
camkk1b
pik3r1
guca1c
si:rp71−39b20.4
cdk5r2b
larp4ab
rcvrn3
pgd
pde6c
inaa
grk7a
opn6b
gabra6a
ubtd1a
slc24a2
osbpl7
lrit1b
rgs9a
si:dkey−206f10.1
pdcb
slc20a1b
cdhr1a
rdh8b
slc7a3a
eno3
cngb3.2
si:ch211−285j22.3
kcnb2
dusp5
atf4a
gnat2
cnga3a
lactbl1a
ric8a
mapre2
mpp6a
nexn.1
thrb
six7
tmem237b
foxo4
si:ch211−276a17.5
ptpdc1b
aqp9b
ankrd33aa
si:dkey−28e7.3
frmpd1a
zgc:195245
gabrb3
ppp1r18
opn1mw1
atp6ap1lb
rx2
farp2
si:ch211−133l5.7
grk1b
prph2a
spock3
aldh6a1
si:ch211−191i18.4
si:dkey−245f22.5
smtnb
samsn1a
got2a
wbp2
ppa1a
mef2cb
si:ch1073−155h21.2
tmem237a
opn1lw2
slc1a8a
lnx2a
hexb
slc43a3a
dnajc5ab
ndrg1b
si:busm1−57f23.1
si:ch211−81a5.8
cplx4a
nme2a
ada
si:dkey−22o12.7
stxbp1b
slc25a18
opn1sw2
arl4d
arl3
sez6a
si:ch73−28h20.1
arr3b
pole4
rp1l1a
crhbp
ociad1
rims2b
tpma
vgf
clstn1
slc9a3r1
plch2a
sv2ba
EML5
apln
ldhbb
atp1a3a
fkbp2
rx1
hspa9
cetn3
ddah2
sept4a
atp6v0a1a
si:ch211−106m9.1
MCRIP2
arid3b
rxrgb
ctbp2a
tulp1a
sept8b
sall1a
angptl4
sema6d
ttyh3a
opn6a
hspd1
lin7c
zbtb18
nr2f1b
ank2b
fam43a
cxxc5a
jam3b
si:dkey−100n23.4
zgc:162331
camk1ga
vps37a
nxnl1
impdh1a
SAMD4B
usp21
jagn1b
PLEKHB1
lrit3a
letm1
cldn2
bzw2
abca4a
si:ch1073−303d10.1
iscub
aldh7a1
si:ch211−207l14.1
prph2b
phyhd1
ablim3
TMSB15A
ncaldb
tctex1d2
arr3a
si:ch1073−469d17.2
ndufa6
pde6h
spag1a
lmbrd1
sh3gl2
abhd8b
mat2b
uqcrq
laptm4b
rbp4l
jun
ndufa1
ndufs7
arl3l1
rcvrn2
cnep1r1
ssx2ipa
tmem184ba
ubiad1
arl13a
fstl5
unc119b
rp2
tiam2a
wdr60
tmem135
si:ch211−206k20.5
EFCAB10
slc3a2b
jtb
slc25a3a
mdh1ab
fam46ba
irbp
EIF1B
grtp1a
gnb5b
CABZ01056321.1
gnb3b
ndufb5
ckmt2a
stard7
atp5ia
plekho1b
oxct1a
gngt2b
atp1b2b
si:ch1073−358o18.3
pdha1b
si:dkey−17e16.15
eps8
fscn2b
copz2
guk1b
dgcr2
cpe
rd3
bbs7
MPV17L
TULP2
casz1
atp6v1aa
si:ch211−160o17.4
ormdl1
eno1b
nhsl1a
drd4a
arl3l2
uqcrfs1
abca4b
prdx3
cep290
ndrg1a
bbip1
ndufb2
hax1
iqsec1b
nptna
gngt2a
ppp1caa
prom1b
rcvrna
opn1sw1
arl13b
sod2
si:ch211−214j8.15
tdh2
hsp90aa1.2
pitpnb
tbx2a
tomm22
nxnl2
pnp6
fkbp16
trove2
fdps
ddt
WDCP
slkb
syt5a
tulp1b
ccdc28a
gstp1
mknk2a
tpd52l2a
glmnb
TMEM216
samd7
mgst3b
ckmt2b
adipor2
hmgcs1
faimb
tmem136b
ccsapb
chka
tmx1
ppdpfa
icmt
os9
tecrb
pde6g
nme3
GRAMD2
gngt1
rho
agpat3
rab3aa
eef1da
elovl4b
apba1b
arl6
znf395b
pfkfb4b
gnb1b
bbs5
ift27
meig1
si:ch211−207i1.2
reep6
ppifb
tdh
mest
pde6d
atpif1b
chchd10
WDR83OS
rtn4a
timm17a
srpr
dpm2
hsd17b12b
etfb
sub1b
erlin2.1
mak
mpc1
atp5l
sat2b
gpx4b
dpm3
fam57ba
cycsb
wdr54
sypb
atp5g1
atp5j
nomo
hmga1b
ccdc47
ndufa11
atpv0e2
tmem231
sdhc
minos1
atp5d
glrx5
atp5g3b
sri
tomm6
ncor1
atp6v0cb
atp5h
apooa
scrn2
ndufs4
timm13
cuedc1a
arl2bp
atp2b1b
atp5ib
rabl2
ndufs3
ddx39b
sccpdhb
timm8b
tmx3
fkbp4
ptges3a
igf2bp2b
acadm
selt1a
dpm1
rab6bb
anp32e
emc8
rs1a
nptnb
zgc:103625
tmco1
c23h20orf24
msi1
hspe1
zgc:63972
syt5b
reep3b
phb
ssbp1
echs1
rdh8a
hacd2
ssuh2rs1
crx
si:dkey−16m19.4
neurod1
ssr2
zgc:171480
mrpl12
zgc:110339
mpp2a
tmem244
lamtor5
ezrb
rpgrip1
plekha5
c1qbp
si:ch211−286b5.5
mob1a
si:ch211−226m16.2
tcf12
tnc
xbp1
zgc:112294
pole3
tomm20a
man2a2
ppa1b
hdlbpa
mrpl52
mllt4a
fkbp1b
lrrn1
zgc:109965
mycbp
syne2b
tmem147
acss2
zgc:109949
prdm1a
amer2
chd7
rpgrb
sdc4
si:ch211−147a11.3
zgc:109889
pcdh8
tmem108
tjp1a
b9d1
rsl1d1
rlbp1a
isl2a
rgcc
canx
ddx21
dscamb
smad3a
mycb
map9
cetn4
st13
aplnra
RASSF5
otx5
zic3
myclb
ralab
aplnrb
polr2i
lmnb2
nop10
lsm8
tmem107l
kif19
tjp1b
katnb1
ahi1
uacab
sepw2a
lmo4a
robo3
dnmbp
npm1a
rab34a
mbd3a
rxrga
prdm1b
fkbp1ab
btg3
fabp7a

Photoreceptors

Precursors Cones Rods

si:ch73−302a4.4
gabrd
ret
tusc5a
tmem196b
gfra1a
MANEAL
tp53i11b
otofa
nrgnb
cacna1fb
pcdh11.1
wbscr17
gstr
si:dkeyp−41f9.4
pcdh11
chgb
vsnl1a
syt9b
homer3
PRIMA1
fam171a2
crip3
rasgef1ba
crip2
slc4a4a
tox3
sort1a
nav2b
si:ch211−204a13.2
soga1
atp1b1a
ache
sh3bgrl2
ndnf
anos1a
unm_sa1614
cpne8
slc18a3a
tpd52l1
nxn
lrch1
hpca
gstp1
grip1
chn1
arhgef4
abcc5
phactr3b
bhlhe23
rai14
bmpr2a
srpk1a
prdm8b
cdh2
ttyh3b
tox2
zfhx3
desi2
adgrl3.1
atp2b4
myh14
rbfox3a
agrn
glrba
RALYL
si:ch1073−329i9.1
slc5a7a
cdh18a
pcp4l1
mpp6b
arl4ab
dpysl4
mfge8b
zc2hc1a
spry2
sepp1a
plppr5a
smox
tspan18b
cplx2
pcdh7b
nfasca
id3
grm6b
rgs11
zgc:110340
gnai2a
ulk2
ism1
si:dkey−4i23.7
gldn
rgs9bp
st8sia5
pcdh19
tiam1a
gng13b
isl1
sox2
rhocb
scrt2
POLD4
chd7
arhgap1
sept9b
atp1a3b
ier2
cacng2b
smdt1a
fosl2
junba
tfap2e
tfap2c
six3a
gas7a
trim13
necab1
reep2
znf385c
znf395
ba1.1
mpp2b
ppm1nb
syngr1a
si:ch211−255i3.4
slc16a3
slc24a3
rgs8
npas4a
sult4a1
oaz2b
lrrtm1
gpr153
suco
synj1
sncga
ywhag1
lpin1
cacng7b
fam19a1a
scn3b
ndfip2
gpia
slc2a3a
stxbp5a
fam91a1
dynll2a
pabpc1b
sgtb
glra1
si:dkey−164f24.2
aatkb
gad1b
zeb2a
trim3b
grin1b
cacna2d2a
zgc:92140
tspan18a
atp2b3b
atraid
dnm1a
kcnab1b
rtn3
pnpo
il1rapl1a
RAMP1
atp6v1ab
camk2b1
znf395a
kif1b
sh3gl2
pclob
ppp1r14ab
gria3a
rgs16
aldoaa
BX957331.1
syt2a
asphd1
slmapb
ppp3cb
pgk1
chga
atp6v1f
kif1ab
pcsk1nl
magi1b
pik3ip1
lrrtm2
atp2b1a
slc6a1b
adam23a
ctnnd2b
gabrb2
ppp3ca
syt11a
atp6ap1a
serpina10a
slc35f6
gpx4a
eno2
ap2b1
ldha
tusc2b
atp6ap1lb
atp1b3b
ap2a1
camk2g1
camk2n2
si:ch73−52f24.4
atp6v0b
cuedc2
proza
tsc22d3
rgs7a
cnksr2b
rusc1
glula
ak4
bsnb
glud1b
arglu1a
pgam1b
camk2d2
snap25a
dtnbp1a
tkta
slc16a9b
mtch2
rac3b
ndrg2
dnajc6
ppp3r1a
zgc:65894
bsg
sept15
stxbp1a
stx1b
snap25b
atp6v0ca
atl1
gnb2
maptb
kif5aa
fundc1
ppm1la
cdr2l
tmem59l
rab41
basp1
ywhaqa
lhx2b
serinc1
nbeaa
ptgdsb.1
csdc2a
fez1
mtfr1l
gmfb
tox
vdac3
hbz
hmgb3b
pak1
bhlhe22
elmo1
gng3
meis2b
elavl3
gpm6aa
mfsd2ab
lrtm1
map7d2b
cacng8b
si:dkey−76c17.3
clta
vamp2
rnf175
rnasekb
rnf11a
egr4
zgc:91860
ptprn2
atp6v1b2
dtnbp1b
sv2a
slc38a3a
fryb
ppfia3
si:ch73−119p20.1
fam126a
srrm4
gad2
ap2s1
gpr85
kctd4
flot1a
slc32a1
ppp3r1b
slc20a2
lrrc4.1
madd
npdc1b
stmn4l
IGLON5
slc35g2a
syn2a
itfg1
nptnb
syngr3b
gphnb
zmat4a
gabrb4
atp2b3a
tex264a
diras1a
shisa7b
si:dkey−71p21.9
atp6ap2
atp6v1h
tcp11l2
atp6v1d
vamp4
atp6v1e1b
rab14
prr12b
si:ch211−196g2.4
scg2b
syn2b
junbb
arf3a
snap91
si:dkey−10p5.10
atp6v1c1a
rab3ab
slc35g2b
erp44
dnajc5aa
cadpsb
syt1a
calb2b
nsfa
rnd3a
CR847844.2
lancl1
syt4
rab2a
ywhah
atp6v1g1
lmo4b
tmem35
pip4k2ab
abi2b
fosab
dpysl5b
slc6a1a
CAMK2N1
arf2a
atp6v0d1
galnt1
pcloa
tspan13b
sept6
sprn
atp1b3a
glra4b
dmtn
pik3r1
adgrb3
cdh4
ptprk
srpk2
cplx2l
atp6v0cb
hsbp1a
celf4
sncb
atpv0e2
arnt2
id2a
tmem9b
mab21l1
tspan31
si:dkeyp−75h12.5
tmem178
rims2a
zgc:153845
syngr3a
ppfia4
glrbb
dirc2
slc4a10a
nrsn1
pet100
nfkbib
si:ch211−214j24.9
rogdi
upf3a
gnsa
cdipt
ccser2a
foxo3a
itm2ca
cacnb4b
gng7
atat1
plpp5
cbx1b
rheb
sept3
gdi1
celf3b
cux1a
lhfpl3
cacng5a
cacng2a
sept2
calb2a
amph
kcnma1a
si:dkey−19n13.5
si:dkey−56f14.7
ywhag2
elavl4
fam168a
FP236812.9
zgc:73340
si:dkeyp−72g9.4
zgc:194261
hnrnpa3
pnisr
pbx3b
arl1
ywhae1
si:dkey−81l17.6
hist2h2l
rcan1a
scrt1a
kctd12.2
clgn
si:dkey−7j14.5
slc6a9
rabgap1l
dlg1
mpc1
clcn4
si:ch211−11c15.3
lin7b
CTBP1
eva1a
mettl9
kif1aa
hmx4
crmp1
b3gat2
zgc:153426
tuba2
tuba1c
lman2
adgra1a
pdcd10b
zgc:165603
irf2bpl
fam49a
rtn1b
tpd52l2b
pbx1a
pkig
arrdc3b
slc1a4
stmn2a
map1aa
cspg5a
selk
cadm4
mt2
gdpd1
mid1ip1l
gabra1
cahz
tpm3
arl8a
zgc:100906
jam3a
acbd7
kcnip1b
efhd1
zdhhc15b
id4
lasp1
fscn1a
aif1l
si:dkey−19e4.5
gpm6ab
midn
six6b
apof
calm1b
SMIM18
dpysl5a
impdh1b
tbx2b
fasn
mtbl
pvalb6
si:ch211−167m1.5
gnb1a
stmn2b
mdkb
rcan3
qkia
calm3a
PDE4DIP
nrxn1a
rbfox1
tbx3a
cacng3b
rab3c
gnao1a
fkbp2
zgc:77058
rltpr
rab1bb
ptp4a1
srgap3
kctd15a
pcbp4
ctnnbip1
ptmaa
rnd1b
gng2
calr
apc
myt1a
proca1
raph1a
elovl6
pax6b
ppp1r14c
ppdpfb
barhl2
gna11b
scinla
efnb2a
insig1
si:ch73−290k24.5
pax6a
zgc:153846
dab2ipa
zc4h2
tfap2a
ctnna2
rab3ip
cdh8
ppp1r14ba
cryba1b
tfap2b.1
pax10
fam60al.1
ubtfl
pop7

Amacrine Cells

Precursors Amacrine Starburst

GATC
mcl1b
si:ch211−114n24.6
gabpa
hif1ab
susd6
plk2b
aqp8a.1
plekhg7
si:dkey−1h6.8
si:dkey−283b1.7
scn3b
btbd6a
tpst1
amd1
pdk2a
arl4ab
arl4d
oaz2a
tmem176l.1
rtn4r
psmg3
hif1al
bhlhe40
atp2b2
net1
arg2
rasgef1ba
pros1
srsf1b
irs2b
hmga1b
slc12a2.1
ptpreb
map1b
irf2bp2b
prkacaa
homer1b
gadd45ba
kcnj14
irs1
cib2
gnal
gpc1b
slc4a8
zgc:92140
srpk1a
anos1a
sdcbp2
cab39l1
olfm3a
gad1b
ric8a
etv5a
ppp2r5d
phactr3b
ppap2d
si:ch211−195b15.8
aldh9a1a.1
slc6a1l
slc4a5
si:dkey−22o22.2
map6d1
ccser2a
phyh
ldha
si:ch211−153l6.6
sik2b
pgk1
pgam1a
mt2
cops8
rprmb
aldoaa
camk2n1a
ubl3a
galnt11
cacng7b
si:dkey−100n23.4
cryba4
anapc16
tmem30ab
gpr137bb
vps28
GCA
pgp
clu
gpia
ppp3cb
dclk1b
tspan3a
rab3c
mdka
usp36
si:ch211−276i12.4
NAT16
msra
msi2a
mllt11
ompa
gmfb
add3a
efna1a
bckdhbl
si:dkey−16p21.8
gnai1
btbd17b
gpx4a
bnip3lb
atp2b4
atp6v0e1
npc2
itm2cb
dclk1a
atp1b1a
ba1.1
zgc:153846
fam107b
hbz
nr2f5
smim13
hbbe2
stmn1b
ip6k2a
h1fx
mid1ip1l
ormdl1
rab11a
si:ch211−260e23.9
eif3ja
nfkbiab
ppp1r3cb
aqp11
gyg1a
amph
ca2
ppdpfa
plekho1b
zgc:86598
osbpl10
syt1a
ptn
sept15
eif4ebp2
prkar2ab
tox
GABARAPL1
pnrc2
ptenb
ncam1a
dab2ipb
atf1
ube2v2
si:dkey−205h13.1
rdh10a
pcsk6
cx52.7
kcnh6a
rtn3
spry2
mark3b
ak1
gfra1a
dynll2b
gria3a
si:ch73−29l19.1
pde4ba
ntrk3a
daam1a
grin1a
nup93
LINC00998
csnk1da
eno1a
ip6k2b
ube2l3a
usf1l
hopx
tnfaip8l3
ptprz1a
wscd2
ppp1r1b
ret
CABZ01029366.1
zgc:174935
plekho1a
dhps
opn9
fam49bb
nr1d2a
slc2a3a
lin7a
gpatch8
etv5b
ndrg3b
pcbp3
pigq
fkbp8
pdhb
si:dkey−87o1.3
ndrg4
rtfdc1
casz1
ncoa5
crk
pdcd4b
znrf1
zfyve21
eml2
ccng1
mtm1
ahcyl1
ankrd10b
zgc:165603
gkap1
apln
cx52.6
plch2a
ppp2cb
vtnb
capns1a
dynlt3
tagln3b
tnr
isl1
tceb1a
pcnp
tfap2a
zeb2a
rap1b
prkcda
cdkn1d
fam43a
slc6a1b
ap1s1
olfm1b
arhgef4
tmem165
rgcc
mat2b
ptp4a2a
cx52.9
mab21l3
zgc:56525
nrxn1a
slc16a9b
bsg
pcdh8
si:ch211−56a11.2
arvcfb
traf4a
med11
zgc:162944
prickle1b
rtn4a
ppt1
si:dkey−1d7.3
cacng5a
lrrc4.1
opn4.1
ddx5
sms
palm1b
ndel1a
sept8a
sh3bgrl3
ndrg2
sept7a
esrrga
qkia
POLD4
mpped2
rcor2
cetn4
stk17a
fstb
uqcc3
cd82a
myl12.1
cryba2b
FTL
cnn3a
gng13b
chmp5b
tmsb4x
acvr1ba
commd7
setd8a
barhl2
btbd10b
med19a
ap1s2
nme2b.1
lmo1
dbi
cops5
cdh6
rem1
them4
cope
pacsin1b
cdc42l
cst14a.2
crygmx
hmx3a
si:ch211−5k11.2
cspg5b
ywhaqb
gng5
dalrd3
cotl1
hbaa1
tfap2b.1
ppp6r3
prox1a
chd7
pde6g
si:dkey−42i9.4
gemin2
reep3b
zgc:92664
arpp19b
fam60al.1
phc2a
nusap1
cdk1
birc5a
ube2c
kpna2
rbm4.2
rad21a
lbr
ppp1r14bb
fam60al
tuba8l4
ewsr1b
anp32b

Horizontal Cells

sox3
fgf8b
si:ch211−66e2.5
fzd8a
her6
fgf8a
fgf24
id3
ptgs2b
cyp26c1.1
gna11b
vegfaa
cxcl12b
sgk1
igf2b
slc38a4
cyp1d1
six3a
lmbrd2b
egln3
nfil3−6
stc2a
CABZ01084447.1
igfbp1a
zgc:153704
ddit4
wasf3b
zgc:158343
cyp2n13
eif4ebp3l
gpm6bb
herpud1
pon2
ugt1b5
degs1
ccdc85b
cyp2p6
zgc:174888
col15a1b
cebpd
mfap5
snx17
ctdsp1
tom1
itgb5
si:ch211−196g2.4
epb41l5
sik2b
mlc1
boka
cx43
rgcc
atp1b1a
cyp26a1
boc
myo15aa
nxn
crip3
sesn3
sypl2a
cyp3c1
slc4a4a
homer3
cyb5a
rtn3
prnprs3
spry4
gstr
si:ch1073−303k11.2
carhsp1
rgs12b
aplp2
zgc:153981
psap
mob1bb
fstb
arl4d
sox10
spry2
DNAJA4
zfp36l1b
atp1b3a
rbp5
gas1b
trib3
ptgdsb.1
alpl
slc43a2b
hsd11b2
tmed5
grb10b
agmo
gnai2b
nfasca
pygl
smox
enpp6
clstn1
abi3a
tob1a
plscr3b
chp2
ctsd
gnai2a
ppp1r14aa
mcl1b
ptgdsb.2
ak3
hey1
pon3.2.1
dab2ipa
zgc:110339
zgc:112332
sdc4
zgc:158852
rergla
apoeb
btbd6a
rgl3a
vil1
pim3
atp1a1b
rftn2
CABZ01055522.1
syngr2b
slc38a3a
klf6a
mid1ip1l
vat1
emilin1a
sept10
ctsla
jdp2b
lfng
dap1b
mt2
jun
slc3a2b
junbb
ncam1a
sepp1a
scamp2
fosab
tegt
six6b
si:ch211−137a8.4
btg2
junba
gpt2l
rgmd
hmx4
mapkapk3
crtap
csrp2
tgfb3
pik3ip1
s1pr1
tspan2a
si:ch211−202e12.3
cdon
slco2a1
ism1
hsph1
chst2b
cdkn1a
mob3a
lmo7b
bckdhbl
VILL
dhrs13l1
ppt1
ca14
cyp2ad3
ppap2d
rgra
sntb1
grm2b
lman1
cd82a
dnmbp
id1.1
tspan7
sox19b
zgc:77086
eva1a
tmem176l.1
acox1
rnf128a
acadm
si:dkey−85k7.7
mgll
hadhaa
gpr37a
lamp2
prom1a
pard6gb
cadm4
hyal6
vamp8
metrnl
sparc
mgst1.2
sdpra
mgst3b
atp1a1a.1
zgc:165604
itm2ba
fxyd6l
si:ch73−31d8.2
plekhg7
nfkbiab
qkia
grinab
vsx2
mthfd2
inhbaa
tbx2a
fam210b
anks1b
tacc1
sult1st1
srebf2
wbp2nl
mtpn
SBSPON
si:dkey−7j14.6
anxa11a
tcea2
rbpms2b
rdh10a
mgst1.1
rpz5
mmp23bb
ssuh2rs1
vim
aqp1a.1
wfdc2
adgrg1.1
capn1a
perp
si:ch211−152c2.3
fam213aa
dap1b.1
crot
padi2
espn
pnp6
zgc:174895
tmem165
ston2
tpi1a
arhgdia
zgc:110699
atp1b4
anxa11b
ctsa
crlf3
ccdc28a
crabp2b
bckdk
cnn3a
gpx4a
asph
cd81a
ccdc85ca
cahz
dhx32b
mdka
si:dkey−235h8.1
si:ch73−215f7.1
cx31.7
aldh7a1
clic4
limk2
hspb6
zgc:92818
abca1a
pdk4
ivd
inhbab
col18a1
prdx6
sdprb
GCA
pdxka
qki2
glud1b
tagapb
atp1b3b
si:ch211−140m22.7
bcat2
znf536
eml2
pros1
stxbp6l
psph
s100a10b
zgc:85777
cldn12
gstp1
gyg1b
cdc42l
rx1
CABZ01070258.1
glula
rtca
tspan33a
eepd1
si:ch211−278j3.3
capns1a
si:ch73−352p4.8
elovl2
hopx
gstk1
pcxa
sgk3
pleca
epdr1
mob1a
clic1
epas1b
BX649498.1
si:dkey−164f24.2
ablim1b
glulb
pgrmc1
si:dkey−16p21.8
si:ch211−132d3.4
zgc:162944
rnaseka
gstm.1
esd
phgdh
sdr16c5b
st8sia6
zgc:195173
gulp1a
slc3a2a
hmgcs1
ush1c
gipc2
rhbg
rtn4a
stxbp3
slc1a2b
msmo1
aif1l
cnn2
bambia
msna
tktb
rac1a
dnajc4
anks4b
anxa13
zgc:109949
dars
cpne1
si:dkey−204f11.64
hadhb
efhd1
nrgna
acadl
prdx2
selt1b
pik3r2
pisd
slc9a3r1
ddt
aldh9a1a.1
fdps
abcd3a
atp6v1e1a
psat1
rasgrp3
higd1a
eif4ebp2
rlbp1a
cotl1
hadh
adi1
pora
sdcbp2
yap1
slmapb
flot2a
lasp1
myl9b
anxa4
gpsm1a
nudt5
plpp3
idh1
glo1
sod1
eno3
hspb1
park7
si:ch211−286b5.5
gng12a
fasn
sri
sncga
lipg
acbd7
atox1
cbx3b
fads2
vamp3
si:dkey−13i19.8
npc2
fabp7a
rap1b
flot1b
cst14a.2
metrn
crabp1a
faub
tpm3
si:ch211−7c8.2
cldn5b
zgc:153867
jam3b
zbtb18
tjp2b
si:ch211−193l2.7
gng5
si:ch211−193l2.5
akap12b
her4.2
ascl1a
si:ch211−193l2.4
her4.2.1
banf1
si:ch211−193l2.3
her12
her4.1
her15.2
her15.1
crabp2a
si:ch211−114n24.6
adh5
eef1da
her9

Muller Glia

kcnip3b
kcnip3a
cpne8
zgc:110340
fndc4a
stmn3
gria4a
eef1a1b
slc6a17
sncga
rgs8
abhd3
vsnl1b
rims2a
oaz2b
anxa13l
cxcl14
RAMP1
fgf12a
arl3
edil3a
si:ch211−151p13.8
calb2a
eef2l2
fgf12b
gabrb2
zgc:194981
nptx1l
ywhag1
si:dkey−7j14.5
si:ch73−119p20.1
nrgna
mtus1b
scrt1a
pou4f1
ndrg3a
rab6ba
calb2b
camk2b1
atp1b3b
grin1a
zgc:162707
eno2
mark3a
ppfia4
map6b
uchl1
kcnc1a
syngr3b
cplx2l
rbpms2a
pcloa
ca10a
glrbb
tubb2
si:dkey−33c12.3
cadpsb
ppm1la
nsfa
gnao1b
ywhaqa
zgc:194261
apba2b
clstn3
rab41
myrip
slc35g2b
slc4a10a
inab
FNDC10
vamp1
sox6
cpe
spna2
kif3a
jund
map7d2b
tbcb
ppp3r1a
adam23a
tmem151a
clstn1
si:dkey−35i13.1
ube2v2
nrn1a
rbfox3a
map1b
bsnb
stmn2a
pcp4a
zgc:65894
calm3a
si:dkey−114c15.7
si:ch211−11c15.3
atp1b3a
hsbp1a
dnajc6
rbfox1
mllt11
nat8l
phactr3a
pak1
adgrl3.1
pcbp4
mansc1
fez1
gng13b
nrp1a
cfl1
tmsb4x
meis2b
fmnl2b
cotl1
aatkb
sertad4
sh3bp5b
snx6
cacnb4b
gdi1
si:dkeyp−75h12.5
bcl2b
SCHIP1
tmem178
pafah1b1b
lnx1
lrrtm2
mprip
SMIM18
appb.1
sh3glb2b
slc7a8a
BX957331.1
nptna
snap25a
stx1b
ppp1r14ba
rbpms2b
vdac3
syt9b
bdnf
glra4b
osbpl10
gphnb
sult4a1
btg2
anks1b
syn2a
si:dkey−253a1.2
rab6bb
si:dkey−112a7.4
ubl7a
necab2
atp6v1c1b
si:dkeyp−72g9.4
evla
rgs7a
atp2b3b
klc2
isl2b
chka
tspan13b
pcsk1nl
slc35g2a
fgf13b
cacna1aa
reep2
hmx4
gnb2
tkta
ube2d4
kif1ab
ttyh3b
camk2g2
rnf10
tmem59l
rltpr
si:dkey−125i20.2
ywhah
homer3
emp1
mef2aa
spry4
clstn2
olfm1a
vgf
syt2a
si:ch73−274k23.3
cdh13
kiaa1549la
camkvb
ntng1a
rab1ba
kif5bb
foxp2
SMIM10
hmx1
itm2ca
atf3
pip4k2ca
si:ch211−195b15.8
usp33
nell2b
ctsla
stmn4l
fosab
si:ch211−214j24.9
prkab1a
ppp2r2ca
oxsr1a
tspan3a
pcdh7b
flot2a
CU639469.1
tspan7b
chga
si:dkey−71p21.9
gnao1a
nmnat2
cnksr2b
gng3
csdc2a
dynlt3
marcksl1b
aqp9b
wls
scn2b
pabpc1b
nrsn1
magi1b
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Import data into URD

Convert Seurat object to URD

We first loaded a Seurat object that contained just cells from the clusters that belonged to the
hypothalamus from each stage.
suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load Seurat object that has been cropped to hypothalamus cells
object.seurat <- readRDS(paste0(base.path, "obj/retina.new_seurat.rds"))

# Convert to URD object
suburd <- seuratToURD(object.seurat)

Combined individual stage clustering

Bushra had performed individual clusterings across each stage with different resolutions. Here,
it was better to create a single identifier that included stage + cluster information to combine all
those clusterings (while preventing any overlap).

1
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stages <- sort(unique(suburd@meta$stage))
clust.res.used <- paste0("res.", c("4.5", "4", "5", "5", "4.5", "5", "6",

"6", "6", "5.5", "6", "5"))
names(clust.res.used) <- stages
suburd@group.ids$cluster <- NA
for (stage in stages) {

suburd@group.ids[cellsInCluster(suburd, "stage", stage), "cluster"] <- paste0(stage,
"-", suburd@group.ids[cellsInCluster(suburd, "stage", stage), clust.res.used[stage]])

}

Calculate highly variable genes

We calculated highly variable genes for each stage, used genes that were found as highly in at
least two stages, but were not mitochondrial, ribosomal, heat-shock protein, or tandem duplicated
genes.
# Calculated on each stage separaely, final gene list was all genes
# that were 'variable' in at least two stages NB: For a couple of
# stages, the gamma fit was poor -- the library size distribution
# seemed bimodal. Have seen this before in 10X data, but not sure what
# it means.
var.genes.by.stage <- lapply(stages, function(stage) {

findVariableGenes(suburd, cells.fit = cellsInCluster(suburd, "stage",
stage), set.object.var.genes = F, diffCV.cutoff = 0.3, main.use = stage,
do.plot = T)

})
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names(var.genes.by.stage) <- stages
var.genes <- sort(unique(unlist(var.genes.by.stage)))
print(paste0("Length of variable genes is ", length(var.genes)))

## [1] "Length of variable genes is 2636"

var.genes.twice <- names(which(table(unlist(var.genes.by.stage)) >= 2))
print(paste0("Length of variable genes shared across at least 2 stages is ",

length(var.genes.twice)))
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## [1] "Length of variable genes shared across at least 2 stages is 1724"

# Remove mitochondrial genes
var.mito <- grep("^mt-|^AC0", var.genes.twice, value = T)
# Remove ribosomal genes
var.ribo <- grep("^rps|^rpl", var.genes.twice, value = T)
# Remove hsp genes
var.hsp <- grep("^hsp", var.genes.twice, value = T)
# Remove genes with duplicates
var.dups <- grep("of many", var.genes.twice, value = T)
suburd@var.genes <- setdiff(var.genes.twice, c(var.mito, var.ribo, var.hsp,

var.dups))
print(paste0("Length of final variable genes list (after removing mito, ribo, hsp genes) is ",

length(suburd@var.genes)))

## [1] "Length of final variable genes list (after removing mito, ribo, hsp genes) is 1595"

To prevent downstream problems, we also removed any cells from the data that had the exact
same expression of the variable genes (i.e. cells with completely duplicated coordinates in the
high-dimensional space we would use for analysis downstream).
# Check for duplicate data points - cells with exact same expression of
# variable genes
vg.dups <- duplicated(as.data.frame(as.matrix(t(suburd@logupx.data[suburd@var.genes,

]))))
if (length(which(vg.dups)) > 0) {

print(paste("Removing", length(which(vg.dups)), "cell(s) with duplicated variable gene expression."))
not.dup.cells <- colnames(suburd@logupx.data)[!vg.dups]
suburd <- urdSubset(suburd, not.dup.cells)

}

## [1] "Removing 6 cell(s) with duplicated variable gene expression."

Calculate KNN graph and remove outliers

We then calculated a k-nearest neighbor graph and removed cells that had unusual distance to
their nearest neighbor, or unusual distance to their 20th nearest neighbor (given their distance
to their nearest neighbor). These sorts of outliers often cause problems or skew diffusion maps
(used downstream).
# Calculate k-nn
suburd <- calcKNN(suburd)

# Check what the outliers are
outliers <- knnOutliers(suburd, nn.1 = 1, nn.2 = 20, x.max = 40, slope.r = 1.05,

int.r = 4.2, slope.b = 0.75, int.b = 11.5, title = "Identifying Outliers by k-NN Distance.")
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length(outliers)

## [1] 521

suburd <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
outliers))

Remove kidins220a+ population

A cell cluster was observed in 15 dpf that was positive for expression of kidins220a, and foxg1b
(which is exclusive to the retina). However, no similar clusters were observed in other stages,
suggesting that we did not recover the progenitors of this population, so we excluded it from the
URD analysis.
suburd <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),

cellsInCluster(suburd, "cluster", "12-15d-96")))

Remove cell type doublets

Add UMAP projection

While not strictly required, a UMAP projection can make it easier to assess the expression of NMF
modules and whether thresholds for overlap are set correctly.
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## add UMAP command

# Load pre-calculated UMAP
umap <- readRDS(paste0(base.path, "/umap/umap_retina.rds"))

# Add projection to URD object
suburd@tsne.y <- umap[colnames(suburd@logupx.data), ]

Load NMF results and import into object

NMF results were calculated by providing suburd@logupx.data to an external NMF pipeline written
in Python. The output results are imported here, scaled, and added to the URD object.
# Load the NMF results
load(paste0(base.path, "/NMF/retina/result_tbls.Robj"))

# The results object contains NMF runs for several K values. k=45 was
# chosen for this tissue, so this extracts the results for that
# particular parameter
k.use <- "45"
nmf.cells <- result_obj[[paste0("K=", k.use)]][[1]]$C
rownames(nmf.cells) <- paste0("nmf", 1:nrow(nmf.cells))
colnames(nmf.cells) <- gsub("\\.", "-", colnames(nmf.cells))
nmf.genes <- result_obj[[paste0("K=", k.use)]][[1]]$G
colnames(nmf.genes) <- paste0("nmf", 1:nrow(nmf.cells))

# Some stages were subsampled in the original object and accidentally
# cropped out cells that had scGESTALT barcodes. Those were added back
# in, and their expression was decomposed with original NMF gene matrix
# to give an additional NMF cell matrix for those cells.
new.nmf.c <- read.csv(paste0(base.path, "/NMF/retina/retina_new_nmfC_k45.csv"),

row.names = 1)
rownames(new.nmf.c) <- paste0("nmf", 1:nrow(new.nmf.c))
colnames(new.nmf.c) <- gsub("\\.", "-", colnames(new.nmf.c))

# Combine old and new NMF results
nmf.cells <- cbind(nmf.cells, new.nmf.c)

# Trim NMF results to match cells in current object
nmf.cells <- nmf.cells[, colnames(suburd@logupx.data)]

# Scale NMF results 0-1
nmf.cells.scaled <- sweep(nmf.cells, 1, apply(nmf.cells, 1, max), "/")

# Add scaled NMF results to the URD object
suburd@nmf.c1 <- as(t(as.matrix(nmf.cells.scaled)), "dgCMatrix")

Select cell-type specific modules

Several NMF modules will be poor markers of cell types — these are often modules driven mostly
be the expression of 1-2 genes (where the gene loading of the first gene is much greater than that
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of the fourth gene, for instance), or modules that don’t exhibit any restriction in a tSNE or UMAP
projection.
# Plot size parameters
plot.height = 8
plot.width = 8
dpi = 150

# Plot every module to determine which exhibit cell-type specificity
# This saves directly to the hard drive: two example plots are shown
# below.

# for (n in colnames(suburd@nmf.c1)) { png(paste0(path, '/doublets/',
# subset, '-plots/', n, '.png'), width=dpi*plot.width,
# height=dpi*plot.height) plot(plotDim(suburd, n)) dev.off() }

gridExtra::grid.arrange(grobs = list(plotDim(suburd, "nmf4", plot.title = "nmf4: strong cell-type restriction"),
plotDim(suburd, "nmf2", plot.title = "nmf2: poor cell-type restriction")),
ncol = 1)

## Warning: Removed 520 rows containing missing values (geom_point).

## Warning: Removed 520 rows containing missing values (geom_point).
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# Module Gene 1 : Gene 4 Ratios
top.genes <- result_obj[[paste0("K=", k.use)]][[1]]$top30genes
top.weights <- top.genes[, grep("Weights", colnames(top.genes), value = T)]
colnames(top.weights) <- paste0("nmf", 1:nrow(nmf.cells))
top.weights.ratio <- top.weights[1, ]/top.weights[4, ]

# Which modules exhibit cell-type restriction?
modules.ok.ratio <- names(top.weights.ratio)[which(top.weights.ratio <

5)]
restricted.modules <- paste0("nmf", c(4:5, 8:13, 15:18, 21:29, 31:35, 37:39,

41:44))
good.modules <- intersect(modules.ok.ratio, restricted.modules)
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Determine which module pairs to use for doublet removal

We consider NMF modules pairwise and only use those pairs that don’t are non-overlapping in
the data. (In other words, NMF modules that are mutually exclusive in the majority of the data.)
Here, we determine thresholds for selecting those module pairs.
# Determine overlaps between module pairs
nmf.doublet.combos <- NMFDoubletsDefineModules(suburd, modules.use = good.modules,

module.thresh.high = 0.4, module.thresh.low = 0.15)

# Determine thresholds for NMF modules
frac.overlap.max = 0.03
frac.overlap.diff.max = 0.1
module.expressed.thresh = 0.33

# Determine which module pairs to use for doublets
NMFDoubletsPlotModuleThresholds(nmf.doublet.combos, frac.overlap.max = frac.overlap.max,

frac.overlap.diff.max = frac.overlap.diff.max)

# These commands save plots directly to the hard-drive.

# Make plots to see how your thresholds are
NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,

"-doublet-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "pass", sort = "near", n.plots = 25)

NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,
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"-ok-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "discarded", sort = "near", n.plots = 25)

# Define doublet cells
nmf.doublets <- NMFDoubletsDetermineCells(suburd, nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,

frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max) # 376 cells / 19837 cells = 1.9%

# Plot doublet cells on the UMAP
suburd <- groupFromCells(suburd, "nmf.doublets", cells = nmf.doublets)
plot(plotDimHighlight(suburd, clustering = "nmf.doublets", cluster = "TRUE",

plot.title = paste0("NMF doublets: ", length(nmf.doublets), " cells"),
point.size = 2, highlight.color = "blue"))

## Warning: Removed 520 rows containing missing values (geom_point).

# Crop object to exclude doublets
suburd.cropped <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),

nmf.doublets))

And then save the completed object for use downstream in building a tree using URD.
saveRDS(suburd.cropped, file = paste0(base.path, "/obj/URD_retina_ND.rds"))
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Load data

suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load procesed URD object
object <- readRDS(paste0(base.path, "obj/URD_retina_ND.rds"))

Processed on the cluster

Most of the following steps were run on a computing cluster. These individual tissue subsets
can be run on a modern, well-equipped laptop. The use of a computing cluster allows multiple
parameter choices to be tried in parallel, and also allows further parallelization of the random
walk procedure, speeding it up. Below, we should the commands that one would run on their
laptop, and then generally load the pre-processed results from the cluster that were used in the
paper. If you want to parallelize your own processing on a compute cluster, the scripts we used
will be available at http://github.com/farrellja/URD/cluster/
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Calculate diffusion map and pseudotime

These two steps are run in the cluster script URD-DM-PT.R.

Calculate diffusion map

# To run locally: Calculate a diffusion map projection
object <- calcDM(object, knn = 140, sigma.use = 14)

# Or: Load a pre-computed diffusion map projection
dm <- readRDS(paste0(base.path, "dm/dm_retinanewnokND_knn-140_sigma-14.rds"))
object <- importDM(object, dm)

# Plot diffusion maps
stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",

"gold", "goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2",
"lightgrey")

# Plot by stage
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "stage", plot.title = "", outer.title = "Diffusion map labeled by Stage",
legend = T, alpha = 0.45, discrete.colors = stage.colors)
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# Plot with final cell types labeled
object@group.ids$final.cluster <- NA
object@group.ids[cellsInCluster(object, "stage", "12-15d"), "final.cluster"] <- object@group.ids[cellsInCluster(object,

"stage", "12-15d"), "res.5"]
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "final.cluster", plot.title = "", outer.title = "Diffusion map with final clusters",
legend = T, alpha = 0.6)
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Calculate pseudotime

URD requires a starting point or ‘root’ for determining pseudotime. Here, we used all cells from
the first timepoint (i.e. 12 hpf) as the root.
# Here, we used all cells from the first timepoint (i.e. 12 hours) as
# the root.
root.cells <- cellsInCluster(object, "stage", "01-12h")
plotDimHighlight(object, "stage", "01-12h", plot.title = "Root is 12 hpf cells")

## Warning: Removed 500 rows containing missing values (geom_point).
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# To run locally: Run graph-search simulations to determine pseudotime
flood.result <- floodPseudotime(object, root.cells = root.cells, n = 100,

minimum.cells.flooded = 2, verbose = T)

# Or load a pre-computed graph-search simulation result
flood.result <- readRDS(paste0(base.path, "flood/flood_retinanewnokND_knn-140_sigma-14.rds"))

# Process the graph-search simulations to determine the pseudotime of
# each cell
object <- floodPseudotimeProcess(object, flood.result, floods.name = "pseudotime",

max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

# If enough simulations have been run, then as additional simulations
# are added, the overall change in pseudotime of cells should reach an
# asymptote. If it does not, then floodPseudotime should be run with a
# higher n.
pseudotimePlotStabilityOverall(object)
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plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "pseudotime", plot.title = "", outer.title = "Diffusion Map labeled by pseudotime",
legend = F, alpha = 0.4)
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plotDim(object, "pseudotime", plot.title = "UMAP projection colored by pseudotime")

## Warning: Removed 500 rows containing missing values (geom_point).
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plotDists(object, "pseudotime", "stage", plot.title = "Pseudotime by stage")
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Calculate biased transition matrix

In order to perform biased random walks, we must first bias the transition matrix to ensure that
walks proceed towards the root and do not turn into other differentiated cell types. This is per-
formed in the cluster script URD-TM.R.
# Calculate parameters for biasing the transition matrix.
diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime",

optimal.cells.forward = 40, max.cells.back = 80, pseudotime.direction = "<",
do.plot = T, print.values = T)

## [1] "Mean pseudotime back (~80 cells) 0.00295569803650678"
## [1] "Chance of accepted move to equal pseudotime is 0.822024945232085"
## [1] "Mean pseudotime forward (~40 cells) -0.00148141113789574"

# Calculate the biased matrix.
biased.tm <- pseudotimeWeightTransitionMatrix(object, pseudotime = "pseudotime",

logistic.params = diffusion.logistic, pseudotime.direction = "<")

Perform biased random walks

Then, we perform biased walks starting from each tip. Visited cells are inferred to lie along the
trajectory that connects the root to each cell type. This is performed in the cluster script URD-
Walk.R.

Determine tips

We used clusters from 15 dpf as the tips for performing biased random walks. Here we define
the cells belonging to each of those clusters.
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# All clusters at 15 days
clusters.15day <- unique(object@group.ids[grep("15d", object@group.ids$stage),

"res.5"])
# All cells at 15 days
cells.15day <- rownames(object@group.ids)[grep("15d", object@group.ids$stage)]
# Cell lists of each cluster at 15dpf
cells.15dpf.clusters <- lapply(clusters.15day, function(clust) intersect(cells.15day,

cellsInCluster(object, "res.5", clust)))
names(cells.15dpf.clusters) <- paste0("15d-", clusters.15day)

We also load a .csv file that contains information about the tips. It has four columns:
• id: Cluster ID for the tip
• use: Whether this cluster should be used when building the tree
• name: The name for this tip, which will be used on 2D plots
• short.name: The ‘short’ name for this tip, which would be used on 3D plots (though we did

not use that feature in this study).
# Load CSV
tip.names <- read.csv(paste0(base.path, "tips/tip_names_retinanewnokND.csv"),

header = F, stringsAsFactors = F, colClasses = c("character", "logical",
"character", "character"))

# Name columns and rows
names(tip.names) <- c("id", "use", "name", "short.name")
rownames(tip.names) <- gsub("_", "-", tip.names$id)

# Sort alphabetically
tip.names <- tip.names[order(rownames(tip.names)), ]

These are the tips that were considered during the construction of the retina URD tree (some were
excluded during tree construction later in the buildTree command).
# Define a 'tips' clustering
object@group.ids$tip <- NA
object@group.ids$tip.id <- NA
object@group.ids$tip.name <- NA

# If the tip will be used in the tree, define its cells in the
# clustering
for (i in 1:nrow(tip.names)) {

tip.cells <- cells.15dpf.clusters[[rownames(tip.names)[i]]]
object@group.ids[tip.cells, "tip"] <- as.character(i)
object@group.ids[tip.cells, "tip.id"] <- rownames(tip.names)[i]
object@group.ids[tip.cells, "tip.name"] <- as.character(tip.names[i,

"name"])
}

# Plot the tips
plotDim(object, "tip.name")

## Warning: Removed 500 rows containing missing values (geom_point).

10



Perform the biased random walks

Biased random walks then need to be run starting from each tip. This can be performed on a
laptop, but is an ideal candidate for parallelization on a cluster. (The walks from each tip can be
run as a separate job.)
## IF RUNNING LOCALLY

# Loop through each cluster
walks <- lapply(rownames(tip.names), function(c) {

# Exclude any tip cells that for whatever reason didn't end up in the
# biased TM (e.g. maybe not assigned a pseudotime).
tip.cells <- intersect(cells.15dpf.clusters[[c]], rownames(biased.tm))
# Perform the random walk simulation
this.walk <- simulateRandomWalk(start.cells = tip.cells, transition.matrix = biased.tm,

end.cells = root.cells, n = 50000, end.visits = 1, verbose.freq = 1000,
max.steps = 5000)

return(this.walk)
})
names(walks) <- rownames(tip.names)

# Alternatively, this loop is automated by the function
# simulateRandomWalksFromTips

Alternatively, a set of pre-calculated walks can be loaded. Since the walks are a simulation (and
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therefore not deterministic), this is particularly crucial for reproducing results.
## IF LOADING PRE-CALCULATED WALKS

# Get list of files in the walks directory
walks.files <- list.files(paste0(base.path, "/walks/retinanewnokND/"),

pattern = ".rds")

# Load the walks previously performed for each cluster
walks <- lapply(rownames(tip.names), function(c) {

walk.file <- grep(pattern = paste0("_tip-", c, "_"), x = walks.files,
value = T)[1]

return(readRDS(paste0(base.path, "/walks/retinanewnokND/", walk.file)))
})
names(walks) <- rownames(tip.names)

Process the random walks

The walks are then converted to visitation frequency by importing them into the URD object.
for (i in 1:nrow(tip.names)) {

# Load the individual walk visitation frequencies into the object
object <- processRandomWalks(object, walks = walks[[i]], walks.name = i,

n.subsample = 1, verbose = F)
}

Build the URD tree

Then, a branching tree is constructed, by joining trajectories in an agglomerative fashion when
cells are highly visited by walks from multiple tips. The following steps were performed in the
cluster script URD-Tree.R.
# Tree building is destructive, so create a copy of the object
object.tree <- object

# Load tip cells
object.tree <- loadTipCells(object.tree, "tip")

# Determine tips to use
tips.to.use <- which(tip.names$use)

# Build the tree
object.tree <- buildTree(object.tree, pseudotime = "pseudotime", divergence.method = "preference",

cells.per.pseudotime.bin = 40, bins.per.pseudotime.window = 5, save.all.breakpoint.info = T,
p.thresh = 0.01, verbose = F, tips.use = as.character(tips.to.use))

# Name the tips of the tree
object.tree <- nameSegments(object.tree, segments = tips.to.use, segment.names = as.character(tip.names[tips.to.use,

"name"], short.names = as.character(tip.names[tips.to.use, "short.name"])))

plotTree(object.tree, "stage", discrete.colors = stage.colors, label.segments = T)
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Save the URD tree

The tree is then saved for use in downstream analysis, and can easily be loaded for further pe-
rusal.
saveRDS(object.tree, file = paste0(base.path, "tree/URD-Tree-Retina.rds"))
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Load data
# Load URD
library(URD)

## Loading required package: ggplot2

## Loading required package: Matrix

## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo

# Basic location
base.path <- "~/Documents/R sessions/urd-cluster-bushra/"

# Load completed retina tree object
obj.path <- paste0(base.path, "tree/retinanewnokND/tree-retinanewnokND_knn-140_sigma-14_40F-80B_NO-15d-29-15d-39-15d-43-15d-62_pref_01.rds")
obj <- readRDS(obj.path)

Plot gene expression on the tree
Plot tree by stage

stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3", "gold",
"goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2", "lightgrey")

plotTree(obj, "stage", label.type = "group", discrete.colors = stage.colors)
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Plot tree with gene expression: main figures

gridExtra::grid.arrange(grobs = lapply(c("vsx1", "lmo4a", "pax6a", "rem1"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 2)
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Plot tree with gene expression: supplemental figures

gridExtra::grid.arrange(grobs = lapply(c("foxd1", "her15.1", "her4.1", "hes2.2",
"stx3a", "dmbx1a", "prkca", "rx3", "irx7", "fezf2", "ndrg1b", "opn1mw1", "gnat1",
"pbx1a", "tfap2c", "slc18a3a", "rbpms2a", "ompa", "sdpra", "rpe65a"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 4)
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Determine genes enriched in trajectories to particular cell types
Comparison between major cell types
We took each major group (“clade”) of branches from the end of the tree as a single entity
(i.e. cone bipolar cells, photoreceptors, amacrine cells, retinal ganglion cells, horizontal cells)
and compared them against each other pairwise to look for differentially expressed genes.
# Get the parent segment of each clade to consider as a group
combined.tips <- c("24", "25", "19", "8", "15")
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# Get the cells in that segment and all child segments
cells.combined.tips <- lapply(combined.tips, function(t) whichCells(obj, label = "segment",

value = segChildrenAll(obj, t, include.self = T)))
names(cells.combined.tips) <- combined.tips

# Loop through each of these clades and look for differentially expressed genes
combined.markers <- lapply(combined.tips, function(tip) {

# Find all of the other clades
opposing.tips <- setdiff(combined.tips, tip)
# Perform pairwise comparisons to each other clade
m.o <- lapply(opposing.tips, function(tip.opposing) {

# message(paste0(Sys.time(), ': Comparing tip ', tip, ' to ', tip.opposing, '.'))
# Find differentially expressed genes between the pair of clades
ma <- markersAUCPR(object = obj, cells.1 = cells.combined.tips[[tip]], cells.2 = cells.combined.tips[[tip.opposing]],

effect.size = 0.4, auc.factor = 1.1)
# In order to facilitate combining all of the results later, add columns about
# which two clades were compared and also a duplicate entry of the name of each
# gene that's recovered.
ma$gene <- rownames(ma)
ma$tip1 <- tip
ma$tip2 <- tip.opposing
return(ma)

})
names(m.o) <- opposing.tips
return(m.o)

})
names(combined.markers) <- combined.tips

# Require that genes are markers against at least 3 other clades
combined.markers.beatmult <- lapply(combined.markers, function(m) {

names(which(table(unlist(lapply(m, rownames))) >= 3))
})

# Since genes might be a marker in a comparison to several other clades, combine
# the results into a single table, where each gene is listed only once with the
# info from the pairwise comparison where it had the strongest differential
# expression.
combined.markers.best <- lapply(1:length(combined.markers.beatmult), function(i) {

cm <- do.call("rbind", combined.markers[[i]])
cm <- cm[cm$gene %in% combined.markers.beatmult[[i]], ]
cmb <- do.call("rbind", lapply(combined.markers.beatmult[[i]], function(g) {

cmr <- cm[cm$gene == g, ]
return(cmr[which.max(cmr$AUCPR.ratio), ])

}))
rownames(cmb) <- cmb$gene
cmb <- cmb[order(cmb$AUCPR.ratio, decreasing = T), ]
cmb$exp.global <- apply(obj@logupx.data[rownames(cmb), unlist(obj@tree$cells.in.segment)],

1, mean.of.logs)
cmb$exp.global.fc <- cmb$nTrans_1 - cmb$exp.global
return(cmb)

})
names(combined.markers.best) <- combined.tips
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AUCPR along tree
We also used the AUCPRTestAlongTree function to ask for genes that are differential markers
of a lineage using URD’s tree structure. This makes a comparison at each branchpoint from a
particular cell type up to the root.
# Get all of the tips from the tree
tips.in.tree <- as.character(obj@tree$tips)

# Tree segments to use as root for each particular cell population.
roots <- rep("29", length(tips.in.tree))
names(roots) <- tips.in.tree
roots["11"] <- "31"
roots["6"] <- "30"
roots[c("4", "17", "8")] <- "26"

# Perform a loop of tests with each tip.
markers <- lapply(tips.in.tree, function(t) {

this.root <- roots[t]
# message(paste0(Sys.time(), ': Starting tip ', t, ' and root ', this.root))
these.markers <- aucprTestAlongTree(obj, pseudotime = "pseudotime", tips = as.character(t),

genes.use = NULL, must.beat.sibs = 0.6, report.debug = F, root = this.root,
auc.factor = 1.1, log.effect.size = 0.4)

these.markers$gene <- rownames(these.markers)
these.markers$tip <- t
return(these.markers)

})
names(markers) <- tips.in.tree

Functions for curating differential expression results
We further curated those differentially expressed genes using the following functions:

threshold.tree.markers
Function to threshold markers from a markersAUCPRAlongTree test with additional criteria

• markers: list of results from markersAUCPRAlongTree tests
• tip: which tip (or element of the list to pursue)
• global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
• aucpr.ratio.all: classifier score that gene must exhibit along trajectory test vs. rest of the data
• branch.fc: fold.change that gene must have (in best case) vs. the opposing branch at any
branchpoint along the trajectory.

• Returns markers with only a subset of rows retained.
threshold.tree.markers <- function(markers, tip, global.fc = 0.1, branch.fc = 0.4,

aucpr.ratio.all = 1.03) {
m <- markers[[tip]]
# First off -- lose global FC < x
bye.globalfc <- rownames(m)[m$expfc.all < global.fc]
# Second -- get rid of branch FC < x
bye.branchfc <- rownames(m)[m$expfc.maxBranch < branch.fc]
# Third -- get rid of stuff essentially worse than random classification on
# global level
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bye.badglobalaucpr <- rownames(m)[m$AUCPR.ratio.all < aucpr.ratio.all]
bye.all <- unique(c(bye.globalfc, bye.branchfc, bye.badglobalaucpr))
m.return <- m[setdiff(rownames(m), bye.all), ]
return(m.return)

}

threshold.clade.markers
Function to threshold markers of particular clades (see “Combined major branch families”) using
additional criteria

• markers: result of markersAUCPR
• global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
(during testing, branches were compared pairwise. This compares one branch to all others
together.)

• Returns markers with a subset of rows retained
threshold.clade.markers <- function(markers, global.fc = 0.1) {

m <- markers
# First off -- lose global FC < x
bye.globalfc <- rownames(m)[m$exp.global.fc < global.fc]
m.return <- m[setdiff(rownames(m), bye.globalfc), ]
return(m.return)

}

divide.branches
Function to compare genes between two branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making photoreceptor heatmap, use to divide into photoreceptor, cone, and rod markers)

• object: An URD object
• genes: (Character vector) Genes to test
• clust.1: (Character) Cluster 1
• clust.2: (Character) Cluster 2
• clustering: (Character) Clustering to pull from
• exp.fc: (Numeric) Minimum expression fold-change between branches to consider different
• exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a
branch

• exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

• Returns list of gene names (“specific.1” = specific to clust.1, “specific.2” = specific to clust.2,
“markers” = all genes tested)

divide.branches <- function(object, genes, clust.1, clust.2, clustering = "segment",
exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {
# Double check which markers are unique to one or the other population
mcomp <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.2, clustering = clustering,

effect.size = -Inf, auc.factor = 0, genes.use = genes, frac.min.diff = 0,
frac.must.express = 0)

specific.b <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[, 4] < exp.thresh &
mcomp[, 5] > pmin((mcomp[, 4] + exp.diff), 1)]

specific.a <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[, 5] < exp.thresh &
mcomp[, 4] > pmin((mcomp[, 5] + exp.diff), 1)]
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r <- list(specific.a, specific.b, mcomp)
names(r) <- c("specific.1", "specific.2", "markers")
return(r)

}

Functions for heatmap generation
These functions were used in the production of heatmaps:

Color scale
Generate color scale to use with heatmaps.
cols <- (scales::gradient_n_pal(RColorBrewer::brewer.pal(9, "YlOrRd")))(seq(0, 1,

length.out = 50))

determine.timing
Determines order to plot genes in heatmap. “Expression” is defined as 20% higher expression
than the minimum observed value. “Peak” expression is defined as 50% higher expression than
minimum observed value. The two longest stretches of “peak” expression are found, and then
the later one is used. The onset time of the stretch of expression that contains that peak is also
determined. Genes are then ordered by the pseudotime at which they enter “peak” expression,
leave “peak” expression, start “expression”, and leave “expression”.

• s: result from geneSmoothFit
• genes: genes to order; default is all genes that were fit.
• Returns s but with an additional list entry ($timing) of the order to plot genes

determine.timing <- function(s, genes = rownames(s$mean.expression)) {
s$timing <- as.data.frame(do.call("rbind", lapply(genes, function(g) {

sv <- as.numeric(s$scaled.smooth[g, ])
pt <- as.numeric(colnames(s$scaled.smooth))
# Figure out baseline expression & threshold for finding peaks
min.val <- max(min(sv), 0)
peak.val <- ((1 - min.val)/2) + min.val
exp.val <- ((1 - min.val)/5) + min.val
# Run-length encoding of above/below the peak-threshold
peak.rle <- rle(sv >= peak.val)
peak.rle <- data.frame(lengths = peak.rle$lengths, values = peak.rle$values)
peak.rle$end <- cumsum(peak.rle$lengths)
peak.rle$start <- head(c(0, peak.rle$end) + 1, -1)
# Run-length encoding of above/below the expressed-threshold
exp.rle <- rle(sv >= exp.val)
exp.rle <- data.frame(lengths = exp.rle$lengths, values = exp.rle$values)
exp.rle$end <- cumsum(exp.rle$lengths)
exp.rle$start <- head(c(0, exp.rle$end) + 1, -1)
# Take top-two longest peak RLE & select later one. Find stretches that are
# above peak value
peak <- which(peak.rle$values)
# Order by length and take 1 or 2 longest ones
peak <- peak[order(peak.rle[peak, "lengths"], decreasing = T)][1:min(2, length(peak))]
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# Order by start and take latest one.
peak <- peak[order(peak.rle[peak, "start"], decreasing = T)][1]
# Identify the actual peak value within that stretch
peak <- which.max(sv[peak.rle[peak, "start"]:peak.rle[peak, "end"]]) + peak.rle[peak,

"start"] - 1
# Identify the start and stop of the expressed stretch that contains the peak
exp.start <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <= peak),

"start"]
exp.end <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <= peak), "end"]
# Identify values of expression at start and stop
smooth.start <- sv[exp.start]
smooth.end <- sv[exp.end]
# Convert to pseudotime?
exp.start <- pt[exp.start]
exp.end <- pt[exp.end]
peak <- pt[peak]
# Return a vector
v <- c(exp.start, peak, exp.end, smooth.start, smooth.end)
names(v) <- c("pt.start", "pt.peak", "pt.end", "exp.start", "exp.end")
return(v)

})))
rownames(s$timing) <- genes

# Decide on ordering of genes
s$gene.order <- rownames(s$timing)[order(s$timing$pt.peak, s$timing$pt.start,

s$timing$pt.end, s$timing$exp.end, decreasing = c(F, F, F, T), method = "radix")]

return(s)
}

filter.heatmap.genes
Removes undesired (mitochondrial, ribosomal, tandem duplicated genes) from heatmaps for pre-
sentation purposes.

• genes: (Character vector) genes to check
• Returns genes with undesired genes removed.

filter.heatmap.genes <- function(genes) {
mt.genes <- grep("^mt-", ignore.case = T, genes, value = T)
many.genes <- grep("\\(1 of many\\)", ignore.case = T, genes, value = T)
ribo.genes <- grep("^rpl|^rps", ignore.case = T, genes, value = T)
cox.genes <- grep("^cox", ignore.case = T, genes, value = T)
return(setdiff(genes, c(mt.genes, many.genes, ribo.genes, cox.genes)))

}

Heatmaps of gene cascades
Using the genes that were determined as differentially expressed along the way to particular cell
types, we generated expression cascades and plotted them as heatmaps.
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Photoreceptors
Prepare cascade

## PHOTORECEPTORS: Seg 25 -> Cones (Seg 2) + Rods (Seg 12)

# Get markers from the two approaches:

# Lineage markers from above the combined clades
t25 <- threshold.clade.markers(combined.markers.best[["25"]], global.fc = 0.05)
# Cone markers from aucprTestAlongTree
m2 <- threshold.tree.markers(markers, "2", global.fc = 0.6)
# Rod markers from aucprTestAlongTree
m12 <- threshold.tree.markers(markers, "12", global.fc = 0.6)
pr.markers <- unique(c(rownames(t25), rownames(m2), rownames(m12)))

## Pseudotime for rods and cones is very different; for heatmaps, would like to
## normalize these, so that spline curves that consider both of them are not out
## of sync. Need to stretch pseudotime of cells in segment 12 / rods.

# Make a duplicate of the pseudotime measurement (pseudotime.212)
obj@pseudotime$pseudotime.212 <- obj@pseudotime$pseudotime
# Grab pseudotime of branchpoint
pt.start.212 <- as.numeric(obj@tree$segment.pseudotime.limits["2", "start"])
# Figure out lengths (and ratio) of the two branches in pseudotime
pt.end.212 <- as.numeric(obj@tree$segment.pseudotime.limits[c("2", "12"), "end"]) -

pt.start.212
pt.ratio.212 <- pt.end.212[1]/pt.end.212[2]
# For cells in the shorter branch (12), subtract the starting pseudotime,
# multiply by the ratio of branch lengths, then add the starting pseudotime back
# in order to stretch the branch.
obj@pseudotime[cellsInCluster(obj, "segment", "12"), "pseudotime.212"] <- (obj@pseudotime[cellsInCluster(obj,

"segment", "12"), "pseudotime.212"] - pt.start.212) * pt.ratio.212 + pt.start.212

# Calculate spline curves Using segments 29, 25, 2, and 12. Calculating a curve
# using only 29/25/2 for cone-specific genes, 29/25/12 for rod-specific genes,
# and 29/25/2+12 for genes that mark both. Should work now that pseudotimes are
# aligned.
spline.2 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,

"segment", c("29", "25", "2")), genes = pr.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.12 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,
"segment", c("29", "25", "12")), genes = pr.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.212 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,
"segment", c("29", "25", "2", "12")), genes = pr.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

# Want to plot a heatmap that shows expression in photoreceptor progenitors and
# then each branch (i.e. rods, cones) as separate columns. Going to crop each
# spline fit to the correct pseudotime range and then combine them into a single
# one that can be plotted as a three-column heatmap.
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pt.2v12 <- obj@tree$segment.pseudotime.limits["2", "start"] # pseudotime where the crop should happen
splines.pr <- list(cropSmoothFit(spline.212, pt.min = -Inf, pt.max = pt.2v12), cropSmoothFit(spline.2,

pt.min = pt.2v12, pt.max = Inf), cropSmoothFit(spline.12, pt.min = pt.2v12, pt.max = Inf))
names(splines.pr) <- c("Photoreceptor Progenitors", "Rods", "Cones")
splines.pr.hm <- combineSmoothFit(splines.pr) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.212 <- determine.timing(s = spline.212)
spline.2 <- determine.timing(s = spline.2)
spline.12 <- determine.timing(s = spline.12)

# Decide which markers are specific to one cell type or both
d2v12 <- divide.branches(obj, pr.markers, clust.1 = "2", clust.2 = "12", exp.fc = 0.4,

exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity
order.212 <- filter.heatmap.genes(setdiff(spline.212$gene.order, c(d2v12$specific.1,

d2v12$specific.2)))
order.2 <- filter.heatmap.genes(intersect(spline.2$gene.order, d2v12$specific.1))
order.12 <- filter.heatmap.genes(intersect(spline.12$gene.order, d2v12$specific.2))
gene.order <- c(order.212, order.2, order.12)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.212)),

rep("cone", length(order.2)), rep("rod", length(order.12))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t25[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t25[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t25[table.save$gene, "exp.global.fc"]
table.save$cone.AUCPR.ratio.all <- m2[table.save$gene, "AUCPR.ratio.all"]
table.save$cone.AUCPR.ratio.maxBranch <- m2[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$cone.exp.fc.all <- m2[table.save$gene, "expfc.all"]
table.save$cone.exp.fc.best <- m2[table.save$gene, "expfc.maxBranch"]
table.save$rod.AUCPR.ratio.all <- m12[table.save$gene, "AUCPR.ratio.all"]
table.save$rod.AUCPR.ratio.maxBranch <- m12[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$rod.exp.fc.all <- m12[table.save$gene, "expfc.all"]
table.save$rod.exp.fc.best <- m12[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-photoreceptor.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the heatmap
# scale doesn't get messed up.
splines.pr.hm$scaled.smooth[splines.pr.hm$scaled.smooth < 0] <- 0
# Determine where to place column separators (i.e. how many columns will each
# cell type occupy in the heatmap )
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.pr, function(x) ncol(x$scaled.smooth))),

-1)))
# Determine where to place row separators (i.e. how many common markers, and
# markers are specific to each cell type)
rowsep <- cumsum(c(length(order.212), length(order.2)))
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-photoreceptor.pdf'), width=6, height=10)
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gplots::heatmap.2(x = as.matrix(splines.pr.hm$scaled.smooth[gene.order, ]), Rowv = F,
Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.1, 0.2))
title(main = "Photoreceptors")
title(main = "Precursors", line = -41, adj = 0)
title(main = "Cones", line = -41, adj = 0.45)
title(main = "Rods", line = -41, adj = 0.76)
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# dev.off()

Generate heatmap: main figure

## Generate heatmap with only particular genes labeled for main figure
genes.to.plot <- c("isl2a", "prdm1a", "otx5", "crx", "six7", "nr2f1b", "nr2e3", "aplnrb",

"aplnra", "apln")
rownames.to.plot <- gene.order
rtp <- rownames.to.plot %in% genes.to.plot
rownames.to.plot[!rtp] <- ""
rownames.to.plot[rtp] <- paste0("- ", rownames.to.plot[rtp])
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-photoreceptor-mainfig.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.pr.hm$scaled.smooth[gene.order, ]), Rowv = F,

Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
key = F, cexCol = 0.8, cexRow = 1.8, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.1, 0.2),
labRow = rownames.to.plot)

title(main = "Photoreceptors")
title(main = "Precursors", line = -41, adj = 0)
title(main = "Cones", line = -41, adj = 0.45)
title(main = "Rods", line = -41, adj = 0.76)
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# dev.off()

Amacrine cells
Prepare cascade

## AMACRINE CELLS: Seg 19 -> Amarcine (Seg 4) + Starburst Amacrine (Seg 17)

# Get markers from the two approaches:

# Lineage markers from above the combined clades
t19 <- threshold.clade.markers(combined.markers.best[["19"]], global.fc = 0.05)
# Amacrine markers from aucprTestAlongTree
m4 <- threshold.tree.markers(markers, "4", global.fc = 0.6)
# Starburst amacrine markers from aucprTestAlongTree
m17 <- threshold.tree.markers(markers, "17", global.fc = 0.6)
am.markers <- unique(c(rownames(t19), rownames(m4), rownames(m17)))

## These have pretty equivalent pseudotimes, so don't need to worry about
## stretching them to match or anything.

# Calculate spline curves Using segments 29, 26, 19, and 4/17. Calculating a
# curve using only 29/26/19/4 for amacrine-specific genes, 29/26/19/4 for
# starburst-specific genes, and 29/26/19/4+17 for genes that mark both amacrine
# populations.
spline.4 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("29", "26", "19", "4")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

spline.17 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("29", "26", "19", "17")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

spline.417 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("29", "26", "19", "4", "17")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

# Want to plot a heatmap that shows expression in amacrine progenitors and then
# each branch (i.e. amacrine_gaba, starburst_amacrine) as separate columns. Going
# to crop each spline fit to the correct pseudotime range and then combine them
# into a single one that can be plotted as a three-column heatmap.

pt.4v17 <- obj@tree$segment.pseudotime.limits["4", "start"] # pseudotime where the crop should happen
splines.am <- list(cropSmoothFit(spline.417, pt.min = -Inf, pt.max = pt.4v17), cropSmoothFit(spline.4,

pt.min = pt.4v17, pt.max = Inf), cropSmoothFit(spline.17, pt.min = pt.4v17, pt.max = Inf))
names(splines.am) <- c("Amacrine Precursors", "Amacrine", "Starburst Amacrine")
splines.am.hm <- combineSmoothFit(splines.am) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.417 <- determine.timing(s = spline.417)
spline.4 <- determine.timing(s = spline.4)
spline.17 <- determine.timing(s = spline.17)
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# Decide which markers are specific to one cell type or both
d4v17 <- divide.branches(obj, am.markers, clust.1 = "4", clust.2 = "17", exp.fc = 0.4,

exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity
order.417 <- filter.heatmap.genes(setdiff(spline.417$gene.order, c(d4v17$specific.1,

d4v17$specific.2)))
order.4 <- filter.heatmap.genes(intersect(spline.4$gene.order, d4v17$specific.1))
order.17 <- filter.heatmap.genes(intersect(spline.17$gene.order, d4v17$specific.2))
gene.order <- c(order.417, order.4, order.17)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.417)),

rep("amacrine", length(order.4)), rep("starburst", length(order.17))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t19[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t19[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t19[table.save$gene, "exp.global.fc"]
table.save$am.AUCPR.ratio.all <- m4[table.save$gene, "AUCPR.ratio.all"]
table.save$am.AUCPR.ratio.maxBranch <- m4[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$am.exp.fc.all <- m4[table.save$gene, "expfc.all"]
table.save$am.exp.fc.best <- m4[table.save$gene, "expfc.maxBranch"]
table.save$star.AUCPR.ratio.all <- m17[table.save$gene, "AUCPR.ratio.all"]
table.save$star.AUCPR.ratio.maxBranch <- m17[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$star.exp.fc.all <- m17[table.save$gene, "expfc.all"]
table.save$star.exp.fc.best <- m17[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-amacrine.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the heatmap
# scale doesn't get messed up.
splines.am.hm$scaled.smooth[splines.am.hm$scaled.smooth < 0] <- 0
# Determine where to place column separators (i.e. how many columns will each
# cell type occupy in the heatmap )
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.am, function(x) ncol(x$scaled.smooth))),

-1)))
# Determine where to place row separators (i.e. how many common markers, and
# markers are specific to each cell type)
rowsep <- cumsum(c(length(order.417), length(order.4)))
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-amacrine.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.am.hm$scaled.smooth[gene.order, ]), Rowv = F,

Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.05, 0.2))
title(main = "Amacrine Cells")
title(main = "Precursors", line = -41, adj = 0.05)
title(main = "Amacrine", line = -41, adj = 0.475)
title(main = "Starburst", line = -41, adj = 0.75)
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# dev.off()

Retinal ganglion cells
Prepare cascade

## RGCs: Seg 8

# Get markers from the two approaches:

# Lineage markers from above the combined clades
t8 <- threshold.clade.markers(combined.markers.best[["8"]], global.fc = 0.05)
# RGC markers from aucprTestAlongTree
m8 <- threshold.tree.markers(markers, "8", global.fc = 0.6)
rgc.markers <- unique(c(rownames(t8), rownames(m8)))

# Calculate spline curves Using segments 29, 26, and 8.
spline.8 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("29", "26", "8")), genes = rgc.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.8 <- determine.timing(s = spline.8)
order.8 <- filter.heatmap.genes(spline.8$gene.order)

# Output gene table
table.save <- data.frame(gene = order.8, stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t8[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t8[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t8[table.save$gene, "exp.global.fc"]
table.save$rgc.AUCPR.ratio.all <- m8[table.save$gene, "AUCPR.ratio.all"]
table.save$rgc.AUCPR.ratio.maxBranch <- m8[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$rgc.exp.fc.all <- m8[table.save$gene, "expfc.all"]
table.save$rgc.exp.fc.best <- m8[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-rgc.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the heatmap
# scale doesn't get messed up.
spline.8$scaled.smooth[spline.8$scaled.smooth < 0] <- 0
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-rgc.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.8$scaled.smooth[order.8, ]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Retinal Ganglion Cells")
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# dev.off()

Generate heatmap: main figure

genes.to.plot <- c("sox11a", "sox11b", "sox6", "irx4a", "pou4f2", "pou4f1", "rbpms2b",
"rbpms2a")

rownames.to.plot <- order.8
rtp <- rownames.to.plot %in% genes.to.plot
rownames.to.plot[!rtp] <- ""
rownames.to.plot[rtp] <- paste0("- ", rownames.to.plot[rtp])
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-rgc-mainfig.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.8$scaled.smooth[order.8, ]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 1.8, margins = c(8, 10), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, labRow = rownames.to.plot)
title(main = "Retinal Ganglion Cells")
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# dev.off()

Horizontal Cells
Prepare cascade

## Horizontal Cells: Seg 15

# Get markers from the two approaches:

# Lineage markers from above the combined clades
t15 <- threshold.clade.markers(combined.markers.best[["15"]], global.fc = 0.05)
# Horizontal Cell markers from aucprTestAlongTree
m15 <- threshold.tree.markers(markers, "15", global.fc = 0.6)
horiz.markers <- unique(c(rownames(t15), rownames(m15)))

# Calculate spline curves Using segments 29 and 15.
spline.15 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("29", "15")), genes = horiz.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.15 <- determine.timing(s = spline.15)
order.15 <- filter.heatmap.genes(spline.15$gene.order)

# Output gene table
table.save <- data.frame(gene = order.15, stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t15[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t15[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t15[table.save$gene, "exp.global.fc"]
table.save$horiz.AUCPR.ratio.all <- m15[table.save$gene, "AUCPR.ratio.all"]
table.save$horiz.AUCPR.ratio.maxBranch <- m15[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$horiz.exp.fc.all <- m15[table.save$gene, "expfc.all"]
table.save$horiz.exp.fc.best <- m15[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-horiz.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the heatmap
# scale doesn't get messed up.
splines.am.hm$scaled.smooth[splines.am.hm$scaled.smooth < 0] <- 0
# Determine where to place column separators (i.e. how many columns will each
# cell type occupy in the heatmap )
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.am, function(x) ncol(x$scaled.smooth))),

-1)))
# Determine where to place row separators (i.e. how many common markers, and
# markers are specific to each cell type)
rowsep <- cumsum(c(length(order.417), length(order.4)))
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-amacrine.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.am.hm$scaled.smooth[gene.order, ]), Rowv = F,

Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
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key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,
4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "Amacrine Cells")
title(main = "Precursors", line = -41, adj = 0.05)
title(main = "Amacrine", line = -41, adj = 0.475)
title(main = "Starburst", line = -41, adj = 0.75)
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# dev.off()

Muller Glia
Prepare cascade

## Muller Glia: Seg 6

# Get markers from the two approaches
m6 <- threshold.tree.markers(markers, "6", global.fc = 0.6) # Muller Glia markers from aucprTestAlongTree
muller.markers <- rownames(m6)

# Calculate spline curves Using segments 29 and 15.
spline.6 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("30", "6")), genes = muller.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.6 <- determine.timing(s = spline.6)
order.6 <- filter.heatmap.genes(spline.6$gene.order)

# Output gene table
table.save <- data.frame(gene = order.6, stringsAsFactors = F)
table.save$muller.AUCPR.ratio.all <- m6[table.save$gene, "AUCPR.ratio.all"]
table.save$muller.AUCPR.ratio.maxBranch <- m6[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$muller.exp.fc.all <- m6[table.save$gene, "expfc.all"]
table.save$muller.exp.fc.best <- m6[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-muller.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the heatmap
# scale doesn't get messed up.
spline.6$scaled.smooth[spline.6$scaled.smooth < 0] <- 0
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-muller.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.6$scaled.smooth[order.6, ]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Muller Glia")
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# dev.off()

Retinal Pigmented Epithelium
Prepare cascade

## RPE: Seg 11

# Get markers from the two approaches
m11 <- threshold.tree.markers(markers, "11", global.fc = 0.6) # RPE markers from aucprTestAlongTree
rpe.markers <- rownames(m11)

# Just want to plot part of cells from upstream segment 31, which is very long.
# Going to use cells from segment 11 and from segment 31 with pseudotime > 0.23
cells.rpe <- unique(c(whichCells(obj, "pseudotime", c(0.23, 0.30308134)), cellsInCluster(obj,

"segment", "11")))

# Calculate spline curves
spline.11 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.rpe, genes = rpe.markers,

method = "spline", moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.11 <- determine.timing(s = spline.11)
order.11 <- filter.heatmap.genes(spline.11$gene.order)

# Output gene table
table.save <- data.frame(gene = order.11, stringsAsFactors = F)
table.save$rpe.AUCPR.ratio.all <- m11[table.save$gene, "AUCPR.ratio.all"]
table.save$rpe.AUCPR.ratio.maxBranch <- m11[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$rpe.exp.fc.all <- m11[table.save$gene, "expfc.all"]
table.save$rpe.exp.fc.best <- m11[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-rpe.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the heatmap
# scale doesn't get messed up.
spline.11$scaled.smooth[spline.11$scaled.smooth < 0] <- 0
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/retina-rpe.pdf'), width=6, height=16)
gplots::heatmap.2(x = as.matrix(spline.11$scaled.smooth[order.11, ]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Retinal Pigmented Epithelium")
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# dev.off()

Continuous differentiation
Retinal cell types were often found with similar molecular states across many stages of develop-
ment. This reflects that pseudotime accurately represents the asynchrony introduced by contin-
uous differentation.

RGC cells

gridExtra::grid.arrange(grobs = list(plotTreeHighlight(obj, label.name = "clus.orig",
label.value = "7-36h_27", highlight.size = 1, title = "36 hpf Cluster 27: RGCs",
label.x = F), plotTreeHighlight(obj, label.name = "clus.orig", label.value = "12-15d_38",
highlight.size = 1, title = "15 dpf Cluster 38: RGCs", label.x = F)), ncol = 2)

## Warning: Removed 5 rows containing missing values (geom_point).

## Warning: Removed 17 rows containing missing values (geom_point).

Progenitor cells

gridExtra::grid.arrange(grobs = list(plotTreeHighlight(obj, label.name = "clus.orig",
label.value = "6-24h_22", highlight.size = 1, title = "24 hpf Cluster 22: Progenitor Cells",
label.x = F), plotTreeHighlight(obj, label.name = "clus.orig", label.value = "7-36h_32",
highlight.size = 1, title = "36 hpf Cluster 32: Progenitor Cells", label.x = F),
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plotTreeHighlight(obj, label.name = "clus.orig", label.value = "12-15d_39", highlight.size = 1,
title = "15 dpf Cluster 39: Progenitor Cells", label.x = F)), ncol = 2)

## Warning: Removed 9 rows containing missing values (geom_point).

## Warning: Removed 4 rows containing missing values (geom_point).

Progenitors over time
Retinal progenitors with similar transcriptional states are found across many different time points.
We wanted to know whether there were significant transcriptional changes within those progeni-
tors between early stages and late stages.

Identify populations
First we grabbed early (24 / 36 hpf) and late (15 dpf) progenitors from two sections of the tree.
# Progenitors / 24-36 hpf / Segment 30
prog.early.s30 <- intersect(cellsInCluster(obj, "stage", c("06-24h", "07-36h")),

cellsInCluster(obj, "segment", "30"))
obj <- groupFromCells(obj, group.id = "prog.early.s30", cells = prog.early.s30)
plotTreeHighlight(obj, "prog.early.s30", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 24-36 hpf / Segment 30")

32



# Progenitors / 24-36 hpf / Segment 29
prog.early.s29 <- intersect(cellsInCluster(obj, "stage", c("06-24h", "07-36h")),

cellsInCluster(obj, "segment", "29"))
obj <- groupFromCells(obj, group.id = "prog.early.s29", cells = prog.early.s29)
plotTreeHighlight(obj, "prog.early.s29", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 24-36 hpf / Segment 29")
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# Progenitors / 15 dpf / Cluster 39 / Segment 30
prog.15d.c39.s30 <- intersect(cellsInCluster(obj, "clus.orig", "12-15d_39"), cellsInCluster(obj,

"segment", "30"))
obj <- groupFromCells(obj, group.id = "prog.15d.c39.s30", cells = prog.15d.c39.s30)
plotTreeHighlight(obj, "prog.15d.c39.s30", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 15 dpf / Cluster 39 / Segment 30")
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# Progenitors / 15 dpf / Cluster 39 / Segment 29
prog.15d.c39.s29 <- intersect(cellsInCluster(obj, "clus.orig", "12-15d_39"), cellsInCluster(obj,

"segment", "29"))
obj <- groupFromCells(obj, group.id = "prog.15d.c39.s29", cells = prog.15d.c39.s29)
plotTreeHighlight(obj, "prog.15d.c39.s29", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 15 dpf / Cluster 39 / Segment 29")
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Differential expression between neural progenitor populations
Then we determined what was differentially expressed between them.
# Compare 15d ('late') vs. early - S29
markers.nb.lve.s29 <- markersAUCPR(obj, cells.1 = prog.15d.c39.s29, cells.2 = prog.early.s29,

auc.factor = 1.1, effect.size = 0.4)

# Compare 15d ('late') vs. early - S30
markers.nb.lve.s30 <- markersAUCPR(obj, cells.1 = prog.15d.c39.s30, cells.2 = prog.early.s30,

auc.factor = 1.1, effect.size = 0.4)

boot.fc

• object: An URD object
• cells.1: Cells from group 1 of the differential expression
• cells.2: Cells from group 2 of the differential expression
• cells.segment: All cells in the segment that can be pulled for bootstrapping
• genes.test: Genes to test in the bootstrapping
• exp.fc: Exp.fc from the original differential expression test to compare for bootstrap
• exp.data: Can pre-calculated un-logged expression data to pass to the function (getUPXData)
• n: (Numeric) Number of bootstrap simulations to run
• Returns list: p is the empirical p-value for each differential expression, boot.fc contains all of
the test information.

# Function to bootstrap fold-change
boot.fc <- function(object, cells.1, cells.2, cells.segment, genes.test, exp.fc,
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exp.data = NULL, n = 1000) {

# Pull random populations of equivalent sizes
l1 <- length(cells.1)
l2 <- length(cells.2)
random.pops <- lapply(1:1000, function(i) {

y <- sample(x = cells.segment, size = l1 + l2, replace = F)
return(list(a = y[1:l2], b = y[(l2 + 1):(l1 + l2)]))

})

# Get un-logged expression data, if not provided
if (is.null(exp.data))

exp.data <- getUPXData(object)

# Calculate the expression fold-change for each random population
fc.boot <- as.data.frame(lapply(1:n, function(i) {

exp.a <- exp.data[genes.test, random.pops[[i]][["a"]]]
exp.b <- exp.data[genes.test, random.pops[[i]][["b"]]]
exp.fc <- log2((rowMeans(exp.a)/rowMeans(exp.b)) + 1)
return(exp.fc)

}))
names(fc.boot) <- paste0("rep", 1:n)

# Figure out p-value (proportion of these that beat provided exp.fc)
beat.boot <- sweep(fc.boot, 1, exp.fc, ">")
p.boot <- rowSums(beat.boot)/n

# Return information
return(list(p = p.boot, boot.fc = fc.boot))

}

Empirical p-value

Because these are relatively small populations, there’s a decent chance that (due to the variability
and noise inherent in scRNAseq data) that choosing any two similarly sized populations would
find a number of differentially expressed genes also. Thus, we used an empirically-determined
p-value to limit ourselves to differentially expressed genes that probably wouldn’t arise by chance.
We asked that our real comparison had a greater expression fold-change than two populations
from a given segment of the same size chosen at random at least 99% of the time (i.e. p < 0.01).
# Try a bootstrapping approach to determine which markers are real, vs. which
# ones would arise just from small number of compared cells. Going to just do it
# on expression fc, so that the computation is reasonably fast.

# Isolate cells from each segment
cells.seg.29 <- cellsInCluster(obj, "segment", "29")
cells.seg.30 <- cellsInCluster(obj, "segment", "30")

# Get un-logged expression data to pass to the function
exp.data <- getUPXData(obj)

# Run the actual bootstrapping.
boot.s30.lve <- boot.fc(object, cells.1 = prog.15d.c39.s30, cells.2 = prog.early.s30,

cells.segment = cells.seg.30, genes.test = rownames(markers.nb.lve.s30), exp.fc = markers.nb.lve.s30$exp.fc,
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exp.data = exp.data, n = 1000)

boot.s29.lve <- boot.fc(object, cells.1 = prog.15d.c39.s29, cells.2 = prog.early.s29,
cells.segment = cells.seg.29, genes.test = rownames(markers.nb.lve.s29), exp.fc = markers.nb.lve.s29$exp.fc,
exp.data = exp.data, n = 1000)

# Limit markers to those that pass the bootstrap test
markers.nbb.lve.s30 <- markers.nb.lve.s30[which(boot.s30.lve$p <= 0.01), ]
markers.nbb.lve.s29 <- markers.nb.lve.s29[which(boot.s29.lve$p <= 0.01), ]

Tissue-specific changes

We also then divided genes based on whether they changed in all cells between 24/36 hpf and
15 dpf, or specifically in progenitors. Genes that change in all cells could represent either (a)
global transcriptional changes in the tissue, or (b) changes in ambient RNA that is included with
most cells based on highly expressed genes during different stages.
# Add global stage information to these - genes must change more in progenitors
# than just generally.

# Figure out early/late cells
cells.early <- cellsInCluster(obj, "stage", c("06-24h", "07-36h"))
cells.late <- cellsInCluster(obj, "stage", "12-15d")

# Calculate markers across stages generally with no restrictions
markers.nbball.lve <- markersAUCPR(object = obj, cells.1 = cells.late, cells.2 = cells.early,

effect.size = -Inf, frac.must.express = 0, auc.factor = 0, genes.use = unique(c(rownames(markers.nbb.lve.s30),
rownames(markers.nbb.lve.s29))))

# Transfer information to NBB comparisons
markers.nbb.lve.s30$exp.fc.stage <- markers.nbball.lve[rownames(markers.nbb.lve.s30),

"exp.fc"]
markers.nbb.lve.s30$posFrac_stage1 <- markers.nbball.lve[rownames(markers.nbb.lve.s30),

"posFrac_1"]

markers.nbb.lve.s29$exp.fc.stage <- markers.nbball.lve[rownames(markers.nbb.lve.s29),
"exp.fc"]

markers.nbb.lve.s29$posFrac_stage1 <- markers.nbball.lve[rownames(markers.nbb.lve.s29),
"posFrac_1"]

# Calculate ratios (i.e. how much more does a gene change in progenitors than in
# the entire tissue)
markers.nbb.lve.s30$exp.fc.ratio <- pmin(markers.nbb.lve.s30$exp.fc, 1000) - pmin(markers.nbb.lve.s30$exp.fc.stage,

1000)
markers.nbb.lve.s29$exp.fc.ratio <- pmin(markers.nbb.lve.s29$exp.fc, 1000) - pmin(markers.nbb.lve.s29$exp.fc.stage,

1000)

markers.nbb.lve.s30$posFrac.ratio <- markers.nbb.lve.s30$posFrac_1/markers.nbb.lve.s30$posFrac_stage1
markers.nbb.lve.s29$posFrac.ratio <- markers.nbb.lve.s29$posFrac_1/markers.nbb.lve.s29$posFrac_stage1
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Limit to well-expressed

We also limited ourselves to genes that had a decent level of expression. (In this case, they were
detected in at least 20% of progenitor cells, and had a mean expression of at least 0.8.)
# All genes that change in segment 30
markers.nbbexp.lve.s30 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s30$posFrac_1 >=

0.2), which(markers.nbb.lve.s30$nTrans_1 >= 0.8))), ]

# All genes that change in segment 30
markers.nbbexp.lve.s29 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s29$posFrac_1 >=

0.2), which(markers.nbb.lve.s29$nTrans_1 >= 0.8))), ]

# Genes that change in segment 30 more than in the entire tissue
markers.nbbselect.lve.s30 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s30$posFrac_1 >=

0.2), which(markers.nbb.lve.s30$nTrans_1 >= 0.8), which(markers.nbb.lve.s30$exp.fc.ratio >=
1.2), which(markers.nbb.lve.s30$posFrac.ratio >= 1.1))), ]

# Genes that change in segment 29 more than in the entire tissue
markers.nbbselect.lve.s29 <- markers.nbb.lve.s29[Reduce(intersect, list(which(markers.nbb.lve.s29$posFrac_1 >=

0.2), which(markers.nbb.lve.s29$nTrans_1 >= 0.8), which(markers.nbb.lve.s29$exp.fc.ratio >=
1.2), which(markers.nbb.lve.s29$posFrac.ratio >= 1.1))), ]

Result

That recovered a total of 71 genes that vary in progenitors between 24/36 hpf and 15 dpf, of
which 16 change more in neural progenitors than the rest of the tissue.
# All genes that change in progenitors
unique(c(rownames(markers.nbbexp.lve.s29), rownames(markers.nbbexp.lve.s30)))

## [1] "hbbe2" "hbz" "ba1.1"
## [4] "rho" "crabp1a" "si:ch211-251b21.1"
## [7] "hbaa1" "pde6h" "tsc22d3"
## [10] "si:xx-by187g17.1" "ba1" "rpe65a"
## [13] "zgc:153704" "arr3a" "lin7a"
## [16] "crygm1" "gnat1" "ptgdsb.1"
## [19] "gngt1" "rgs16" "cabp2a"
## [22] "junba" "crygm2b" "zgc:112320"
## [25] "si:dkey-183i3.5" "krt91" "cabp5a"
## [28] "sagb" "crygmx" "scinla"
## [31] "rbp4l" "gngt2b" "rs1a"
## [34] "mt2" "fosab" "cebpd"
## [37] "snap25b" "CNDP1" "crabp2a"
## [40] "cryba4" "jdp2b" "cst3"
## [43] "higd1a" "mt-nd3" "si:dkey-16p21.8"
## [46] "crybb1" "crygn2" "gadd45ba"
## [49] "gapdhs" "eno1a" "mif"
## [52] "ggctb" "ckbb" "glula"
## [55] "tsc22d1" "sod2" "btg2"
## [58] "sod1" "stmn1b" "si:dkey-238o13.4"
## [61] "fabp11a" "mdkb" "gstp1"
## [64] "slc3a2b" "si:dkey-238c7.12" "CABZ01102240.1"
## [67] "atp5ia" "atpif1b" "cadm3"
## [70] "h1f0"
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# Genes that change in progenitors more than the rest of the tissue
unique(c(rownames(markers.nbbselect.lve.s29), rownames(markers.nbbselect.lve.s30)))

## [1] "si:ch211-114n24.6" "rps29" "rrm2.1"
## [4] "si:ch211-193l2.6" "si:dkey-238o13.4" "crabp1a"
## [7] "si:ch211-251b21.1" "CNDP1" "junba"
## [10] "crabp2a" "cryba4" "crybb1"
## [13] "crygn2" "fabp11a" "si:dkey-238c7.12"
## [16] "cadm3"

Preservation of embryonic molecular profiles in larval progenitors
We were looking to compare the molecular profiles of embryonic and post-embryonic progenitors.
Here, in the retina, we find progenitors at larval stages whose molecular signatures are preserved
from embryonic stages. For comparison, in the hypothalamus, we find that progenitors at larval
stages are transcriptionally different from embryonic progenitors (see Hypothalamus 3).

Identify populations to compare
We defined progenitor / precursor / neuron populations based on their location in the tree, cross-
referenced with the expression of markers of each of these types
obj@group.ids$precursor.group <- NA

cells.s31 <- intersect(cellsInCluster(obj, "segment", "31"), whichCells(obj, "pseudotime",
c(0.05, 1)))

obj@group.ids[cells.s31, "precursor.group"] <- "1a_prog_transient"

cells.prog.late <- cellsInCluster(obj, "segment", c("30", "29"))
obj@group.ids[cells.prog.late, "precursor.group"] <- "1b_prog_longterm"

cells.precursor <- intersect(cellsInCluster(obj, "segment", c("24", "25", "26", "15")),
whichCells(obj, "pseudotime", c(0, 0.535)))

obj@group.ids[cells.precursor, "precursor.group"] <- "2_precursor"

cells.neurons <- setdiff(whichCells(obj, "pseudotime", c(0.535, 1)), cellsInCluster(obj,
"segment", c("6", "11")))

obj@group.ids[cells.neurons, "precursor.group"] <- "3_neurons"

# Colors for ggplot
stage.colors <- RColorBrewer::brewer.pal(12, "Paired")[c(10, 9, 7, 1)]

# Plot tree to show where the groups are
plotTree(obj, "precursor.group", discrete.colors = stage.colors)

## Warning: Removed 2530 rows containing missing values (geom_point).
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# Plot genes in each group
plotDot(obj, genes = c("rx1", "foxd1", "her2", "hes2.2", "insm1a", "neurod4", "foxg1b",

"elavl3", "elavl4"), clustering = "precursor.group", scale.by = "area") + theme_bw()
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Determine proportion of cells in each state
We then determined the proportion of cells from different stages that fell into each of these tran-
scriptional states.
# We combined stages to reduce number of plots
obj@group.ids$stage.collapsed <- plyr::mapvalues(x = obj@group.ids$stage, from = c("01-12h",

"02-14h", "03-16h", "04-18h", "05-20h", "06-24h", "07-36h", "08-2d", "09-3d",
"10-5d", "11-8d", "12-15d"), to = c(rep("01-12h-24h", 6), rep("02-36h-3d", 3),
rep("03-5d-15d", 3)))

# Count number of cells from each stage group in each precursor group
stage.group.count <- plyr::count(obj@group.ids, vars = c("stage.collapsed", "precursor.group"))

# Remove cells that weren't part of a precursor group
stage.group.count <- stage.group.count[complete.cases(stage.group.count), ]

# Cast into a data frame and convert NA to 0 (no cells of that type observed)
stage.group.df <- reshape2::dcast(stage.group.count, formula = stage.collapsed ~

precursor.group)

## Using freq as value column: use value.var to override.

stage.group.df[is.na(stage.group.df)] <- 0

# Normalize by the number of precursors from each stage group
stage.group.df[, 2:5] <- sweep(stage.group.df[, 2:5], 1, rowSums(stage.group.df[,

2:5]), "/")
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# Melt for ggplot
stage.group.df.melt <- reshape2::melt(stage.group.df, id.vars = "stage.collapsed")

# Plot proportions
ggplot(stage.group.df.melt, aes(x = variable, y = value, group = stage.collapsed,

fill = variable)) + geom_bar(stat = "identity") + facet_wrap(~stage.collapsed) +
theme_bw() + scale_fill_manual(values = stage.colors) + theme(axis.title.x = element_blank(),
axis.text.x = element_blank(), axis.ticks.x = element_blank())
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Import data into URD

Convert Seurat object to URD

We first loaded a Seurat object that contained just cells from the clusters that belonged to the
hypothalamus from each stage.
suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load Seurat object that has been cropped to hypothalamus cells
object.seurat <- readRDS(paste0(base.path, "obj/hypo_seurat.rds"))

# Convert to URD object
suburd <- seuratToURD(object.seurat)

Combined individual stage clustering

Bushra had performed individual clusterings across each stage with different resolutions. Here,
it was better to create a single identifier that included stage + cluster information to combine all
those clusterings (while preventing any overlap).
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stages <- sort(unique(suburd@meta$stage))
clust.res.used <- paste0("res.", c("4.5", "4", "5", "5", "4.5", "5", "6",

"6", "6", "5.5", "6", "5"))
names(clust.res.used) <- stages
suburd@group.ids$cluster <- NA
for (stage in stages) {

suburd@group.ids[cellsInCluster(suburd, "stage", stage), "cluster"] <- paste0(stage,
"-", suburd@group.ids[cellsInCluster(suburd, "stage", stage), clust.res.used[stage]])

}

Calculate highly variable genes

We calculated highly variable genes for each stage, used genes that were found as highly in at
least two stages, but were not mitochondrial, ribosomal, heat-shock protein, or tandem duplicated
genes.
# Calculated on each stage separaely, final gene list was all genes
# that were 'variable' in at least two stages NB: For a couple of
# stages, the gamma fit was poor -- the library size distribution
# seemed bimodal. Have seen this before in 10X data, but not sure what
# it means.
var.genes.by.stage <- lapply(stages, function(stage) {

findVariableGenes(suburd, cells.fit = cellsInCluster(suburd, "stage",
stage), set.object.var.genes = F, diffCV.cutoff = 0.3, main.use = stage,
do.plot = T)

})
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names(var.genes.by.stage) <- stages
var.genes <- sort(unique(unlist(var.genes.by.stage)))
print(paste0("Length of variable genes is ", length(var.genes)))

## [1] "Length of variable genes is 1783"

var.genes.twice <- names(which(table(unlist(var.genes.by.stage)) >= 2))
print(paste0("Length of variable genes shared across at least 2 stages is ",

length(var.genes.twice)))
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## [1] "Length of variable genes shared across at least 2 stages is 957"

# Remove mitochondrial genes
var.mito <- grep("^mt-|^AC0", var.genes.twice, value = T)
# Remove ribosomal genes
var.ribo <- grep("^rps|^rpl", var.genes.twice, value = T)
# Remove hsp genes
var.hsp <- grep("^hsp", var.genes.twice, value = T)
# Remove genes with duplicates
var.dups <- grep("of many", var.genes.twice, value = T)
suburd@var.genes <- setdiff(var.genes.twice, c(var.mito, var.ribo, var.hsp,

var.dups))
print(paste0("Length of final variable genes list (after removing mito, ribo, hsp genes) is ",

length(suburd@var.genes)))

## [1] "Length of final variable genes list (after removing mito, ribo, hsp genes) is 856"

To prevent downstream problems, we also removed any cells from the data that had the exact
same expression of the variable genes (i.e. cells with completely duplicated coordinates in the
high-dimensional space we would use for analysis downstream).
# Check for duplicate data points - cells with exact same expression of
# variable genes
vg.dups <- duplicated(as.data.frame(as.matrix(t(suburd@logupx.data[suburd@var.genes,

]))))
if (length(which(vg.dups)) > 0) {

print(paste("Removing", length(which(vg.dups)), "cell(s) with duplicated variable gene expression."))
not.dup.cells <- colnames(suburd@logupx.data)[!vg.dups]
suburd <- urdSubset(suburd, not.dup.cells)

}

## [1] "Removing 1 cell(s) with duplicated variable gene expression."

Calculate KNN graph and remove outliers

We then calculated a k-nearest neighbor graph and removed cells that had unusual distance to
their nearest neighbor, or unusual distance to their 20th nearest neighbor (given their distance
to their nearest neighbor). These sorts of outliers often cause problems or skew diffusion maps
(used downstream).
# Calculate k-nn
suburd <- calcKNN(suburd)

# Check what the outliers are
outliers <- knnOutliers(suburd, nn.1 = 1, nn.2 = 20, x.max = 40, slope.r = 1.1,

int.r = 3, slope.b = 0.66, int.b = 11.5, title = "Identifying Outliers by k-NN Distance.")
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length(outliers)

## [1] 87

suburd <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
outliers))

Remove cell type doublets

Add UMAP projection

While not strictly required, a UMAP projection can make it easier to assess the expression of NMF
modules and whether thresholds for overlap are set correctly.
## add UMAP command

# Load pre-calculated UMAP
umap <- readRDS(paste0(base.path, "/umap/umap_hypo.rds"))

# Add projection to URD object
suburd@tsne.y <- umap
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Load NMF results and import into object

NMF results were calculated by providing suburd@logupx.data to an external NMF pipeline written
in Python. The output results are imported here, scaled, and added to the URD object.
# Load the NMF results
load(paste0(base.path, "/NMF/hypo/result_tbls.Robj"))

# The results object contains NMF runs for several K values. k=28 was
# chosen for this tissue, so this extracts the results for that
# particular parameter
k.use <- "28"
nmf.cells <- result_obj[[paste0("K=", k.use)]][[1]]$C
rownames(nmf.cells) <- paste0("nmf", 1:nrow(nmf.cells))
colnames(nmf.cells) <- gsub("\\.", "-", colnames(nmf.cells))
nmf.genes <- result_obj[[paste0("K=", k.use)]][[1]]$G
colnames(nmf.genes) <- paste0("nmf", 1:nrow(nmf.cells))

# Scale NMF results 0-1
nmf.cells.scaled <- sweep(nmf.cells, 1, apply(nmf.cells, 1, max), "/")

# Add scaled NMF results to the URD object
suburd@nmf.c1 <- as(t(as.matrix(nmf.cells.scaled)), "dgCMatrix")

Select cell-type specific modules

Several NMF modules will be poor markers of cell types — these are often modules driven mostly
be the expression of 1-2 genes (where the gene loading of the first gene is much greater than that
of the fourth gene, for instance), or modules that don’t exhibit any restriction in a tSNE or UMAP
projection.
# Plot size parameters
plot.height = 6
plot.width = 16
dpi = 150

# Plot every module to determine which exhibit cell-type specificity
# This saves directly to the hard drive: two example plots are shown
# below.

# for (n in colnames(suburd@nmf.c1)) { png(paste0(path, '/doublets/',
# subset, '-plots/', n, '.png'), width=dpi*plot.width,
# height=dpi*plot.height) plot(plotDim(suburd, n)) dev.off() }

gridExtra::grid.arrange(grobs = list(plotDim(suburd, "nmf2", plot.title = "nmf2: exhibits poor restriction"),
plotDim(suburd, "nmf27", plot.title = "nmf27: exhibits good cell-type")),
ncol = 2)
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# Module Gene 1 : Gene 4 Ratios
top.genes <- result_obj[[paste0("K=", k.use)]][[1]]$top30genes
top.weights <- top.genes[, grep("Weights", colnames(top.genes), value = T)]
colnames(top.weights) <- paste0("nmf", 1:nrow(nmf.cells))
top.weights.ratio <- top.weights[1, ]/top.weights[4, ]

# Which modules exhibit cell-type restriction?
modules.bad.ratio <- names(top.weights.ratio)[which(top.weights.ratio >

3)]
unrestricted.modules <- paste0("nmf", c("12", "19", "24", "28"))
good.modules <- setdiff(colnames(suburd@nmf.c1), c(modules.bad.ratio, unrestricted.modules))

Determine which module pairs to use for doublet removal

We consider NMF modules pairwise and only use those pairs that don’t are non-overlapping in
the data. (In other words, NMF modules that are mutually exclusive in the majority of the data.)
Here, we determine thresholds for selecting those module pairs.
# Determine overlaps between module pairs
nmf.doublet.combos <- NMFDoubletsDefineModules(suburd, modules.use = good.modules,

module.thresh.high = 0.4, module.thresh.low = 0.15)

# Determine thresholds for NMF modules
frac.overlap.max = 0.03
frac.overlap.diff.max = 0.11
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module.expressed.thresh = 0.33

# Determine which module pairs to use for doublets
NMFDoubletsPlotModuleThresholds(nmf.doublet.combos, frac.overlap.max = frac.overlap.max,

frac.overlap.diff.max = frac.overlap.diff.max)

# These commands save plots directly to the hard-drive.

# Make plots to see how your thresholds are
NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,

"-doublet-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "pass", sort = "near", n.plots = 25)

NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,
"-ok-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "discarded", sort = "near", n.plots = 25)

# Define doublet cells
nmf.doublets <- NMFDoubletsDetermineCells(suburd, nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,

frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max) # 49 cells / 11307 cells = 0.43%

# Plot doublet cells on the UMAP
suburd <- groupFromCells(suburd, "nmf.doublets", cells = nmf.doublets)
plot(plotDimHighlight(suburd, clustering = "nmf.doublets", cluster = "TRUE",

plot.title = paste0("NMF doublets: ", length(nmf.doublets), " cells"),
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point.size = 2, highlight.color = "blue"))

# Crop object to exclude doublets
suburd.cropped <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),

nmf.doublets))

And then save the completed object for use downstream in building a tree using URD.
saveRDS(suburd.cropped, file = paste0(base.path, "/obj/URD_hypo_ND.rds"))
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Load data

suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load procesed URD object
object <- readRDS(paste0(base.path, "obj/URD_hypo_ND.rds"))

Processed on the cluster

Most of the following steps were run on a computing cluster. These individual tissue subsets
can be run on a modern, well-equipped laptop. The use of a computing cluster allows multiple
parameter choices to be tried in parallel, and also allows further parallelization of the random
walk procedure, speeding it up. Below, we should the commands that one would run on their
laptop, and then generally load the pre-processed results from the cluster that were used in the
paper. If you want to parallelize your own processing on a compute cluster, the scripts we used
will be available at http://github.com/farrellja/URD/cluster/
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Calculate diffusion map and pseudotime

These two steps are run in the cluster script URD-DM-PT.R.

Calculate diffusion map

# To run locally: Calculate a diffusion map projection
object <- calcDM(object, knn = 100, sigma.use = 8)

# Or: Load a pre-computed diffusion map projection
dm <- readRDS(paste0(base.path, "dm/dm_hypoND_knn-100_sigma-8.rds"))
object <- importDM(object, dm)

# Plot diffusion maps
stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",

"gold", "goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2",
"lightgrey")

# Plot by stage
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "stage", plot.title = "", outer.title = "Diffusion map labeled by Stage",
legend = T, alpha = 0.45, discrete.colors = stage.colors)
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# Plot with final cell types labeled
object@group.ids$final.cluster <- NA
object@group.ids[cellsInCluster(object, "stage", "12-15d"), "final.cluster"] <- object@group.ids[cellsInCluster(object,

"stage", "12-15d"), "res.5"]
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "final.cluster", plot.title = "", outer.title = "Diffusion map with final clusters",
legend = T, alpha = 0.6)
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Calculate pseudotime

URD requires a starting point or ‘root’ for determining pseudotime. Here, we used all cells from
the first timepoint (i.e. 12 hpf) as the root.
# Here, we used all cells from the first timepoint (i.e. 12 hours) as
# the root.
root.cells <- cellsInCluster(object, "stage", "01-12h")
plotDimHighlight(object, "stage", "01-12h", plot.title = "Root is 12 hpf cells")
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# To run locally: Run graph-search simulations to determine pseudotime
flood.result <- floodPseudotime(object, root.cells = root.cells, n = 100,

minimum.cells.flooded = 2, verbose = T)

# Or load a pre-computed graph-search simulation result
flood.result <- readRDS(paste0(base.path, "flood/flood_hypoND_knn-100_sigma-8.rds"))

# Process the graph-search simulations to determine the pseudotime of
# each cell
object <- floodPseudotimeProcess(object, flood.result, floods.name = "pseudotime",

max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

# If enough simulations have been run, then as additional simulations
# are added, the overall change in pseudotime of cells should reach an
# asymptote. If it does not, then floodPseudotime should be run with a
# higher n.
pseudotimePlotStabilityOverall(object)
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plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "pseudotime", plot.title = "", outer.title = "Diffusion Map labeled by pseudotime",
legend = F, alpha = 0.4)
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plotDim(object, "pseudotime", plot.title = "UMAP projection colored by pseudotime")

7



plotDists(object, "pseudotime", "stage", plot.title = "Pseudotime by stage")
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Calculate biased transition matrix

In order to perform biased random walks, we must first bias the transition matrix to ensure that
walks proceed towards the root and do not turn into other differentiated cell types. This is per-
formed in the cluster script URD-TM.R.
# Calculate parameters for biasing the transition matrix.
diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime",

optimal.cells.forward = 40, max.cells.back = 80, pseudotime.direction = "<",
do.plot = T, print.values = T)

## [1] "Mean pseudotime back (~80 cells) 0.00498088811519173"
## [1] "Chance of accepted move to equal pseudotime is 0.821561374686937"
## [1] "Mean pseudotime forward (~40 cells) -0.00250030667341253"

# Calculate the biased matrix.
biased.tm <- pseudotimeWeightTransitionMatrix(object, pseudotime = "pseudotime",

logistic.params = diffusion.logistic, pseudotime.direction = "<")

Perform biased random walks

Then, we perform biased walks starting from each tip. Visited cells are inferred to lie along the
trajectory that connects the root to each cell type. This is performed in the cluster script URD-
Walk.R.

Determine tips

We used clusters from 15 dpf as the tips for performing biased random walks. Here we define
the cells belonging to each of those clusters.
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# All clusters at 15 days
clusters.15day <- unique(object@group.ids[grep("15d", object@group.ids$stage),

"res.5"])
# All cells at 15 days
cells.15day <- rownames(object@group.ids)[grep("15d", object@group.ids$stage)]
# Cell lists of each cluster at 15dpf
cells.15dpf.clusters <- lapply(clusters.15day, function(clust) intersect(cells.15day,

cellsInCluster(object, "res.5", clust)))
names(cells.15dpf.clusters) <- paste0("15d-", clusters.15day)

We also load a .csv file that contains information about the tips. It has four columns:
• id: Cluster ID for the tip
• use: Whether this cluster should be used when building the tree
• name: The name for this tip, which will be used on 2D plots
• short.name: The ‘short’ name for this tip, which would be used on 3D plots (though we did

not use that feature in this study).
# Load CSV
tip.names <- read.csv(paste0(base.path, "tips/tip_names_hypoND.csv"), header = F,

stringsAsFactors = F, colClasses = c("character", "logical", "character",
"character"))

# Name columns and rows
names(tip.names) <- c("id", "use", "name", "short.name")
rownames(tip.names) <- gsub("_", "-", tip.names$id)

# Sort alphabetically
tip.names <- tip.names[order(rownames(tip.names)), ]

These are the tips that were considered during the construction of the retina URD tree (some were
excluded during tree construction later in the buildTree command).
# Define a 'tips' clustering
object@group.ids$tip <- NA
object@group.ids$tip.id <- NA
object@group.ids$tip.name <- NA

# If the tip will be used in the tree, define its cells in the
# clustering
for (i in 1:nrow(tip.names)) {

tip.cells <- cells.15dpf.clusters[[rownames(tip.names)[i]]]
object@group.ids[tip.cells, "tip"] <- as.character(i)
object@group.ids[tip.cells, "tip.id"] <- rownames(tip.names)[i]
object@group.ids[tip.cells, "tip.name"] <- as.character(tip.names[i,

"name"])
}

# Plot the tips
plotDim(object, "tip.name")
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Perform the biased random walks

Biased random walks then need to be run starting from each tip. This can be performed on a
laptop, but is an ideal candidate for parallelization on a cluster. (The walks from each tip can be
run as a separate job.)
## IF RUNNING LOCALLY

# Loop through each cluster
walks <- lapply(rownames(tip.names), function(c) {

# Exclude any tip cells that for whatever reason didn't end up in the
# biased TM (e.g. maybe not assigned a pseudotime).
tip.cells <- intersect(cells.15dpf.clusters[[c]], rownames(biased.tm))
# Perform the random walk simulation
this.walk <- simulateRandomWalk(start.cells = tip.cells, transition.matrix = biased.tm,

end.cells = root.cells, n = 50000, end.visits = 1, verbose.freq = 1000,
max.steps = 5000)

return(this.walk)
})
names(walks) <- rownames(tip.names)

# Alternatively, this loop is automated by the function
# simulateRandomWalksFromTips

Alternatively, a set of pre-calculated walks can be loaded. Since the walks are a simulation (and
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therefore not deterministic), this is particularly crucial for reproducing results.
## IF LOADING PRE-CALCULATED WALKS

# Get list of files in the walks directory
walks.files <- list.files(paste0(base.path, "/walks/hypoND/"), pattern = ".rds")

# Load the walks previously performed for each cluster
walks <- lapply(rownames(tip.names), function(c) {

walk.file <- grep(pattern = paste0("_tip-", c, "_"), x = walks.files,
value = T)[1]

return(readRDS(paste0(base.path, "/walks/hypoND/", walk.file)))
})
names(walks) <- rownames(tip.names)

Process the random walks

The walks are then converted to visitation frequency by importing them into the URD object.
for (i in 1:nrow(tip.names)) {

# Load the individual walk visitation frequencies into the object
object <- processRandomWalks(object, walks = walks[[i]], walks.name = i,

n.subsample = 1, verbose = F)
}

Build the URD tree

Then, a branching tree is constructed, by joining trajectories in an agglomerative fashion when
cells are highly visited by walks from multiple tips. The following steps were performed in the
cluster script URD-Tree.R.
# Tree building is destructive, so create a copy of the object
object.tree <- object

# Load tip cells
object.tree <- loadTipCells(object.tree, "tip")

# Determine tips to use
tips.to.use <- which(tip.names$use)

# Build the tree
object.tree <- buildTree(object.tree, pseudotime = "pseudotime", divergence.method = "ks",

cells.per.pseudotime.bin = 40, bins.per.pseudotime.window = 5, save.all.breakpoint.info = T,
p.thresh = 1e-04, verbose = F, tips.use = as.character(tips.to.use))

# Name the tips of the tree
object.tree <- nameSegments(object.tree, segments = tips.to.use, segment.names = as.character(tip.names[tips.to.use,

"name"], short.names = as.character(tip.names[tips.to.use, "short.name"])))

plotTree(object.tree, "stage", discrete.colors = stage.colors, label.segments = T)

12



Save the URD tree

The tree is then saved for use in downstream analysis, and can easily be loaded for further pe-
rusal.
saveRDS(object.tree, file = paste0(base.path, "tree/URD-Tree-Hypo.rds"))
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Load data
# Load URD
library(URD)

## Loading required package: ggplot2

## Loading required package: Matrix

## Registered S3 method overwritten by 'xts':
## method from
## as.zoo.xts zoo

# Basic location
base.path <- "~/Documents/R sessions/urd-cluster-bushra/"

# Load completed hypothalamus tree object
obj.path <- paste0(base.path, "tree/hypoND/tree-hypoND_knn-100_sigma-8_40F-80B_NO-_ks_0001.rds")
obj <- readRDS(obj.path)

Plot gene expression on the tree
Plot tree by stage

stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",
"gold", "goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2",
"lightgrey")

plotTree(obj, "stage", label.type = "group", discrete.colors = stage.colors)
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Plot tree with gene expression: main figures

gridExtra::grid.arrange(grobs = lapply(c("shha", "pdyn", "rx3", "nrgna"),
plotTree, object = obj, label.x = F, plot.cells = F), ncol = 2)
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gridExtra::grid.arrange(grobs = lapply(c("dlx5a", "dlx6a", "vax1"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 2)
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Plot tree with gene expression: supplemental figures

gridExtra::grid.arrange(grobs = lapply(c("nkx2.4b", "ascl1a", "insm1a",
"tubb5", "scg2b", "dlx2a", "nkx2.4a", "nrgna", "tac1", "synpr", "sp8a",
"gad1b", "npy", "sst1.1", "tph2", "fezf1", "pdyn", "slc17a6b", "prdx1",
"pou3f1"), plotTree, object = obj, label.x = F, plot.cells = F), ncol = 4)
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Determine genes enriched in trajectories to particular cell types
Comparison between major cell types
We took each major group (“clade”) of branches from the end of the tree as a single entity
(i.e. prdx1+ neurons, pdyn+ neurons, GABAergic dlx+ neurons, nrgna+ neurons) and compared
them against each other to look for differentially expressed genes.
# Get the parent segment of each clade to consider as a group
combined.tips <- c("3", "4", "9", "10")
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# Get the cells in that segment and all child segments
cells.combined.tips <- lapply(combined.tips, function(t) whichCells(obj,

label = "segment", value = segChildrenAll(obj, t, include.self = T)))
names(cells.combined.tips) <- combined.tips

# Loop through each of these clades and look for differentially
# expressed genes
combined.markers <- lapply(combined.tips, function(tip) {

# Find all of the other clades
opposing.tips <- setdiff(combined.tips, tip)
# Perform pairwise comparisons to each other clade
m.o <- lapply(opposing.tips, function(tip.opposing) {

# message(paste0(Sys.time(), ': Comparing tip ', tip, ' to ',
# tip.opposing, '.')) Find differentially expressed genes between the
# pair of clades
ma <- markersAUCPR(object = obj, cells.1 = cells.combined.tips[[tip]],

cells.2 = cells.combined.tips[[tip.opposing]], effect.size = 0.5,
auc.factor = 1.1)

# In order to facilitate combining all of the results later, add
# columns about which two clades were compared and also a duplicate
# entry of the name of each gene that's recovered.
if (nrow(ma) > 0) {

ma$gene <- rownames(ma)
ma$tip1 <- tip
ma$tip2 <- tip.opposing

}
return(ma)

})
names(m.o) <- opposing.tips
return(m.o)

})
names(combined.markers) <- combined.tips

# Require that genes are markers against at least 2 other clades
combined.markers.beatmult <- lapply(combined.markers, function(m) {

names(which(table(unlist(lapply(m, rownames))) >= 2))
})

# Since genes might be a marker in a comparison to several other
# clades, combine the results into a single table, where each gene is
# listed only once with the info from the pairwise comparison where it
# had the strongest differential expression.
combined.markers.best <- lapply(1:length(combined.markers.beatmult), function(i) {

cm <- do.call("rbind", combined.markers[[i]])
cm <- cm[cm$gene %in% combined.markers.beatmult[[i]], ]
cmb <- do.call("rbind", lapply(combined.markers.beatmult[[i]], function(g) {

cmr <- cm[cm$gene == g, ]
return(cmr[which.max(cmr$AUCPR.ratio), ])

}))
rownames(cmb) <- cmb$gene
if (!is.null(cmb)) {

cmb <- cmb[order(cmb$AUCPR.ratio, decreasing = T), ]
cmb$exp.global <- apply(obj@logupx.data[rownames(cmb), unlist(obj@tree$cells.in.segment)],
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1, mean.of.logs)
cmb$exp.global.fc <- cmb$nTrans_1 - cmb$exp.global

}
return(cmb)

})
names(combined.markers.best) <- combined.tips

AUCPR along tree
We also used the AUCPRTestAlongTree function to ask for genes that are differential markers
of a lineage using URD’s tree structure. This makes a comparison at each branchpoint from a
particular cell type up to the root.
# Get all of the tips from the tree
tips.in.tree <- as.character(obj@tree$tips)

# Tree segments to use as root
roots <- rep("12", length(tips.in.tree))
names(roots) <- tips.in.tree
roots["3"] <- "13"

# Define parameters to use for calculation Used more permissive values
# in the sst1.1+ / tph2+ / gabaergic dlx+ neuronal comparisons due to
# the small number of cells in these populations
auc.use <- rep(1.2, length(tips.in.tree))
names(auc.use) <- tips.in.tree
auc.use[c("1", "6", "7")] <- 1.15
log.effect.use <- rep(0.8, length(tips.in.tree))
names(log.effect.use) <- tips.in.tree
log.effect.use[c("1", "6", "7")] <- 0.6

# Perform a loop of tests with each tip.
markers <- lapply(tips.in.tree, function(t) {

this.root <- roots[t]
this.auc <- auc.use[t]
this.log <- log.effect.use[t]
# message(paste0(Sys.time(), ': Starting tip ', t, ' and root ',
# this.root, ' with params ', this.auc, ' AUC and ', this.log, ' effect
# size.'))
these.markers <- aucprTestAlongTree(obj, pseudotime = "pseudotime",

tips = as.character(t), genes.use = NULL, must.beat.sibs = 0.6,
report.debug = F, root = this.root, auc.factor = this.auc, log.effect.size = this.log)

these.markers$gene <- rownames(these.markers)
these.markers$tip <- t
return(these.markers)

})
names(markers) <- tips.in.tree

Markers of the prdx1- neuron clade

# Calculate from segment 12 against segment 3 specifically
nonprdx.markers <- markersAUCPR(obj, clust.1 = "12", clust.2 = "3", clustering = "segment",
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effect.size = 0.8, auc.factor = 1.2)
# Also look at segment 12 vs. rest of the hypothalamus with lower
# thresholds
nonprdx.markers.global <- markersAUCPR(obj, clust.1 = "12", clust.2 = as.character(c(1:11,

13)), clustering = "segment", effect.size = 0.4, auc.factor = 1.1)

## Warning in names(genes.data)[4:7] <- paste(c("posFrac", "posFrac", "nTrans", :
## number of items to replace is not a multiple of replacement length

Functions for curating differential expression results
We further curated those differentially expressed genes using the following functions:

threshold.tree.markers
Function to threshold markers from a markersAUCPRAlongTree test with additional criteria

• markers: list of results from markersAUCPRAlongTree tests
• tip: which tip (or element of the list to pursue)
• global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
• aucpr.ratio.all: classifier score that gene must exhibit along trajectory test vs. rest of the data
• branch.fc: fold.change that gene must have (in best case) vs. the opposing branch at any
branchpoint along the trajectory.

• Returns markers with only a subset of rows retained.
threshold.tree.markers <- function(markers, tip, global.fc = 0.1, branch.fc = 0.4,

aucpr.ratio.all = 1.03) {
m <- markers[[tip]]
# First off -- lose global FC < x
bye.globalfc <- rownames(m)[m$expfc.all < global.fc]
# Second -- get rid of branch FC < x
bye.branchfc <- rownames(m)[m$expfc.maxBranch < branch.fc]
# Third -- get rid of stuff essentially worse than random
# classification on global level
bye.badglobalaucpr <- rownames(m)[m$AUCPR.ratio.all < aucpr.ratio.all]
bye.all <- unique(c(bye.globalfc, bye.branchfc, bye.badglobalaucpr))
m.return <- m[setdiff(rownames(m), bye.all), ]
return(m.return)

}

divide.branches
Function to compare genes between two branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making photoreceptor heatmap, use to divide into photoreceptor, cone, and rod markers)

• object: An URD object
• genes: (Character vector) Genes to test
• clust.1: (Character) Cluster 1
• clust.2: (Character) Cluster 2
• clustering: (Character) Clustering to pull from
• exp.fc: (Numeric) Minimum expression fold-change between branches to consider different
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• exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a
branch

• exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

• Returns list of gene names (“specific.1” = specific to clust.1, “specific.2” = specific to clust.2,
“markers” = all genes tested)

divide.branches <- function(object, genes, clust.1, clust.2, clustering = "segment",
exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {
# Double check which markers are unique to one or the other population
mcomp <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.2,

clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)

specific.b <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[,
4] < exp.thresh & mcomp[, 5] > pmin((mcomp[, 4] + exp.diff), 1)]

specific.a <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[,
5] < exp.thresh & mcomp[, 4] > pmin((mcomp[, 5] + exp.diff), 1)]

r <- list(specific.a, specific.b, mcomp)
names(r) <- c("specific.1", "specific.2", "markers")
return(r)

}

divide.branches.triple
Function to compare genes between three branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making gad2+ heatmap, use to divide into general, dlx+, sst+, and tph2+ markers).

• object: An URD object
• genes: (Character vector) Genes to test
• clust.1: (Character) Cluster 1
• clust.2: (Character) Cluster 2
• clust.3: (Character) Cluster 3
• clustering: (Character) Clustering to pull from
• exp.fc: (Numeric) Minimum expression fold-change between branches to consider different
• exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a
branch

• exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

• Returns list of gene names (“nonspecific” = genes not in specific.1/2/3, “specific.1” = spe-
cific to clust.1, “specific.2” = specific to clust.2, “specific.3” = specific to clust.3, each pair-
wise comparison, and “markers” = all genes tested)

divide.branches.triple <- function(object, genes, clust.1, clust.2, clust.3,
clustering = "segment", exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {
# Double check which markers are unique to one or the other population
mcomp12 <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.2,

clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)

mcomp23 <- markersAUCPR(object, clust.1 = clust.2, clust.2 = clust.3,
clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)

mcomp13 <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.3,
clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)
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specific.1v2 <- rownames(mcomp12)[abs(mcomp12$exp.fc) > exp.fc & mcomp12[,
5] < exp.thresh & mcomp12[, 4] > pmin((mcomp12[, 5] + exp.diff),
1)]

specific.2v1 <- rownames(mcomp12)[abs(mcomp12$exp.fc) > exp.fc & mcomp12[,
4] < exp.thresh & mcomp12[, 5] > pmin((mcomp12[, 4] + exp.diff),
1)]

specific.2v3 <- rownames(mcomp23)[abs(mcomp23$exp.fc) > exp.fc & mcomp23[,
5] < exp.thresh & mcomp23[, 4] > pmin((mcomp23[, 5] + exp.diff),
1)]

specific.3v2 <- rownames(mcomp23)[abs(mcomp23$exp.fc) > exp.fc & mcomp23[,
4] < exp.thresh & mcomp23[, 5] > pmin((mcomp23[, 4] + exp.diff),
1)]

specific.1v3 <- rownames(mcomp13)[abs(mcomp13$exp.fc) > exp.fc & mcomp13[,
5] < exp.thresh & mcomp13[, 4] > pmin((mcomp13[, 5] + exp.diff),
1)]

specific.3v1 <- rownames(mcomp13)[abs(mcomp13$exp.fc) > exp.fc & mcomp13[,
4] < exp.thresh & mcomp13[, 5] > pmin((mcomp13[, 4] + exp.diff),
1)]

specific.1 <- unique(setdiff(c(specific.1v2, specific.1v3), c(specific.2v3,
specific.3v2)))

specific.2 <- unique(setdiff(c(specific.2v1, specific.2v3), c(specific.1v3,
specific.3v1)))

specific.3 <- unique(setdiff(c(specific.3v2, specific.3v1), c(specific.2v1,
specific.1v2)))

nonspecific <- setdiff(genes, c(specific.1, specific.2, specific.3))

markers.comp <- list(mcomp12, mcomp13, mcomp23)
names(markers.comp) <- c("1v2", "1v3", "2v3")

r <- list(nonspecific, specific.1, specific.2, specific.3, specific.1v2,
specific.1v3, specific.2v1, specific.2v3, specific.3v1, specific.3v2,
markers.comp)

names(r) <- c("nonspecific", "specific.1", "specific.2", "specific.3",
"specific.1v2", "specific.1v3", "specific.2v1", "specific.2v3",
"specific.3v1", "specific.3v2", "markers")

return(r)
}

Functions for heatmap generation
These functions were used in the production of heatmaps:

Color scale
Generate color scale to use with heatmaps.
cols <- (scales::gradient_n_pal(RColorBrewer::brewer.pal(9, "YlOrRd")))(seq(0,

1, length.out = 50))
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determine.timing
Determines order to plot genes in heatmap. “Expression” is defined as 20% higher expression
than the minimum observed value. “Peak” expression is defined as 50% higher expression than
minimum observed value. The two longest stretches of “peak” expression are found, and then
the later one is used. The onset time of the stretch of expression that contains that peak is also
determined. Genes are then ordered by the pseudotime at which they enter “peak” expression,
leave “peak” expression, start “expression”, and leave “expression”.

• s: result from geneSmoothFit
• genes: genes to order; default is all genes that were fit.
• Returns s but with an additional list entry ($timing) of the order to plot genes

determine.timing <- function(s, genes = rownames(s$mean.expression)) {
s$timing <- as.data.frame(do.call("rbind", lapply(genes, function(g) {

sv <- as.numeric(s$scaled.smooth[g, ])
pt <- as.numeric(colnames(s$scaled.smooth))
# Figure out baseline expression & threshold for finding peaks
min.val <- max(min(sv), 0)
peak.val <- ((1 - min.val)/2) + min.val
exp.val <- ((1 - min.val)/5) + min.val
# Run-length encoding of above/below the peak-threshold
peak.rle <- rle(sv >= peak.val)
peak.rle <- data.frame(lengths = peak.rle$lengths, values = peak.rle$values)
peak.rle$end <- cumsum(peak.rle$lengths)
peak.rle$start <- head(c(0, peak.rle$end) + 1, -1)
# Run-length encoding of above/below the expressed-threshold
exp.rle <- rle(sv >= exp.val)
exp.rle <- data.frame(lengths = exp.rle$lengths, values = exp.rle$values)
exp.rle$end <- cumsum(exp.rle$lengths)
exp.rle$start <- head(c(0, exp.rle$end) + 1, -1)
# Take top-two longest peak RLE & select later one. Find stretches
# that are above peak value
peak <- which(peak.rle$values)
# Order by length and take 1 or 2 longest ones
peak <- peak[order(peak.rle[peak, "lengths"], decreasing = T)][1:min(2,

length(peak))]
# Order by start and take latest one.
peak <- peak[order(peak.rle[peak, "start"], decreasing = T)][1]
# Identify the actual peak value within that stretch
peak <- which.max(sv[peak.rle[peak, "start"]:peak.rle[peak, "end"]]) +

peak.rle[peak, "start"] - 1
# Identify the start and stop of the expressed stretch that contains
# the peak
exp.start <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <=

peak), "start"]
exp.end <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <=

peak), "end"]
# Identify values of expression at start and stop
smooth.start <- sv[exp.start]
smooth.end <- sv[exp.end]
# Convert to pseudotime?
exp.start <- pt[exp.start]
exp.end <- pt[exp.end]
peak <- pt[peak]
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# Return a vector
v <- c(exp.start, peak, exp.end, smooth.start, smooth.end)
names(v) <- c("pt.start", "pt.peak", "pt.end", "exp.start", "exp.end")
return(v)

})))
rownames(s$timing) <- genes

# Decide on ordering of genes
s$gene.order <- rownames(s$timing)[order(s$timing$pt.peak, s$timing$pt.start,

s$timing$pt.end, s$timing$exp.end, decreasing = c(F, F, F, T),
method = "radix")]

return(s)
}

filter.heatmap.genes
Removes undesired (mitochondrial, ribosomal, tandem duplicated genes) from heatmaps for pre-
sentation purposes.

• genes: (Character vector) genes to check
• Returns genes with undesired genes removed.

filter.heatmap.genes <- function(genes) {
mt.genes <- grep("^mt-", ignore.case = T, genes, value = T)
many.genes <- grep("\\(1 of many\\)", ignore.case = T, genes, value = T)
ribo.genes <- grep("^rpl|^rps", ignore.case = T, genes, value = T)
cox.genes <- grep("^cox", ignore.case = T, genes, value = T)
hsp.genes <- grep("^hsp", ignore.case = T, genes, value = T)
return(setdiff(genes, c(mt.genes, many.genes, ribo.genes, cox.genes,

hsp.genes)))
}

Heatmaps of gene cascades
Using the genes that were determined as differentially expressed along the way to particular cell
types, we generated expression cascades and plotted them as heatmaps.

Pdyn+ neurons
Prepare cascade

## Pdyn+ neurons: Seg 4

# Get markers from the two approaches
t <- combined.markers.best[["4"]] # pdyn+ markers from above the combined clades
t <- t[t$exp.global.fc >= 0.8, ] # limited to those with good global parameters
m <- threshold.tree.markers(markers, "4", global.fc = 0.6) # Pdyn+ Cell markers from aucprTestAlongTree
pdyn.markers <- unique(c(rownames(t), rownames(m)))

# Just want to plot part of cells from upstream segment 12, which is
# very long. Going to use cells from segments 4, 11, and from segment
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# 12 with pseudotime > 0.23
cells.plot <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),

whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("11", "4"))))

# Calculate spline curve
spline.plot <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot,

genes = pdyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.plot <- determine.timing(s = spline.plot)
order.plot <- filter.heatmap.genes(spline.plot$gene.order)

# Output gene table
table.save <- data.frame(gene = order.plot, stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$pdyn.AUCPR.ratio.all <- m[table.save$gene, "AUCPR.ratio.all"]
table.save$pdyn.AUCPR.ratio.maxBranch <- m[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$pdyn.exp.fc.all <- m[table.save$gene, "expfc.all"]
table.save$pdyn.exp.fc.best <- m[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-pdyn.csv"))

Generate heatmap: all genes

## Generate heatmap Make sure any values <0 in the spline curves get set
## to 0 so that the heatmap scale doesn't get messed up.
spline.plot$scaled.smooth[spline.plot$scaled.smooth < 0] <- 0
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/hypo-pdyn.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.plot$scaled.smooth[order.plot, ]),

Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.6, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA)
title(main = "pdyn+ Neurons")
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# dev.off()

Prdx1+ neurons vs. other neurons
Prepare cascade

## Prdx1+ neurons: Seg 3

# Get markers from the two approaches
t <- combined.markers.best[["3"]] # prdx1+ markers from above the combined clades
t <- t[t$exp.global.fc >= 0.8, ] # limited to those with good global parameters
m <- threshold.tree.markers(markers, "3", global.fc = 0.6) # prdx1+ Cell markers from aucprTestAlongTree
prdx.markers <- unique(c(rownames(t), rownames(m)))

# Get markers for the opposing segment
opposing.prdx.markers <- intersect(rownames(nonprdx.markers), rownames(nonprdx.markers.global))

prdx.hm.markers <- unique(c(prdx.markers, opposing.prdx.markers))

# Calculate spline curves Using segments 13 and 12 or 3.
spline.12 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("13", "12")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

spline.3 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("13", "3")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

spline.123 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("13", "12", "3")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

# Want to plot a heatmap that shows expression in most upstream
# progenitors and then each branch (i.e. prdx1- vs. prdx1+ neurons) as
# separate columns. Going to crop each spline fit to the correct
# pseudotime range and then combine them into a single one that can be
# plotted as a three-column heatmap.

pt.12v3 <- obj@tree$segment.pseudotime.limits["3", "start"] # pseudotime where the crop should happen
splines.prdx <- list(cropSmoothFit(spline.123, pt.min = -Inf, pt.max = pt.12v3),

cropSmoothFit(spline.12, pt.min = pt.12v3, pt.max = Inf), cropSmoothFit(spline.3,
pt.min = pt.12v3, pt.max = Inf))

names(splines.prdx) <- c("Hypo Precursors", "Prdx1-", "Prdx1+")
splines.prdx.hm <- combineSmoothFit(splines.prdx) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.12 <- determine.timing(s = spline.12)
spline.3 <- determine.timing(s = spline.3)
spline.123 <- determine.timing(s = spline.123)

# Decide which markers are specific to one cell type or both
d12v3 <- divide.branches(obj, prdx.hm.markers, clust.1 = "12", clust.2 = "3",
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exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity
order.123 <- filter.heatmap.genes(setdiff(spline.123$gene.order, c(d12v3$specific.1,

d12v3$specific.2)))
order.12 <- filter.heatmap.genes(intersect(spline.12$gene.order, d12v3$specific.1))
order.3 <- filter.heatmap.genes(intersect(spline.3$gene.order, d12v3$specific.2))
gene.order <- c(order.123, order.12, order.3)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.123)),

rep("prdx1-", length(order.12)), rep("prdx1+", length(order.3))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$non.AUCPR.ratio <- nonprdx.markers[table.save$gene, "AUCPR.ratio"]
table.save$non.exp.fc <- nonprdx.markers[table.save$gene, "exp.fc"]
table.save$non.exp.fc.global <- nonprdx.markers.global[table.save$gene,

"exp.fc"]
table.save$prdx.AUCPR.ratio.all <- m[table.save$gene, "AUCPR.ratio.all"]
table.save$prdx.AUCPR.ratio.maxBranch <- m[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$prdx.exp.fc.all <- m[table.save$gene, "expfc.all"]
table.save$prdx.exp.fc.best <- m[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-prdx1-vs-non.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the
# heatmap scale doesn't get messed up.
splines.prdx.hm$scaled.smooth[splines.prdx.hm$scaled.smooth < 0] <- 0
# Determine where to place column separators (i.e. how many columns
# will each cell type occupy in the heatmap )
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.prdx, function(x) ncol(x$scaled.smooth))),

-1)))
# Determine where to place row separators (i.e. how many common
# markers, and markers are specific to each cell type)
rowsep <- cumsum(c(length(order.123), length(order.12)))
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/hypo-prdx-vs-non.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.prdx.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.35, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "Precursors", line = -41, adj = 0)
title(main = "prdx1 -", line = -41, adj = 0.425)
title(main = "prdx1 +", line = -41, adj = 0.725)
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# dev.off()

nrgna+ neurons
Prepare cascade

# Get markers from the two approaches
t <- combined.markers.best[["10"]] # Markers from above the combined clades
t <- t[t$exp.global.fc >= 0.8, ] # limited to those with good global parameters
m2 <- threshold.tree.markers(markers, "2", global.fc = 0.6) # Markers from aucprTestAlongTree
m5 <- threshold.tree.markers(markers, "5", global.fc = 0.6) # Markers from aucprTestAlongTree
tacsyn.markers <- unique(c(rownames(t), rownames(m2), rownames(m5)))

# Just want to plot part of cells from upstream segment 12, which is
# very long. Going to use cells from segments 2 or 5, 10, and from
# segment 12 with pseudotime > 0.23
cells.plot.2 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),

whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "2"))))

cells.plot.5 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "5"))))

cells.plot.25 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "2", "5"))))

# Calculate spline curves
spline.2 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.2,

genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.5 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.5,
genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.25 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.25,
genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Want to plot a heatmap that shows expression in upstream progenitors
# and then each branch (i.e. gabaergic_tac1 vs. synpr+) as separate
# columns. Going to crop each spline fit to the correct pseudotime
# range and then combine them into a single one that can be plotted as
# a three-column heatmap.

pt.2v5 <- obj@tree$segment.pseudotime.limits["2", "start"] # pseudotime where the crop should happen
splines.tacsyn <- list(cropSmoothFit(spline.25, pt.min = -Inf, pt.max = pt.2v5),

cropSmoothFit(spline.2, pt.min = pt.2v5, pt.max = Inf), cropSmoothFit(spline.5,
pt.min = pt.2v5, pt.max = Inf))

names(splines.tacsyn) <- c("Precursors", "Synpr-", "Synpr+")
splines.tacsyn.hm <- combineSmoothFit(splines.tacsyn) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.2 <- determine.timing(s = spline.2)
spline.5 <- determine.timing(s = spline.5)
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spline.25 <- determine.timing(s = spline.25)

# Decide which markers are specific to one cell type or both
d2v5 <- divide.branches(obj, tacsyn.markers, clust.1 = "2", clust.2 = "5",

exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity
order.25 <- filter.heatmap.genes(setdiff(spline.25$gene.order, c(d2v5$specific.1,

d2v5$specific.2)))
order.2 <- filter.heatmap.genes(intersect(spline.2$gene.order, d2v5$specific.1))
order.5 <- filter.heatmap.genes(intersect(spline.5$gene.order, d2v5$specific.2))
gene.order <- c(order.25, order.2, order.5)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.25)),

rep("synpr-", length(order.2)), rep("synpr+", length(order.5))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$nonsynpr.AUCPR.ratio.all <- m2[table.save$gene, "AUCPR.ratio.all"]
table.save$nonsynpr.AUCPR.ratio.maxBranch <- m2[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$nonsynpr.exp.fc.all <- m2[table.save$gene, "expfc.all"]
table.save$nonsynpr.exp.fc.best <- m2[table.save$gene, "expfc.maxBranch"]
table.save$synpr.AUCPR.ratio.all <- m5[table.save$gene, "AUCPR.ratio.all"]
table.save$synpr.AUCPR.ratio.maxBranch <- m5[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$synpr.exp.fc.all <- m5[table.save$gene, "expfc.all"]
table.save$synpr.exp.fc.best <- m5[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-nrgna.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the
# heatmap scale doesn't get messed up.
splines.tacsyn.hm$scaled.smooth[splines.tacsyn.hm$scaled.smooth < 0] <- 0
# Determine where to place column separators (i.e. how many columns
# will each cell type occupy in the heatmap )
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.tacsyn, function(x) ncol(x$scaled.smooth))),

-1)))
# Determine where to place row separators (i.e. how many common
# markers, and markers are specific to each cell type)
rowsep <- cumsum(c(length(order.25), length(order.2)))
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/hypo-nrgna.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.tacsyn.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.35, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "synpr-", line = -41, adj = 0.535)
title(main = "synpr+", line = -41, adj = 0.75)
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# dev.off()

Generate heatmap: main figure

# Plot heatmap with only certain genes labeled for main figure

genes.to.plot <- c("rgs5b", "dlx5a", "isl1", "nkx2.4a", "nkx2.2a", "hmx3a",
"dlx1a", "dlx2b", "sp8a", "pbx3b")

rownames.to.plot <- gene.order
rtp <- rownames.to.plot %in% genes.to.plot
rownames.to.plot[!rtp] <- ""
rownames.to.plot[rtp] <- paste0("- ", rownames.to.plot[rtp])

# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/hypo-nrgna-mainfig.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.tacsyn.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 1.8, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2), labRow = rownames.to.plot)

title(main = "synpr-", line = -41, adj = 0.535)
title(main = "synpr+", line = -41, adj = 0.75)
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# dev.off()

GABAergic neurons
Prepare cascade

# Get markers from the two approaches
t <- combined.markers.best[["9"]] # Markers from above the combined clades
m1 <- threshold.tree.markers(markers, "1", global.fc = 0.6) # Markers from aucprTestAlongTree
m6 <- threshold.tree.markers(markers, "6", global.fc = 0.6) # Markers from aucprTestAlongTree
m7 <- threshold.tree.markers(markers, "7", global.fc = 0.6) # Markers from aucprTestAlongTree
gaba.markers <- unique(c(rownames(t), rownames(m1), rownames(m6), rownames(m7)))

# Defining cell populations to use in the heatmap Just want to use a
# tiny bit of segment 12 and then the rest of the gabaergic clade
cells.plot.1 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),

whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "1"))))

cells.plot.6 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "8", "6"))))

cells.plot.7 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "8", "7"))))

cells.plot.167 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "8", "1", "6", "7"))))

# Calculate spline curves
spline.1 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.1,

genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.6 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.6,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.7 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.7,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.167 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.167,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Want to plot a heatmap that shows expression in upstream progenitors
# and then each branch as separate columns. Going to crop each spline
# fit to the correct pseudotime range and then combine them into a
# single one that can be plotted as a three-column heatmap.

pt.1 <- obj@tree$segment.pseudotime.limits["1", "start"] # pseudotime where the crop should happen
splines.gaba <- list(cropSmoothFit(spline.167, pt.min = -Inf, pt.max = pt.1),

cropSmoothFit(spline.1, pt.min = pt.1, pt.max = Inf), cropSmoothFit(spline.6,
pt.min = pt.1, pt.max = Inf), cropSmoothFit(spline.7, pt.min = pt.1,
pt.max = Inf))

names(splines.gaba) <- c("Precursors", "dlx+", "sst1.1+", "tph2+")
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splines.gaba.hm <- combineSmoothFit(splines.gaba) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.1 <- determine.timing(s = spline.1)
spline.6 <- determine.timing(s = spline.6)
spline.7 <- determine.timing(s = spline.7)
spline.167 <- determine.timing(s = spline.167, genes = setdiff(gaba.markers,

"sst1.2"))

# Decide which markers are specific to one cell type or not specific
d <- divide.branches.triple(obj, gaba.markers, clust.1 = "1", clust.2 = "6",

clust.3 = "7", exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity
order.167 <- filter.heatmap.genes(intersect(spline.167$gene.order, d$nonspecific))
order.1 <- filter.heatmap.genes(intersect(spline.1$gene.order, d$specific.1))
order.6 <- filter.heatmap.genes(intersect(spline.6$gene.order, d$specific.2))
order.7 <- filter.heatmap.genes(intersect(spline.7$gene.order, d$specific.3))
gene.order <- c(order.167, order.1, order.6, order.7)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("multiple", length(order.167)),

rep("dlx+", length(order.1)), rep("sst+", length(order.6)), rep("tph2+",
length(order.7))), stringsAsFactors = F)

table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$dlx.AUCPR.ratio.all <- m1[table.save$gene, "AUCPR.ratio.all"]
table.save$dlx.AUCPR.ratio.maxBranch <- m1[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$dlx.exp.fc.all <- m1[table.save$gene, "expfc.all"]
table.save$dlx.exp.fc.best <- m1[table.save$gene, "expfc.maxBranch"]
table.save$sst.AUCPR.ratio.all <- m6[table.save$gene, "AUCPR.ratio.all"]
table.save$sst.AUCPR.ratio.maxBranch <- m6[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$sst.exp.fc.all <- m6[table.save$gene, "expfc.all"]
table.save$sst.exp.fc.best <- m6[table.save$gene, "expfc.maxBranch"]
table.save$tph.AUCPR.ratio.all <- m7[table.save$gene, "AUCPR.ratio.all"]
table.save$tph.AUCPR.ratio.maxBranch <- m7[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$tph.exp.fc.all <- m7[table.save$gene, "expfc.all"]
table.save$tph.exp.fc.best <- m7[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-gaba.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the
# heatmap scale doesn't get messed up.
splines.gaba.hm$scaled.smooth[splines.gaba.hm$scaled.smooth < 0] <- 0
# Determine where to place column separators (i.e. how many columns
# will each cell type occupy in the heatmap )
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.gaba, function(x) ncol(x$scaled.smooth))),

-1)))
# Determine where to place row separators (i.e. how many common
# markers, and markers are specific to each cell type)
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rowsep <- cumsum(c(length(order.167), length(order.1), length(order.6)))
# Open a PDF and generate the heatmap pdf(paste0(base.path,
# '/heatmaps/hypo-gaba.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.gaba.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 1, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "dlx+", line = -41, adj = 0.45)
title(main = "sst+", line = -41, adj = 0.61)
title(main = "tph2+", line = -41, adj = 0.75)
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# dev.off()

Embryonic molecular profiles are not found in larval progenitors
We were looking to compare the molecular profiles of embryonic and post-embryonic progenitors.
In the retina, we found progenitors at larval stages whose molecular signatures were preserved
from embryonic stages (see Retina 3). Here, we find that, in the hypothalamus, progenitors at
larval stages are transcriptionally different from embryonic progenitors.

Identify populations to compare
We defined progenitor / precursor / neuron populations based on their location in the tree, cross-
referenced with the expression of markers of each of these types.
obj@group.ids$precursor.group <- NA

cells.s13 <- intersect(cellsInCluster(obj, "segment", "13"), whichCells(obj,
"pseudotime", c(0.05, 1)))

cells.s3neurons <- intersect(cellsInCluster(obj, "segment", "3"), whichCells(obj,
"pseudotime", c(0.5, 1)))

cells.s3precursors <- intersect(cellsInCluster(obj, "segment", "3"), whichCells(obj,
"pseudotime", c(0.3, 0.5)))

obj@group.ids[cells.s13, "precursor.group"] <- "1_progenitors"

obj@group.ids[c(cells.s3precursors, cellsInCluster(obj, "segment", c("12",
"11", "10"))), "precursor.group"] <- "2_precursors"

obj@group.ids[c(cells.s3neurons, cellsInCluster(obj, "segment", c("9",
"1", "4", "8", "6", "7", "2", "5"))), "precursor.group"] <- "3_neurons"

# Colors for ggplot
stage.colors <- RColorBrewer::brewer.pal(12, "Paired")[c(10, 7, 1)]

# Plot tree to show where the groups are
plotTree(obj, "precursor.group", discrete.colors = stage.colors)

## Warning: Removed 175 rows containing missing values (geom_point).
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# Plot genes in each group
plotDot(obj, genes = c("rx3", "shha", "nkx2.4b", "ascl1a", "scrt2", "scg2b",

"elavl3", "elavl4"), clustering = "precursor.group", scale.by = "area") +
theme_bw()
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Determine proportion of cells in each state
We then determined the proportion of cells from different stages that fell into each of these tran-
scriptional states.
# Combine stages to reduce number of plots
obj@group.ids$stage.collapsed <- plyr::mapvalues(x = obj@group.ids$stage,

from = c("01-12h", "02-14h", "03-16h", "04-18h", "05-20h", "06-24h",
"07-36h", "08-2d", "09-3d", "10-5d", "11-8d", "12-15d"), to = c(rep("01-12h-24h",
6), rep("02-36h-3d", 3), rep("03-5d-15d", 3)))

# Count number of cells from each stage group in each precursor group
stage.group.count <- plyr::count(obj@group.ids, vars = c("stage.collapsed",

"precursor.group"))

# Remove cells that weren't part of a precursor group
stage.group.count <- stage.group.count[complete.cases(stage.group.count),

]

# Cast into a data frame and convert NA to 0 (no cells of that type
# observed)
stage.group.df <- reshape2::dcast(stage.group.count, formula = stage.collapsed ~

precursor.group)

## Using freq as value column: use value.var to override.

stage.group.df[is.na(stage.group.df)] <- 0
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# Normalize by the number of precursors from each stage group
stage.group.df[, 2:4] <- sweep(stage.group.df[, 2:4], 1, rowSums(stage.group.df[,

2:4]), "/")

# Melt for ggplot
stage.group.df.melt <- reshape2::melt(stage.group.df, id.vars = "stage.collapsed")

# Plot proportions
ggplot(stage.group.df.melt, aes(x = variable, y = value, group = stage.collapsed,

fill = variable)) + geom_bar(stat = "identity") + facet_wrap(~stage.collapsed) +
theme_bw() + scale_fill_manual(values = stage.colors) + theme(axis.title.x = element_blank(),
axis.text.x = element_blank(), axis.ticks.x = element_blank())
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