
 1

 1

 2

Emergence of neuronal diversity during vertebrate 3

brain development 4
 5
Bushra Raj1,2*, Jeffrey A. Farrell1,3, Jialin Liu2,4, Jakob El Kholtei2,4, Adam Carte1,4,5, Joaquin 6
Navajas Acedo2,4, Lucia Y Du2,4, Aaron McKenna6, Đorđe Relić3,7, Jessica M. Leslie1, and 7
Alexander F. Schier1,2,4,8,9,10* 8

 9
 10
1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 11
USA 12
2 Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington, USA 13
3 Unit on Cell Specification and Differentiation, National Institute of Child Health and Human 14
Development, NIH, Bethesda, Maryland, USA 15
4 Biozentrum, University of Basel, Switzerland 16
5 Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, 17
Massachusetts, USA 18
6 Department of Molecular and Systems Biology, Dartmouth Geisel School of Medicine, 19
Lebanon, New Hampshire, USA 20
7 Swiss Institute of Bioinformatics (SIB), Basel, Switzerland 21
8 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA 22
9 Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA 23
10 Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA 24
 25
*Co-corresponding authors. Email: bushranraj@gmail.com (B.R.); alex.schier@unibas.ch 26
(A.F.S.) 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42

Manuscript

mailto:bushranraj@gmail.com
mailto:alex.schier@unibas.ch

 2

ABSTRACT 43
 44
Neurogenesis comprises many steps from progenitor proliferation to neuronal differentiation and 45
maturation. These processes are highly regulated, but the landscape of transcriptional changes 46
underlying brain development are poorly characterized. Here, we describe a developmental 47
single-cell RNA-seq catalog of ~220,000 zebrafish brain cells encompassing 12 stages from 12 48
hours post-fertilization to 15 days post-fertilization. We characterize known and novel gene 49
markers for ~800 clusters and provide an overview of the diversification of neurons and 50
progenitors across these timepoints. We also introduce an optimized version of the GESTALT 51
lineage recorder that enables higher expression and recovery of Cas9-edited barcodes to query 52
lineage segregation. Cell type characterization indicates that most embryonic neural progenitor 53
states are transitory and transcriptionally distinct from neural progenitors of post-embryonic 54
stages. Reconstruction of cell specification trajectories reveals that late-stage retinal neural 55
progenitors transcriptionally overlap cell states observed in the embryo. The zebrafish brain 56
development atlas provides a resource to define and manipulate specific subsets of neurons and 57
to uncover the molecular mechanisms underlying vertebrate neurogenesis. 58
 59
 60
INTRODUCTION 61
 62
The vertebrate brain develops from a limited pool of embryonic neural progenitor cells that cycle 63
through rounds of proliferation, diversification, and terminal differentiation into an extensive 64
catalogue of distinct neuronal and glial cell types. A central goal in developmental neurobiology 65
is to investigate how neuronal complexity arises through molecular specification and commitment 66
by studying the origins and fates of cells during development. Fundamental insights into these 67
processes have been gained via classic approaches using genetic markers, perturbations and 68
fate mapping (Cepko, 2014; Kretzschmar and Watt, 2012; Ma et al., 2017; Wamsley and Fishell, 69
2017; Wilson et al., 2002; Woo and Fraser, 1995; Woodworth et al., 2017). These approaches 70
have recently been complemented by single-cell genomics technologies in the developing 71
nervous system, including the spinal cord (Delile et al., 2019; Rosenberg et al., 2018); cortex 72
(Nowakowski et al., 2017; Zhong et al., 2018); olfactory system (H. Li et al., 2017); cerebellum 73
(Carter et al., 2018; Tambalo et al., 2020); retina (Clark et al., 2019; Hu et al., 2019; Xu et al., 74
2020); and whole animal (Farnsworth et al., 2020). These studies have provided transcriptome-75
level views of the rich heterogeneous states that cells progress through as they proliferate, 76
migrate and differentiate. Nevertheless, existing datasets are limited in their scope as they focus 77
on specific brain regions, survey limited timepoints or do not enrich for neural cell types, thereby 78
missing transitions and cellular diversity. Thus, there is a need for a large-scale 79
neurodevelopmental single-cell resource that profiles whole brain development across a range of 80
closely-spaced embryonic and post-embryonic stages. In addition, such an atlas would help 81
address fundamental questions about the dynamics of brain development. For example, it is 82
poorly understood how embryonic neural progenitors are molecularly related to post-embryonic 83
neural progenitors. Furthermore, the transcriptional programs that are activated or suppressed as 84
neural progenitors become fate-restricted and differentiate are largely unknown. 85
 86

 3

Here we present resources to obtain global views of neurogenesis, cell type heterogeneity, 87
specification trajectories and lineage relationships in the developing zebrafish brain. We 88
generated a single-cell RNA-seq (scRNA-seq) atlas consisting of ~220,000 cells from 12 hours 89
post fertilization (hpf) to 15 days post fertilization (dpf). We also created a new version of the 90
scGESTALT CRISPR-Cas9 lineage recorder (Raj et al., 2018b) with improved barcode capture 91
and used it to query early lineage decisions. Using the cell type atlas, we analyzed the expansion 92
of neuronal diversity, the loss of transitory embryonic progenitors, and the maintenance of distinct 93
larval progenitor states. We reconstructed cell specification trajectories of the zebrafish retina and 94
hypothalamus, revealing gene expression cascades and distinct specification programs. 95
Collectively, the zebrafish brain development atlas reveals molecular and cellular changes at an 96
unprecedented scale and resolution, and lays the foundation for the detailed analysis of neuronal 97
diversification. 98
 99
 100
RESULTS 101
 102
Building a developmental atlas of the zebrafish brain with single-cell transcriptomics 103
 104
To reveal the landscape of cell states and cell types during brain development, we profiled 105
223,037 cells across 12 stages of zebrafish embryonic and larval development using the 10X 106
Chromium scRNA-seq platform. Samples spanned from 12 hpf (shortly after gastrulation), when 107
the embryo is undergoing early developmental patterning, to 15 dpf, when larvae are mature, 108
exhibit complex behaviors, and are expected to exhibit substantial cell type diversity (Figure 1A). 109
To enrich for brain cell types, we dissected the heads of animals from 12 hpf to 3 dpf, and the 110
brains and eyes from 5 dpf to 15 dpf (Figure 1B). To determine cell type diversity in the head and 111
brain of zebrafish, data from each stage was analyzed individually using Louvain clustering 112
(Figure 1C and Sup Figure 1). This approach identified a total of 815 cell clusters across all 12 113
timepoints (Sup Table). To classify each cluster, we compared enriched gene markers with 114
existing gene expression annotations in the ZFIN database and literature, as described previously 115
(Raj et al., 2018b). Plotting expression of known cell type markers identified clusters 116
corresponding to neural progenitors (sox19a), dozens of neuron subtypes (elavl3, gad2, 117
slc17a6b), eye cells (foxg1b, lim2.4, pmela, ca14, gnat1, opn1mw1), radial glia (mfge8a, s100b), 118
neural crest (sox10), oligodendrocytes (mbpa), blood cells (cahz, etv2, cd74a), cartilage (matn4, 119
col9a2), pharyngeal arches (pmp22a, prrx1b, barx1), sensory placodes (dlx3b, six1b), and 120
epidermal cells (epcam, cldni), among others. As expected, cell type complexity increased with 121
developmental time. We validated new marker expression across several cell types identified in 122
our dataset, such as sdpra in the trigeminal placode, sox1a in the hypothalamus, and ompa in the 123
retina (Figure 1D-F). Our analysis also revealed groups of embryonic clusters that were absent 124
or transcriptionally distinct from larval clusters, suggesting that many embryonic cell states are 125
transitory. Several of these transitions are known developmental changes (e.g. loss of placodes 126
and rhombomeres), but changes in neural progenitor cell states are poorly understood (see 127
below). 128
 129

 4

To enable direct comparison of cell types across our time course, we subsetted the 12 hpf dataset 130
to only comprise neural populations and blood cells found in the brain, eliminating non-relevant 131
head cells from earlier stages, such as mesoderm, placodes, and periderm. This approach 132
resulted in an initial set of 21 clusters at 12 hpf (Figure 2A) that diversified into 98 clusters by 15 133
dpf (Figure 2C). Notably, most clusters could be uniquely identified using a minimal group of 2-3 134
enriched gene markers (Figure 2B, 2D). For example, at 12 hpf, the optic vesicle is identified by 135
expression of rx2 and rx3; hindbrain rhombomeres 5/6 by hoxb3a and eng2b; and ventral 136
diencephalon by nkx2.4a and dbx1a. Similarly, at 15 dpf, the cerebellar granule cells are marked 137
by expression of oprd1b and zic2a; optic tectum by pax7a and tal1; and a new retinal cell type by 138
kidins220a, foxg1b (exclusively detected in retinal cells) and tbx3a. We did not find unique gene 139
combinations for cycling progenitors, differentiating progenitors and newly born neurons, as many 140
of these subtypes had similar expression signatures of pan neuronal or pan progenitor marker 141
genes, such as elavl3 and tubb5 in neurons, and rpl5a and npm1a in progenitors (Figure 2D, grey 142
box). 143
 144
At 12 hpf, the early demarcation of multiple brain regions is already apparent and by 15 dpf these 145
regions expand and diversify further. For example, the optic vesicle at 12 hpf is defined by one 146
cluster and is the origin of 18 retinal cell types at 15 dpf. Similarly, a single cluster of ventral 147
diencephalon cells (expressing shha, nkx2.4a, nkx2.1, rx3) at 12 hpf develops into 7 major 148
hypothalamus cell types at 15 dpf. An exception to this diversification is the loss of rhombomeres 149
(r1-r7) in the hindbrain (Moens and Prince, 2002). 150
 151
To further explore brain neuronal subtypes at 15 dpf, we analyzed the expression of transcription 152
factors, neuropeptides and their receptors, and genes involved in neuronal physiology (e.g. 153
neurotransmitters, transporters, receptors, and channels) (R. Chen et al., 2017; Pandey et al., 154
2018; Tiklová et al., 2019; Zeisel et al., 2018). Our results indicate that nearly all identified neuron 155
subtypes can be distinguished from one another via the expression of individual or combinations 156
of genes belonging to these categories (Figure 3A-C). For example, cluster 2 and 84 neurons are 157
GABAergic forebrain neurons that express dlx2a and dlx5a, while cluster 84 neurons additionally 158
express six3b, gria1a and gria2b. 159
 160
We next asked if neuron clusters detected at 15 dpf are found in the earlier larval stages, when 161
most behavioral experiments are performed (Sup Figure 2). 68% (23/34 clusters) and 74% (25/34 162
clusters) of 15 dpf neuron clusters have a closely matching counterpart at 5 dpf and 8 dpf (based 163
on enriched marker gene expression), respectively (Figure 3D). Sampling issues might have 164
prevented the identification of additional overlapping clusters, but our data indicate a large overlap 165
between identified cell types from 5 to 15 dpf. These results suggest that the zebrafish brain 166
already has considerable cell type diversity at early larval stages. Furthermore, 97% (33/34) of 15 167
dpf clusters overlapped with clusters identified in our previously described 23-25 dpf juvenile brain 168
dataset (Raj et al., 2018b). Thus, by 15 dpf late larval stage, nearly all of the brain cell types that 169
persist into the early juvenile stage have already been established. Notably, among cell types that 170
are “missing” or under-represented at 15 dpf but readily detected at 23-25 dpf are cell types in 171
the optic tectum, cerebellum and the torus longitudinalis, suggesting that these structures undergo 172
further diversification after 15 dpf. In contrast, many cell types in the pallium, habenula (Pandey 173

 5

et al., 2018), hypothalamus and preoptic area are detected across these stages, suggesting that 174
they develop earlier. 175
 176
In summary, we generated a zebrafish brain development cell type atlas spanning 12 stages of 177
brain organogenesis. The complete dataset can be explored using the accompanying app: 178
https://github.com/brlauuu/zf_brain. 179
 180
Neurogenic expansion during brain development 181
 182
During development, cell composition shifts from predominantly progenitor populations to more 183
differentiated cell types (Schmidt et al., 2013). To better characterize how differentiation varies 184
during neuronal development, we first asked if our dataset captured the two neurogenic phases 185
(primary and secondary) before and after 2 dpf that have been traditionally defined through 186
histological analyses (Allende and Weinberg, 1994; Korzh et al., 1998; Mueller and Wullimann, 187
2003). We considered neural progenitors as non-differentiated neuronal precursor cells that may 188
or may not be proliferating, and express a subset of classical progenitor markers e.g. sox19a, dla, 189
s100b, and cell cycle genes. Since the brain is undergoing substantial molecular changes during 190
these developmental windows, we defined the transcriptional programs and cells that exhibit 191
these programs as progenitor cell states. We calculated the percentage of the dataset that 192
corresponds to neural progenitor cells, neurons (expressing markers such as elavl3, elavl4) or 193
other cell types across each timepoint in our dataset. Since the earlier stages (12 hpf to 3 dpf) 194
contained non-brain and non-eye cell types, while later stages were restricted to these tissues, 195
we subsetted the early timepoints to only brain and eye cells. With increasing developmental time, 196
we observed a progressive decrease in the fraction of the dataset comprising neural progenitor 197
cells (from 53.8% to 18.3%) with a concomitant increase in neurons (from 4.5% to 58%) (Figure 198
4A). For example, we observed an initial increase in the number of distinct progenitor clusters 199
from 12 hpf to 18 hpf (early embryo stages), while the number of neuron clusters remained low 200
(Figure 4A, right panels). From 20 hpf to 3 dpf (intermediate stages), the total progenitor clusters 201
decreased while neuron clusters started to increase. For example, neuronal clusters expanded 202
from 11 at 20 hpf to 23 at 36 hpf. This burst coincides with the presumed timing of late-stage 203
primary neurogenesis in zebrafish (Mueller and Wullimann, 2003). Notably, by 5 to 15 dpf (late 204
larva stages), a second expansion of neuronal populations, corresponding to the secondary 205
neurogenic phase (Mueller and Wullimann, 2003), had occurred (53 neuronal subtypes at 5 dpf). 206
At 5 dpf, we detected cell types identified as early as 36 hpf (e.g. tal1+, gata3+ neurons in the optic 207
tectum, and tfap2e+, barhl2+ neurons in the thalamus), as well as subtypes only observed during 208
the second phase, such as nrgnb+ prkcda+ neurons in the forebrain and cone bipolar cell 209
subtypes in the retina. Collectively, our dataset captures both phases of neurogenesis and reveals 210
the diversification of neurons in multiple brain structures. 211
 212
Dampening of spatial and developmental signatures during the transition from 213
embryonic to larval neural progenitors 214
 215
We next analyzed our dataset to determine how cell states change during the transition from the 216
embryonic to post-embryonic brain. The zebrafish brain undergoes lifetime constitutive 217

https://github.com/brlauuu/zf_brain

 6

neurogenesis due to the persistence of neural progenitor pools distributed along the brain’s axis 218
(Schmidt et al., 2013). However, the embryonic origins and transcriptional programs that underlie 219
their development are poorly understood. Furthermore, how the molecular identities of embryonic 220
and post-embryonic neural progenitor cell states compare have not been well characterized. To 221
address these questions, we asked how neural progenitor gene expression signatures globally 222
change from embryo to larva. Based on the results described above, we defined early embryonic 223
brain progenitors as neural cell transcriptional states from 12 hpf to 18 hpf, intermediate stage 224
brain progenitors as neural cell transcriptional states from 20 hpf to 3 dpf, and larval brain 225
progenitors as neural cell transcriptional states from 5 dpf to 15 dpf (Figure 4B, Sup Figure 3). 226
We determined the greatest sources of variation within these populations. For embryonic brain 227
progenitors we found that the top 3 principal components comprise genes implicated in spatial 228
and developmental patterning (Gibbs et al., 2017; Moens and Prince, 2002; Wilson et al., 2002; 229
Wilson and Rubenstein, 2000). Cells exhibit characteristic anteroposterior and dorsoventral axial 230
signatures (Figure 4C, top panel). For example, the telencephalon (anterior forebrain) is marked 231
by foxg1a and emx3a expression, the midbrain by pax2a and eng2a, and the hindbrain is 232
segmented into rhombomeres marked by distinct combinatorial patterns of egr2b and hox gene 233
expression. Furthermore, all cells are in a highly proliferative state with strong expression of cell 234
cycle genes such as pcna, mki67 and cdca7a. Collectively, the expression signatures are 235
reflective of a developmental state during which the embryo is orchestrating a rapid expansion of 236
neural progenitor populations concurrent with their acquisition of positional information and overt 237
absence of differentiation (Schmidt et al., 2013; Stigloher et al., 2008). 238
 239
In contrast, larval neural progenitors comprised two major groups: proliferating (expressing cell 240
cycle genes pcna and top2a) and non-proliferating (depleted expression of cell cycle markers) 241
(Figure 4D, bottom panel). Indeed, the top 3 principal components in the larval progenitors 242
comprised genes that mark stem cells (PC1, PC3) and differentiation (PC2). The non-proliferating 243
group is subdivided into radial glia (stem cells) and her2+ neural progenitors expressing proneural 244
genes insm1b and scrt2. The proliferating group is subdivided into her2+ and scrt2- neural 245
progenitor cells, her2- progenitors, her2+ and neurod1+ progenitor cells, and upper rhombic lip 246
progenitors (localized to cerebellum) expressing atoh1c and oprd1b. 247
 248
Strikingly, most larval progenitors were characterized by a reduced spatial signature (except for 249
the cerebellar upper rhombic lip pool), such that cells were less enriched in region-specific 250
transcription factors relative to embryonic progenitors (Figure 4D, top panel). For example, radial 251
glia exist in multiple pools along the brain axis (Than-Trong and Bally-Cuif, 2015), but they formed 252
a single cluster in our dataset (marked by expression of fabp7a, cx43, s100b and aqp1a.1). This 253
result suggests that radial glia are largely transcriptionally similar. Although some expression of 254
region-specific transcription factors was detected in larval progenitor clusters, these signatures 255
were not sufficiently strong to resolve clusters as they were during embryonic stages. 256
 257
To explore the apparent dearth of spatial signatures further, we calculated pairwise correlation 258
scores for 79 transcription factors and signaling proteins with known spatial expression patterns 259
in the forebrain and midbrain based on previously described histological analysis (ZFIN), and 260
which were identified as gene markers for neuronal clusters in our dataset. These genes showed 261

 7

strongest correlations in embryonic progenitors, followed by intermediate stage progenitors, and 262
were weakly correlated in larval progenitors (Figure 4E). 263
 264
Since spatial signatures are encoded by a combinatorial code of genes with overlapping 265
expression patterns, we asked whether the same subsets of genes co-varied with each of the 79 266
spatial markers across embryonic, intermediate, and larval neural progenitors. We found that 267
intermediate stage progenitors showed overlap in co-varying genes with both embryonic and 268
larval progenitors. For example, 44/79 genes had >40% overlap in their top 20 co-varying genes 269
between embryonic and intermediate stage progenitors, and 23/79 genes had >40% overlap 270
between intermediate and larval stage progenitors. In contrast, we found low overlap across 271
embryonic and larval stages (3/79 genes had >40% overlap in their top 20 co-varying genes). 272
Additionally, when we searched for genes that strongly co-varied with these 79 spatial markers 273
(Pearson correlation >0.4), we found 38 genes during embryonic stages, 17 genes during 274
intermediate stages, but only 4 genes during larval stages (Figure 4F). 275
 276
Taken together, these results demonstrate that intermediate stage progenitors resemble a hybrid 277
of early embryonic and late larval progenitor signatures. Furthermore, the overall spatial code 278
between embryonic and larval progenitors are distinct, and the embryonic spatial code involves a 279
larger collection of genes. Notably, the signatures of larval progenitors resemble juvenile neural 280
progenitor pools (Raj et al., 2018b), indicating developmental switches in neural progenitor 281
identities from embryo to larva that are maintained to at least juvenile stages. Thus, embryonic 282
states that existed in early progenitors are largely altered in late-stage progenitors: while spatial 283
patterning signals are the greatest source of variation between embryonic neural progenitors, 284
these signals are dampened in post-embryonic neural progenitors. 285
 286
An optimized scGESTALT lineage recorder 287
 288
A long-term goal in developmental neurobiology is to understand the lineage relationships of 289
neurons. As a first step to derive lineage relationships of the cell types identified in the brain 290
development atlas, we performed lineage recording experiments with scGESTALT. This lineage 291
recorder enables simultaneous cell type and cell lineage identification by combining scRNA-seq 292
with CRISPR-Cas9 barcode editing (McKenna et al., 2016; Raj et al., 2018b). To enable higher 293
recovery of edited barcodes from single cells, we optimized the design and library preparation of 294
the lineage recording cassette, including barcode editing of a transgene coding region and 295
compatibility with the 10x platform (see Methods). To test the performance of this new recording 296
cassette, we barcoded early embryonic lineage relationships by injecting Cas9 protein and target 297
guide RNAs into 1-cell embryos (Figure 5A) and then isolated four 15 dpf larval brains. We 298
recovered barcodes and transcriptional profiles of 5,794 cells total (barcode recovery rate 30-75% 299
compared to 6-28% of our previous scGESTALT version (Raj et al., 2018b)). Edited barcodes 300
showed no overlap between animals, displayed a diverse spectrum of repair products that 301
spanned single and multiple sites, and were of varying clone sizes (Figure 5B-D, Sup Figure 4A). 302
These features closely resembled the editing patterns obtained with our previous recorders 303
(McKenna et al., 2016; Raj et al., 2018b). Using the recovered barcodes and associated 304
transcriptomes, we reconstructed lineage trees representing cell lineage segregations formed 305

 8

during early embryogenesis (for one example see Sup Figure 4B). These lineage trees 306
accompany our transcriptional cell type atlas and are available to explore at 307
https://scgestalt.mckennalab.org/ 308
 309
Since the injection of editing reagents into 1-cell embryos saturates editing within 4-6 hours 310
(McKenna et al., 2016) , we expected early lineage divergences to be overrepresented in our 311
dataset. We first asked if our recorder captured diverse multi-lineage tissue origins of the eye, 312
which is derived from neuroectoderm, surface ectoderm and mesoderm (Figure 5E). Eye cell 313
types were identified as clusters that contained cells from scRNA-seq samples comprising eye 314
tissue exclusively. Retinal cell types were defined as clusters expressing the pan-retinal marker 315
foxg1b (Figure 1F), whereas non-retinal cell types were depleted in foxg1b. We performed 316
pairwise comparisons of all eye clusters with at least 4 independent barcodes (each with at least 317
2 cells). Since <1% of all barcoded cells were captured by scRNA-seq, we asked if there is cell 318
type-specific barcode enrichment greater than expected by chance (“lineage segregation” in 319
Figure 5E). For cluster pairs where we did not observe significant lineage segregation, we asked 320
if this was due to a lack of sampling (“lineage status undefined”) or true lack of cell type-specific 321
barcode enrichment (“no lineage segregation”). The latter case would indicate that two cell types 322
shared a more recent common ancestor than cell types that segregated earlier. We found that 323
multiple retinal and non-retinal cell types segregated from each other, as would be expected due 324
to early separation of their tissue origins. Interestingly, however, a few non-retinal cell types (e.g. 325
clusters 34, 44, 49) did not fully segregate from retinal cell types, suggesting that they shared a 326
common progenitor. Furthermore, there was extensive lineage segregation between various non-327
retinal cell types (e.g. clusters 45, 47, 86). In contrast, we did not observe lineage segregation 328
between the different retinal cell types, likely due to the termination of barcode editing prior to 329
terminal divisions. The exception was cluster 28 (cones), which segregated from clusters 15 and 330
32 (cone bipolar cells) and 28 (retinal ganglion cells). Thus, lineage splits between retinal and 331
non-retinal cell types, and within non-retinal subtypes preceded most splits within retinal subtypes. 332
 333
Next, we asked if our recorder captured lineage divergences between neurons across brain 334
regions and the retina. Although the hindbrain and retina formed distinct lineages early in 335
development, forebrain and midbrain neurons continued to share progenitors across the same 336
barcoding period (Figure 5F). Pairwise comparisons of all forebrain and midbrain clusters 337
revealed examples of emerging segregation along multiple spatial axes (Figure 5G). For example, 338
we saw evidence of dorsal-ventral split: cluster 9 pallium (dorsal) separated from cluster 25 sub-339
pallium (ventral). Furthermore, barcode enrichments confirmed rostral-caudal splits: cluster 64 340
habenula separated from clusters 9 and 25 pallium (telencephalon, rostral) and clusters 0 and 13 341
optic tectum (caudal). Overall, the lineage segregations agreed with classic fate mapping 342
experiments (Woo and Fraser, 1995) and correlate with the anteroposterior and dorsoventral 343
gene expression signatures of early progenitors (Figure 4). 344
 345
To query the lineage relationships of brain progenitor cell types, we performed pairwise 346
comparisons of progenitor clusters at 15 dpf (Figure 5H). Notably, the upper rhombic lip (URL) 347
progenitors (cluster 12) formed a separate lineage from all progenitor classes except cluster 74, 348
a cycling progenitor subtype expressing pif1. Since URL progenitors give rise to granule cells in 349

 9

the cerebellum, we asked if the two cell types shared barcodes. We found that the proportion of 350
barcode overlap was highest between granule cells and URL progenitors (Figure 5I). The URL 351
progenitors formed a distinct cluster as early as 12 hpf (cluster 9) in our transcriptional dataset. 352
Thus, URL progenitors become discrete in both lineage and transcriptional signature relatively 353
early in development. 354
 355
In summary, we present an optimized scGESTALT cassette with improved lineage barcode 356
expression and recovery by scRNA-seq. The barcodes display high sequence diversity, which is 357
important for generating large-scale distinct labels in a developing animal. The scGESTALT 358
transgenic line is available as a resource for the community and can be paired with other 359
transgenic lines for temporal, spatial or cell-type specific control of barcode editing (see 360
Discussion). 361
 362
Cell specification trajectories in the retina and hypothalamus 363
 364
With the exception of a few model systems (Clark et al., 2019; Delile et al., 2019; Guo and J. Y. 365
H. Li, 2019; Holguera and Desplan, 2018; Kim et al., 2019; Tambalo et al., 2019), little is known 366
about gene expression cascades that accompany the development of progenitors into terminally 367
differentiated neurons. To address how different neuronal populations become molecularly 368
specialized, we reconstructed gene expression trajectories from 12 hpf to 15 dpf. We first tested 369
our approach on the subsetted retina dataset in which cell types expand from a single cluster at 370
12 hpf to 18 clusters at 15 dpf (Figure 2). UMAP embedding of the subsetted dataset revealed 371
progressive paths from the embryonic state to defined cell types at 15 dpf (Figure 6A, Sup Figure 372
5A). One outlier cluster that expressed kidins220a and whose progenitor state may not have been 373
captured in our timepoints, was excluded from further analysis. Although UMAP represents 374
continuity in the data, it does not order individual cells according to their relative developmental 375
time (i.e. pseudotime). Therefore, we also used URD (Farrell et al., 2018) to construct a branching 376
specification tree that represents the developmental trajectories in the retina at a higher resolution 377
(Figure 6B, Sup Figure 5B, Sup Figure 6A-B). Many of the major branching features agreed with 378
the UMAP representation. For example, the trajectories revealed the early segregation of RPE, 379
shared branching of photoreceptor cells, a path towards multiple cone bipolar cell subtypes, and 380
a common branchpoint between amacrine and retinal ganglion cells (RGC). 381
 382
Plotting gene expression of known early regulators of eye development and terminal cell type 383
markers on the URD tree supported the inferred specification branches (Figure 6C, Sup Figure 384
7). For example, pax6a was most enriched in the amacrine and RGC branches, and vsx1 marked 385
cone bipolar cells with fezf2 marking one specific subtype. Notably, our analysis also revealed 386
previously unknown markers and characteristics of horizontal and amacrine cells. Zebrafish 387
horizontal cells are GABAergic (gad2+, gad1b+), but unlike mammals where these cells do not 388
express GABA membrane uptake transporters (Deniz et al., 2011), zebrafish cells expressed 389
slc6a1l (likely a duplication of slc6a1 involved in GABA uptake from the synaptic cleft), suggesting 390
that they may be capable of uptake. Additionally, whereas slc32a1 GABA transporter is expressed 391
in mouse horizontal and amacrine cells (Cueva et al., 2002), we observed restriction of slc32a1 392

 10

to amacrine cells and slc6a1l to horizontal cells. Finally, we detected several novel horizontal cell 393
markers such as ompa and prkacaa (Figure 1F). 394
 395
To discover the gene expression trajectories from precursors to different retinal cell types, we 396
used differential gene expression approaches that characterize pseudotime-ordered molecular 397
trajectories. This analysis revealed known and novel regulatory steps (Figure 6D, Sup Figure 8). 398
For example, RGC specification trajectories confirmed several known differentiation regulators 399
including sox11a, sox11b, sox6, irx4a, and pou4f2 (Rheaume et al., 2018). Similarly, known 400
regulators of photoreceptor differentiation such as isl2a (Fischer et al., 2011), prdm1a (Brzezinski 401
et al., 2010), otx5 (Viczian et al., 2003), and crx (Shen and Raymond, 2004) were expressed early 402
in our photoreceptor trajectories, while known regulators of cone versus rod fate, such as six7 403
(Ogawa et al., 2015), nr2f1b (Satoh et al., 2009), and nr2e3 (J. Chen et al., 2005) were expressed 404
as those trajectories diverged. Furthermore, our analysis revealed novel transcription factors 405
within the gene expression cascades. For example, we detected runx1t1, foxp1b, mef2aa in the 406
RGC pathway; tfap2a in horizontal cell trajectory; and tbx3a and tbx2a in amacrine cell branches. 407
Interestingly, among signaling pathways, we found that both apelin receptors (aplnra, aplnrb) 408
were expressed in photoreceptor progenitors, while one of their ligands (apln) was expressed in 409
differentiating cones; this suggests a potential cell autonomous role for apelin signaling in 410
photoreceptor cells in addition to its role in preventing photoreceptor degeneration via vascular 411
remodeling (McKenzie et al., 2012). 412
 413
A surprising result from this analysis was that a Muller glia pathway was detected earlier in 414
zebrafish than expected based on studies in mouse, where these cells are detected late (Centanin 415
and Wittbrodt, 2014; Clark et al., 2019). We found a cluster of cells as early as 20 hpf (cluster 50) 416
that expresses markers (e.g. cahz, rlbp1a) that are shared with the Muller glia cluster (cluster 33) 417
at 15 dpf (Sup Table). smFISH analysis of Muller glia markers validated their expression at 36 hpf 418
and 2 dpf (Sup Figure 9). Similarly, in our transcriptional trajectories (Figure 6B), the Muller glia 419
expression program is the earliest non-epithelial retinal program to diverge, commencing with the 420
expression of several her-family transcription factors (her4, her12, and her15), then proceeding 421
through a cascade of intermediate overlapping expression states such as onset of fabp7a, 422
s100a10b, and later connexin genes that are characteristic of Muller glia fate (Sup Figure 8). Cells 423
from all timepoints can already be found in the early part of the Muller glia branch. These 424
observations suggest that cells early in development transition from a naive progenitor state to a 425
Muller glia-like transcriptional state, and do so continually during larval development. 426
 427
To extend our analysis to a central brain region, we reconstructed specification trajectories and 428
expression cascades for hypothalamic neurons. These cells expanded from a single ventral 429
diencephalon cluster at 12 hpf to 7 clusters at 15 dpf (Figure 6E-H, Sup Figure 6C-D, Sup Figure 430
10). The earliest branchpoint denoted segregation of prdx1+ and prdx1- cells. Committed 431
hypothalamic progenitors in the prdx1- trajectory gave rise to neuronal precursors expressing 432
proneural transcription factors such as ascl1a, scrt2, insm1a and elavl3 (early neuron fate marker) 433
(Sup Figure 11). The specified cell types then matured over time and were characterized by 434
expression of neuronal maturation markers such as tubb5, gap43, ywhag2, snap25a, scg2b and 435
elavl4. The prdx1- group further diverged into two major groups: nrgna+ and nrgna- trajectories 436

 11

(Figure 6F). The nrgna+ branch segregated into GABAergic tac1+, synpr- subtype and GABAergic 437
tac1+, synpr+ positive subtype. The nrgna- branch subdivided into glutamatergic pdyn+ neurons 438
and a GABAergic branch that further resolved to sst1.1+ and tph2+ neuron subtypes. We detected 439
expression of known regulators of hypothalamus development in the early branches such as 440
shha, rx3, nkx2.4b. We also identified new candidate regulators in later branches including nrgna 441
in the synpr+ and synpr- trajectories, and sox1a, sox1b and sox14 in the pdyn+ trajectory (Sup 442
Figure 12, Figure 1E). The results in the retina and hypothalamus demonstrate that the brain 443
development atlas can be used to reconstruct neuronal differentiation trajectories and define the 444
underlying gene expression cascades 445
 446
 447
Differences in progenitor specification strategies between retina and hypothalamus 448
 449
Pseudotime analysis represents cell trajectories in relative but not absolute time (Bendall et al., 450
2014; Trapnell et al., 2014). Therefore, comparing the developmental and pseudotime age of cells 451
can define whether molecular states are unique to a given developmental stage or persist through 452
development (Figure 6B, 6F). For example, mapping RGC and pdyn+ neurons from different 453
developmental stages onto the pseudotime trajectory showed the expected maturation of these 454
cell types with developmental age (Sup Figure 13). In addition, even at 15 dpf some RGC and 455
pdyn+ neurons were still in an immature state, consistent with the continuous growth and 456
differentiation in the zebrafish retina and brain (Centanin and Wittbrodt, 2014; Schmidt et al., 457
2013). 458
 459
To systematically analyze the relationships of pseudotime state and developmental stage, we 460
mapped differentiated cells, precursors and progenitors found in different pseudotime windows to 461
their origin in developmental time. We found that the proportion of differentiated cells increased, 462
whereas the number of early progenitors in both retina and hypothalamus decreased with 463
developmental age. In contrast, precursor cells from an intermediate pseudotime window were 464
present in embryo and larva. These precursor cells expressed genes that were an intermediate 465
of progenitor (e.g. insm1a, her4.1 in hypothalamus (Xie and Dorsky, 2017); hes2.2, rx2 in retina) 466
and early differentiation genes (e.g. tubb5, gap43 in hypothalamus; foxg1b in retina). In addition, 467
a second class of retinal progenitors mapped to an earlier pseudotime trajectory but was also 468
present from embryonic to late larval stages (Figure 7, Sup Figure 14). Comparison of these 469
progenitors between 24-36 hpf and 15 dpf identified only 71 differentially expressed genes. The 470
majority of these genes (56/71) increased in all cells of the retina between these stages, while a 471
few (15/71) were only upregulated in the 15 dpf group. A similar population was not detected in 472
the hypothalamus. These observations suggest that as the retina grows, some progenitor cell 473
states observed in the embryo persist later in development without extensive maturation. 474
 475
 476
DISCUSSION 477
 478
As the brain develops, embryonic neural progenitor pools transition through many cellular states 479
as they become more committed, diversify into post-embryonic neural progenitors, and undergo 480

 12

terminal differentiation. Although regulators and transcriptional changes of this process have been 481
identified (e.g. using specific driver lines and in situ detection of select genes), the global 482
transcriptional networks mediating the sequential activation and maturation of neurogenic 483
programs from embryo to later stages are largely unknown. To help address this question, we 484
used scRNA-seq to generate a zebrafish brain development atlas. This resource supports the 485
identification of marker genes, the comparison of cell types, and the dissection of cell specification 486
and differentiation trajectories during vertebrate brain development. 487
 488
Our data address how the transcriptional programs of neural progenitors vary and contribute to 489
fate-restriction during development. Different models to explain these processes have been 490
proposed. For example, neural progenitors of the medial and lateral mouse ganglionic eminence, 491
which give rise to cortical interneurons, have been found to converge to a shared mitotic signature 492
regardless of their region of origin, followed by expression of cardinal fate-specific transcription 493
factors post-mitotically (Mayer et al., 2018). In contrast, the spinal cord has dedicated pools of 494
domain-specific neural progenitors that retain domain-specific signatures (Delile et al., 2019; 495
Jessell, 2000; Lee and Pfaff, 2001; Sagner and Briscoe, 2019). Our results indicate that early 496
embryonic neural progenitors in the brain are transcriptionally distinct from late larval neural 497
progenitors. Gene expression profiles of neural progenitors switch from strong spatially 498
segregated signatures in early embryos to proliferative and non-proliferative states in late larvae. 499
These cell state changes might reflect developmental shifts from an establishment program during 500
gastrulation, where strong spatial patterning cues set up regional boundaries, to a maintenance 501
program at late stages, where progenitors are geographically confined and express dampened 502
regional restriction signatures. Although expression of some spatially-enriched transcription 503
factors (e.g. pax6a, eng2a, nkx2.4a) and signaling proteins detected in embryonic progenitors are 504
also detected in late progenitors, the overall signatures are different, as these factors co-vary with 505
different sets of genes in larva relative to embryo. 506
 507
The expression of pan-progenitor markers at larval stages raises the question of how neural 508
progenitor pools remain or become fate restricted. There are several different scenarios that might 509
address this question. First, it is conceivable that embryo and larva share a minimal core set of 510
regionally-restricted transcription factors that are sufficient to ensure spatial restriction, despite 511
differences in their relative expression levels and downstream targets. Spatial genes that are 512
highly expressed in the embryo may be lowly expressed in the larva, and be sufficient to maintain 513
regionally-restricted cell states. Second, cell-type specific transcription factors rather than 514
spatially defined regulators might guide specification and differentiation at these stages, 515
independent of positional information. Such signatures would be difficult to analyze via scRNA-516
seq, which is biased towards recovering highly expressed genes. Third, it is also possible that 517
restrictions at the genomic level, such as chromatin accessibility, may ensure that cells maintain 518
the signature of their spatial origin. Fate mapping experiments of early and late neural progenitors, 519
profiling open chromatin states of neural progenitors, and transcriptome analyses that recover 520
lowly expressed genes will provide further insight into these questions. 521
 522
Our reconstruction of specification trajectories for cell types in the retina and hypothalamus 523
revealed several findings. First, our data supports a multipotent progenitor model whereby 524

 13

multiple differentiated cell types can be traced to common post-embryonic progenitors. For 525
example, all retinal neurons can be traced to an early pseudotime progenitor branch containing 526
cells from larval stages, consistent with multipotency and fate stochasticity of zebrafish retinal 527
progenitors (Boije et al., 2015; He et al., 2012). The early emergence of Muller glia observed in 528
both the time course atlas and eye trajectory reconstruction is particularly interesting in light of 529
clonal analyses. For example, single retinal progenitor cells in zebrafish give rise to clones 530
comprised of neurons and one Muller glia cell (Rulands et al., 2018). This observation has been 531
interpreted as evidence for a progenitor that first gives rise to neurons and then differentiates into 532
a Muller glia cell. However, it is also conceivable based on our data that an early common 533
progenitor divides, with one daughter expanding to give rise retinal neurons while the other 534
daughter forms Muller glia. Second, our results reveal that whereas progenitor cell types in the 535
rest of the brain appear molecularly distinct between the embryo and larva, there are progenitor 536
cell states in the eye that are maintained from the embryo to larva (Figure 4 and Figure 7). A 537
subset of 15 dpf retinal progenitors have similar transcriptional states as observed in the 538
embryonic eye. This observation raises the possibility that a subset of long-term retinal 539
progenitors may be “frozen” in an embryonic phase that could possibly underlie the multi-fate 540
potential of these cells. An independent study of zebrafish retinal stem cells has proposed a 541
similar conclusion (Xu et al., 2020). Collectively, these findings highlight differences in neurogenic 542
programs in the central nervous system, and underscore the power of investigating multiple 543
specification trajectories simultaneously. 544
 545
Our results also highlight differences between zebrafish and mammalian neurogenesis. For 546
example, we detected pan-neuronal transcriptional signatures (e.g. neurod1, ascl1a, insm1a, 547
neurog1) in zebrafish radial glia and other progenitors at late stages of development, suggesting 548
that neurons remain the principal output of these cells. This is consistent with fate mapping studies 549
that have shown that zebrafish radial glia persist into adulthood and contribute to neurogenesis 550
(Schmidt et al., 2013). In contrast, radial glia progenitor cells in the developing embryonic mouse 551
brain shift from neurogenic to gliogenic programs (Mission et al., 1991; Schmechel and Rakic, 552
1979). 553
 554
While developmental atlases and trajectories can help identify cellular differentiation paths, a full 555
understanding of cell type specification requires lineage tracing experiments. To catalyze such 556
approaches we introduced improvements to scGESTALT through a redesigned recorder cassette 557
for optimized mRNA expression and library compatibility with the 10X Chromium scRNA-seq 558
platform. The resulting higher recovery of barcodes allows more dense reconstruction of lineage 559
trees. Our analysis revealed differences between the timing of segregation between different brain 560
regions: neuronal lineages in the retina and hindbrain diverged earlier than the forebrain and 561
midbrain. These results complement classic zebrafish fate maps of brain compartmentalization 562
(Woo and Fraser, 1995) and recent analysis of clonal cells in forebrain and midbrain (Solek et al., 563
2017). Furthermore, our findings support early transcriptional and lineage segregation of 564
cerebellar upper rhombic lip progenitors relative to other classes of progenitor cells. To query 565
additional lineage divergences and combine with cellular trajectories, our optimized recorder can 566
be readily adapted for barcoding lineages at developmental windows that correspond to different 567

 14

branches of the specification trees (Raj et al., 2018b) or combined with cell- or tissue-specific 568
Cas9 driver lines to introduce lineage labels in populations of interest. 569
 570
The resources presented here lay the groundwork for characterizing lineage histories and 571
transcriptional changes underlying the development and diversification of the vertebrate brain. 572
Future extensions include the generation of transgenic reporters to select populations of interest 573
and perform deeper analyses of cell type heterogeneity and differentiation (Pandey et al., 2018). 574
Cell specification trajectories can be extended to include additional subregions of the brain to 575
generate increasingly complex trees and combined with other zebrafish scRNA-seq datasets 576
(Cosacak et al., 2019; Farnsworth et al., 2020; Farrell et al., 2018; Lange et al., 2020; Pandey et 577
al., 2018; Tambalo et al., 2020; Wagner et al., 2018; Xu et al., 2020) to trace complete trajectories 578
from gastrulation to adulthood. Finally, it will be interesting to perform comparative studies by 579
using our atlas in conjunction with data described in a recent preprint (La Manno et al., 2020). 580
 581
 582
METHODS 583
 584
Zebrafish husbandry 585
All vertebrate animal work was performed at the facilities of Harvard University, Faculty of Arts & 586
Sciences (HU/FAS). This study was approved by the Harvard University/Faculty of Arts & 587
Sciences Standing Committee on the Use of Animals in Research & Teaching under Protocol No. 588
25–08. The HU/FAS animal care and use program maintains full AAALAC accreditation, is 589
assured with OLAW (A3593-01), and is currently registered with the USDA. 590
 591
Chromogenic in situ hybridization 592
Embryos were dechorionated with forceps and then fixed in 4% PFA in 1X PBS (pH 7.4) overnight 593
at 4°C. After fixation, embryos were dehydrated in methanol series (0%, 25%, 50%, 75% and 594
100% MetOH in PBSTween 0.3% (PBST)) and stored in 100% methanol at −20°C. Embryos were 595
rehydrated by reversing the methanol series for 10 min in each step at room temperature (RT) 596
and washed 2 × 5 min in PBST. To bleach pigment in 2 dpf fish, larvae were incubated for 10 min 597
in bleaching solution (3% H2O2/0.5% KOH in ddH2O) at room temperature and washed 3 x 5 min 598
in PBST (Thisse et al., 2004). For permeabilization, 2 dpf larvae were incubated with Proteinase 599
K (10 μg/ml in PBST) for 2 min at RT and postfixed in 4% PFA in 1X PBS for 30 min at RT. 600
Afterwards, embryos were washed 3 x 5 min in PBST at RT, prehybridized in HYB+ solution (50% 601
Deionized Formamide (Amresco), 5X SSC (Ambion), 0.1% Tween-20, 5mg/ml Torula RNA 602
(Sigma) in ddH2O) for 3 hours at 69°C, and hybridized overnight with the antisense probes diluted 603
in HYB+ at 69°C. The rest of the steps were performed as described previously, by hand (Navajas 604
Acedo et al., 2019). Before imaging, embryos were cleared using an increasing MetOH series. 605
For imaging of 12 hpf embryos, the yolk was dissected away, and the embryos were flat mounted 606
on a microscope slide and covered with a cover slip. Larvae were photographed on a Zeiss 607
AxioZoom.V16. 608
The antisense probes were synthetized from DNA fragments amplified from TLAB zebrafish 609
cDNA using the following primers: klf17 (Fw GAAGGAAAGACTGCATCCTGAC; Rv 610
CTGCTGTCCCAAAATAGGAGTT), ptgs2a (Fw CGAGGACTATGTTCAGCACTTG; Rv 611

 15

TGCACATCGATCACAATACAAA), tp63 (Fw TGCTTTGCTAAATTGTGCTGTC; Rv 612
ATTGCCGCTTATGAGAATCAAG), cavin2a (Fw GAGCCTTCTCGTGCTAACAAGT; Rv 613
CAGGCATTTCAGTTCAATTTCA), sox1a (Fw AATCAAGACCGCGTAAAGAGAC; Rv 614
TTTGGTGGAGTGTTTCTGAATG), pdyn (Fw AAGAGAACGCCATACTGAAAGG; Rv 615
GCAGTTACGAATTGCCATGATA), dlx1a (Fw AAGGAGGAGAGGTTCGTTTCA; Rv 616
AGTGTGTGTCAGCAGGTGTCTT). 617
 618
smFISH staining and imaging 619
 620
Single-molecule FISH probe sets were generated as previously described and coupled to either 621
Atto 647N NHS ester (Millipore Sigma #18373) (foxg1b, cahz) or Atto 550 NHS ester (Millipore 622
Sigma # 92835) (ompa, rlbp1a) (Lord et al., 2019). Sectioned larvae were affixed to polylysine-623
coated #1.5 coverslips, and staining was carried out as previously described (Lord et al., 2019), 624
with each coverslip contained in a well of a plastic 6-well plate. During the probe hybridization 625
step, coverslips were placed upside-down onto a 100µl droplet of probe solution on Parafilm 626
(Farack and Itzkovitz, 2020). Sample mounting was performed as previously described (Lord et 627
al., 2019). Mounted samples were imaged on an Olympus spinSR spinning disk microscope 628
fitted with a UPLAPO 60X/1.5 oil immersion objective using 0.3µm slices. 629
 630
smFISH image processing 631
 632
All image processing was performed in Fiji (Schindelin et al., 2012). Rolling-ball background 633
subtraction (radius 25 pixels) was performed on smFISH channels before maximum intensity 634
projections were produced from 30 slices (Figure 1F) or 50 slices (Sup Figure 9) of processed z-635
stacks. Channels were scaled individually, maximizing for visibility. 636
 637
Optimization of scGESTALT lineage cassette 638
In our previous iteration of scGESTALT, the barcode capture rate by scRNA-seq was 6-28%. (Raj 639
et al., 2018b), thereby limiting the density of lineage tree reconstruction. To improve recovery we 640
adapted a different transgenic cassette (Yoshinari et al., 2012) for lineage recording. This cassette 641
has the following modifications compared to our previous recorder: (1) The heat-shock inducible 642
(hsp70l) promoter of the previous version is now replaced with a constitutive ubiquitous promoter 643
(medaka beta-actin) to drive strong widespread expression of the barcode mRNA. Expression of 644
the cassette was confirmed by fluorescence and the signal was more intense than that obtained 645
with the heat shock promoter. Furthermore, this version eliminates the requirement to heat shock 646
edited animals to express the barcode prior to scRNA-seq experiments. (2) We adapted the 3’ 647
end of the DsRed open reading frame as a lineage recorder cassette with up to 8 sgRNA target 648
sites positioned next to each other. This vastly improved expression of the construct compared to 649
our previous version where the recording cassette was placed downstream of the DsRed open 650
reading frame. (3) We made library preparation compatible with the 10X Genomics platform. 651
 652
To generate scGESTALT.2 barcode founder fish, one-cell embryos were injected with zebrafish 653
codon optimized Tol2 mRNA and pT2Olactb:loxP-dsR2-loxP-EGFP vector (gift from Atsushi 654
Kawakami (Yoshinari et al., 2012)). Potential founder fish were screened for widespread DsRed 655

 16

expression and grown to adulthood. Adult founder transgenic fish were identified by outcrossing 656
to wild type fish and screening clutches of embryos for ubiquitous DsRed expression. Single copy 657
scGESTALT.2 F1 transgenics were identified using qPCR, as described previously (McKenna et 658
al., 2016; Pan et al., 2013; Raj et al., 2018b). 659
 660
SgRNAs specific to sites 1-8 of the scGESTALT.2 array were generated by in vitro transcription 661
as previously described (Raj et al., 2018a). To initiate early barcode editing, single copy 662
scGESTALT.2 F1 male transgenic adults were crossed to wildtype female adults and one-cell 663
embryos were injected with 1.5 nl of Cas9 protein (NEB) and sgRNAs 1-8 in salt solution (8 µM 664
Cas9, 100 ng/µl pooled sgRNAs, 50 mM KCl, 3 mM MgCl2, 5 mM Tris HCl pH 8.0, 0.05% phenol 665
red). Since editing results in loss of DsRed signal, transgenic animals were distinguished from 666
wild type animals by amplifying the scGESTALT.2 barcode by PCR using genomic DNA from the 667
tail fin at 15 dpf. In the experiments presented in this study, early lineage decisions were barcoded 668
by injecting reagents at the one-cell stage. It is worth noting that the scGESTALT.2 barcode can 669
be readily paired with a two-step barcoding protocol. This would require the establishment of a 670
second stable transgenic line for in vivo expression of Cas9 and a subset of sgRNAs matching 671
the target sequences of the new barcode cassette to enable sequential barcoding at early and 672
late stages. Such a line can be established using a similar step-by-step guidance that is detailed 673
in (Raj et al., 2018a). 674
 675
Processing of samples for scRNA-seq time course 676
Wild type embryos (12 hpf, 14 hpf, 16 hpf, 18 hpf, 20 hpf, 24 hpf, 36 hpf) and larvae (2 dpf, 3 dpf, 677
5 dpf, 8 dpf) were used for scRNA-seq analysis. Samples for 15 dpf had a mix of wild type and 678
barcode edited larvae. Two of the 15 dpf samples consisted of only eye cells (no brain). Embryos 679
from 12 hpf to 36 hpf were first de-chorionated by incubating in 1 mg/ml pronase (Sigma-Aldrich) 680
at 28 C for 6-7 min until chorions began to blister, and then washed three times in ~200 ml of 681
zebrafish embryo medium (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, 0.1% 682
methylene blue) in a glass beaker. Embryos were de-yolked using two pairs of watchmaker 683
forceps, and the heads were chopped just anterior of the spinal cord. All processing steps were 684
done using 100 mm Petri dishes coated with Sylgard (Raj et al., 2018a). Samples from 2 and 3 685
dpf were processed similarly to the embryos, except they were not de-chorionated as they had 686
hatched out of the chorions. Larvae from 5 dpf to 15 dpf were dissected to remove whole brains 687
and eyes as described previously (Raj et al., 2018a). The following numbers of embryos and 688
larvae were used for each timepoint: 12 hpf – ~20 embryos; 14 hpf – ~20 embryos; 16 hpf – ~18 689
embryos; 18 hpf – ~18 embryos; 20 hpf – ~30 embryos; 24 hpf – ~30 embryos; 36 hpf – ~15 690
embryos; 2 dpf – ~30 larvae; 3 dpf – ~30 larvae; 5 dpf – ~25 larvae; 8 dpf – ~ 25 larvae; 15 dpf 691
– ~15 larvae. Tissues were dissociated into single cells using the Papin Dissociation Kit 692
(Worthington) as described previously (Raj et al., 2018a). Cells were resuspended in 50 µl to 150 693
µl of DPBS (Life Technologies) depending on anticipated amount of material, and counted using 694
a hemocytometer. Samples were run on the 10X Genomics scRNA-seq platform according to the 695
manufacturer’s instructions (Single Cell 3’ v2 kit). Libraries were processed according to the 696
manufacturer’s instructions. Transcriptome libraries were sequenced using NextSeq 75 cycle kits. 697
 698
scGESTALT.2 library prep 699

 17

To generate scGESTALT.2 libraries, lineage edited 15 dpf samples post cDNA amplification and 700
prior to fragmentation were split into two halves. One half was processed for transcriptome 701
libraries as instructed by the manufacturer. The other half was processed for lineage libraries as 702
follows. To enrich for scGESTALT.2 lineage barcodes, 5 µl of the whole transcriptome cDNA 703
was PCR amplified using Phusion polymerase (NEB) and 10XPCR1_F (CTACACGACGCTCTT 704
CCGATCT) and GP10X2_R (GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT GCTGCTTC 705
ATCTACAAGGTGAAG). The reaction (98 C, 30 s; [98 C, 10 s; 67 C, 25 s; 72 C, 30 s] x 14-15 706
cycles; 72 C, 2 min) was cleaned up with 0.6X AMPure beads and eluted in 20 ul EB buffer 707
(Omega). Finally, adapters and sample indexes were incorporated in another PCR reaction 708
using Phusion polymerase and 10XP5Part1long (AATGATACGGCGACCACCGA 709
GATCTACACTCTTTCC CTACACGACGCTCTTCCGATCT) and 10XP7Part2Ax 710
(CAAGCAGAAGACGGCATACGAGAT-xxxxxxxx-GTGACTGGAGTTCAGACGTGT), where x 711
represents index bases. These include A1: GGTTTACT; A2: TTTCATGA; A3: CAGTACTG; A4: 712
TATGATTC. Thus, up to 4 scGESTALT.2 samples were multiplexed in a sequencing run. 713
Libraries were sequenced using MiSeq 300 cycle kits and 20% PhiX spike-in. Sequencing 714
parameters: Read1 250 cycles, Read2 14 cycles, Index1 8 cycles, Index2 8 cycles. Standard 715
sequencing primers were used. 716
 717
Bioinformatic processing of raw sequencing data and cell type clustering analysis 718
Transcriptome sequencing data were processed using Cell Ranger 2.1.0 according to the 719
manufacturer’s guidelines. scGESTALT.2 sequencing data were processed with a custom 720
pipeline (https://github.com/aaronmck/SC_GESTALT) as previously described (Raj et al., 2018b). 721
The scGESTALT.2 barcode for each cell was matched to its corresponding cell type (tSNE cluster 722
membership) assignment using the cell identifier introduced during transcriptome capture. Cells 723
with fewer than 500 expressed genes, greater than 9% mitochondrial content or very high 724
numbers of UMIs and gene counts that were outliers of a normal distribution (likely 725
doublets/multiplets) were removed from further analysis. Clustering analysis was performed using 726
the Seurat v2.3.4 package (Butler et al., 2018) as described previously (Raj et al., 2018b). For 727
Figure 3 and Sup Figure 2, we selected the list of transcription factors, neuropeptides and their 728
receptors, and genes involved in neuron electrophysiology from our enriched marker analysis and 729
previous literature (R. Chen et al., 2017; Pandey et al., 2018; Tiklová et al., 2019; Zeisel et al., 730
2018). 731
 732
Construction of lineage trees from GESTALT barcodes. 733
All unique barcodes were then encoded into an event matrix and weights file, as described 734
previously (McKenna et al., 2016; Raj et al., 2018b), and were processed using PHYLIP mix with 735
Camin-Sokal maximum parsimony (Felsenstein, 1989). Individual cells were then grafted onto the 736
leaves matching their barcode sequence. After the subtrees were attached, we repeatedly 737
eliminated unsupported internal branching by recursively pruning parent-child nodes that had 738
identical barcodes. Cell annotations are then added to the corresponding leaves. The resulting 739
tree was converted to a JSON object, annotated with cluster membership, and visualized with 740
custom tools using the D3 software framework. 741
 742
Lineage segregation analysis between cell types 743

https://github.com/aaronmck/SC_GESTALT

 18

We combined all barcodes obtained from 4 fish. For our analysis, we only considered barcodes 744
with at least two cells, and we only analyzed cell types with at least 4 barcodes. To test 745
segregation between any two cell types/clusters, we first retrieved all barcodes that were present 746
in at least one of the two cell types. Then, we split these barcodes into two categories: “shared 747
barcode” or “specific barcode”. A shared barcode was defined as one that contains cells from 748
both cell types. In contrast, a specific barcode was defined as one that only contains cells from 749
one of the two cell types. Our null hypothesis is that the two cell types come from the same 750
ancestor at the time of Cas9 editing. Thus, we asked whether the number of observed specific 751
barcodes can be explained by chance under the null hypothesis. If it cannot be explained by 752
chance, it indicates that the two cell types have segregated. 753
 754
To do so, we performed a randomization test as below: 755

1. We generated a pool of cells. The size of the pool is the total number of cells from the two 756
cell types. The ratio of the two cell types in the pool is equal to the ratio observed in the 757
real data. Under the null hypothesis, the pool of cells come from the same ancestor, so 758
they would share the same barcode. 759

2. For each barcode, we randomly sampled the same number of cells of this barcode from 760
the pool of cells. 761

3. We repeated this for all the barcodes, and then calculated the number of barcodes that 762
only contain one cell type (i.e. “specific barcode”). 763

4. We repeated steps 2 and 3 5000 times. 764
5. We calculated how many times (for example n times) the number of specific barcodes 765

from the random sampling process is greater than or equal to the number of specific 766
barcodes from the real data. 767

6. The probability that the number of specific barcodes can be explained by chance under 768
the null hypothesis is n/5000. 769

7. If the probability < 0.01 (pvalue < 0.01), we rejected the null hypothesis. 770
 771
Next, for each cell type we split its corresponding pairwise comparison cell types into two 772
categories: “with segregation” or “other”. For the “other” category, we considered two 773
interpretations. First, it could signify that there is no segregation between the two cell types. 774
Second, it could suggest that we did not recover enough cells with barcode information, such that 775
there is not enough power to detect lineage segregation (low sampling). To distinguish between 776
the two scenarios, for each cell type in the two categories, we calculated the ratio between the 777
number of cells with barcodes and the number of all cells from scRNA-seq. If the ratio of one cell 778
type from the “other” category is greater than or equal to the smallest ratio from the first category 779
(“with segregation”), it indicates this cell type did not have low sampling issues. Thus, it supports 780
the interpretation that there is no segregation between the queried cell types. Otherwise, we 781
assign the cell type pair as “undefined” (i.e. insufficient sampling power to query lineage 782
segregation). 783
 784
Granule cell analysis 785

 19

For each progenitor cell type, we used barcodes that did not include any cells from the other nine 786
progenitor cell types. The Jaccard Index between each progenitor cell type and granule cell was 787
calculated as below: 788

Jaccard Index =
the number of shared barcodes between the two cell types

the number of barcodes in either cell type
 789

 790
Analyzing dampened spatial correlations in progenitors 791
Progenitors were isolated by subsetting the data to include clusters expressing markers such as 792
sox19a, her genes, pcna, mki67, fabp7a, gfap, id1, etc (Supplementary Table). Cells from 12 hpf 793
– 18 hpf were considered embryonic progenitors, cells from 20 hpf – 3 dpf were considered 794
intermediate progenitors, and cells from 5 dpf – 15 dpf were considered larval progenitors. 795
Variable genes were calculated for embryonic, intermediate and larval progenitors separately 796
using the FindVariableGenes function from Seurat v2.3.4 with parameters: x.low.cutoff = 0.015, 797
x.high.cutoff = 3, y.cutoff = 0.7. Then, a list of 79 transcription factors with known spatial signatures 798
was assembled by consulting previously described histological analysis (ZFIN) together with 799
those that were identified as gene markers for neuronal clusters in our dataset.. Separately in the 800
three progenitor groups, the pairwise Pearson correlation was calculated pairwise between all 801
genes detected as variable in each progenitor group. For several thresholds between 0.2–0.8, 802
the number of genes that correlated more strongly than the threshold with any of the 79 spatial 803
transcription factors (excluding self-correlation) were determined. The strongest correlations were 804
observed in the embryonic population, followed by the intermediate population, and for any 805
threshold, more genes correlated with the spatial TFs in the embryonic progenitors than the larval 806
progenitors. 807
 808
Construction and analysis of branching transcriptional trajectories using URD 809
We built branching transcriptional trajectories from cells of the retina and hypothalamus to 810
determine the molecular events that occur as cells diversify and differentiate in these tissues. 811
First, cells from the retina and hypothalamus were isolated from each stage by determining 812
clusters that belonged to these tissues by expression of marker genes. 813
 814
Determination of variable genes 815
For URD trajectory analyses, a more restrictive set of variable genes was calculated on each 816
subset of the data, as previously described (Farrell et al., 2018; Pandey et al., 2018) using the 817
URD findVariableGenes function, with parameter diffCV.cutoff = 0.3. Briefly, a curve was fit that 818
related each gene’s coefficient of variation to its mean expression level and represents the 819
expected coefficient of variation resulting from technical noise, given a gene’s mean expression 820
value; genes with much higher coefficients of variation likely encode biological variability and were 821
used downstream. 822
 823
Removal of outliers 824
Poorly connected outliers can disrupt diffusion map calculation and so were removed from the 825
data. A k-nearest neighbor network was calculated between cells (Euclidean distance in variable 826
genes) with 100 nearest neighbors. Cells were then removed based on either unusually high 827
distance to their nearest neighbor or unusually high distance to their 20th nearest neighbor, given 828

 20

their distance to their nearest neighbor using the URD function knnOutliers (retina: x.max = 40, 829
slope.r = 1.05, int.r = 4.3, slope.b = 0.75, int.b = 11.5; hypothalamus: x.max = 40, slope.r = 1.1, 830
int.r = 3, slope.b = 0.66, int.b = 11.5). 831
 832
Removal of doublets by NMF modules 833
To remove putative cell doublets (i.e. where two cells are encapsulated into a single droplet and 834
processed as one cell), which can disrupt trajectory relationships, we removed cells that 835
expressed multiple NMF (non-negative matrix factorization) modules characteristic of different 836
expression programs, as previously described (Siebert et al., 2019). NMF modules were 837
computed using a previously published NMF framework (https://github.com/YiqunW/NMF) 838
(Farrell et al., 2018). The analysis was performed on log-normalized read count data for a set of 839
variable genes using the run_nmf.py script with the following parameters: -rep 5 -scl “false” -miter 840
10000 -perm True -run_perm True -tol 1e-6 -a 2 -init “random” -analyze True. Several k 841
parameters were evaluated for each tissue, and k was chosen to maximize the number of 842
modules, while minimizing the proportion of modules defined primarily by a single gene (retina, k 843
= 45; hypothalamus, k =). Modules were used downstream that (a) had a ratio between their top-844
weighted and second-highest weighted gene of < 5, and (b) exhibited a strong cell-type signature, 845
as determined by plotting on a UMAP representation and looking for spatial restriction. Pairs of 846
modules that were appropriate for using to remove doublets (and that did not define transition 847
states) were determined using the URD function NMFDoubletsDefineModules with parameters 848
module.thresh.high = 0.4, and module.thresh.low = 0.15. Putative doublets were identified using 849
the URD function NMFDoubletsDetermineCells with parameters frac.overlap.max = 0.03, 850
frac.overlap.diff.max = 0.1, module.expressed.thresh = 0.33 and were then removed. 851
 852
Choice of root and tips 853
Branching transcriptional trajectories in the retina and hypothalamus were constructed using URD 854
1.1.1 (Farrell 2018). Briefly, cells from the first stage of the time course (12 hpf) were selected as 855
the ‘root’ or starting point for the tree. Terminal cell types comprised the clusters at 15 dpf from 856
these tissues, with the exception of clusters that were clearly progenitor or precursors based on 857
known gene expression (retina: 29, 39, 43). Additionally, in the retina, one cluster (96) was 858
excluded because it did not seem that any related cell types had been recovered in previous 859
stages. 860
 861
Construction of branching transcriptional trajectories 862
A diffusion map was calculated using destiny (Haghverdi et al., 2015; 2016), using 140 (retina) or 863
100 (hypothalamus) nearest neighbors (approximately the square root of the number of cells in 864
the data), and with a globally-defined sigma of 14 (retina) or 8 (hypothalamus) — slightly smaller 865
than the suggested sigma from destiny. Pseudotime was then computed using the simulated 866
‘flood’ procedure previously described (Farrell et al., 2018), using the following parameters: n = 867
100, minimum.cells.flooded = 2. Biased random walks were performed to determine the cells 868
visited from each terminal population in the data as previously described (Farrell et al., 2018), 869
using the following parameters: optimal.cells.forward = 40, max.cells.back = 80, n.per.tip = 50000, 870
end.visits = 1. The branching tree was then constructed using URD’s buildTree function with the 871
following parameters: divergence.method = "ks" (hypothalamus) or divergence.method = 872

 21

"preference" (retina), save.all.breakpoint.info = TRUE, cells.per.pseudotime.bin = 40, 873
bins.per.pseudotime.window = 5, p.thresh = 0.0001 (hypothalamus) or , p.thresh = 0.01 (retina), 874
and min.cells.per.segment = 10. The resulting trees were then evaluated using known marker 875
genes and branch regulators. 876
 877
Finding genes that vary during differentiation 878
Genes were selected for inclusion in gene cascades based on their differential expression relative 879
to other cell types in the tissue. See the Supplementary Analysis for the full set of commands 880
used. Within each tissue, cells were first compared in large populations that defined major cell 881
types (retina: cone bipolar cells, photoreceptors, amacrine cells, retinal ganglion cells, horizontal 882
cells, Muller glia, retinal pigmented epithelium; hypothalamus: prdx1+ neurons, pdyn+ neurons, 883
GABAergic dlx+ neurons, nrgna+ neurons). Comparisons were performed pairwise, and genes 884
were considered differential in a population if they were upregulated compared to at least 2 885
(hypothalamus) or 3 (retina) other groups. Genes were considered differentially expressed based 886
on their expression fold-change (retina: ≥1.32-fold change, hypothalamus: ≥ 1.41-fold change) 887
and their performance as a precision-recall classifier for the two cell populations compared (≥ 1.1-888
fold better than a random classifier). Additionally, the aucprTestAlongTree function from URD was 889
used to select additional genes by performing pairwise comparisons, starting from a terminal cell 890
type and comparing at each branchpoint along the way, back to the root (Farrell et al., 2018). 891
Genes were selected based on expression fold-change between branchpoints (hypothalamus: 892
≥1.74-fold upregulated; hypothalamus, populations with small cell numbers (GABAergic dlx+ 893
cells): ≥1.51-fold upregulated; retina: ≥1.32-fold upregulated), their function as a precision-recall 894
classifier between branchpoints (hypothalamus: ≥1.2-fold better than a random classifier; 895
hypothalamus, populations with small cell numbers (GABAergic dlx+ cells): ≥1.15-fold better than 896
a random classifier; retina: ≥1.1-fold better than a random classifier), their function as a precision 897
recall classifier globally (i.e. between the entire trajectory leading to a cell type and the rest of the 898
tissue): ≥1.03-fold better than a random classifier, and their upregulation globally (i.e. between 899
the entire trajectory leading to a cell type and the rest of the tissue): ≥1.07-fold upregulated. 900
Mitochondrial, ribosomal, and tandem duplicated genes were excluded. Cells were ordered 901
according to pseudotime, split into groups of at least 25 cells that differ at least 0.005 in 902
pseudotime, and the mean expression was determined with a 5-group moving window. A spline 903
curve was fit to the mean expression vs. pseudotime relationship of selected genes, using the 904
smooth.spline function from R’s stats package, with the parameter spar = 0.5. Genes were then 905
sorted according to their peak expression in pseudotime, normalized to their max expression 906
observed in the tissue, and plotted on a heatmap. 907
 908
Analyzing progenitor populations 909
To determine whether retinal progenitors mature transcriptionally over time, we looked for genes 910
that were differentially expressed between young and old progenitors. We chose cells that 911
occupied the same region of the URD tree from either early (24 / 36 hpf) or late (15 dpf) stages. 912
We looked for genes that were differentially expressed in 15 dpf progenitors that: (1) were 1.1-913
fold better as a precision-recall classifier than random, (2) changed ≥1.32-fold in expression, (3) 914
were expressed in at least 20% of progenitors, (4) had a mean expression value ≥ 0.8, and (5) 915

 22

were more differentially expressed than equally sized cell populations chosen at random at least 916
99% of the time. 917
 918
To determine whether cells were found in progenitor or precursor states long-term, we first defined 919
progenitor and precursor states by cells’ assignment in the URD tree, cross-referenced with the 920
expression of progenitor / precursor markers. We then determined how many cells from different 921
stages fell into each of these different states. 922
 923
 924
ACKNOWLEDGEMENTS 925
 926
We thank members of the Schier lab for discussion and advice, the Bauer Core Facility (Harvard) 927
and the Molecular Biology Core Facility (Dana Farber Cancer Institute) for sequencing services, 928
the Harvard zebrafish facility staff for technical support, and the Imaging Core Facility of the 929
Biozentrum for microscopy resources. We thank M. Shafer and J. Gagnon for comments on the 930
manuscript, and H. Boije for comments on retinal lineages. This work was supported by a 931
postdoctoral fellowship from the Canadian Institutes of Health Research and 1K99HD098298 to 932
B.R., 1K99HD091291 to J.A.F., R00HG010152 to A.M., R01HD85905, DP1HD094764, ERC 933
834788, an Allen Discovery Center grant, and a McKnight Foundation Technological Innovations 934
in Neuroscience Award to A.F.S. 935
 936
 937
AUTHOR CONTRIBUTIONS 938
 939
B.R. and A.F.S. conceived and designed the study. B.R., J.A.F., J.L., J.E.K, and A.F.S. interpreted 940
the data. B.R., J.A.F. and A.F.S. wrote the manuscript. B.R. and J.L.L. generated transgenic lines. 941
B.R. performed scRNA-seq and scGESTALT experiments and data processing. J.L. analyzed 942
scGESTALT data with assistance from B.R. and J.E.K. L.Y.D. generated violin plots of neuron 943
subtype diversity. J.N.A. performed chromogenic in situs. A.N.C. and J.E.K. performed smFISH 944
experiments. J.A.F. performed URD trajectory analysis with assistance from B.R. A.M. generated 945
lineage trees. Đ.R. developed the R Shiny app for scRNA-seq data exploration. 946
 947
 948
REFERENCES 949
 950
Allende, M.L., Weinberg, E.S., 1994. The expression pattern of two zebrafish achaete-scute 951

homolog (ash) genes is altered in the embryonic brain of the cyclops mutant. Dev. Biol. 166, 952
509–530. doi:10.1006/dbio.1994.1334 953

Bendall, S.C., Davis, K.L., Amir, E.-A.D., Tadmor, M.D., Simonds, E.F., Chen, T.J., Shenfeld, 954
D.K., Nolan, G.P., Pe'er, D., 2014. Single-cell trajectory detection uncovers progression and 955
regulatory coordination in human B cell development. Cell 157, 714–725. 956
doi:10.1016/j.cell.2014.04.005 957

Boije, H., Rulands, S., Dudczig, S., Simons, B.D., Harris, W.A., 2015. The Independent 958
Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the 959
Zebrafish Retina. Developmental Cell 34, 532–543. doi:10.1016/j.devcel.2015.08.011 960

 23

Brzezinski, J.A., Lamba, D.A., Reh, T.A., 2010. Blimp1 controls photoreceptor versus bipolar 961
cell fate choice during retinal development. Development 137, 619–629. 962
doi:10.1242/dev.043968 963

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R., 2018. Integrating single-cell 964
transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 965
36, 411–420. doi:10.1038/nbt.4096 966

Carter, R.A., Bihannic, L., Rosencrance, C., Hadley, J.L., Tong, Y., Phoenix, T.N., Natarajan, S., 967
Easton, J., Northcott, P.A., Gawad, C., 2018. A Single-Cell Transcriptional Atlas of the 968
Developing Murine Cerebellum. Current Biology 28, 2910–2920.e2. 969
doi:10.1016/j.cub.2018.07.062 970

Centanin, L., Wittbrodt, J., 2014. Retinal neurogenesis. Development 141, 241–244. 971
doi:10.1242/dev.083642 972

Cepko, C., 2014. Intrinsically different retinal progenitor cells produce specific types of progeny. 973
Nat. Rev. Neurosci. 15, 615–627. doi:10.1038/nrn3767 974

Chen, J., Rattner, A., Nathans, J., 2005. The rod photoreceptor-specific nuclear receptor Nr2e3 975
represses transcription of multiple cone-specific genes. J. Neurosci. 25, 118–129. 976
doi:10.1523/JNEUROSCI.3571-04.2005 977

Chen, R., Wu, X., Jiang, L., Zhang, Y., 2017. Single-Cell RNA-Seq Reveals Hypothalamic Cell 978
Diversity. Cell Rep 18, 3227–3241. doi:10.1016/j.celrep.2017.03.004 979

Clark, B.S., Stein-O'Brien, G.L., Shiau, F., Cannon, G.H., Davis-Marcisak, E., Sherman, T., 980
Santiago, C.P., Hoang, T.V., Rajaii, F., James-Esposito, R.E., Gronostajski, R.M., Fertig, 981
E.J., Goff, L.A., Blackshaw, S., 2019. Single-Cell RNA-Seq Analysis of Retinal Development 982
Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron 983
102, 1111–1126.e5. doi:10.1016/j.neuron.2019.04.010 984

Cosacak, M.I., Bhattarai, P., Reinhardt, S., Petzold, A., Dahl, A., Zhang, Y., Kizil, C., 2019. 985
Single-Cell Transcriptomics Analyses of Neural Stem Cell Heterogeneity and Contextual 986
Plasticity in a Zebrafish Brain Model of Amyloid Toxicity. Cell Rep 27, 1307–1318.e3. 987
doi:10.1016/j.celrep.2019.03.090 988

Cueva, J.G., Haverkamp, S., Reimer, R.J., Edwards, R., Wässle, H., Brecha, N.C., 2002. 989
Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells. 990
J. Comp. Neurol. 445, 227–237. doi:10.1002/cne.10166 991

Delile, J., Rayon, T., Melchionda, M., Edwards, A., Briscoe, J., Sagner, A., 2019. Single cell 992
transcriptomics reveals spatial and temporal dynamics of gene expression in the developing 993
mouse spinal cord. Development 146, dev173807. doi:10.1242/dev.173807 994

Deniz, S., Wersinger, E., Schwab, Y., Mura, C., Erdelyi, F., Szabó, G., Rendon, A., Sahel, J.-A., 995
Picaud, S., Roux, M.J., 2011. Mammalian retinal horizontal cells are unconventional 996
GABAergic neurons. J. Neurochem. 116, 350–362. doi:10.1111/j.1471-4159.2010.07114.x 997

Farack, L., Itzkovitz, S., 2020. Protocol for Single-Molecule Fluorescence In Situ Hybridization 998
for Intact Pancreatic Tissue. STAR Protocols 1, 100007. doi:10.1016/j.xpro.2019.100007 999

Farnsworth, D.R., Saunders, L.M., Miller, A.C., 2020. A single-cell transcriptome atlas for 1000
zebrafish development. Dev. Biol. 459, 100–108. doi:10.1016/j.ydbio.2019.11.008 1001

Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., Schier, A.F., 2018. Single-cell 1002
reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, 1003
eaar3131. doi:10.1126/science.aar3131 1004

Felsenstein, J., 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, Vol. 5 1005
(1989), pp. 164-166 5, 164–166. 1006

Fischer, A.J., Bongini, R., Bastaki, N., Sherwood, P., 2011. The maturation of photoreceptors in 1007
the avian retina is stimulated by thyroid hormone. Neuroscience 178, 250–260. 1008
doi:10.1016/j.neuroscience.2011.01.022 1009

 24

Gibbs, H.C., Chang-Gonzalez, A., Hwang, W., Yeh, A.T., Lekven, A.C., 2017. Midbrain-1010
Hindbrain Boundary Morphogenesis: At the Intersection of Wnt and Fgf Signaling. Front. 1011
Neuroanat. 11, 64. doi:10.3389/fnana.2017.00064 1012

Guo, Q., Li, J.Y.H., 2019. Defining developmental diversification of diencephalon neurons 1013
through single cell gene expression profiling. Development 146, dev174284. 1014
doi:10.1242/dev.174284 1015

Haghverdi, L., Buettner, F., Theis, F.J., 2015. Diffusion maps for high-dimensional single-cell 1016
analysis of differentiation data. Bioinformatics 31, 2989–2998. 1017
doi:10.1093/bioinformatics/btv325 1018

Haghverdi, L., Büttner, M., Wolf, F.A., Buettner, F., Theis, F.J., 2016. Diffusion pseudotime 1019
robustly reconstructs lineage branching. Nat. Methods 13, 845–848. 1020
doi:10.1038/nmeth.3971 1021

He, J., Zhang, G., Almeida, A.D., Cayouette, M., Simons, B.D., Harris, W.A., 2012. How variable 1022
clones build an invariant retina. Neuron 75, 786–798. doi:10.1016/j.neuron.2012.06.033 1023

Holguera, I., Desplan, C., 2018. Neuronal specification in space and time. Science 362, 176–1024
180. doi:10.1126/science.aas9435 1025

Hu, Y., Wang, X., Hu, B., Mao, Y., Chen, Y., Yan, L., Yong, J., Dong, J., Wei, Y., Wang, W., 1026
Wen, L., Qiao, J., Tang, F., 2019. Dissecting the transcriptome landscape of the human 1027
fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS 1028
Biol. 17, e3000365. doi:10.1371/journal.pbio.3000365 1029

Jessell, T.M., 2000. Neuronal specification in the spinal cord: inductive signals and 1030
transcriptional codes. Nat. Rev. Genet. 1, 20–29. doi:10.1038/35049541 1031

Kim, D.W., Washington, P.W., Wang, Z.Q., Lin, S., Sun, C., Jiang, L., Blackshaw, S., 2019. 1032
Single cell RNA-Seq analysis identifies molecular mechanisms controlling hypothalamic 1033
patterning and differentiation. bioRxiv 83, 657148. doi:10.1101/657148 1034

Korzh, V., Sleptsova, I., Liao, J., He, J., Gong, Z., 1998. Expression of zebrafish bHLH genes 1035
ngn1 and nrd defines distinct stages of neural differentiation. Dev. Dyn. 213, 92–104. 1036
doi:10.1002/(SICI)1097-0177(199809)213:1<92::AID-AJA9>3.0.CO;2-T 1037

Kretzschmar, K., Watt, F.M., 2012. Lineage tracing. Cell 148, 33–45. 1038
doi:10.1016/j.cell.2012.01.002 1039

La Manno, G., Siletti, K., Furlan, A., Gyllborg, D., Vinsland, E., Langseth, C.M., Khven, I., 1040
Johnsson, A., Nilsson, M., Lönnerberg, P., Linnarsson, S., 2020. Molecular architecture of 1041
the developing mouse brain. bioRxiv 135C, 2020.07.02.184051. 1042
doi:10.1101/2020.07.02.184051 1043

Lange, C., Rost, F., Machate, A., Reinhardt, S., Lesche, M., Weber, A., Kuscha, V., Dahl, A., 1044
Rulands, S., Brand, M., 2020. Single cell sequencing of radial glia progeny reveals the 1045
diversity of newborn neurons in the adult zebrafish brain. Development 147, dev185595. 1046
doi:10.1242/dev.185595 1047

Lee, S.-K., Pfaff, S.L., 2001. Transcriptional networks regulating neuronal identity in the 1048
developing spinal cord. Nat. Neurosci. 4, 1183–1191. doi:10.1038/nn750 1049

Li, H., Horns, F., Wu, B., Xie, Q., Li, J., Li, T., Luginbuhl, D.J., Quake, S.R., Luo, L., 2017. 1050
Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA 1051
Sequencing. Cell 171, 1206–1220.e22. doi:10.1016/j.cell.2017.10.019 1052

Lord, N.D., Carte, A.N., Abitua, P.B., Schier, A.F., 2019. The pattern of Nodal morphogen 1053
signaling is shaped by co-receptor expression. bioRxiv 125, 2019.12.30.891101. 1054
doi:10.1101/2019.12.30.891101 1055

Ma, J., Shen, Z., Yu, Y.-C., Shi, S.-H., 2017. Neural lineage tracing in the mammalian brain. 1056
Curr. Opin. Neurobiol. 50, 7–16. doi:10.1016/j.conb.2017.10.013 1057

Mayer, C., Hafemeister, C., Bandler, R.C., Machold, R., Batista Brito, R., Jaglin, X., Allaway, K., 1058
Butler, A., Fishell, G., Satija, R., 2018. Developmental diversification of cortical inhibitory 1059
interneurons. Nature 555, 457–462. doi:10.1038/nature25999 1060

 25

McKenna, A., Findlay, G.M., Gagnon, J.A., Horwitz, M.S., Schier, A.F., Shendure, J., 2016. 1061
Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 1062
353, aaf7907. doi:10.1126/science.aaf7907 1063

McKenzie, J.A.G., Fruttiger, M., Abraham, S., Lange, C.A.K., Stone, J., Gandhi, P., Wang, X., 1064
Bainbridge, J., Moss, S.E., Greenwood, J., 2012. Apelin is required for non-neovascular 1065
remodeling in the retina. Am. J. Pathol. 180, 399–409. doi:10.1016/j.ajpath.2011.09.035 1066

Mission, J.P., Takahashi, T., Caviness, V.S., 1991. Ontogeny of radial and other astroglial cells 1067
in murine cerebral cortex. Glia 4, 138–148. doi:10.1002/glia.440040205 1068

Moens, C.B., Prince, V.E., 2002. Constructing the hindbrain: insights from the zebrafish. Dev. 1069
Dyn. 224, 1–17. doi:10.1002/dvdy.10086 1070

Mueller, T., Wullimann, M.F., 2003. Anatomy of neurogenesis in the early zebrafish brain. Brain 1071
Res. Dev. Brain Res. 140, 137–155. doi:10.1016/s0165-3806(02)00583-7 1072

Navajas Acedo, J., Voas, M.G., Alexander, R., Woolley, T., Unruh, J.R., Li, H., Moens, C., 1073
Piotrowski, T., 2019. PCP and Wnt pathway components act in parallel during zebrafish 1074
mechanosensory hair cell orientation. Nat Comms 10, 3993–17. doi:10.1038/s41467-019-1075
12005-y 1076

Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A., Di Lullo, E., 1077
Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D., Ounadjela, J.R., Shuga, J., 1078
Wang, X., Lim, D.A., West, J.A., Leyrat, A.A., Kent, W.J., Kriegstein, A.R., 2017. 1079
Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human 1080
cortex. Science 358, 1318–1323. doi:10.1126/science.aap8809 1081

Ogawa, Y., Shiraki, T., Kojima, D., Fukada, Y., 2015. Homeobox transcription factor Six7 1082
governs expression of green opsin genes in zebrafish. Proceedings of the Royal Society B: 1083
Biological Sciences 282, 20150659. doi:10.1098/rspb.2015.0659 1084

Pan, Y.A., Freundlich, T., Weissman, T.A., Schoppik, D., Wang, X.C., Zimmerman, S., Ciruna, 1085
B., Sanes, J.R., Lichtman, J.W., Schier, A.F., 2013. Zebrabow: multispectral cell labeling for 1086
cell tracing and lineage analysis in zebrafish. Development 140, 2835–2846. 1087
doi:10.1242/dev.094631 1088

Pandey, S., Shekhar, K., Regev, A., Schier, A.F., 2018. Comprehensive Identification and 1089
Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. 28, 1052–1090
1065.e7. doi:10.1016/j.cub.2018.02.040 1091

Raj, B., Gagnon, J.A., Schier, A.F., 2018a. Large-scale reconstruction of cell lineages using 1092
single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nat 1093
Protoc 13, 2685–2713. doi:10.1038/s41596-018-0058-x 1094

Raj, B., Wagner, D.E., McKenna, A., Pandey, S., Klein, A.M., Shendure, J., Gagnon, J.A., 1095
Schier, A.F., 2018b. Simultaneous single-cell profiling of lineages and cell types in the 1096
vertebrate brain. Nat Biotechnol 36, 442–450. doi:10.1038/nbt.4103 1097

Rheaume, B.A., Jereen, A., Bolisetty, M., Sajid, M.S., Yang, Y., Renna, K., Sun, L., Robson, P., 1098
Trakhtenberg, E.F., 2018. Single cell transcriptome profiling of retinal ganglion cells 1099
identifies cellular subtypes. Nat Comms 9, 1–17. doi:10.1038/s41467-018-05134-3 1100

Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Graybuck, L.T., 1101
Peeler, D.J., Mukherjee, S., Chen, W., Pun, S.H., Sellers, D.L., Tasic, B., Seelig, G., 2018. 1102
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. 1103
Science 360, 176–182. doi:10.1126/science.aam8999 1104

Rulands, S., Iglesias-Gonzalez, A.B., Boije, H., 2018. Deterministic fate assignment of Müller 1105
glia cells in the zebrafish retina suggests a clonal backbone during development. Eur. J. 1106
Neurosci. 48, 3597–3605. doi:10.1111/ejn.14257 1107

Sagner, A., Briscoe, J., 2019. Establishing neuronal diversity in the spinal cord: a time and a 1108
place. Development 146, dev182154. doi:10.1242/dev.182154 1109

Satoh, S., Tang, K., Iida, A., Inoue, M., Kodama, T., Tsai, S.Y., Tsai, M.-J., Furuta, Y., 1110
Watanabe, S., 2009. The spatial patterning of mouse cone opsin expression is regulated by 1111

 26

bone morphogenetic protein signaling through downstream effector COUP-TF nuclear 1112
receptors. J. Neurosci. 29, 12401–12411. doi:10.1523/JNEUROSCI.0951-09.2009 1113

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, 1114
S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri, 1115
K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image 1116
analysis. Nat. Methods 9, 676–682. doi:10.1038/nmeth.2019 1117

Schmechel, D.E., Rakic, P., 1979. A Golgi study of radial glial cells in developing monkey 1118
telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156, 1119
115–152. doi:10.1007/BF00300010 1120

Schmidt, R., Strähle, U., Scholpp, S., 2013. Neurogenesis in zebrafish - from embryo to adult. 1121
Neural Development 8, 3. doi:10.1186/1749-8104-8-3 1122

Shen, Y.-C., Raymond, P.A., 2004. Zebrafish cone-rod (crx) homeobox gene promotes 1123
retinogenesis. Dev. Biol. 269, 237–251. doi:10.1016/j.ydbio.2004.01.037 1124

Siebert, S., Farrell, J.A., Cazet, J.F., Abeykoon, Y., Primack, A.S., Schnitzler, C.E., Juliano, 1125
C.E., 2019. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution. 1126
Science 365, eaav9314. doi:10.1126/science.aav9314 1127

Solek, C.M., Feng, S., Perin, S., Weinschutz Mendes, H., Ekker, M., 2017. Lineage tracing of 1128
dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev. Biol. 427, 1129
131–147. doi:10.1016/j.ydbio.2017.04.019 1130

Stigloher, C., Chapouton, P., Adolf, B., Bally-Cuif, L., 2008. Identification of neural progenitor 1131
pools by E(Spl) factors in the embryonic and adult brain. Brain Res. Bull. 75, 266–273. 1132
doi:10.1016/j.brainresbull.2007.10.032 1133

Tambalo, M., Mitter, R., Wilkinson, D.G., 2020. A single cell transcriptome atlas of the 1134
developing zebrafish hindbrain. Development 147, dev184143. doi:10.1242/dev.184143 1135

Tambalo, M., Mitter, R., Wilkinson, D.G., 2019. A single cell transcriptome atlas of the 1136
developing zebrafish hindbrain. bioRxiv 124, 745141. doi:10.1101/745141 1137

Than-Trong, E., Bally-Cuif, L., 2015. Radial glia and neural progenitors in the adult zebrafish 1138
central nervous system. Glia 63, 1406–1428. doi:10.1002/glia.22856 1139

Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J.-P., 1140
Thisse, C., 2004. Spatial and temporal expression of the zebrafish genome by large-scale in 1141
situ hybridization screening. Methods Cell Biol. 77, 505–519. doi:10.1016/s0091-1142
679x(04)77027-2 1143

Tiklová, K., Björklund, Å.K., Lahti, L., Fiorenzano, A., Nolbrant, S., Gillberg, L., Volakakis, N., 1144
Yokota, C., Hilscher, M.M., Hauling, T., Holmström, F., Joodmardi, E., Nilsson, M., Parmar, 1145
M., Perlmann, T., 2019. Single-cell RNA sequencing reveals midbrain dopamine neuron 1146
diversity emerging during mouse brain development. Nat Comms 10, 581–12. 1147
doi:10.1038/s41467-019-08453-1 1148

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak, 1149
K.J., Mikkelsen, T.S., Rinn, J.L., 2014. The dynamics and regulators of cell fate decisions 1150
are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381–386. 1151
doi:10.1038/nbt.2859 1152

Viczian, A.S., Vignali, R., Zuber, M.E., Barsacchi, G., Harris, W.A., 2003. XOtx5b and XOtx2 1153
regulate photoreceptor and bipolar fates in the Xenopus retina. Development 130, 1281–1154
1294. doi:10.1242/dev.00343 1155

Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., Klein, A.M., 2018. 1156
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo. 1157
Science 360, 981–987. doi:10.1126/science.aar4362 1158

Wamsley, B., Fishell, G., 2017. Genetic and activity-dependent mechanisms underlying 1159
interneuron diversity. Nat. Rev. Neurosci. 18, 299–309. doi:10.1038/nrn.2017.30 1160

Wilson, S.W., Brand, M., Eisen, J.S., 2002. Patterning the zebrafish central nervous system. 1161
Results Probl Cell Differ 40, 181–215. 1162

 27

Wilson, S.W., Rubenstein, J.L., 2000. Induction and dorsoventral patterning of the 1163
telencephalon. Neuron 28, 641–651. doi:10.1016/s0896-6273(00)00171-9 1164

Woo, K., Fraser, S.E., 1995. Order and coherence in the fate map of the zebrafish nervous 1165
system. Development 121, 2595–2609. 1166

Woodworth, M.B., Girskis, K.M., Walsh, C.A., 2017. Building a lineage from single cells: genetic 1167
techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230–244. 1168
doi:10.1038/nrg.2016.159 1169

Xie, Y., Dorsky, R.I., 2017. Development of the hypothalamus: conservation, modification and 1170
innovation. Development 144, 1588–1599. doi:10.1242/dev.139055 1171

Xu, B., Tang, X., Jin, M., Zhang, H., Du, L., Yu, S., He, J., 2020. Unifying developmental 1172
programs for embryonic and postembryonic neurogenesis in the zebrafish retina. 1173
Development 147, dev185660. doi:10.1242/dev.185660 1174

Yoshinari, N., Ando, K., Kudo, A., Kinoshita, M., Kawakami, A., 2012. Colored medaka and 1175
zebrafish: Transgenics with ubiquitous and strong transgene expression driven by the 1176
medaka β-actinpromoter. Develop. Growth Differ. 54, 818–828. doi:10.1073/pnas.94.8.3789 1177

Zeisel, A., Hochgerner, H., Lönnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Häring, 1178
M., Braun, E., Borm, L.E., La Manno, G., Codeluppi, S., Furlan, A., Lee, K., Skene, N., 1179
Harris, K.D., Hjerling-Leffler, J., Arenas, E., Ernfors, P., Marklund, U., Linnarsson, S., 2018. 1180
Molecular Architecture of the Mouse Nervous System. Cell 174, 999–1014.e22. 1181
doi:10.1016/j.cell.2018.06.021 1182

Zhong, S., Zhang, S., Fan, X., Wu, Q., Yan, L., Dong, J., Zhang, H., Li, L., Le Sun, Pan, N., Xu, 1183
X., Tang, F., Zhang, J., Qiao, J., Wang, X., 2018. A single-cell RNA-seq survey of the 1184
developmental landscape of the human prefrontal cortex. Nature 555, 524–528. 1185
doi:10.1038/nature25980 1186

 1187
 1188
Figure 1. Developmental compendium of zebrafish head and brain cell types 1189
A. Schematic of the developmental stages profiled. Red hatched line represents head regions that were 1190
selected for enrichment of brain cells in early development. Samples from 5 to 15 dpf were dissected to obtain 1191
brain and eye specifically. h, hours post fertilization; d, days post fertilization 1192
B. Schematic of scRNA-seq using 10X Genomics platform. 1193
C. Cell type heterogeneity within each stage. Clusters at each stage were assigned to a region or tissue type 1194
based on known markers and color coded to reflect their classification. tSNE implementations: Barnes-Hut (12h 1195
to 3d), Fourier transform (5d and 15d). 1196
D. In situ hybridization for novel markers in the trigeminal placode at 12 hpf. klf17 is expressed on the anterior 1197
polster and ventral mesoderm, delineating the border of the embryo. Trigeminal ganglia markers ptgs2a, tp63 1198
and sdpra (cavin2a) are expressed bilaterally (asterisks) posterior to the eye. Eyes are delineated by dotted 1199
lines. A: Anterior; P: Posterior. Scale bar equals 100 µm. 1200
E. In situ hybridization validation of novel marker sox1a in the hypothalamus at 2 dpf. Top panels, lateral view 1201
of brain; Bottom panels, ventral view of brain. dlx1a and pdyn are known hypothalamus. Eyes are delineated by 1202
dotted lines. VHyp: Ventral Hypothalamus; TVZ: Telencephalic Ventricular Zone; ADi: Anterior Diencephalon; 1203
AFb: Anterior Forebrain; VDi: Ventral Diencephalon; Le: Lens. Scale bar equals 200 µm. 1204
F. smFISH validation of novel marker ompa in horizontal cells of the retina at 5 dpf. Left panel, retina section 1205
stained with DAPI (grey), pan-retinal foxg1b (cyan) and ompa (yellow). Strong yellow signal in photoreceptors 1206
represent autofluorescence. White box indicates area that was zoomed in for the right panels. Dotted lines 1207
indicate the horizontal cell layer. PR, photoreceptor cells; HC, horizontal cells; BC, bipolar cells; AC, amacrine 1208
cells; RGC, retinal ganglion cells 1209
 1210
Figure 2. Brain cell type diversification from 12 hpf to 15 dpf 1211

 28

A. tSNE plot of 12 hpf dataset. Only clusters corresponding to neural and blood cell types are shown. Inferred 1212
identities of each cluster are described. 1213
B. Dot plot of gene expression pattern of select marker genes (columns) for each cluster (row). Dot size 1214
indicates the percentage of cells expressing the marker; color represents the average scaled expression level. 1215
C. tSNE plot of 15 dpf dataset. Inferred identities of each cluster are described. 1216
D. Dot plot of gene expression patterns of select marker genes for each cluster. Layout is same as (B). Grey 1217
box represents generic neuronal and progenitor genes. 1218
tSNE implementations: Barnes-Hut (A), Fourier transform (C) 1219
 1220
Figure 3. Neuron subtype diversity at 15 dpf 1221
A-C. Violin plots of select marker gene expression in identified brain neuron subtypes from 15 dpf. Retina 1222
neurons and nascent neurons are omitted from the analysis. Cluster numbers are indicated at the bottom along 1223
with their inferred spatial location in the brain. Cluster 76 has unknown spatial location. Detailed cluster 1224
descriptions are in Supplementary Table 1 and can be explored interactively in the accompanying app at 1225
https://github.com/brlauuu/zf_brain. 1226
A. Expression of transcription factors. 1227
B. Expression of neuropeptides and their receptors. 1228
C. Expression of genes involved in neuron electrophysiology including neurotransmitters, transporters, 1229
receptors, and channels. 1230
D. Matrix showing whether neuron subtypes identified at 15 dpf are also detected in earlier larval (5 and 8 dpf) 1231
and later juvenile (25 dpf (Raj et al., 2018b)) stages. Clusters were matched across stages by comparing 1232
marker gene expression. The cluster number at 15 dpf is shown and an orange circle indicates that the subtype 1233
is detected in another stage. 1234
 1235
Figure 4. Developmental diversification of neurons and progenitors 1236
A. Area plot of the percentage of dataset at each timepoint corresponding to neural progenitors, neurons, and 1237
other cell types. Right panels, Total number of clusters of progenitors and neurons at each stage of brain 1238
development. 1239
B. tSNE plot of embryonic, intermediate and larval neural progenitors. All progenitor cells were analyzed 1240
together after subsetting from the whole dataset. 1241
C-D. Heatmaps of select gene expression in early embryonic (C) and late larval (D) brain neural progenitors. 1242
Top panel, genes enriched in embryonic progenitors. Bottom panel, genes enriched in larval progenitors. 1243
Embryonic progenitors have a strong spatial signature (forebrain, midbrain, hindbrain) and are depleted in 1244
genes that distinguish larval progenitor subtypes (C). Larval progenitors segregate into non-proliferative and 1245
proliferative groups that can be resolved into additional subtypes characterized by expression of various gene 1246
combinations (D). TF, transcription factor. *pax6a is expressed in multiple regions 1247
E. Heatmap of Pearson correlation values of 79 spatial markers in embryonic, intermediate and larval neural 1248
progenitors. Spatial markers were selected based on existing literature. Groups of co-varying genes in the 1249
midbrain and forebrain are highlighted with dashed boxes. 1250
F. Plot showing number of highly variable genes that co-vary with any of the selected 79 spatial markers in 1251
embryonic and larval progenitors. Co-variation was determined by Pearson correlation, with several thresholds 1252
(from stringent to relaxed) displayed along the x-axis. 1253
 1254
Figure 5. Optimization of scGESTALT lineage recorder for better barcode recovery 1255
A. Schematic overview of CRISPR-Cas9 lineage recording. Optimized scGESTALT comprises a barcode 1256
cassette in the 3’end of DsRed transgene (single copy) and the medaka beta-actin promoter. Embryos are 1257
injected with Cas9 protein and DsRed sgRNAs and animals are profiled at 15 dpf by scRNA-seq. 1258
B. Pairwise comparisons using cosine dissimilarity of barcode edit patterns from four (ZF1-4) edited 15 dpf 1259
larval brains. 1260

 29

C. Chord diagram of the nature and frequency of deletions within and between target sites. Each colored sector 1261
represents a target site. Links between target sites represent inter-site deletions; self-links represent intra-site 1262
deletions. Link widths are proportional to the edit frequencies. 1263
D. Type of edit at each target site within the barcode from edited ZF1-4 larval brains. 1264
E. Heat map of lineage relationships between non-retinal and retinal cell types in the eye. All clusters with >3 1265
cells and all barcodes with >1 cell were used to determine if there is enrichment of cell type-specific barcodes 1266
across each cluster pair. Blue indicates significant enrichment and lineage segregation. Purple indicates no 1267
significant enrichment and no lineage segregation. Grey indicates insufficient sampling power and undefined 1268
lineage status. Cluster numbers are indicated (e.g. C45) and either cell type gene markers (e.g. cldna+) or the 1269
exact name of the cell type (e.g. cone bipolar cells) are indicated along the rows. Along the columns, the 1270
numbers within the brackets indicate the number of barcodes and number of cells, respectively, for that cluster. 1271
F. Heat map of lineage relationships between brain regions and the retina. Neuron clusters that could be 1272
pseudospatially assigned to the each region were used (see Supplementary Table). Analysis, layout and color 1273
code are same as in E. 1274
G. Heat map of lineage relationships between neuronal cell types in the forebrain and midbrain. Analysis, 1275
layout and color code are same as in E. The brain region each cluster belongs to is indicated (e.g. pallium, 1276
hypothalamus), and for clusters where a more precise location could be inferred a gene marker is indicated 1277
(e.g. pitx2+). 1278
H. Heat map of lineage relationships between brain progenitor clusters. Analysis, layout and color code is same 1279
as in E. Cell type marker genes are indicated along with the cluster number. URL, upper rhombic lip 1280
I. Bar plot of the proportion (based on Jaccard Index) of granule cell (cerebellum neurons) barcodes that are 1281
shared with each brain progenitor cluster. Cluster numbers are the same as in H. 1282
 1283
Figure 6. Cell specification trajectories in the retina and hypothalamus 1284
A. UMAP visualization of retinal cell types. Retinal cells (based on clustering analysis) from 12 hpf to 15 dpf 1285
were subsetted from the full dataset and analyzed together. Cells are color coded by stage. 1286
B. Cell specification tree of zebrafish retinal development. Trajectories were generated by URD and visualized 1287
as a branching tree. Cells are color coded by stage. 12 hpf cells were assigned as the root and 15 dpf 1288
differentiated cells were assigned as tips. CBP, cone bipolar cells (6 subtypes are numbered); RGC, retinal 1289
ganglion cells; RPE, retinal pigment epithelium 1290
C. Expression of select genes are shown on the retina specification tree. 1291
D. Heat maps of gene expression cascades of photoreceptor cell trajectories and retinal ganglion cell 1292
trajectories. Cells were selected based on high expression along trajectories leading to these cell types, 1293
compared to expression along opposing branchpoints. Red, high expression. Yellow, low expression 1294
E. UMAP visualization of hypothalamus cell types. Hypothalamus cells (based on clustering analysis) from 12 1295
hpf to 15 dpf were subsetted from the full dataset and analyzed together. Cells are color coded by stage. 1296
F. Cell specification tree of zebrafish hypothalamus development. Trajectories were generated by URD and 1297
visualized as a branching tree. Cells are color coded by stage. 12 hpf cells were assigned as the root and 15 1298
dpf differentiated cells were assigned as tips. 1299
G. Expression of select genes are shown on the hypothalamus specification tree. 1300
H. Heat map of gene expression cascade of nrgna+ cell trajectories. Red, high expression. Yellow, low 1301
expression 1302
 1303
Figure 7. Progenitor differences between retina and hypothalamus 1304
Retinal and hypothalamus cells were divided into progenitor (purple), precursor (orange), and differentiated 1305
(blue) cells, as shown on the URD tree. The fraction of cells in each of these transcriptional states was then 1306
determined for three developmental periods (12–24 hpf, 36 hpf – 3 dpf, and 5–15 dpf). In the retina, cells can 1307
be found in a progenitor state (light purple) that persists post-embryonically. 1308

15 d14 h12 h

12 h 18 h 24 h 36 h

3 d 5 d 15 d

tSNE-1

tS
N
E
-2

eye
forebrain
midbrain
hindbrain
neural
non-neural
neural crest
placode
mesoderm
endoderm
blood
pharyngeal
epidermal
unknown

16 h 18 h 20 h 24 h 36 h 2 d 3 d
segmentation pharyngula hatching larval

8,349 8,164 9,930 10,143
12,226

9,105
10,719 15,558 17,290 31,659 28,689 61,205

5 d 8 d

5 d

A

FIGURE 1

C

D

E

F

Gel beads

Construct
libraries

OilCells
Reagents

Cells

or Brain + EyesHead
(12 h to 3 d) (5 d to 15 d)

2 d dlx1a sox1apdyn

La
te
ra
lv
ie
w

Ve
nt
ra
lv
ie
w

TVZ ADi

VHyp

LHyp

VHyp

VHyp

VHyp

VDiAFb

Le Le

VHyp

* * * * * *

A

P

klf17 ptgs2a tp63 sdpra12 h
DAPI foxg1b

ompa

ompa

DAPI
foxg1b

ompa

DAPI
foxg1b

HC
BC/AC

PR

RGC

Figure1

15 d

A B

C

D

FIGURE 2

tSNE-1

tS
N
E
-2

tSNE-1

tS
N
E
-2

12 h

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●
● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

● ●●● ●● ●●● ●●●● ● ●●● ●●● ●● ● ●●●● ●● ●● ●●●● ●● ●● ● ●●● ●● ● ●●

0
1
2
5
7
8
9

11
12
13
17
18
20
23
24
27
31
32
36
37
39

fo
xa

2
ap

ln
r2

no
to

lh
x4 ta
l1

lm
o2

fo
xa he
lt

nk
x6

.2
dl
a

sr
rm

4
ne

ur
od

1
ga

br
a5

ho
xb

2a
kc
td
12

.2
pr
ss
35

cy
p2

6b
1

gs
x2

va
x1

nk
x2

.9
nk

x2
.4
a

ss
t1
.2

db
x1

a
fg
f1
7

zi
c4

VG
LL

3
irx

3a
ho

xa
2b

el
av

l3
nt
n1

b
he

sx
1

nr
2e

1
lh
x5

ho
xb

3a
eg

r2
b

m
af
ba

ba
rh
l2

ba
rh
l1
a

ho
xa

3a
ho

xd
4a

dm
bx

1a
so

x2
1a

pa
x2

a
gb

x2
he

r5
en

g2
a

rx
2

rx
3

0
1
2

avg exp

pct exp
●

●

●

●
●

0.00
0.25
0.50
0.75
1.00

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

sl
c1
3a

1
fa
bp

7b
fe
v

tp
h2

bc
o2

b
w
u:
fc
46

h1
2

el
ov
l1
a

ap
od

b
tb
x3
a

ki
di
ns
22

0a
st
ab

2
m
rc
1a

oc
a2

ty
rp
1b

np
y

ss
t1
.1

fo
xb
1b

ha
vc
r2

m
pz

pl
p1

b
ct
ss
2.
1

ct
sl
.1

gr
n1

cc
l1
9a

.1
sl
c4
a1

a
ba

1
po

nz
r1

m
yo
5b

po
st
na

itg
a6

b
ne
xn
.1

dg
ka
a

irb
pl

rt
n4

rl2
b

pr
ss
12

eg
r2
b

tn
w

dc
n

ly
e

kr
t1
−1
9d

ja
m
2a

rg
cc

sc
gn bi
k

ag
r2

gr
m
6b

sl
c1
8a

3a
sh
ox
2

ph
ox
2b
b

cr
ya
ba

sp
ar
cl
1

ey
a4

si
x1
b

pr
ph

sp
8a

ss
t3

tlx
3b

dl
g1

ut
s1

cc
r9
a

cc
l3
3.
3

ap
ln
ra

ap
ln
rb

so
x1
0

nt
ng

1a
ne

ur
od

4
sl
c4
a5

rp
rm

b
om

pa
sc
n4

ab
fs
tl3 zw
i

da
za
p1

pr
kc
da

sl
c4
3a

3b
ta
gl
n

m
yl
9a

ao
c2

nd
uf
a4

l2
a

tg
fb
i

g0
s2

pd
yn

so
x1
4

ak
5l

th
2

pr
dx
1

ca
rh
sp
1

fg
fb
p1

b.
1

bh
m
t

pe
nk
a

gs
x1

pr
ox
1b

og
n

co
l2
a1

a
ad

cy
ap

1a
kc
td
12

.1
gn

g8
pv
al
b7

al
do

ca
irx
7

ca
lb
1

lh
x4

so
ul
5

gg
ct
b

sa
gb

gn
gt
1

lm
o4

b
cs
pg

5b
ga

ln
rlb

p1
b

rp
e6

5a
rb
p4

ifi
tm
1

kr
tt1

c1
9e

lg
al
s1
l1

po
u4

f2
sp
5a

sp
5l

ic
n2

kr
t9
7

cc
l2
5b

rg
s5
a

nr
2e

3
cr
x

rc
vr
n2

flj
13

63
9

m
bp

a
pp

p1
r1
4a

b
ki
ss
1

on
ec
ut
1

bn
c2

cn
tln

at
oh

7
he

s2
.2

ca
lb
2a

rb
pm

s2
a

cr
yg
n2

lim
2.
4

dd
it3

at
f5
b

pv
al
b8

pv
al
b9

nm
e2

a
gy
g1

b
sc
in
la

m
t2

rlb
p1

a
nd

rg
1b

vs
x1

en
g1

b
pa

x2
a

zn
f3
95

tfa
p2

a
pa

x1
0

pa
x6
b

gn
at
2

gn
gt
2a

ho
xb
5a

ho
xb
5b

ne
fla

ne
fm
a

em
x3

tb
r1
b

ap
oc
1

cc
l3
4b
.1

el
av
l3

tu
bb
5

np
m
1a

rp
l5
a

gp
x1
a

ca
hz

tfa
p2

e
fo
xb
1a

cd
k1

kp
na

2
ot
pb

ot
pa

fa
t2

gs
g1

l
sh
ha

nk
x2
.4
a

ca
bp

5b
rs
1a

ck
s1
b

as
cl
1a

pe
nk
b

kc
ni
p1

b
nr
gn

b
rr
m
2.
1

at
oh

1c
ba

rh
l1
a

lh
x9

rt
n4

rl2
a

nr
gn

a
ne

ur
od

6a
pi
tx
2

lig
1

pc
na

he
s6 dl
a

m
fg
e8

a
cx
43

op
rd
1b

zi
c2
a

tc
f7
l2

sl
c1
7a

6b
dl
x2
a

dl
x5
a

pa
x7
a

ta
l1

−1
0
1
2

avg exp

pct exp

0.00
0.25
0.50
0.75
1.00

0 - optic vesicle
1 - optic vesicle
2 - midbrain
5 - mid/hindbrain boundary
7 - midbrain
8 - hindbrain r7
9 - diencephalon

20 - ventral diencepahalon
23 - ventral diencephalon,
optic stalk
24 - hindbrain r4
27 - hindbrain r3
31 - neurons
32 - ventral midbrain
36 - rostral blood island
37 - diencephalon
39 - floor plate

11 - hindbrain r5/6
12 - dorsal diencephalon
13 - telencephalon
17 - hindbrain r1/2
18 - telencephalon

0,13 - optic tectum
2,58 - ventral forebrain
4,17,73 - granule cells
5 - radial glia
6,7,14,48 - progenitors
8,40,46,67 - diencephalon
9,25 - pallium

18 - tuberculum
19,74 - cycling progenitors
21,88 - erythrocytes
24 - microglia
27,31 - hindbrain/cranial nerve
28 - cones
29 - retina progenitors
30,79 - amacrine cells
26,36 - midbrain

10,20,92 - thalamus
12 - URL progenitors
13,84 - telencephalon
15,32,35,54,70,85 - cone bipolar cells
16 - ventral progenitors

33 - muller glia
34 - cornea
37 - lens
38,62 - retinal ganglion cells
39 - retina progenitors
41 - ventral habenula
42,68,91 - oligodendrocytes

51 - torus longitudinalis
52 - rods
53 - glia
55 - purkinje cells
56,64 - dorsal habenula
57 - eye cartilage
59 - eye glia
61,63,75,93,99 - hypothalamus
65 - cornea epithelial progenitors

43 - photoreceptor precursors
44,49,66 - cornea epithelium
45,82,83 - eye cells
47,86 - eye epidermis
50 - RPE

69 - horizontal cells
71 - OPC
72 - neutrophils
76 - ganglion neurons
77 - lens epithelium
78 - hindbrain
80 - metaphocytes

97,98 - neural crest pigment cells
100 - glia progenitors

81 - myeloid cells
87,94 - pigment cells
89,90 - blood/immune cells
95 - perivascular FGP cells
96 - retina neurons

gene markers

gene markers

cl
us
te
rs

cl
us
te
rs

Figure2

2
8
9
10
18
20
25
40
41
46
56
58
61
63
64
67
75
84
92
93
99
0
13
26
36
51
4
17
27
31
55
73
78
76

15
d
25
d

8 d5 d

Forebrain
M
idbrain

H
indbrain

DA

B

C

FIGURE 35
eomesa

5
tbr1b

5
dlx2a

5
dlx5a

6
otpa

5nkx2.4a
4

nkx2.1
5

fezf1
5

six6b
5

six3b
5

pitx2
4neurod6a
6neurod6b
4

irx1a
6

tal1
5

sox14
5

pax7b
4

sox1a
4

gata3
5

foxb1a
5

tcf7l2
5

barhl2
5

lhx9
5barhl1a
4

pax2a
5

cebpa
5onecut1
5

shox2
5

pou3f1
5

eng1b
4neurod2
6

pou4f2
4

otx1b
5

pou4f1
4

isl1
5phox2bb
5

zic5
6

zic2a
5

pax6a
5

pax6b
4

tlx3b
5

hoxb5a
4

skor1b

7adcyap1a
7adcyap1b
4bdnf
7penkb
6kiss1
6pnoca
8galn
8pdyn
8sst1.1
8sst3
6sst6
7tac1
6cart2
5vgf
8npy
7pyyb
5adcyap1r1a
5oprd1b

5
gad1b

6
gad2

5
slc6a1a

5
slc6a1b

5
slc32a1

4
slc17a6a

4
slc17a6b

5
slc5a7a

5
gria1a

4
gria2b

4
grin1b

4
gabrb2

4
cacng2a

4
cacng2b

4
cacng8a

4
kcnf1b

4
kcnd3

5

2 8 9 10 18 20 25 40 41 46 56 58 61 63 64 67 75 84 92 93 99 0 13 26 36 51 4 17 27 31 55 73 78 76

gsg1l

Forebrain

Neuropeptides

Receptors

Neurotransmitters

Transporters

Receptors

Channels

Clusters

Midbrain Hindbrain

Figure3

A
FIGURE 4

B

C D

tSNE-1

tS
N
E
-2

embryo

larva
intermediate

Forebrain Midbrain Hindbrain

2 3 0 1 5 4

oprd1b
atoh1c
neurod1
neurog1
dlb
ascl1a
scrt2
insm1b
aqp1a.1
ptgdsb.1
s100b
cx43
tmsb
her2
top2a
mki67
pcna
her15.1
fabp7a

−2
−1
0
1
2

Expression

Non-proliferative
Progenitors

Proliferative
Progenitors

2 3 0 1 5 4

hoxa2b
hoxa3a
egr2b
mafba
egfl6.1
olig3
her11
her5
eng2b
foxa
nkx2.4a
rx3
pax6a
lhx5
fezf2
emx3
foxg1a
plk1
cdca7a
ccna2
her2
mki67
pcna
sox19a

0

1

2

Expression

E
xp
re
ss
io
n

E
xp
re
ss
io
n

pan-progenitor
cell cycle

upper
rhombic lip

URLradial
glia

her2+
non-dividing

her2+
dividing

her2-
dividing

her2+, neurod1+
dividing

proneural
genes

stem
cell genes

pan-progenitor

cell cycle

forebrain
TFs

midbrain
TFs
hindbrain
TFs

*

8 1 6 7 3 4 2 0 5

oprd1b
atoh1c
neurod1
neurog1
dlb
ascl1a
scrt2
insm1b
aqp1a.1
ptgdsb.1
s100b
cx43
tmsb
her2
top2a
mki67
pcna
her15.1
fabp7a

−2
−1
0
1
2

Expression

8 1 6 7 3 4 2 0 5

hoxa2b
hoxa3a
egr2b
mafba
egfl6.1
olig3
her11
her5
eng2b
foxa
nkx2.4a
rx3
pax6a
lhx5
fezf2
emx3
foxg1a
plk1
cdca7a
ccna2
her2
mki67
pcna
sox19a

−2
−1
0
1
2

Expression

E
xp
re
ss
io
n

E
xp
re
ss
io
n

−1 −0.5 0 0.5 1
Value

Color Key
Embryo LarvaIntermediate

midbrain
forebrain

fg
f8
a

pa
x5

en
g1
b

pa
x8

pa
x2
a

en
g2
b

en
g2
a

he
r1
1

he
r5

pa
x6
b

pa
x6
a

w
nt
4a

ol
ig
3

sh
ox
2

ba
rh
l1
a

ba
rh
l2

he
r8
a

bh
lh
e2
2

irx
1a

po
u3
f3
b

po
u3
f3
a

he
r3

fo
xb
1a

pa
x3
a

pa
x7
b

pa
x7
a

ac
kr
3a

m
ab
21
l2

dm
bx
1a le
f1

w
nt
8b

lm
x1
bb

ot
x2

ot
x1
b

he
lt

nt
n1
a

nk
x6
.2

fo
xa
1

fo
xa

ph
ox
2b
b

ph
ox
2a

nk
x2
.2
a

nk
x2
.9

nk
x2
.2
b

db
x1
a

sh
hb

sh
ha

fz
d8
b

nk
x2
.1 rx
3

nk
x2
.4
a

nk
x2
.4
b

lh
x9

zn
f2
96

em
x1

eo
m
es
a

tb
r1
b

fo
xg
1a

em
x3

dl
x4
b

fg
f1
7

rs
po
3

zi
c1

zi
c4

gs
x2

lm
o1

lh
x2
b

so
x1
b

fe
zf
2

pr
dx
1

pi
tx
3

pi
tx
2

si
x7

tc
f7
l2

nr
2e
1

em
x2

lh
x5

fo
xd
1

ol
ig
2

fgf8a
pax5
eng1b
pax8
pax2a
eng2b
eng2a
her11
her5
pax6b
pax6a
wnt4a
olig3
shox2
barhl1a
barhl2
her8a
bhlhe22
irx1a
pou3f3b
pou3f3a
her3
foxb1a
pax3a
pax7b
pax7a
ackr3a
mab21l2
dmbx1a
lef1
wnt8b
lmx1bb
otx2
otx1b
helt
ntn1a
nkx6.2
foxa1
foxa
phox2bb
phox2a
nkx2.2a
nkx2.9
nkx2.2b
dbx1a
shhb
shha
fzd8b
nkx2.1
rx3
nkx2.4a
nkx2.4b
lhx9
znf296
emx1
eomesa
tbr1b
foxg1a
emx3
dlx4b
fgf17
rspo3
zic1
zic4
gsx2
lmo1
lhx2b
sox1b
fezf2
prdx1
pitx3
pitx2
six7
tcf7l2
nr2e1
emx2
lhx5
foxd1
olig2

−0.5 0 0.5 1
Value

Color Key

en
g1
b

en
g2
b

en
g2
a

pa
x5

fg
f8
a

pa
x2
a

pa
x8

ol
ig
3

zi
c1

zi
c4

gs
x2

po
u3
f3
b

he
r8
a

po
u3
f3
a

w
nt
4a

pa
x6
b

pa
x6
a

he
r3

db
x1
a

fo
xb
1a

pa
x3
a

pa
x7
a

pa
x7
b

bh
lh
e2
2

irx
1a si
x7 le
f1

m
ab
21
l2

dm
bx
1a he
lt

ot
x2

w
nt
8b

ot
x1
b

ac
kr
3a

he
r1
1

he
r5 rx
3

fz
d8
b

nk
x2
.1

so
x1
b

pr
dx
1

nk
x2
.4
b

nk
x2
.4
a

eo
m
es
a

tb
r1
b

dl
x4
b

em
x1

fg
f1
7

rs
po
3

nr
2e
1

fe
zf
2

em
x2

lm
o1

lh
x2
b

zn
f2
96

fo
xg
1a

em
x3

fo
xa
1

fo
xa

sh
hb

sh
ha

ba
rh
l1
a

ba
rh
l2

lm
x1
bb

pi
tx
3

pi
tx
2

lh
x9

sh
ox
2

tc
f7
l2

lh
x5

fo
xd
1

ol
ig
2

ph
ox
2b
b

ph
ox
2a

nk
x6
.2

nt
n1
a

nk
x2
.2
a

nk
x2
.2
b

nk
x2
.9

eng1b
eng2b
eng2a
pax5
fgf8a
pax2a
pax8
olig3
zic1
zic4
gsx2
pou3f3b
her8a
pou3f3a
wnt4a
pax6b
pax6a
her3
dbx1a
foxb1a
pax3a
pax7a
pax7b
bhlhe22
irx1a
six7
lef1
mab21l2
dmbx1a
helt
otx2
wnt8b
otx1b
ackr3a
her11
her5
rx3
fzd8b
nkx2.1
sox1b
prdx1
nkx2.4b
nkx2.4a
eomesa
tbr1b
dlx4b
emx1
fgf17
rspo3
nr2e1
fezf2
emx2
lmo1
lhx2b
znf296
foxg1a
emx3
foxa1
foxa
shhb
shha
barhl1a
barhl2
lmx1bb
pitx3
pitx2
lhx9
shox2
tcf7l2
lhx5
foxd1
olig2
phox2bb
phox2a
nkx6.2
ntn1a
nkx2.2a
nkx2.2b
nkx2.9

−1 −0.5 0 0.5 1
Value

Color Key

bh
lh
e2
2

pa
x6
a

pa
x6
b

zi
c4

zi
c1

en
g1
b

en
g2
b

en
g2
a

he
lt

ot
x2

pa
x3
a

m
ab
21
l2

pa
x7
a

pa
x7
b

fg
f8
a

ol
ig
3

he
r5

he
r1
1

pa
x5

pa
x8

pa
x2
a

fg
f1
7

dm
bx
1a

ot
x1
b

irx
1a

he
r3

db
x1
a

he
r8
a

fo
xb
1a

po
u3
f3
a

po
u3
f3
b

fo
xa

fo
xa
1

sh
hb

sh
ha

w
nt
8b

fe
zf
2

em
x2

fo
xd
1

nk
x2
.1

so
x1
b

pr
dx
1

rx
3

nk
x2
.4
b

nk
x2
.4
a

gs
x2

lm
o1

lh
x2
b

fo
xg
1a

em
x3

nk
x6
.2

nt
n1
a

nk
x2
.9

nk
x2
.2
b

nk
x2
.2
a

pi
tx
3

pi
tx
2

ba
rh
l2

w
nt
4a

rs
po
3

lm
x1
bb

ph
ox
2b
b

ph
ox
2a

sh
ox
2

tc
f7
l2

lh
x9 le
f1

ba
rh
l1
a

ol
ig
2

lh
x5

ac
kr
3a si
x7

fz
d8
b

em
x1

dl
x4
b

zn
f2
96

nr
2e
1

tb
r1
b

eo
m
es
a

bhlhe22
pax6a
pax6b
zic4
zic1
eng1b
eng2b
eng2a
helt
otx2
pax3a
mab21l2
pax7a
pax7b
fgf8a
olig3
her5
her11
pax5
pax8
pax2a
fgf17
dmbx1a
otx1b
irx1a
her3
dbx1a
her8a
foxb1a
pou3f3a
pou3f3b
foxa
foxa1
shhb
shha
wnt8b
fezf2
emx2
foxd1
nkx2.1
sox1b
prdx1
rx3
nkx2.4b
nkx2.4a
gsx2
lmo1
lhx2b
foxg1a
emx3
nkx6.2
ntn1a
nkx2.9
nkx2.2b
nkx2.2a
pitx3
pitx2
barhl2
wnt4a
rspo3
lmx1bb
phox2bb
phox2a
shox2
tcf7l2
lhx9
lef1
barhl1a
olig2
lhx5
ackr3a
six7
fzd8b
emx1
dlx4b
znf296
nr2e1
tbr1b
eomesa

−1 −0.5 0 0.5 1
Value

Color Key

0

50

100

150

200

250

0.20.40.60.8

embryo
intermediate
larva

Early embryonic brain neural progenitors Late larval brain neural progenitors

E

F

N
um

be
ro
fg
en
es
co
rre
la
te
d

w
ith
79

sp
at
ia
lT
Fs

0

25

50

75

100

12h 14h 16h 18h 20h 24h 36h 2d 3d 5d 8d 15d

timepoints

pe
rc
en
ta
ge

of
da
ta
se
t

cell type progenitors neurons other

0
5
10
15
20
25
30
35
40
45
50
55

12h 14h 16h 18h 20h 24h 36h 2d 3d 5d 8d 15d

timepoints

nu
m
be
ro
fn
eu
ro
n
cl
us
te
rs

0

5

10

15

20

25

30

12h 14h 16h 18h 20h 24h 36h 2d 3d 5d 8d 15d

timepoints

nu
m
be
ro
fp
ro
ge
ni
to
rc
lu
st
er
s

Pearson correlation threshold

Figure4

876543

pA

DsRed

scGESTALT barcode
1 2

b-actin

wildtype (TL/AB)

x

edited barcode

edited barcode mRNA

Inject embryo 15 dpf scRNA-seq
brain
+

eyes
Cas9 protein

+ sgRNA 1-8

AAAAAA

A
FIGURE 5

Fish (ZF)

Fish
(ZF) 3

4

2

1

3 421

0

1

Dissimil.
score

1 1 1 0

1 1 0

1 0

0

mat

E

1

2

3

4
5

6

7

8B

1 2 3 4 5 6 7 8

no edit
intersite
intrasite
insertion
substitution

0

2

4

6

8

10

Site

N
um

be
ro

fe
di
ts

(x
1,
00

0)

D

G

C

I

F H
fo
re
br
ai
n

m
id
br
ai
n

hi
nd

br
ai
n

re
tin
a

retina

hindbrain

midbrain

forebrain

No segregation Segregation

Undefined No segregation Segregation

C
9
(5
6,
12

5)
C
25

(4
8,
97

)
C
84

(1
3,
14

)

C
41

(3
2,
41

)

C
64

(2
6,
47

)
C
56

(2
7,
35

)

C
8
(6
8,
10

4)
C
10

(5
4,
10

3)
C
40

(3
4,
57

)
C
46

(2
8,
32

)
C
67

(2
6,
33

)

C
10

(5
4,
10

3)
C
20

(5
2,
10

0)
C
92

(7
,7
)

C
2
(1
01

,1
81

)
C
58

(2
0,
26

)
C
61

(2
0,
29

)
C
63

(2
2,
46

)
C
75

(1
6,
18

)
C
93

(1
1,
11

)

C
36

(2
7,
41

)
C
0
(1
04

,1
94

)
C
13

(3
6,
53

)
C
26

(4
6,
66

)
C
51

(2
5,
42

)

C9 pallium
C25 pallium
C84 subpallium

C41 habenula
C56 habenula
C64 habenula

C8 pitx2+
C10 otpa+, tuberculum
C40 onecut1+
C46 sp5l+
C67 prkcda+

C10 thalamus
C20 thalamus
C92 thalamus

C2 hypothalamus

C63 hypothalamus
C61 hypothalamus
C58 hypothalamus

C75 hypothalamus
C93 hypothalamus

C51 torus long

C36 atf5b+

C26 nefma+
C13 optic tectum
C0 optic tectum

Dorsal
Ventral

Telencephalon
Diencephalon

Forebrain
M
idbrain

Non-retina eye clusters

fo
xg

1b
+

fo
xg

1b
-

Retina clusters

C
45

(2
9,
10

8)
C
82

(1
7,
31

)
C
83

(1
0,
14

)
C
47

(1
5,
68

)
C
86

(2
4,
55

)
C
66

(3
1,
41

)
C
87

(6
,1
2)

C
34

(5
3,
83

)
C
44

(4
8,
62

)
C
49

(2
3,
42

)
C
57

(2
7,
30

)
C
65

(1
8,
23

)
C
37

(4
6,
10

9)
C
77

(9
,1
1)

C
15

(6
1,
92

)
C
28

(5
1,
77

)
C
30

(6
1,
10

9)
C
32

(3
4,
54

)
C
33

(4
4,
74

)
C
35

(4
8,
61

)
C
38

(5
2,
88

)
C
43

(2
6,
36

)
C
50

(2
6,
35

)
C
52

(3
0,
36

)
C
54

(3
7,
48

)
C
69

(2
2,
27

)
C
70

(1
7,
18

)
C
79

(1
4,
17

)
C
85

(1
5,
16

)

C45:cldna+

C82:krt1-19d+

C83:twist3+

C47:lgals1l1+

C86:lgals1l1+

C66:hyal4+

C87:akap12a+

C34:hgd+

C44:foxl1+

C49:ifitm1+

C57:col9a1a+

C65:ndufa4l1a+

C37:lim2.4+ (lens)
C77:sparcl1+

C15:cone bipolar
C28:cones
C30:amacrine
C32:cone bipolar
C33:muller glia
C35:cone bipolar
C38:RGC
C43:photoreceptor precursor
C50:RPE
C52:rods
C54:cone bipolar
C69:horizontal
C70:cone bipolar
C79:amacrine
C85:cone bipolar

Undefined No segregation Segregation

C
5
(7
9,
12

9)

C
6
(7
1,
13

2)

C
7
(6
1,
95

)

C
12

(6
1,
11

3)

C
14

(5
6,
96

)

C
16

(5
2,
89

)

C
19

(6
1,
11

1)

C
22

(4
3,
59

)

C
71

(1
8,
21

)

C
74

(2
5,
35

)

C74:pif1

C71:olig2
(OPC)

C22:stmn1a

C19:crabp2a

C16:her8.2

C14:esco2

C12:atoh1c
(URL)

C7:her12

C6:cdkn1ca

C5:cx43
(radial glia)

Undefined No segregation Segregation

Granule cell

Pr
op

or
tio

n
of

ba
rc
od

e
sh

ar
ed

w
ith

G
ra
nu

le
ce

ll
(ja

cc
ar
d
in
de

x)

0.
00

0.
02

0.
04

0.
06

0.
08

C5 C6 C7 C1
2
C1
4
C1
6
C1
9
C2
2
C7
1
C7
4

Figure5

Precursors RGCsCones Rods

FIGURE 6

UMAP-1

U
M

A
P

-2
U

M
A

P
-2

12h 14h 16h 18h 20h 24h 36h 2d 3d 5d 8d 15d

12h

14h

16h

18h

20h

24h

36h

2d

3d

5d

8d

15d

C
on

es

R
od

s

A
m

ac
rin

e_
1

R
G

C

H
or

iz
on

ta
l

M
ul

le
rg

lia

R
P

E

A
m

ac
rin

e_
2

C
B

P
_3

C
B

P
_6

C
B

P
_5

C
B

P
_2

C
B

P
_1

C
B

P
_4

A B

P
se

ud
ot

im
e

C D

E G

F

pou4f1
rbpms2a

sox6

rbpms2b

pou4f2

irx4a

sox11a
sox11b

prdm1a

Photoreceptors

Precursors Cones Rods

nr2e3

six7

apln
nr2f1b

crx

isl2a
aplnra
otx5
aplnrb

P
se

ud
ot

im
e

G
A

B
A

ta
c1

+

sy
np

r+

ss
t1

.1
+

pd
yn

+

pr
dx

1+

tp
h2

+

G
A

B
A

dl
x+

H

sp8a
pbx3b

dlx2b

dlx1a

hmx3a

nkx2.2a

nkx2.4a
isl1

dlx5a

rgs5b

synpr− synpr+precursors
GABA tac1+

Precursors
GABA
tac1+ synpr+

RPE

Muller glia

kidins220a+

RGC

Amacrine

Cone bipolar
Cones

Rods

Horizontal

UMAP-1

prdx1+

pdyn+

tph2+

synpr+
sst1.1+

GABA
tac1+

GABA
dlx+

Figure6

FIGURE 7
P
se
ud
ot
im
e

Ps
eu

do
tim

e

●
●
●

1_progenitors

2_precursors

3_neurons

NA

1

2

3

precursor.group

●
●
●

1_progenitors
2_precursors
3_neurons

12hpf - 24 hpf 36hpf - 3 dpf 5 dpf - 15 dpf

0.00

0.25

0.50

0.75

1.00

va
lu

e

1_progenitors
2_precursors
3_neurons

1 2 3 1 2 3 1 2 3

Hypothalamus

P
se
ud
ot
im
e 1a

1b

1b
2

3

Ps
eu

do
tim

e

●
●
●
●

1a_progenitor (early)
1b_progenitor (early+late)
2_precursor
3_neurons

12 hpf - 24 hpf 36 hpf - 3 dpf 5 dpf - 15 dpf

1a 1b 2 3 1a 1b 2 3 1a 1b 2 3
0.0

0.2

0.4

0.6

0.8

va
lu

e

1a_progenitor transient
1b_progenitor longterm
2_precursor
3_neurons

embryo embryo + larva late larvaRetina

1a_progenitor (early)
1b_progenitor (early+late)
2_precursor
3_neurons

Figure7

Supplemental Information

Emergence of neuronal diversity during vertebrate brain
development

Bushra Raj1,2*, Jeffrey A. Farrell1,3, Jialin Liu2,4, Jakob El Kholtei2,4, Adam Carte1,4,5, Joaquin Navajas
Acedo2,4, Lucia Y Du2,4, Aaron McKenna6, Đorđe Relić3,7, Jessica M. Leslie1, and Alexander F.
Schier1,2,4,8,9,10*

1 Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
2 Allen Discovery Center for Cell Lineage Tracing, Seattle, Washington, USA
3 Unit on Cell Specification and Differentiation, National Institute of Child Health and Human
Development, NIH, Bethesda, Maryland, USA
4 Biozentrum, University of Basel, Switzerland
5 Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge,
Massachusetts, USA
6 Department of Molecular and Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, New
Hampshire, USA
7 Swiss Institute of Bioinformatics (SIB), Basel, Switzerland
8 Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
9 Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
10 Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA

*Co-corresponding authors. Email: bushranraj@gmail.com (B.R.); alex.schier@unibas.ch (A.F.S.)

Supplemental Text and Figures

Sup Figure 1. Zebrafish brain cell types identified at each stage of time course
tSNE plots of cell types at each stage of the time course. Cells are color coded by stage.
tSNE implementations: Barnes-Hut (12 hpf to 3 dpf, 8 dpf), Fourier transform (5 dpf and 15 dpf). Cluster numbers are
indicated on each plot. Detailed cluster descriptions are in Supplementary Table 1 and can be explored interactively in
the accompanying app at https://github.com/brlauuu/zf_brain.

Sup Figure 2. Neuron subtype diversity at 5 and 8 dpf
Violin plots of select marker gene expression in identified brain neuron subtypes from 5 dpf (left) and 8 dpf (right).
Retina neurons and nascent (immature) neurons are omitted from the analysis. Cluster numbers are indicated at the
bottom along with their inferred spatial location in the brain. Clusters 69 (5 dpf) and 51 (8 dpf) have unknown spatial
location. Detailed cluster descriptions are in Supplementary Table 1 and can be explored interactively in the
accompanying app at https://github.com/brlauuu/zf_brain.

Sup Figure 3. Embryonic, intermediate and larval stage neural progenitor populations
tSNE plots showing embryonic (12 hpf – 18 hpf), intermediate (20 hpf – 3 dpf) and larval (5 dpf – 15 dpf) stage
progenitor clusters that were subsetted from the dataset. Cluster numbers match plots shown in Sup Figure 1. Detailed
cluster descriptions are in Supplementary Table 1 and can be explored interactively in the accompanying app at
https://github.com/brlauuu/zf_brain.

Sup Figure 4. Optimized scGESTALT lineage recorder enables reconstruction of more dense
lineage trees
A. Size and diversity of clones from edited ZF1-4 larval brains. Each colored rectangle represents a unique clone and
the area represents the size of the clone.
B. A reconstructed scGESTALT brain lineage tree from one zebrafish 15 dpf brain. 302 barcodes recovered from ZF1
were assembled into a lineage tree. Barcode edits are represented as red (deletions), blue (insertions), and black
(substitutions). Associated cells are color coded by cell type and region. Interactive trees are presented at:
https://scgestalt.mckennalab.org/. Each tip on the tree has an associated cell type assignment (color coded), a lineage
barcode schematic, and a cluster number. For reasons of space, the tree is split into multiple columns and dashed lines
connect subsections of the tree together.

Sup Figure 5.
Retinal cell type marker expression and trajectory analysis
A. UMAP plots highlighting expression of select genes enriched in retinal cell types. rx3, vsx2, hes2.2 are enriched in
early embryonic retinal progenitors; foxg1b is enriched in differentiated cells; pax6a is enriched in progenitors, retinal
ganglion cells (RGC) and amacrine cells; crx is enriched in photoreceptor cells and cone bipolar cells; gngt2a is
enriched in cones; gnat1 is enriched in rods; ompa is enriched in horizontal cells; tfap2a is enriched in RGCs and
horizontal cells; apoeb is enriched in early progenitors and muller glia; rbpms2a is enriched in amacrine cells; vsx1 is
enriched in cone bipolar cells; cabp5b is enriched in cone bipolar cells; rpe65a is enriched in retinal pigment epithelium;
kidins220a is enriched in new retinal subtype.
B. tSNE plot of 15 dpf brain and eye cell types. Retinal cell types used as the endpoint cell types (tips) for URD analysis
are color coded. Cluster number and cell type description are indicated on the legend. Cluster 96 was discarded from all
analysis, see Results.

Sup Figure 6.
Retina and hypothalamus URD trajectory analysis
A. Cell specification tree of zebrafish retinal development generated with URD, reproduction of Figure 6B for
comparison. CBP, cone bipolar cells (6 subtypes are numbered); RGC, retinal ganglion cells; RPE, retinal pigment
epithelium
B. Assessing robustness of cell assignment on URD retina trees. Trees were recalculated with random subsets of 50%
of the cells from the original retinal dataset (sampled per stage so that proportions of cells from each stage remained

constant). The parameters used were the same, except the number of nearest neighbors used was reduced to reflect
the smaller dataset. The position of cells on trees was compared to the original tree. Cells assigned the same segment
are colored blue (“Same”), cells that moved to a parent or child segment (“Parent/Child”) are colored green, cells that
changed assignment to a different location are colored red (“Changed”), and cells that were not assigned a location in
the original tree are colored grey. 82.1% cells retained their original assignment, 12.5% cells shifted to either parent or
child segments (reflects small shifts in pseudotime of branchpoint assignment), and 5.5% cells shifted to a different
location.
C. Cell specification trees of zebrafish hypothalamus development generated with URD, reproduction of Figure 6F for
comparison.
D. Assessing robustness of cell assignment on URD hypothalamus trees. Trees were recalculated with random subsets
of 50% of the cells from the original hypothalamus dataset (sampled per stage so that proportions of cells from each
stage remained constant). The parameters used were the same, except the number of nearest neighbors used was
reduced to reflect the smaller dataset. The position of cells on trees was compared to the original tree. Cells assigned
the same segment are colored blue (“Same”), cells that moved to a parent or child segment (“Parent/Child”) are colored
green, cells that changed assignment to a different location are colored red (“Changed”), and cells that were not
assigned a location in the original tree are colored grey. 80.1% cells retained their original assignment, 13.6% cells
shifted to either parent or child segments (reflects small shifts in pseudotime of branchpoint assignment or small
changes in tree structure), and 6.3% cells shifted to a different location.

Sup Figure 7. Gene expression along retina cell trajectories
Expression of select genes are shown on the retina URD specification tree. Cell types: 1. Cone bipolar cell (CBP_3); 2.
Cone bipolar cell (CBP_6); 3. Cone bipolar cell (CBP_1); 4. Cone bipolar cell (CBP_4); 5. Cone bipolar cell (CBP_5); 6.
Cone bipolar cell (CBP_2); 7. Cones; 8. Rods; 9. Amacrine cells (Amacrine_1); 10. Amacrine cells (Amacrine_2); 11.
Retinal ganglion cells (RGC); 12. Horizontal cells; 13. Muller glia; 14. Retinal pigment epithelium (RPE)

Sup Figure 8. Gene expression cascades of retinal cell trajectories
Heat maps of gene expression cascades of photoreceptor cell, amacrine cell, retinal ganglion cell, muller glia, horizontal
cell and retinal pigment epithelium cell trajectories. Cells were selected based on high expression along trajectories
leading to these cell types, compared to expression along opposing branchpoints. Red, high expression. Yellow, low
expression. X-axis represents cell states along the cascade progression.

Sup Figure 9. Müller glia-like cells are detected early in zebrafish retina development
Detection of Muller glia markers cahz and rlbp1a in the retina at A. 36 hpf and B. 2 dpf
A. Left panel, retina section stained with DAPI (grey), cahz (cyan) and rlbp1a (yellow). White box indicates area that
was zoomed in for the right panels.
B. Left panel, retina section stained with DAPI (grey), cahz (cyan) and rlbp1a (yellow). White and red boxes indicate
area that were zoomed in for the middle and right panels, respectively. Middle panels denote cells that co-express
rlbp1a and cahz. Right panels denote cells that are rlbp1a+ and cahz-

Sup Figure 10. Hypothalamus cell type marker expression and trajectory analysis
A. UMAP plots highlighting expression of select genes enriched in hypothalamus cell types. dbx1a, fezf2, rx3 are
enriched in early embryonic hypothalamus progenitors; fezf1 is enriched in pdyn+ subtype; nrgna is enriched in two
subtypes (synpr+ and synpr-), dlx2a is expressed in several subtypes; nkx2.4a is expressed in early progenitors and
prdx1+ subtype; synpr, npy, tph2, pdyn and prdx1 are enriched in specific subtypes
B. tSNE plot of 15 dpf brain and eye cell types. Hypothalamus cell types used as the endpoint cell types (tips) for URD
analysis are color coded. Cluster number and cell type description are indicated on the legend.

Sup Figure 11. Gene expression along hypothalamus cell trajectories
Expression of select genes are shown on the hypothalamus specification tree. Cell types: 1. GABA tac1+, nrgna+; 2.
synpr+; nrgna+; 3. sst1.1+; 4. tph2+; 5. GABA dlx+; 6. pdyn+; 7. prdx1+

Sup Figure 12. Gene expression cascades of hypothalamus cell trajectories
Heat maps of gene expression cascades of profiled hypothalamus cell trajectories. Cells were selected based on high
expression along trajectories leading to these cell types, compared to expression along opposing branchpoints. Red,
high expression. Yellow, low expression. X-axis represents cell states along the cascade progression.

Sup Figure 13. Cell type maturation along URD trajectories
Retinal ganglion cells (A) and pdyn+ hypothalamic neurons (B) cells were plotted (red circles) on URD cell specification
trajectories across the stages indicated. The cell types matured with developmental age, as expected. Additionally, later
stages also contained immature cell states (early pseudotime) consistent with continuous neurogenesis.

Sup Figure 14. Gene markers of embryonic and larval progenitors in retina and hypothalamus
Dot plot of gene expression pattern of select marker genes that were used to define progenitor and precursor states
(rows) for segments (columns) of the retina (left) or hypothalamus (right) cell specification trees (see Figure 7E). Dot
size indicates the percentage of cells expressing the marker; color represents the average scaled expression level.

Sup Figure 1
12 hpf 14 hpf 16 hpf 18 hpf

20 hpf 24 hpf 36 hpf 2 dpf

3 dpf 5 dpf 8 dpf 15 dpf

5eomesa
4tbr1b
5dlx2a
5dlx5a
6otpa
4nkx2.4a
4nkx2.1
4fezf1
4six6b
5six3b
5pitx2
4neurod6a
5neurod6b
4irx1a
6tal1
5sox14
4pax7b
4sox1a
4gata3
5foxb1a
6tcf7l2
5barhl2
5lhx9
4barhl1a
5pax2a
5cebpa
5onecut1
5shox2
6pou3f1
5eng1b
4neurod2
6pou4f2
4otx1b
5pou4f1
4isl1
5phox2bb
5zic5
6zic2a
4pax6a
5pax6b
4tlx3b
6hoxb5a
5

1 24 29 9 10 54 52 35 34 28 22 78 87 62 0 18 39 11 56 20 69

skor1b

6adcyap1a
7adcyap1b
4bdnf
5penkb
6kiss1
5pnoca
8galn
6pdyn
8sst1.1
8sst3
5sst6
6tac1
6cart2
5vgf
8npy
7pyyb
4adcyap1r1a
4

1 24 29 9 10 54 52 35 34 28 22 78 87 62 0 18 39 11 56 20 69

oprd1b

5gad1b
5gad2
4slc6a1a
5slc6a1b
4slc32a1
4slc17a6a
4slc17a6b
4slc5a7a
5gria1a
4gria2b
4grin1b
4gabrb2
4cacng2a
4cacng2b
4cacng8a
4kcnf1b
4kcnd3
5

1 24 29 9 10 54 52 35 34 28 22 78 87 62 0 18 39 11 56 20 69

gsg1l

5eomesa
4tbr1b
5dlx2a
5dlx5a
5otpa
5nkx2.4a
4nkx2.1
4fezf1
4six6b
5six3b
5pitx2
5neurod6a
5neurod6b
5irx1a
6tal1
4sox14
4pax7b
4sox1a
4gata3
4foxb1a
5tcf7l2
5barhl2
5lhx9
4barhl1a
4pax2a
5cebpa
4onecut1
5shox2
5pou3f1
5eng1b
5neurod2
6pou4f2
4otx1b
5pou4f1
4isl1
6phox2bb
5zic5
6zic2a
5pax6a
4pax6b
4tlx3b
5hoxb5a
4

3 53 11 8 2 14 65 63 55 38 19 50 77 82 62 0 60 40 15 24 47 36 51

skor1b

6adcyap1a
7adcyap1b
4bdnf
6penkb
6kiss1
5pnoca
7galn
6pdyn
8sst1.1
8sst3
5sst6
7tac1
6cart2
5vgf
8npy
6pyyb
5adcyap1r1a
5

3 53 11 8 2 14 65 63 55 38 19 50 77 82 62 0 60 40 15 24 47 36 51

oprd1b

5gad1b
6gad2
4slc6a1a
6slc6a1b
5slc32a1
4slc17a6a
4slc17a6b
5slc5a7a
6gria1a
4gria2b
4grin1b
4gabrb2
4cacng2a
4cacng2b
4cacng8a
4kcnf1b
4kcnd3
5

3 53 11 8 2 14 65 63 55 38 19 50 77 82 62 0 60 40 15 24 47 36 51

gsg1l

Forebrain

5 dpf 8 dpf

Midbrain Hindbrain

Neuropeptides

Receptors

Neurotransmitters

Transporters

Receptors

Channels

Clusters

Sup Figure 2

12 hpf 14 hpf

5 dpf 8 dpf 15 dpf

16 hpf 18 hpf

20 hpf 24 hpf 36 hpf

2 dpf 3 dpf

Sup Figure 3

63

2
67
68

28
33
14

21
24
70
2
18
18
58
63
73
0
5
14

35
38
85
9
63
0

34
57
35
2
8
25
56
75
68
55
3
11
5
5
7
7
14
1

16
19
52

20
42
55

46
4
6

5
22
15

38
69
23

54
9
4
22
8
20
58

63
0
31

15
32
4
4
4
12
12
12
12
12
11

8
20
25
41
100
0
5
5
5
6
14

28
10
63

25
12

16
22
74

3

30
50
50
69
69
10
20
53
11
1

33
0
33
6
28
38
79
0
5
34
15

21
0
0
3

34
34
34
44
15
9
1

42
9
5
11
33

34
34
34
34
44
66
28
28
30
35
50
25
42
68
12
0
13
5
14

2
3
7
19

34
34
34
57
83

86
15
2

82
2
84

17
36

33
54
2
2
2
10
0
26
6
7
16
16
16
48
48
1

37
28
28
30
35
43
42
17
73
31
6
19

3
66

34
66
10

25
59
3
0

52
25
4
12
12
73
3
26

44
49
15
15
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
25
25
25
67
42
17
73
26
26
6
7
7
14
16
16
16

2
3
3

21
24
24
81
59
15
15
28
28
28
30
30
32
33
33
33
33
38
38
50
50
54
69
70
2
2
2
2
2
2
2
2
2
2
2
2
2
8
8
8
10
10
10
10
18
18
18
18
18
18
18
18
18
20
20
20
20
41
41
46
58
58
58
58
61
61
61
61
63
63
63
63
63
63
63
63
63
63
63
63
63
64
64
67
75
42
53
68
68
100
4
4
4
4
12
12
12
12
12
17
17
17
17
27
55
55
55
73
78
0
0
0
51
51
11
23
23
23
26
26
5
5
5
5
5
5
6
6
6
6
6
6
7
7
7
7
14
14
14
14
16
16
16
16
16
16
16
16
16
19
19
22
22
48
74
74
74
1
1
1
1

21
24
49
65
35
52
54
2
2
8
8
8
8
18
18
18
18
18
18
25
58
58
61
61
61
61
61
61
91
12
27
13
3
26
5
5
5
6
16
19
1

21
54
2
2
9
9
9
20
20
25
25
41
58
63
42
53
0
0
3
11
23
23
5
7
14
48
1

57
59
70
2
2
2
2
18
18
25
56
93
23
6
6
7
16
16
74

3

58
63
23

2
8
3

36

59
9
56
42
51
16

67

38
52
18
0

37
57
28
30
38
79
2
2
8
9
10
25
92
42
4
4
12
12
12
12
17
27
55
0
36
51
3
11
11
23
80
7
14
14
19
19
22

2
63

2
8
78
31
14

52
52
40

59
9
18
20
40
61
67
0
51
23
7

9
66

44
44
50

28
26
26

34
54
25
40
12
12
31
3
5
5

16
5
10
18
5

53
11

40
6
6
14

5
24

34
45
28
28
30
30
30
32
35
38
50
52
52
69
85
9
18
63
42
68
4
4
4
78
31
80
7
19
19
19
19

52
8
91
3
3
26
6

2
56
64
99

21
30
69
8
10
10
20
20
25
64
67
84
71
4
4
4
27
36
51
51
51
3
3
3
23
87
6
6
6
7
14
14
16
16
1

24
2
64
64
64
64
64
64
27
0
5
22
1

8
42
36

34
66
2
8
9
10
10
63
27
55
0
3
3
3
11
23

81
59
65
65
53

99
5
2
93
47
26
2
5

9
9
91
1

99
0
11
93
5
59
27
23
26

42
12
0
13
6

33
85
20
27
7

54
85
2
2
8
9
92
0
3
3
6
16

2

21
34
44
59
59
15
32
33
33
33
35
35
35
52
54
2
8
8
8
8
8
8
8
10
10
10
10
10
10
10
10
18
18
20
20
20
20
20
25
25
40
40
40
40
40
40
40
41
46
58
58
58
63
63
63
67
92
42
42
42
53
68
68
71
4
4
4
4
4
17
27
27
27
0
0
0
0
0
0
0
0
0
13
13
31
31
31
31
36
51
51
3
3
3
3
3
3
3
3
3
3
11
11
11
11
26
26
76
76
5
5
5
6
6
6
6
6
6
6
6
6
7
7
7
14
14
14
14
14
14
14
16
16
16
19
22
22
74
74
74
74
74
1
1

2
10
26
5

68
68

57
30
52
2
2
2
2
2
10
10
18
18
18
18
18
18
56
61
93
53
73
31
11
11
23
5
5
6
7
14
14
16
16
16
16
1

86
18

44
52
46
31
5

18
4
4
4
4
12
19
74
74

26
26
2
6
48
26
14

34
28
28
30
30
30
33
35
52
79
2
2
2
2
8
10
18
18
18
25
25
61
61
63
63
63
84
42
53
91
100
4
4
12
12
12
0
0
0
13
13
3
11
23
26
26
76
97
5
5
5
5
5
6
7
7
14
14
14
19
22
1
1

50
52
54
40
16

3
59
6

15
30
33
2
55

21
61
42
4

28
30
30
33
33
38
50
50
52
79
2
46
27
0
0
5
16
48

0
28
2

65
65
2
4
0
3
3
23
7
14

4
3
5
16
74

28
35
41
12
0
0
31
11
19

34
33
35
2
8
9
10
18
20
25
25
25
25
25
75
4
36
3
23
5
7
7
16
16
16
19
19

46
99
2
83
6

65
2
42

21
17
26
61
91

30
9
58
78
0
11
26
76
16

24
2
2
18
41
63
63
63
63
63
63
4
0
6
16

9

28
28
28
28
30
30
30
32
32
33
33
33
35
38
38
52
54
79
79
8
10
25
40
67
27
3
11
19

28
33
35
54
18
3
7

28
28
33
38
38
43
54
2
8
10
18
18
0
0
3
11
23
23
26
7
22

26
65

34
65
38
50
9
18
18
20
40
41
56
68
4
4
12
12
17
27
73
73
73
73
0
31
31
3
3
94
5
6
6
7
22

7
48
5
2
6
18
12
5
0
0
19
59
65
42
59
53
59
25
13
5

28
18
20
1

18
48
48
15
8
87
53

93
17
0
13
13
31
36
3
48

4
12
0
37

59
66
66
83
83
83
83
10
67
75
84
26
14
1
1

67

44
65
15
15
28
50
69
2
2
8
8
9
9
18
18
41
41
56
63
64
64
4
4
31
51
3
3
3
11
5
5
7
16
74
1

28
30
30
30
33
52
54
70
2
46
42
16

50
24
24

24
49
8

90

33
2
20
78
0
3
11
5

28
59
38
28
16
30
52
76

2
8
0

3
2
80
5
49

24
72
72
34
34
44
44
57
59
15
15
15
15
15
15
15
28
28
28
28
28
30
33
33
33
33
33
33
33
33
35
35
35
35
38
38
38
38
39
43
50
50
50
52
52
52
52
52
54
54
54
54
54
69
70
79
85
2
2
2
2
2
2
2
8
8
8
8
8
8
8
9
9
9
9
10
10
10
10
10
18
18
20
20
20
20
25
25
25
25
25
40
40
41
41
41
56
56
56
56
61
64
64
64
64
84
92
53
68
68
68
91
4
4
4
4
12
12
12
12
17
17
17
17
17
27
27
27
27
27
55
73
78
0
0
0
0
0
0
0
0
0
0
13
36
36
51
51
3
3
3
3
11
11
23
23
26
26
80
5
5
5
5
5
5
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
14
14
14
14
14
14
14
16
16
16
16
16
16
16
19
19
19
19
22
48
48
48
74
1
1
1
1

7

2
8
20
7
19
48
48

20
66

24
24
24
24
24
28
50
4
4
17
27
31
11
14

30
27
14

32
61
4
4
4
12
12
17
17
31
3
3
7
14
19

24
24
10
12
36

30
30
85
4

24
49
41
4
4
4
4
4
12
73
0
0
31
3
23
23
6
7
19

44

32
35
8
20
41
53
12
12
12
17
0
13
51
51
3
3
11
11
23
5
6
6
6
14
74

18
20
61
27
78
0
0
26
16
1

75
42
27
5

21
40
4

35
27
2
27
36
80
80
80

34
66
83
12
17

30
38
31

27
14
76
26
26

65
65
38
43
43
69
8
8
10
10
40
41
64
4
4
12
27
0
0
51
51
11
5
6
6
7
7
7
7
14
14
16
19
19

46
73

34
66
28
12
55
55
55
55
55
26
5
1

6

65
65
65

0
5
59
81
0
6

44
8
8
68
5
6
14
16

34
70
2
8
53
11
16

28
48
48

18
7

28
33
38
10
3

11

30
35
8
12
3
11
5

80
0
80

8
20
11
22

5
5
54
26
52
24
61

3449
1543
5469
22
22
28
88
1010
1020
2020
2025
2540
4041
4656
6384
4291
44
1212
1212
1727
2727
730
00
00
00
1313
3131
3136
3651
513
33
1111
1111
1123
7676
55
55
56
66
66
77
77
77
714
1414
4848
741
11

2432
852
88
99
99
1020
2025
2525
4064
427
5573
00
013
363
311
235
55
56
67
1414
1416
1616
11

6687
87

0

2869
24
44
019

1520
1717

4810
590

4459
6615
2828
2830
3030
3232
3538
432
22
22
22
88
89
99
910
1010
1018
1820
2020
2025
4040
5656
5861
6367
9342
4242
4242
5368
7171
412
1212
1717
1727
2727
5555
5573
00
00
00
013
1313
1331
3131
3131
3131
3651
5151
5151
5151
33
33
33
33
33
323
2323
2676
55
55
66
66
77
714
1414
1416
1616
1619
1919
2222
4874
741
11

3434
3434
3434
3434
4444
4444
4445
4957
6682
1515
3033
3335
3838
4350
28
88
99
99
99
2020
2025
2525
2525
2540
4646
5867
8484
9342
4268
6871
427
2727
2755
5578
7878
00
3151
33
33
311
1126
2626
7676
8080
8087
8787
8787
875
66
77
714
1619
1922
4848

159
2041
5853
412
1212
1213
1119
19

18

2424
2424
2490
10

75

2424
24

376

212
011

6

1510
44
783
2614
74

7234
3434
3444
7

4193
47
1448

261
00
31

344412541841

Sup Figure 4

ZF1 lineage tree
2124728188899095343744454749575965667782838615282930323335383943505254626970798596289101820254041465658616364677584929399425368719110041217275573780133136513112326607656714161922487418087949798 unknown

other

progenitors

neurons

midbrain

hindbrain

glia

forebrain

retina

eye
(non-retina)

blood-immune

ZF1

ZF2

ZF3

312 clones
1,685 cells
largest clone = 96 cells

106 clones
812 cells
largest clone = 202 cells

302 clones
2,331 cells
largest clone = 207 cells

216 clones
968 cells
largest clone = 130 cells

ZF4

A B

Sup Figure 5

● 15

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

28

29

30

32

33

35

38

39

43

50

52

54

69

70

79

85

96

cone bipolar cells (CBP_1)

cones

pax6a+ cells (not used as tip)

amacrine cells (amacrine_1)

cone bipolar cells (CBP_2)

muller glia

cone bipolar cells (CBP_3)

RGC
retinal neural prgenitors (not used as tip)

photoreceptor precursor cells (not used as tip)

RPE

rods

cone bipolar cells (CBP_4)

horizontal cells

cone bipolar cells (CBP_5)

starburst amacrine cells (amacrine_2)

cone bipolar cells (CBP_6)

kidins220a+ cells (not used in analysis)

A

B

FItSNE

FI
tS
N
E

C
on
es

R
od
s

A
m
ac
rin
e_
1

R
G
C

H
or
iz
on
ta
l

M
ul
le
rg
lia

R
P
E

A
m
ac
rin
e_
2

C
B
P
_3

C
B
P
_6

C
B
P
_5

C
B
P
_2

C
B
P
_1

C
B
P
_4

C
on
es

R
od
s

A
m
ac
rin
e_
1

R
G
C

H
or
iz
on
ta
l

M
ul
le
rg
lia

R
P
E

A
m
ac
rin
e_
2

C
B
P
_3

C
B
P
_6

C
B
P
_5

C
B
P
_2

C
B
P
_4

C
B
P
_1

C
on
es

R
od
s

A
m
ac
rin
e_
1

A
m
ac
rin
e_
2

R
G
C

H
or
iz
on
ta
l

M
ul
le
rg
lia

R
P
E

C
B
P
_3

C
B
P
_6

C
B
P
_5

C
B
P
_2

C
B
P
_1

C
B
P
_4

A

C D

Sup Figure 6

G
A
B
A

ta
c1
+

sy
np
r+

ss
t1
.1
+

pd
yn
+

pr
dx
1+

tp
h2
+

G
A
B
A

dl
x+

G
A
B
A

ta
c1
+

sy
np
r+

ss
t1
.1
+

pd
yn
+

pr
dx
1+

tp
h2
+

G
A
B
A

dl
x+

G
A
B
A

ta
c1
+

sy
np
r+

ss
t1
.1
+

pd
yn
+

pr
dx
1+

tp
h2
+

G
A
B
A

dl
x+

B

Sup Figure 7

1 2 3 4 5 6
7
8 910

11
12
13
14

rcl1
ccm2l
ubap1la
si:ch211−195b15.7
aipl1
vps36
fam150a
si:ch211−207j7.2
gchfr
aanat1
trpm1b
unc119.2
guca1a
rgs9bp
epb41l4a
camk1db
pkib
zgc:162144
pde6b
rgs9b
zgc:109934
cplx4c
si:dkey−246i21.1
samd11
grk1a
pik3r3a
tmem9
zgc:112320
pde6a
gucy2f
guca1b
gnb1a
pdca
gpsm2
alpl
saga
cnga1
nat10
map1ab
gnat1
kri1
eno2
sagb
pex5
nr2e3
ndufs8b
zgc:77752
kcnv2a
rhol
rom1b
si:ch211−113d22.2
zgc:112334
dnajc5ga
rom1a
si:ch211−133l5.5
zdhhc2
rbp2a
si:dkey−94e7.2
aanat2
foxo1a
rnf34a
lrrfip1a
ubap1lb
slc4a4b
kera
cnga3b
frya
si:ch211−237l4.6
si:dkey−85k7.7
camk1gb
slc38a5a
si:dkey−97a13.12
clul1
si:dkeyp−57d7.4
si:cabz01078386.1
arhgap12b
ankrd33ab
nr2f6b
samsn1b
si:dkey−61n16.5
si:ch73−6k14.2
slc12a7b
ppp1r14bb
si:dkey−65b13.13
camkk1b
pik3r1
guca1c
si:rp71−39b20.4
cdk5r2b
larp4ab
rcvrn3
pgd
pde6c
inaa
grk7a
opn6b
gabra6a
ubtd1a
slc24a2
osbpl7
lrit1b
rgs9a
si:dkey−206f10.1
pdcb
slc20a1b
cdhr1a
rdh8b
slc7a3a
eno3
cngb3.2
si:ch211−285j22.3
kcnb2
dusp5
atf4a
gnat2
cnga3a
lactbl1a
ric8a
mapre2
mpp6a
nexn.1
thrb
six7
tmem237b
foxo4
si:ch211−276a17.5
ptpdc1b
aqp9b
ankrd33aa
si:dkey−28e7.3
frmpd1a
zgc:195245
gabrb3
ppp1r18
opn1mw1
atp6ap1lb
rx2
farp2
si:ch211−133l5.7
grk1b
prph2a
spock3
aldh6a1
si:ch211−191i18.4
si:dkey−245f22.5
smtnb
samsn1a
got2a
wbp2
ppa1a
mef2cb
si:ch1073−155h21.2
tmem237a
opn1lw2
slc1a8a
lnx2a
hexb
slc43a3a
dnajc5ab
ndrg1b
si:busm1−57f23.1
si:ch211−81a5.8
cplx4a
nme2a
ada
si:dkey−22o12.7
stxbp1b
slc25a18
opn1sw2
arl4d
arl3
sez6a
si:ch73−28h20.1
arr3b
pole4
rp1l1a
crhbp
ociad1
rims2b
tpma
vgf
clstn1
slc9a3r1
plch2a
sv2ba
EML5
apln
ldhbb
atp1a3a
fkbp2
rx1
hspa9
cetn3
ddah2
sept4a
atp6v0a1a
si:ch211−106m9.1
MCRIP2
arid3b
rxrgb
ctbp2a
tulp1a
sept8b
sall1a
angptl4
sema6d
ttyh3a
opn6a
hspd1
lin7c
zbtb18
nr2f1b
ank2b
fam43a
cxxc5a
jam3b
si:dkey−100n23.4
zgc:162331
camk1ga
vps37a
nxnl1
impdh1a
SAMD4B
usp21
jagn1b
PLEKHB1
lrit3a
letm1
cldn2
bzw2
abca4a
si:ch1073−303d10.1
iscub
aldh7a1
si:ch211−207l14.1
prph2b
phyhd1
ablim3
TMSB15A
ncaldb
tctex1d2
arr3a
si:ch1073−469d17.2
ndufa6
pde6h
spag1a
lmbrd1
sh3gl2
abhd8b
mat2b
uqcrq
laptm4b
rbp4l
jun
ndufa1
ndufs7
arl3l1
rcvrn2
cnep1r1
ssx2ipa
tmem184ba
ubiad1
arl13a
fstl5
unc119b
rp2
tiam2a
wdr60
tmem135
si:ch211−206k20.5
EFCAB10
slc3a2b
jtb
slc25a3a
mdh1ab
fam46ba
irbp
EIF1B
grtp1a
gnb5b
CABZ01056321.1
gnb3b
ndufb5
ckmt2a
stard7
atp5ia
plekho1b
oxct1a
gngt2b
atp1b2b
si:ch1073−358o18.3
pdha1b
si:dkey−17e16.15
eps8
fscn2b
copz2
guk1b
dgcr2
cpe
rd3
bbs7
MPV17L
TULP2
casz1
atp6v1aa
si:ch211−160o17.4
ormdl1
eno1b
nhsl1a
drd4a
arl3l2
uqcrfs1
abca4b
prdx3
cep290
ndrg1a
bbip1
ndufb2
hax1
iqsec1b
nptna
gngt2a
ppp1caa
prom1b
rcvrna
opn1sw1
arl13b
sod2
si:ch211−214j8.15
tdh2
hsp90aa1.2
pitpnb
tbx2a
tomm22
nxnl2
pnp6
fkbp16
trove2
fdps
ddt
WDCP
slkb
syt5a
tulp1b
ccdc28a
gstp1
mknk2a
tpd52l2a
glmnb
TMEM216
samd7
mgst3b
ckmt2b
adipor2
hmgcs1
faimb
tmem136b
ccsapb
chka
tmx1
ppdpfa
icmt
os9
tecrb
pde6g
nme3
GRAMD2
gngt1
rho
agpat3
rab3aa
eef1da
elovl4b
apba1b
arl6
znf395b
pfkfb4b
gnb1b
bbs5
ift27
meig1
si:ch211−207i1.2
reep6
ppifb
tdh
mest
pde6d
atpif1b
chchd10
WDR83OS
rtn4a
timm17a
srpr
dpm2
hsd17b12b
etfb
sub1b
erlin2.1
mak
mpc1
atp5l
sat2b
gpx4b
dpm3
fam57ba
cycsb
wdr54
sypb
atp5g1
atp5j
nomo
hmga1b
ccdc47
ndufa11
atpv0e2
tmem231
sdhc
minos1
atp5d
glrx5
atp5g3b
sri
tomm6
ncor1
atp6v0cb
atp5h
apooa
scrn2
ndufs4
timm13
cuedc1a
arl2bp
atp2b1b
atp5ib
rabl2
ndufs3
ddx39b
sccpdhb
timm8b
tmx3
fkbp4
ptges3a
igf2bp2b
acadm
selt1a
dpm1
rab6bb
anp32e
emc8
rs1a
nptnb
zgc:103625
tmco1
c23h20orf24
msi1
hspe1
zgc:63972
syt5b
reep3b
phb
ssbp1
echs1
rdh8a
hacd2
ssuh2rs1
crx
si:dkey−16m19.4
neurod1
ssr2
zgc:171480
mrpl12
zgc:110339
mpp2a
tmem244
lamtor5
ezrb
rpgrip1
plekha5
c1qbp
si:ch211−286b5.5
mob1a
si:ch211−226m16.2
tcf12
tnc
xbp1
zgc:112294
pole3
tomm20a
man2a2
ppa1b
hdlbpa
mrpl52
mllt4a
fkbp1b
lrrn1
zgc:109965
mycbp
syne2b
tmem147
acss2
zgc:109949
prdm1a
amer2
chd7
rpgrb
sdc4
si:ch211−147a11.3
zgc:109889
pcdh8
tmem108
tjp1a
b9d1
rsl1d1
rlbp1a
isl2a
rgcc
canx
ddx21
dscamb
smad3a
mycb
map9
cetn4
st13
aplnra
RASSF5
otx5
zic3
myclb
ralab
aplnrb
polr2i
lmnb2
nop10
lsm8
tmem107l
kif19
tjp1b
katnb1
ahi1
uacab
sepw2a
lmo4a
robo3
dnmbp
npm1a
rab34a
mbd3a
rxrga
prdm1b
fkbp1ab
btg3
fabp7a

Photoreceptors

Precursors Cones Rods

si:ch73−302a4.4
gabrd
ret
tusc5a
tmem196b
gfra1a
MANEAL
tp53i11b
otofa
nrgnb
cacna1fb
pcdh11.1
wbscr17
gstr
si:dkeyp−41f9.4
pcdh11
chgb
vsnl1a
syt9b
homer3
PRIMA1
fam171a2
crip3
rasgef1ba
crip2
slc4a4a
tox3
sort1a
nav2b
si:ch211−204a13.2
soga1
atp1b1a
ache
sh3bgrl2
ndnf
anos1a
unm_sa1614
cpne8
slc18a3a
tpd52l1
nxn
lrch1
hpca
gstp1
grip1
chn1
arhgef4
abcc5
phactr3b
bhlhe23
rai14
bmpr2a
srpk1a
prdm8b
cdh2
ttyh3b
tox2
zfhx3
desi2
adgrl3.1
atp2b4
myh14
rbfox3a
agrn
glrba
RALYL
si:ch1073−329i9.1
slc5a7a
cdh18a
pcp4l1
mpp6b
arl4ab
dpysl4
mfge8b
zc2hc1a
spry2
sepp1a
plppr5a
smox
tspan18b
cplx2
pcdh7b
nfasca
id3
grm6b
rgs11
zgc:110340
gnai2a
ulk2
ism1
si:dkey−4i23.7
gldn
rgs9bp
st8sia5
pcdh19
tiam1a
gng13b
isl1
sox2
rhocb
scrt2
POLD4
chd7
arhgap1
sept9b
atp1a3b
ier2
cacng2b
smdt1a
fosl2
junba
tfap2e
tfap2c
six3a
gas7a
trim13
necab1
reep2
znf385c
znf395
ba1.1
mpp2b
ppm1nb
syngr1a
si:ch211−255i3.4
slc16a3
slc24a3
rgs8
npas4a
sult4a1
oaz2b
lrrtm1
gpr153
suco
synj1
sncga
ywhag1
lpin1
cacng7b
fam19a1a
scn3b
ndfip2
gpia
slc2a3a
stxbp5a
fam91a1
dynll2a
pabpc1b
sgtb
glra1
si:dkey−164f24.2
aatkb
gad1b
zeb2a
trim3b
grin1b
cacna2d2a
zgc:92140
tspan18a
atp2b3b
atraid
dnm1a
kcnab1b
rtn3
pnpo
il1rapl1a
RAMP1
atp6v1ab
camk2b1
znf395a
kif1b
sh3gl2
pclob
ppp1r14ab
gria3a
rgs16
aldoaa
BX957331.1
syt2a
asphd1
slmapb
ppp3cb
pgk1
chga
atp6v1f
kif1ab
pcsk1nl
magi1b
pik3ip1
lrrtm2
atp2b1a
slc6a1b
adam23a
ctnnd2b
gabrb2
ppp3ca
syt11a
atp6ap1a
serpina10a
slc35f6
gpx4a
eno2
ap2b1
ldha
tusc2b
atp6ap1lb
atp1b3b
ap2a1
camk2g1
camk2n2
si:ch73−52f24.4
atp6v0b
cuedc2
proza
tsc22d3
rgs7a
cnksr2b
rusc1
glula
ak4
bsnb
glud1b
arglu1a
pgam1b
camk2d2
snap25a
dtnbp1a
tkta
slc16a9b
mtch2
rac3b
ndrg2
dnajc6
ppp3r1a
zgc:65894
bsg
sept15
stxbp1a
stx1b
snap25b
atp6v0ca
atl1
gnb2
maptb
kif5aa
fundc1
ppm1la
cdr2l
tmem59l
rab41
basp1
ywhaqa
lhx2b
serinc1
nbeaa
ptgdsb.1
csdc2a
fez1
mtfr1l
gmfb
tox
vdac3
hbz
hmgb3b
pak1
bhlhe22
elmo1
gng3
meis2b
elavl3
gpm6aa
mfsd2ab
lrtm1
map7d2b
cacng8b
si:dkey−76c17.3
clta
vamp2
rnf175
rnasekb
rnf11a
egr4
zgc:91860
ptprn2
atp6v1b2
dtnbp1b
sv2a
slc38a3a
fryb
ppfia3
si:ch73−119p20.1
fam126a
srrm4
gad2
ap2s1
gpr85
kctd4
flot1a
slc32a1
ppp3r1b
slc20a2
lrrc4.1
madd
npdc1b
stmn4l
IGLON5
slc35g2a
syn2a
itfg1
nptnb
syngr3b
gphnb
zmat4a
gabrb4
atp2b3a
tex264a
diras1a
shisa7b
si:dkey−71p21.9
atp6ap2
atp6v1h
tcp11l2
atp6v1d
vamp4
atp6v1e1b
rab14
prr12b
si:ch211−196g2.4
scg2b
syn2b
junbb
arf3a
snap91
si:dkey−10p5.10
atp6v1c1a
rab3ab
slc35g2b
erp44
dnajc5aa
cadpsb
syt1a
calb2b
nsfa
rnd3a
CR847844.2
lancl1
syt4
rab2a
ywhah
atp6v1g1
lmo4b
tmem35
pip4k2ab
abi2b
fosab
dpysl5b
slc6a1a
CAMK2N1
arf2a
atp6v0d1
galnt1
pcloa
tspan13b
sept6
sprn
atp1b3a
glra4b
dmtn
pik3r1
adgrb3
cdh4
ptprk
srpk2
cplx2l
atp6v0cb
hsbp1a
celf4
sncb
atpv0e2
arnt2
id2a
tmem9b
mab21l1
tspan31
si:dkeyp−75h12.5
tmem178
rims2a
zgc:153845
syngr3a
ppfia4
glrbb
dirc2
slc4a10a
nrsn1
pet100
nfkbib
si:ch211−214j24.9
rogdi
upf3a
gnsa
cdipt
ccser2a
foxo3a
itm2ca
cacnb4b
gng7
atat1
plpp5
cbx1b
rheb
sept3
gdi1
celf3b
cux1a
lhfpl3
cacng5a
cacng2a
sept2
calb2a
amph
kcnma1a
si:dkey−19n13.5
si:dkey−56f14.7
ywhag2
elavl4
fam168a
FP236812.9
zgc:73340
si:dkeyp−72g9.4
zgc:194261
hnrnpa3
pnisr
pbx3b
arl1
ywhae1
si:dkey−81l17.6
hist2h2l
rcan1a
scrt1a
kctd12.2
clgn
si:dkey−7j14.5
slc6a9
rabgap1l
dlg1
mpc1
clcn4
si:ch211−11c15.3
lin7b
CTBP1
eva1a
mettl9
kif1aa
hmx4
crmp1
b3gat2
zgc:153426
tuba2
tuba1c
lman2
adgra1a
pdcd10b
zgc:165603
irf2bpl
fam49a
rtn1b
tpd52l2b
pbx1a
pkig
arrdc3b
slc1a4
stmn2a
map1aa
cspg5a
selk
cadm4
mt2
gdpd1
mid1ip1l
gabra1
cahz
tpm3
arl8a
zgc:100906
jam3a
acbd7
kcnip1b
efhd1
zdhhc15b
id4
lasp1
fscn1a
aif1l
si:dkey−19e4.5
gpm6ab
midn
six6b
apof
calm1b
SMIM18
dpysl5a
impdh1b
tbx2b
fasn
mtbl
pvalb6
si:ch211−167m1.5
gnb1a
stmn2b
mdkb
rcan3
qkia
calm3a
PDE4DIP
nrxn1a
rbfox1
tbx3a
cacng3b
rab3c
gnao1a
fkbp2
zgc:77058
rltpr
rab1bb
ptp4a1
srgap3
kctd15a
pcbp4
ctnnbip1
ptmaa
rnd1b
gng2
calr
apc
myt1a
proca1
raph1a
elovl6
pax6b
ppp1r14c
ppdpfb
barhl2
gna11b
scinla
efnb2a
insig1
si:ch73−290k24.5
pax6a
zgc:153846
dab2ipa
zc4h2
tfap2a
ctnna2
rab3ip
cdh8
ppp1r14ba
cryba1b
tfap2b.1
pax10
fam60al.1
ubtfl
pop7

Amacrine Cells

Precursors Amacrine Starburst

GATC
mcl1b
si:ch211−114n24.6
gabpa
hif1ab
susd6
plk2b
aqp8a.1
plekhg7
si:dkey−1h6.8
si:dkey−283b1.7
scn3b
btbd6a
tpst1
amd1
pdk2a
arl4ab
arl4d
oaz2a
tmem176l.1
rtn4r
psmg3
hif1al
bhlhe40
atp2b2
net1
arg2
rasgef1ba
pros1
srsf1b
irs2b
hmga1b
slc12a2.1
ptpreb
map1b
irf2bp2b
prkacaa
homer1b
gadd45ba
kcnj14
irs1
cib2
gnal
gpc1b
slc4a8
zgc:92140
srpk1a
anos1a
sdcbp2
cab39l1
olfm3a
gad1b
ric8a
etv5a
ppp2r5d
phactr3b
ppap2d
si:ch211−195b15.8
aldh9a1a.1
slc6a1l
slc4a5
si:dkey−22o22.2
map6d1
ccser2a
phyh
ldha
si:ch211−153l6.6
sik2b
pgk1
pgam1a
mt2
cops8
rprmb
aldoaa
camk2n1a
ubl3a
galnt11
cacng7b
si:dkey−100n23.4
cryba4
anapc16
tmem30ab
gpr137bb
vps28
GCA
pgp
clu
gpia
ppp3cb
dclk1b
tspan3a
rab3c
mdka
usp36
si:ch211−276i12.4
NAT16
msra
msi2a
mllt11
ompa
gmfb
add3a
efna1a
bckdhbl
si:dkey−16p21.8
gnai1
btbd17b
gpx4a
bnip3lb
atp2b4
atp6v0e1
npc2
itm2cb
dclk1a
atp1b1a
ba1.1
zgc:153846
fam107b
hbz
nr2f5
smim13
hbbe2
stmn1b
ip6k2a
h1fx
mid1ip1l
ormdl1
rab11a
si:ch211−260e23.9
eif3ja
nfkbiab
ppp1r3cb
aqp11
gyg1a
amph
ca2
ppdpfa
plekho1b
zgc:86598
osbpl10
syt1a
ptn
sept15
eif4ebp2
prkar2ab
tox
GABARAPL1
pnrc2
ptenb
ncam1a
dab2ipb
atf1
ube2v2
si:dkey−205h13.1
rdh10a
pcsk6
cx52.7
kcnh6a
rtn3
spry2
mark3b
ak1
gfra1a
dynll2b
gria3a
si:ch73−29l19.1
pde4ba
ntrk3a
daam1a
grin1a
nup93
LINC00998
csnk1da
eno1a
ip6k2b
ube2l3a
usf1l
hopx
tnfaip8l3
ptprz1a
wscd2
ppp1r1b
ret
CABZ01029366.1
zgc:174935
plekho1a
dhps
opn9
fam49bb
nr1d2a
slc2a3a
lin7a
gpatch8
etv5b
ndrg3b
pcbp3
pigq
fkbp8
pdhb
si:dkey−87o1.3
ndrg4
rtfdc1
casz1
ncoa5
crk
pdcd4b
znrf1
zfyve21
eml2
ccng1
mtm1
ahcyl1
ankrd10b
zgc:165603
gkap1
apln
cx52.6
plch2a
ppp2cb
vtnb
capns1a
dynlt3
tagln3b
tnr
isl1
tceb1a
pcnp
tfap2a
zeb2a
rap1b
prkcda
cdkn1d
fam43a
slc6a1b
ap1s1
olfm1b
arhgef4
tmem165
rgcc
mat2b
ptp4a2a
cx52.9
mab21l3
zgc:56525
nrxn1a
slc16a9b
bsg
pcdh8
si:ch211−56a11.2
arvcfb
traf4a
med11
zgc:162944
prickle1b
rtn4a
ppt1
si:dkey−1d7.3
cacng5a
lrrc4.1
opn4.1
ddx5
sms
palm1b
ndel1a
sept8a
sh3bgrl3
ndrg2
sept7a
esrrga
qkia
POLD4
mpped2
rcor2
cetn4
stk17a
fstb
uqcc3
cd82a
myl12.1
cryba2b
FTL
cnn3a
gng13b
chmp5b
tmsb4x
acvr1ba
commd7
setd8a
barhl2
btbd10b
med19a
ap1s2
nme2b.1
lmo1
dbi
cops5
cdh6
rem1
them4
cope
pacsin1b
cdc42l
cst14a.2
crygmx
hmx3a
si:ch211−5k11.2
cspg5b
ywhaqb
gng5
dalrd3
cotl1
hbaa1
tfap2b.1
ppp6r3
prox1a
chd7
pde6g
si:dkey−42i9.4
gemin2
reep3b
zgc:92664
arpp19b
fam60al.1
phc2a
nusap1
cdk1
birc5a
ube2c
kpna2
rbm4.2
rad21a
lbr
ppp1r14bb
fam60al
tuba8l4
ewsr1b
anp32b

Horizontal Cells

sox3
fgf8b
si:ch211−66e2.5
fzd8a
her6
fgf8a
fgf24
id3
ptgs2b
cyp26c1.1
gna11b
vegfaa
cxcl12b
sgk1
igf2b
slc38a4
cyp1d1
six3a
lmbrd2b
egln3
nfil3−6
stc2a
CABZ01084447.1
igfbp1a
zgc:153704
ddit4
wasf3b
zgc:158343
cyp2n13
eif4ebp3l
gpm6bb
herpud1
pon2
ugt1b5
degs1
ccdc85b
cyp2p6
zgc:174888
col15a1b
cebpd
mfap5
snx17
ctdsp1
tom1
itgb5
si:ch211−196g2.4
epb41l5
sik2b
mlc1
boka
cx43
rgcc
atp1b1a
cyp26a1
boc
myo15aa
nxn
crip3
sesn3
sypl2a
cyp3c1
slc4a4a
homer3
cyb5a
rtn3
prnprs3
spry4
gstr
si:ch1073−303k11.2
carhsp1
rgs12b
aplp2
zgc:153981
psap
mob1bb
fstb
arl4d
sox10
spry2
DNAJA4
zfp36l1b
atp1b3a
rbp5
gas1b
trib3
ptgdsb.1
alpl
slc43a2b
hsd11b2
tmed5
grb10b
agmo
gnai2b
nfasca
pygl
smox
enpp6
clstn1
abi3a
tob1a
plscr3b
chp2
ctsd
gnai2a
ppp1r14aa
mcl1b
ptgdsb.2
ak3
hey1
pon3.2.1
dab2ipa
zgc:110339
zgc:112332
sdc4
zgc:158852
rergla
apoeb
btbd6a
rgl3a
vil1
pim3
atp1a1b
rftn2
CABZ01055522.1
syngr2b
slc38a3a
klf6a
mid1ip1l
vat1
emilin1a
sept10
ctsla
jdp2b
lfng
dap1b
mt2
jun
slc3a2b
junbb
ncam1a
sepp1a
scamp2
fosab
tegt
six6b
si:ch211−137a8.4
btg2
junba
gpt2l
rgmd
hmx4
mapkapk3
crtap
csrp2
tgfb3
pik3ip1
s1pr1
tspan2a
si:ch211−202e12.3
cdon
slco2a1
ism1
hsph1
chst2b
cdkn1a
mob3a
lmo7b
bckdhbl
VILL
dhrs13l1
ppt1
ca14
cyp2ad3
ppap2d
rgra
sntb1
grm2b
lman1
cd82a
dnmbp
id1.1
tspan7
sox19b
zgc:77086
eva1a
tmem176l.1
acox1
rnf128a
acadm
si:dkey−85k7.7
mgll
hadhaa
gpr37a
lamp2
prom1a
pard6gb
cadm4
hyal6
vamp8
metrnl
sparc
mgst1.2
sdpra
mgst3b
atp1a1a.1
zgc:165604
itm2ba
fxyd6l
si:ch73−31d8.2
plekhg7
nfkbiab
qkia
grinab
vsx2
mthfd2
inhbaa
tbx2a
fam210b
anks1b
tacc1
sult1st1
srebf2
wbp2nl
mtpn
SBSPON
si:dkey−7j14.6
anxa11a
tcea2
rbpms2b
rdh10a
mgst1.1
rpz5
mmp23bb
ssuh2rs1
vim
aqp1a.1
wfdc2
adgrg1.1
capn1a
perp
si:ch211−152c2.3
fam213aa
dap1b.1
crot
padi2
espn
pnp6
zgc:174895
tmem165
ston2
tpi1a
arhgdia
zgc:110699
atp1b4
anxa11b
ctsa
crlf3
ccdc28a
crabp2b
bckdk
cnn3a
gpx4a
asph
cd81a
ccdc85ca
cahz
dhx32b
mdka
si:dkey−235h8.1
si:ch73−215f7.1
cx31.7
aldh7a1
clic4
limk2
hspb6
zgc:92818
abca1a
pdk4
ivd
inhbab
col18a1
prdx6
sdprb
GCA
pdxka
qki2
glud1b
tagapb
atp1b3b
si:ch211−140m22.7
bcat2
znf536
eml2
pros1
stxbp6l
psph
s100a10b
zgc:85777
cldn12
gstp1
gyg1b
cdc42l
rx1
CABZ01070258.1
glula
rtca
tspan33a
eepd1
si:ch211−278j3.3
capns1a
si:ch73−352p4.8
elovl2
hopx
gstk1
pcxa
sgk3
pleca
epdr1
mob1a
clic1
epas1b
BX649498.1
si:dkey−164f24.2
ablim1b
glulb
pgrmc1
si:dkey−16p21.8
si:ch211−132d3.4
zgc:162944
rnaseka
gstm.1
esd
phgdh
sdr16c5b
st8sia6
zgc:195173
gulp1a
slc3a2a
hmgcs1
ush1c
gipc2
rhbg
rtn4a
stxbp3
slc1a2b
msmo1
aif1l
cnn2
bambia
msna
tktb
rac1a
dnajc4
anks4b
anxa13
zgc:109949
dars
cpne1
si:dkey−204f11.64
hadhb
efhd1
nrgna
acadl
prdx2
selt1b
pik3r2
pisd
slc9a3r1
ddt
aldh9a1a.1
fdps
abcd3a
atp6v1e1a
psat1
rasgrp3
higd1a
eif4ebp2
rlbp1a
cotl1
hadh
adi1
pora
sdcbp2
yap1
slmapb
flot2a
lasp1
myl9b
anxa4
gpsm1a
nudt5
plpp3
idh1
glo1
sod1
eno3
hspb1
park7
si:ch211−286b5.5
gng12a
fasn
sri
sncga
lipg
acbd7
atox1
cbx3b
fads2
vamp3
si:dkey−13i19.8
npc2
fabp7a
rap1b
flot1b
cst14a.2
metrn
crabp1a
faub
tpm3
si:ch211−7c8.2
cldn5b
zgc:153867
jam3b
zbtb18
tjp2b
si:ch211−193l2.7
gng5
si:ch211−193l2.5
akap12b
her4.2
ascl1a
si:ch211−193l2.4
her4.2.1
banf1
si:ch211−193l2.3
her12
her4.1
her15.2
her15.1
crabp2a
si:ch211−114n24.6
adh5
eef1da
her9

Muller Glia

kcnip3b
kcnip3a
cpne8
zgc:110340
fndc4a
stmn3
gria4a
eef1a1b
slc6a17
sncga
rgs8
abhd3
vsnl1b
rims2a
oaz2b
anxa13l
cxcl14
RAMP1
fgf12a
arl3
edil3a
si:ch211−151p13.8
calb2a
eef2l2
fgf12b
gabrb2
zgc:194981
nptx1l
ywhag1
si:dkey−7j14.5
si:ch73−119p20.1
nrgna
mtus1b
scrt1a
pou4f1
ndrg3a
rab6ba
calb2b
camk2b1
atp1b3b
grin1a
zgc:162707
eno2
mark3a
ppfia4
map6b
uchl1
kcnc1a
syngr3b
cplx2l
rbpms2a
pcloa
ca10a
glrbb
tubb2
si:dkey−33c12.3
cadpsb
ppm1la
nsfa
gnao1b
ywhaqa
zgc:194261
apba2b
clstn3
rab41
myrip
slc35g2b
slc4a10a
inab
FNDC10
vamp1
sox6
cpe
spna2
kif3a
jund
map7d2b
tbcb
ppp3r1a
adam23a
tmem151a
clstn1
si:dkey−35i13.1
ube2v2
nrn1a
rbfox3a
map1b
bsnb
stmn2a
pcp4a
zgc:65894
calm3a
si:dkey−114c15.7
si:ch211−11c15.3
atp1b3a
hsbp1a
dnajc6
rbfox1
mllt11
nat8l
phactr3a
pak1
adgrl3.1
pcbp4
mansc1
fez1
gng13b
nrp1a
cfl1
tmsb4x
meis2b
fmnl2b
cotl1
aatkb
sertad4
sh3bp5b
snx6
cacnb4b
gdi1
si:dkeyp−75h12.5
bcl2b
SCHIP1
tmem178
pafah1b1b
lnx1
lrrtm2
mprip
SMIM18
appb.1
sh3glb2b
slc7a8a
BX957331.1
nptna
snap25a
stx1b
ppp1r14ba
rbpms2b
vdac3
syt9b
bdnf
glra4b
osbpl10
gphnb
sult4a1
btg2
anks1b
syn2a
si:dkey−253a1.2
rab6bb
si:dkey−112a7.4
ubl7a
necab2
atp6v1c1b
si:dkeyp−72g9.4
evla
rgs7a
atp2b3b
klc2
isl2b
chka
tspan13b
pcsk1nl
slc35g2a
fgf13b
cacna1aa
reep2
hmx4
gnb2
tkta
ube2d4
kif1ab
ttyh3b
camk2g2
rnf10
tmem59l
rltpr
si:dkey−125i20.2
ywhah
homer3
emp1
mef2aa
spry4
clstn2
olfm1a
vgf
syt2a
si:ch73−274k23.3
cdh13
kiaa1549la
camkvb
ntng1a
rab1ba
kif5bb
foxp2
SMIM10
hmx1
itm2ca
atf3
pip4k2ca
si:ch211−195b15.8
usp33
nell2b
ctsla
stmn4l
fosab
si:ch211−214j24.9
prkab1a
ppp2r2ca
oxsr1a
tspan3a
pcdh7b
flot2a
CU639469.1
tspan7b
chga
si:dkey−71p21.9
gnao1a
nmnat2
cnksr2b
gng3
csdc2a
dynlt3
marcksl1b
aqp9b
wls
scn2b
pabpc1b
nrsn1
magi1b
gnai2b
ccdc92
stmn4
pcdh10b
cd9a
csnk1e
gabrb4
grip1
sgsm3
trappc6b
pik3r3b
pou4f2
fstl5
tmem255a
cdk5r2a
ebf1a
gng7
si:ch211−150g13.3
appa
rnf44
si:dkey−56f14.7
dpysl3
tspan18a
cygb1
slc17a6b
capns1b
gpr137bb
fut9a
junbb
si:dkey−84j12.1
ppp3ca
zgc:171482
sprn
irx4a
dpysl5b
lhfpl3
ppp1r7
chd3
pcdh11
atl1
add2
pcdh19
kif3cb
vim
klf7b
rnasekb
si:ch73−290k24.5
cnih3
npas4a
luzp2
atp6v1b2
upf3a
IGLON5
rab3ab
lmo1
egr4
kif1aa
pvalb6
palm1a
dmtn
zgc:77058
ptprn2
elmod1
scg2b
ptprdb
stxbp1a
elavl4
CABZ01080702.1
btbd10a
atp1b1b
syt12
smdt1a
ppfia3
ypel5
crmp1
jun
pcdh11.1
rac3b
ptpn5
hist2h2l
rab10
dynll2a
si:dkey−238f9.1
syngr3a
rusc1
ckmt1
cadm4
khdrbs2
mpped2a
syt4
rcan1a
TMSB15A
cacng2b
gas7a
rabgap1l
kcnip1b
slc6a1a
cdh8
tenm3
celf4
zgc:153426
ywhag2
agrn
cxxc4
basp1
sept5a
kifap3a
cacna2d2a
stox2a
cdh4
b3gat2
map1aa
lasp1
sncb
enoph1
ncam2
CAMK2N1
c1qtnf4
plxna1a
aplp1
si:dkey−234h16.7
kidins220b
si:ch211−202e12.3
ncalda
mpp2b
larp6
fam49a
CR847844.2
tuba2
dixdc1a
arnt2
kif1b
cbx1b
cspg5a
lrfn5b
id4
PRKAR2B
arl8a
fscn1a
cxxc5a
sez6l2
cplx2
rac3a
irf2bpl
camta1b
smarcc2
dpysl5a
tspan18b
cux1a
marcksb
pfdn5
hrasb
creb3l3l
clvs2
maptb
st8sia5
serp2
rapgef2
pbx3b
r3hdm1
rtn1b
nbeaa
ank3a
tuba1c
casp3a
rtn1a
praf2
pfn2
islr2
cd99l2
cnp
atat1
gpm6aa
zgc:158291
soga1
gap43
si:dkey−202p8.1
tmsb
si:dkey−276j7.1
tfap2d
pfn2l
pou6f2
kdm2ba
foxp1b
flot1a
ebf3a
calr
zfhx3
pbx1a
rab11a
alcamb
stmn2b
runx1t1
nkain1
jagn1a
tmeff1b
gpm6ab
nova2
CBFA2T3
si:dkey−280e21.3
epb41a
klf7a
dclk1b
gng2
tubb5
ank2b
elavl3
ncam1a
sox11a
calua
adcyap1b
alcama
sept3
sox11b
pfdn1
eif4ebp1
pou2f2a.1
pou3f1

Retinal Ganglion Cells

p
f
ju
k
t

n
b
b

b
p
p

a
1
1
4
b

f
p
a
la
t1
g
a
x

c
s
c

a
i
o
:d
9

ro
k
1
e
c
y
a
p−120h9.1

ambp

g
s
m
w

l
s
c

n
a

t
2

k

m

p
0

1
2

.
a

b

1

k
1
2
b
a

rmdn1

n
a
c
ld
o
o
a
b
4

ch25hl1.1

w
t
D
fp
d

L
i
r

C
a
3

1

7

s
a
t
r
e
h
a
g
p
d
4
ia

a
z
c
rd

g
a

z

h

i
c
p

n

2

:
r

1
1
i
0
n

b
7
1
1
b
775

acot11b

l
h
c
g

r

o

a
s

p

d
l

t

r
9

b

1

1
a
8

1
1
2

b
a
1la

s
c
m

i
t
:
d
y

d

l
s
9

k
p
e

b
1
y−104n9.1

si:ch211−51a6.2

c
n
t
a
g
v
fa
2b

p
d
l
a
a
a
1
m
a
1b

b
b
a
cl
g
6
3
ab

s
p
l
i
c
p
1
5
6
k
a
1
8
ba

shha
sema3b

e
sl
g
c
r
1
1
3a3

plk3

s
m
fr
a
p
t2
5
aa

e
g
p

p
p
rk

h
r
d
1
x

2
7
1
6

s
z
s
o

n
g
l
a
c

x
c

t
1
x

1
:
3
1
7

a
6
4
2331

c
s
d
i:c
k
h
n
2
1
1
a
1−233a24.2

si:dkey−51e6.1

p
a
c
p
x
ln
b

b
s
s
p

i
p

t

p

:
g
c
i
a
r

2
h
e
p

2
1
2

1
a
d

1−210c8.6

f
s
lp

o
i:
x

a
c
o

r
h
4

1
7
a
3−352p4.8

a
iq
n
s
o
e
1
c
0
2
a

t
g
s
s
k
t
u
a.2

c
r
s
t
i

t
k
d

a
n
e

u
2
a

1
b

cebpa

n
B
f
X
il3
9
−
0
6
8782.3

t
z
s

m
g
lc
c
4

3
:
s

8
1
f

a
5
1

1
3
8

1
012

m
t
s
a

p
e
c

f
5
c
o

g
3
1
x

e
b

1
4

8
p
l

a

1
2b

d
m
h
e
r
t
s
r
9
nl

a
cl
b
d
h
n
d
2
3

f
n
a
g
a
e
h
f
2a

s
e
o
rb
x
b
1
2
0
ip

phactr4b

p
a
r
r
d
rb
x
2
3
b

t
p
m
d
e
zr
m
n
5
3
6
b
b

k
s
ir

i
i
b

d
:c
p

in
h
s
2
2
1
2
1
0
−2
a
51b21.1

zgc:162396

E
ar
M
af
ILIN3

s
s
i
l
:
c
d
4
k
7
e
a
y
1
−94e7.2

g
si
s
:c
ta
h
.
1
1
073−384e4.1

d
rb
b
p
i
4l

S
si
E
:z
M
fo
A
s−
4
1
F
69g10.3

s
s
l
l
c
c
1
2
6
a
a
1
4
1b

i
l
q
o
s
n
e
rf
c
1
1
l
b

ugt5e1
fam126a

l
b
r
3
p
g
1
n
a
t
a
2b

p
sm
cx
o
a
x

a
p
lr

n
l
p
c
k

2
d
s

a
3
1
a
b

r
p
s

n

h
le
a

h
k
s

b
h
e
a
t2
6

t
z
g

u
g
a

b
c
d

a
:
d
1
8

4
1
l4

5
2
g
2
a
55

thbs1b

b
rd
e
h
s
8
t1
a

v
s
ri

l
i
n

d
:d
2

lr
key−74k8.3

a
s
h
s

i

o

b

s
:c
d
u

c
h
a

1
l3

2
1

4
1
b

a
1
2
−106h4.9

ppp1r3ca

s
tr
l
p
c
m
7a
1
2
a

a
si
r
:
g
c
l
h
u
7
1
3
a
−386o14.1

s
s
a
s

y
e

t
n
r

n
r

a
g
p
e

6
p
i
1
n
tl

a

4
e3

m
s
fo
lc
s

a
2
l

t

2

1
7
a
a2b

p
s
r
p
a
i
i

r

:
k

p
k

c
3

c
g
h
r

d
e
2
2

b
f
1
2
1−114n24.6

e
p
p
tp
a
n
s
1
1
3
a

j
p
u
e
n
r
d
2

t
l
c
r
m

o
rf
b

e
ip
l

m

l
1
1
a
5

b

5ba
dgcr2

c
s
m

l
i
c
:
g
c
n

l
h
l

7
211−236l14.4

MAP7

c
e
s
p
t
a
3
s1b

m
n
ta
fe
s

c

n

c
2
1

b
l1b

s
z
l
g
c
c
2
:
6
6
a
6
5
447

g
d
p
h
r
r
1
s3
4
b
6

p
c
rh
c
d

o
s
k

u
e
2

b
r
a
2a

p
z
d
g
p

h
c
p

rs
:
1
1
1

r
5
1

1
8
b

5
8
a
52

si:dkey−166f24.2
aplp2
fam150a

s
n
o
r2
rt
f
1
6
a
b

l
v
d

ip
g
v

g
l
l
l
2
4b

h
s
s
i
l

p
:
c
c
s

7
h
1

a
2
3
1
a
1−106h4.12

e
sl
i
c
f4
1
g
5
2
a
a
2

enosf1
CABZ01076275.1

s
fa
lc
m
3
1
8
6
a
2
2
a

gab1
wasf2
amfr
tmub1

m
slk
fg
a
e8b

c
c
l
l
c
a
n
s
3
p1a

n
s
s
i
e

f
:
e
c
s

2
h
n

l
2
3

2
1
a
1−87m7.3

a
sl
t
c
p
3
1
1
1
a
a
1

hdlbpa

c
p
d
ro
1
c
6
a
4
1

d
sl
s
c
t
3
y
9
k
a10

zgc:92818

h
c
w
o
e

s
l
r

b
1
p

1
8
u
a
d
1
1

p
le
3
tm
h2
2

c
s
l
t
i
8
n
s
t1
ia
a
6

CABZ01069287.1

l
f
m
bln
o
2
7a

s
p
l
t
c
tg
3
1
a
i
2
p
b
b

c
a
c

l

t
s
t

s

c
a
d

a
h1b

tmem214

s
s
n
s

l
i

i
d

c
:

k

c
f

2

1
i
h
p

5
2
2

a
1
2
1
5
−
a
195b13.1

m
z
s
f
t
p
a

tb
3
t1

l
6
a
l1b

t
u
fo

e
b
s

a
e
b

d
2
1
g
b
2

u
cy
tr
p
n
3c1

ppt1

p
m
s
t
a
p
p
n

i
a
s
d
c
a
u
m
b
10a

CABZ01085923.1

g
S
i
H
nm
RO
1
OM2

o
si
t
:
x
d
2
key−7j14.6

g
d
a
py
d
d
d
a
4
.
5
1
ba

DNAJA4

c
z
t
g
s
c
f
:92242

s
s
m

p
i:
c
d
a

l1
k
ta
e
b

1
y
3
−202p8.1

j
s
u
n
n
x5

b2ml

p
a
n
tp
p
1
4
a
a
1a.1

i
f
e
o
r
s
2
ab

n
c
s
o
g

a
l
k

g
9
1

a
a3

jdp2b

g
t
r
r
a

n
p
b

p
m
2

d

0
1
a
b
1

c
a
x
tp
c
1
l1
b
8
1
b
a

c
u
r
g
t
p
a
2
p
b

c
s
y
q
t
s
h
t
4
m
b
1

p
k
rr
i
d

a
tl
c

s
g
d

2
a
6

gsx2

c
m
x
c
4
f
3
d2

g
a
c
c
s
a
h
a
b
2

a
ft
d
r8
h
2
5

o
sl
a
c
z
2
2
2
a
a18

p
G
o
R
lr
A
2
M
b
D2

t
in
ty
p
h
p
3
5
a
ka

fam46ba

n
p
b
rk
e
a
a
r
a
1aa

e
T
n
M
o
E
3
M14A

n
p
u
hy
c
h
b
d
2
1
a

p
c
fd
o
d

x
l
k
e
1

2
c
b
12

tmem72

z
s
a

g
l
t
c
l

c

3
2
:
2
1
a
9
5
4355

r
p
d
lp
h
p
5
1a

fam210b

g
o
p
st
t
m
2l
1

g
f
g
g
a

g
f
m

h
r3
t

a
rn
tl
f
2
13

c
p
s

k

a
rk
m

r1
a
t

a
g
1

b
2a

m
si:
f
d
s
k
d
e
8
y−85k7.7

c
p
p
lx
n
n
e
c
3
1

r
r
g
p
r
e
a
65a

s
s
p
m

l
i
i

c
:
t
f

c
p
a

1
h
n
p

5
2
a
3

a
1
a
l

4
1−269i23.2

zgc:92630

f
z
t

r

p
g
m

d
c
5

d
:8
2

8
5
l2
7
a
77

g
a
p
kr
x
1
4
b
a
1

e
si
i
:
f
d
4
k
e
e
b
y−13i19.8

PLIN3
gpc4

a
C
d
R
k
7
a
92417.1

k
s
rb

r
lc
t

p

2
1
1

2
6
2
a1a

zw10
aldh6a1

a
s
p
i
h

p
:c
c

a
h
y

rd
2
a
11−237l4.6

tm6sf2
adi1
fam120c

f
r
e

a
l
d
b
u

f
p
b

1
1b

b
t
m
b
b

g
c
ip
1
s

1

t
d
3
1
b
0aa

a
g
b
rb
c
1
a
0
1
b
a

gclm
sema4ab

g
s
T
i
s

M
:d
tk

E
k
1
e
M
y
1
−1
9
00n23.4

vamp8

w
l
a
g
c

b
a
t

p
l
n
s
2

1
3
n
a
l

g
m
lo
o
1
b3a

a
e
p

g
e
d

r
f
x
1
n

k
d
a
a

a
sl
p
c
4
9
s
a
1
3r1

s
u
p

l
g
t

c

p
t
6
1
n

a
b
6

9
5

s
rh
rp
b
9
dl3

r
s
b
i:
p
c
5
h211−132i7.2

u
b
tx
l
b
v
n

l
r
7
b
a

p
m
o
s
l
r
r
b
3
1
k
b

c
rh
fl
o
2
ca

si:dkey−204f11.64

n
h
e
a
k
d
7
hb

l
z
ip
g
f
c:110339

c
s
g

c
u
c

n
r
h
f
g

2
4
1

slc4a5

a
t
m
x
la
n
llt

s
d
1

1
c
0
17

m
tsp
b
o

nomo

g
F
rg

o
R
n

t
M
2a
D1

d
g
d
a
x
ts
3
l2
a

i
p
d
i
h
r
1

g
r
te
a
d

x
b
i

2

2
1
6
1
4
fi
a
p1b

t
s
h

p
i
a
:
i
c
1

d
h
a

h
2
a
1
b
1−162e15.3

p
p
e
o
f
r
1
a

s
a
o
c
d
a
1
ds

b
a
a

d
l
t
d
o

h
h
x

2

1
9a1a.1

p
e
p
ch
ia
s
a
1

a
c
p
r
k

3
e
3

h
g
1
2

metap2b

e
sl
c
c
h
2
1
5a28

n
ra
a
b
p
6
r
b
t
a

r
b
a
c
b
l7
3
b
8
a
c

ctnna1
fam49bb

c
c
va

a
cd
p

t
c
b
167

s
p
d
s
h
e
a
n
f
e
4
n

c
c
c
a
d
p
c
n
2
s
8
1
a
a

a
a
c
c
a
a
a
d
1
vl

l
n
it
a
a
p
f
ab

s
s
f
h
o

e
i

a

:
s
d
l

d

j

l1
k

h

e
a
y−180p18.9

a
tr
t
i
p
o
6
b
v
p
1
a
f

syngr2a

c
p
n
o
n
n
3
2
a

a
C
l
A
dh
B
2
Z
.
0
1
1032488.1

c
s
ty

d
i:
r
d
r2
k
l
ey−4e7.3

l
a
ra
h
t
c
a
yl1

s
m
e
y
lt
o
1
1
b
0l3

st3gal3b

s
C
lc
A
4
B
a
Z
4
0
b
1102076.1

tor1

g
p
S

c
i
Y
k
lc
3
T
c
L
3
2

tmem98

e
s
z
g

i
g

c

s

:c
i

c
t

1

o

h
:1
2

2
6
1
2
1
2
−7
0
c
0
8.2

fam96b

d
d
p

n
h
rd

a
rs
x

jc
1
1

1
2

c
rc
o
a
m
2
t
.
b
1

c
a
t
n
s
x
a
a3b

a
g
a
cp

n
s
c
t
a
v

x
t

l
d

a
1
m

1
b
1b

commd4

l
t
a
m
m
e
t
m
or
2
5
56

s
c
y
a
p
p
l
n
2
s
a
1b

c
g
d
tf
6
2
3
a2

s
b
r
r
i
i3

a
p
d
g

c
i
n
s

p
t

t
a
4
a

r
j
k
c

1
2
1

b
c
9
b

ptbp1a
tmem97

i
S
llr
L
1
C16A7

m
fg
f
f
s
b
d
p
2
1
a
b
b
.1

a
a
a
n

r
t
c
q

p
l

a
o

6
6
d
1

ip
v
l
0
1
a1a

f
h
a
e
m
ct
3
d
a
1

ccdc53
tm7sf3
si:dkey−188i13.11

a
s
h
n
r

p

f
x
s

2
1
5

a
5

d
cl
d
ic
t
1

p
a
d
ce

r
t
r
p
a

d

b

6
m

x

p

2
v

b
2
0
b
ca

s
g
p
lr
a
x
rc

z
p
T

b
l
I
s
F

t
c
b

A
r
8
3
o
b
s

f
s
s

a
l
l
c
c

m
3
2

2
8
0

1
a
a

3
3
2

a
a
b

d
o
F
x
e

B
s
c

L
r
r

N
1
1
a
7

T
s
fa
i
S
:
h
d
T

d
k
2
e
a
y−22o12.7

s
s
i
u
a
l
e
f2b

r
s
tu

b
lc
b

m
3
a

4
0
1

7
a
b
8

k
f
c
x
a

b
y
t

s
d
n

b
6
a
l
1

e
p
m
ar
c
p
1
16

d
a
cp

h
tp
n

r
6
s

e

1
a
1

3
p
l
1
1
b

ttyh2l
pmelb
fgfrl1a
tmem14ca

g
s
b
i
l

a
:
b
d
c

1
k
e

l
e
2
y−17m8.1

g
s
rn
i
n
:
a
c
g

s
h
1

e
2
2

k
1
a

a
1−262i1.6

L
z
ty
g
I

r

N
c
p

C
:
1
1
b

0
5
0
3
9
3
9
7
8
2

h
d
b
ct
egfa

commd9

w
a
rr
l
a

f
d
d

g
h
c

a
7
1
a1

c
id
d
h
h
3
6
b

s
s
t
i:
m
ch1073−406l10.2

h
d
s
h
p
rs
b
x
1

z
s
c

g
i
y
:c
p

c
h
:

2

1
7
v

1
3
1

0
−1
7
8
8
b
9
11.2

s
s
t
i:
x
c
1
h
2
2
l
11−117c9.5

t
a
m
d
e
ip
m
or
2
2
43b

arpp19a
tmem189
serinc2

a
C
n
R
x
8
a
5
1
5
1
3
a
87.1

ctsla
rbms2b
slc20a1a

s
m
y
y
b
o
l1
7ab

z
z
b

g
g
c

c
c
a

:
:
p

1
1
3

1
6
1
2
0
7
8
8
4
0
3

g
F
n
K
m
BP
t
15

s
s
l
i
c
:c
2
h
4
2
a
1
4
1
a
−147a11.3

fam3c

c
k
n

r
i
o
f
e
1
t

g

c
3
h

1
b
2
a

s
fa
d
b
c
p
b
1
p
1
2
b

w
s
n
i
u

n
:c
d

t
h
1

t5
7
1
3
r
−86n18.1

tbc1d5
rab3il1
commd2

c
ra
n
b
n
1
m
b
2
a
b

s
a
a
tp
t2
6
b
v1c1b

b
a
l
r
o
l8
c
b
1
a
s1

tmem199

d
a
a
d
p
prh

i
f
s
u
t
r
1
ina

c
c
h
st
m
14
p
a
4
.
b
2
b

m
pr
c
p
o
s
l
a
n
p
1
1
a

m
b
d
e

l
t
d

o
a

n
c

c
g

b
4

1
t

a

1
s3

t
s
ll

m

g
i:
l
d
e

2
k
m
e
3
y
3
−21a6.5

r
r
a
a
b
b
5
1
c
ab

GCA
cyb5a

s
b
n
lo
d
c
1
1s2

f
s
ln
lc
b
4
l
0a1

c
g
d
d
9
a
a
p2

rab3db
tmem141

t
p
r
g
iq
r
k
mc1

o
sl
s
c
t
2
4
5a20

r
p
q

n
t
k
p
f

i

1

a
rf
7
b
5

c
z
a
g
e

r
g
n
a
m

a
c
x
n

c

c

:
a
a

1
r

8

1

2

b

9
3

a
5
l

b
173

hadhaa

l
d
P

a
n
L

m
a
O

t
j
o
b
D

r
1
3

3
2a

f
p
c

lo

e
rs
t

r

2
s
s5
1
a
6

s
i
j
g
a

c
f
g

a
2
n

m
b
1
p
p

b
2
2
b

s
k
s

o
d
cp

c
e
s

e
lr
3

p
2
b

1
a

l
g
g
a
m
lt
n

g
si
m
:c
p
h
p
2
b
11−210c8.7

h
f
p
g
m

4
f
h
r
b
2
b

sa
tspan35
fam21c
eci2
man2b1
stam2
tmem243a

s
c
b

l
l
c

c
d
2

3
n
9
5
a
a
7

commd5

e
z
c
g
c

tf

d
c
b
:
c
8
1
5
1
7
5
89

o
id
s
2
t
a
c

c
g
m
pr
t
1
m
4
6
3

s
c
v

p
d
p

g
c
s
4
2

2
2
9

1
bpb

g
p
p
ra
d
f
1
2
a

p
d
d
e
l
r
i
l
m
1
1

ppib
mesdc2

c
S
a
E
lu
R
b
P1

c
s
q

b
e
d

r
c
p

1
6
r

l

a
1b

phgdh
tram1
txndc5
sigmar1
cygb1
wdfy1

s
o
k
c
a
a
2
2

yif1a

p
a
l
p
x
h
n
1
a
b
1a

commd8
slc37a2

a
a
t
lg
g
5
3

y
s
i
l
p
c1
f4
1a2

snx3

c
l
p
a
h

4
m
m

h
t
a

p
o
2
r
5
2
b

t
lm
m
a
e
n
d
2
5

a
nu
kr
fi
7
p
a
2
3

g
k
n
r
l

p

m
t
c
c
p

2
ap2

a
ca
cp
n
1
x

c
s
c
lc
n
3
d
0
2
a
a
7

c
k
s

t
d
s

n

r
e
4

n
lr
b
2
1
b

zgc:153675

a
m
t
y
f4
h
a
10

r
c
e
c
e
d
p
c
3
2
a
2

s
c
e
o
r
l4
p
a
in
6
h1a

s
C
p
A
tl
B
c
Z
2a
01044960.1

psen2
bcam

c
tr
i
a
b
p
1
pc2l

p
h
r
v
d
c
x
n
6
1

l
l
c

n
r
r
p
x

y
a
2

z
p
a
1

calua

s
tr
e
a
r
m
p1
2

e
z
fk
g
if

b

1
c
p
:
a
5
9

x
6
a
493

a
lrr
p
c
ip
59

p
s
z
rn

i
g

r
:
r

d

c
c

c

3

h
:

1

1
a

7
5
3
2
−4
8
2
3
p
0
12.2

n
z
a
p

g
c

k
a

c
c
t
h
ip

r
:1
p
1
1
0366

c
a
t
c
s
k
b
r
a
3b

l
d
s
e
p
r
1
l2

sec61a1

c
t
g
m
i

l

s

rx
e
d

5
m
2
108

s
e
r
s
p
d
14

f
la
ox
m
d
b
1
1a

si:dkey−33c12.4
abcg4b

s
s
s

i
i
f

:
:
r

c
c
p

h
h
1

2
2
a
1
1
1
1
−
−
1
2
9
1
8
8
c
c
1
6
9
.8
.3

c
s
c

o
f
d
t
l

1
2
4

5
d
a

1
1
5

h
s
s
y
lp

i
i
w

s
:
:

l

c
c

1

h

h
h

b

a

7
7

p

e

3
3

3

2
−
−
6
4
1
6
d
j1
6
8
.
.
3
5

vat1
ptp4a3
commd7

b
s
c
l
d

o
c
1

l
7
a

5
a
3

1
8
l
a

z
a
g
tp
c
6
:9
v
1
0
8
a
9
2
0
b

s
a
m
tp
c
6
o
v
4
1e1a

sytl2b
palld

f
N
z
U
d2
PR2

slc3a2a
tmem88b

f
t
d

s
s
p

t
p
l

p

1
a
7

b
n36

u
z
w
g
x

ls
c
t
:92066

s
t
fo
m
lc

x
e
3

p
m
9

4

a
1
1
34

d
F
d
O
it
6
3
81288.1

w
F
c
m
l
P
n

d
o

t
0
n
b

2
8
1
1

5
9
a

398.1

b
zg
lo
c
c
:
1
1
s
7
6
5088

rab7
jam3b

t
c
x

jp
s
b
t
1

p
1
a

1
4b.1

d
z
p
g

g
a

r
s
k
c

t

g

p
a
:
1
1

1
b
0
1
9
b
934

u
m
b
a
a
b
5
2
2
1l2

vps26a

i
v
m
am
pa
p
1
3

c
a
c

n

t
m
s

p

h
d
y
h
1
d2

d
sl
t
c
n
4
b
5
p
a
1
2
a

z
p
g
c
c
b
:
d
1
1
10239

c
s
p

n
e
m

t
c
f

e
6
r

l
1
a
g

s
tf
d
e
c
c
4

tpm4a

i
P
d
E
3
PD

e
s
m
l
h
c
s

d
3
x

1
8
1

b
a
b
5b

r
s
a
i:
b
c
l
h
6
2
b
11−286b5.5

cyb5r3

t
s
e
r

y

a

l
l
c
o

r

b

p
2
v
3

1
a
l
2
1

a
1

a
b
5b

f
l
f
c

d
a

u
n

l
m

c
r

d

a
a
p

9
p
1
2

6
1
.1

a
a

r
a
a

a
t
g
p
p

t
6
r

1

a
v
b

p
1ab

a
a
n
p
x
3
a
m
4
2

n
ct
e
s
n
z
f

c
s
g

s
s
s

r
u
tz

p
h
1

1
2
a
rs1

p
g
s
lo
p
d
h
5

s
s
e
sr
p
2
t10

a
C
r
D
f1
PF1

fxyd1

i
t
c
a
n
x1bp3

a
d
b
yn
ra
c
c
1
l
i2a

d
m
e
it
g
fa
s1

p
z
a
g
l

t

a

p
c
2

6
:1
g

v
5
1

0
3
5

e
8
1
67

pak2a

c
g
o
m
l9
2
a
a
1b

z
C
g
A
c
B
:1
Z
6
0
2
1
9
0
4
5
4
8650.1

f
s
t

l

h

o
y
y
p
t

n

1
l2
1

b
b

m
g
p
s
f

t

n
t
a
t
1
1
p
a

s
s
i
s
:d
r3
key−226k3.4

p
c
v
o
p

d
l
s

i
9
a

4
a
3

b
2

TPGS1

c
z
o
g
l
c
2
:
a
1
1
0
a
1858

c
s
y
n
r
x
6
9
1
b

t
c
ln
ite
1
d2

CNDP1

c
z
o
g
l
c
1
:
1
1
a
6
1
2
a
730

o
s
c
i
a

t
:
x
d
s

1
k
k

b
e
a
y−238c7.12

p
s
c
e
d

lp
p
o

p
t
n

3
2

c
m
n
f
n
a
2
p2

t
p
jp
o
2
n
b
3.2.1

t
fa
xn
b
2
p11a

y
h
a
rs
p
p
1
12

cyp27c1

s
g
e
p
p
x
h
1a

a
rh
p
e
r
b
t
l1

eif4ebp3l

h
e
a

e
i
a
f4
r

m

6
e
p
bp3

f
h
z
e
d
r
7
9
a

h
se
n
r
1
p
l
inh1b

m
pr
r
p
p
s
l3
1
6
a

hspd1
bzw1b

Retinal Pigmented Epithelium

Sup Figure 8

DAPI cahz

rlbp1a

rlbp1a

DAPI
cahz

rlbp1a

DAPI
cahz

DAPI cahz

rlbp1a rlbp1aDAPI
cahz

DAPI cahz

rlbp1a rlbp1aDAPI
cahz

rlbp1a

DAPI
cahz

DAPI cahz

rlbp1a rlbp1aDAPI
cahz

DAPI cahz

rlbp1a rlbp1aDAPI
cahz

rlbp1a

DAPI
cahz

36 h

cahz+, rlbp1a+ cahz-, rlbp1a+
2 d

A

B

Sup Figure 9

Sup Figure 10

FItSNE

FI
tS
N
E

A

B

GABA, tac1+

synpr+

sst1.1+

pdyn+

prdx1+

tph2+

GABA, dlx+

Sup Figure 11

1 2 3 4 5 6 7

lmx1bb
fev
ddc
txn
gch1
tph2
gata3
cbx3b
pyyb
nkx2.1
npy
sst1.2
scrt1a
sst1.1
efhd1
dlx2b
dlx2a
si:ch211−11c15.3
si:dkey−175g6.2
gap43
uchl1
gad1b
elavl4
atp1b1b
rab6bb
BX957331.1
slc32a1
cplx2l
slc6a1b
nxph1
calb1
lhx6
zgc:153845
vax1
dlx5a
msi2a
dlx6a
msi2b
epd
hbz

dlx+ sst+ tph2+

gad2+, nrgna- branch

precursors

si:dkey−4i23.7
qkia
syt10
bambib
cart2
zic3
sall3a
dusp2
pyyb
junba
grm1a
etv1
kcnf1b
dgkh
gulp1a
cpne5b
zgc:91860
wu:fj39g12
VSTM2B
rprml
si:ch211−132d3.4
nxph1
fam126a
sp8a
cnih3
fam184b
pbx3b
cpne4a
tshz1
zgc:101731
gdpd5b
si:ch211−203b8.6
cacna1ea
plk3
si:dkey−253a1.2
qpct
egr1
fosb
pkig
ndufa4l2a
ddc
pcbp4
mt2
trh
rnd3a
ier2
dlx2b
tmeff2b
mef2cb
si:dkey−105e17.1
synpr
grm2b
chodl
cygb2
slc38a3a
rassf4
syt6a
sst3
CU929259.1
slc25a22
dhrsx
camk2n2
ncs1b
dlx1a
fkbp1b
amph
mmel1
ncs1a
foxg1a
irf2bp2b
zgc:64022
pvalb7
si:dkey−112a7.4
rasgef1bb
fam107b
chn1
tbkbp1
ngef
camk1db
pip4k2ab
ntn1b
ppp1r1c
penka
bzw2
rasgef1ba
camk2a
si:ch211−168d1.3
pde9a
nr2f2
ahcyl1
RAMP1
ccdc136a
prkcbb
fndc4a
tmed8
arrb2b
atp2b4
palmdb
si:ch73−305o9.3
camk4
si:ch73−103b11.2
vsnl1a
calcrla
grm5a
oprd1b
si:dkeyp−72h1.1
ppp3r1a
atp2a3
gabrb3
ccka
tmem9
nr2f1b
grin1a
prox1a
gng13b
rgs7a
gabrd
sod2
spna2
atp1b1a
npr3
tuba8l2
lrmp
cd59
cyth1b
chrm4a
PRIMA1
carhsp1
add3b
ndnfl
penkb
DGKK
scn3b
kctd12.1
map2k1
prox1b
hmx3a
mex3b
zgc:114118
rrad
vip
gsx1
kcnj3b
ngb
rgma
nkx2.2a
tox
nkx2.4b
si:dkey−27j5.5
asphd2
camkvb
pvalb6
cyth3a
ppp3ca
nr2f1a
nkx2.4a
prmt8b
faub
CR847844.2
lmo1
foxd2
lrrn1
pfdn6
raver2
isl1
dlx5a
mcl1a
htra1b
mdkb
camk2d2
kcnip1b
mpp2b
egr4
syn2a
eno2
tac1
map1ab
r3hdm1
atp1b3a
pcp4l1
rbfox1
homer1b
ndufa4
nrgna
cplx2l
bhlhe41
smdt1b
rgs5b
reep2
trim9
si:dkey−35i13.1
BEGAIN
nptna
ppp3cb
arl4d
ywhaqa
hsbp1a

synpr−precursors synpr+

nrgna+ branch

tac3b
npas4b
tac3a
si:dkey−19b23.8
bdnf
b3galnt2
palmdb
doc2b
rims2a
igfbp5b
pdyn
sox6
sox5
zgc:162730
pde9a
gabra5
adcyap1b
TMSB15A
nptx1l
gabrb3
camkvb
ldb2b
ca10a
cbln1
CBFA2T3
slitrk4
foxp4
tac1
acsl1a
pcdh11.1
ap1s1
vat1
nell2b
gap43
klf7b
ppp3ccb
zgc:114118
nr5a2
syt5b
nr0b1
myclb
rgs5b
kctd4
pcdh11
six6b
phlda2
slc17a6b
vamp1
slc17a6a
gpr78a
fezf1
avp
camkva
map2k1
camkvl
si:ch211−235e15.1
nkx2.2a
si:dkey−27j5.5
tnfaip8l3
nr5a1b
sox1b
sox14
plxna1a
sox1a
mpped2a
BEGAIN
robo2.1
rasgef1ba
islr2
lhx5
lmo3
tubb5

pdyn+ neurons

aoc1
npas4b
si:dkey−85n7.8
htr1ab
chgb
th2
rgs3a
si:ch211−131k2.2
slc35f4
hectd2
zgc:92140
egr2b
zgc:152698
junba
si:ch211−270n8.4
rab3db
nr4a1
btg2
mt2
gipc2
faah2a
ddc
si:ch211−56a11.2
bsx
tph1a
zgc:162595
cahz
gch1
ptprn2
ndufa4l2a
sp5a
scg3
insm1b
pou3f3b
zgc:73340
rap1b
pou3f1
pou3f3a
si:dkeyp−110a12.4
pora
kctd12.1
syt6b
txnrd1
kcnj3a
b3gat2
flrt3
lysmd2
scgn
si:dkeyp−72h1.1
rgs8
plcxd3
atp1a1b
ccka
ak5l
tspan18a
si:dkeyp−122d12.1
txn
sox1a
prdx1
zgc:162707
msi2b
enkur
rfx2
ptpn5
pacrg
nme5
tead1b
insm1a
ccng1
myt1la
lmo3
cdc34b
gsx1
cct8
dpysl3
fxyd6l
atat1
stap2a
ppp1r14ba
cnp
dclk1b
nkain1
pbx1a
hnrnpr
dlx6a
isl1
zfhx3
nfil3−5
zgc:153867
sox4a.1
hnrnpa1a
cxxc4
mex3b
nfil3
srsf9
dlx1a
zfhx4
vma21
dlx2a
actl6a
elavl3
dlx2b
sox11b
smarcb1b
phc2a
sox11a
rcc2
ddx39aa
myt1a
si:ch211−193l2.7
fam60al.1
tle2
ctnnb1
histh1l
lef1
tob1b
si:ch211−260e23.9
nr2f2
zbtb20
nkx2.4a
ip6k2a
mfsd2ab
cd99l2
tubb5
tuba1b
tmsb4x
tuba1c
zgc:56493
si:ch73−46j18.5
tmeff1b
tuba1a
tmsb
tubb2b
bcam
zc4h2
ctnnbip1
foxg1a
calua
hapln1a
fam168a
hmx3a
smarce1
cct4
scml2
hnrnpaba
myt1b
chd4a
CABZ01075268.2
rsrp1
si:dkey−56m19.5
brd7
nova2
ssbp3b
fabp3
hnrnpa0l.1
dlb
mbd3b
phf10
nono
six6b
ppiaa
si:ch211−132d3.4
dnajb1b
tcp1
cct3
cct5
ddx39ab
sf3b5
ube2ib
marcksb
rbbp4
ybx1
ilf2
rcor2
nkx2.4b
si:ch73−281n10.2

precursors prdx1 − prdx1 +

prdx1 branch

Sup Figure 12

synpr-
(GABA
tac1+)

nrgna+
branch

gad2+, nrgna-
branch

synpr+ sst+ tph2+ dlx+

precursors precursors

prdx1+

prdx1-

precursors

Sup Figure 13
A

B

Retinal ganglion cells

Pdyn+ neurons

Sup Figure 14
Retina HypothalamusMean Mean

Retina: 1 - URD object & doublet removal
Jeff Farrell
8/22/2019

Contents
Import data into URD 1

Convert Seurat object to URD . 1
Combined individual stage clustering . 1

Calculate highly variable genes 2

Calculate KNN graph and remove outliers 7

Remove kidins220a+ population 8

Remove cell type doublets 8
Add UMAP projection . 8
Load NMF results and import into object . 9
Select cell-type specific modules . 9
Determine which module pairs to use for doublet removal 12

Import data into URD

Convert Seurat object to URD

We first loaded a Seurat object that contained just cells from the clusters that belonged to the
hypothalamus from each stage.
suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

Load Seurat object that has been cropped to hypothalamus cells
object.seurat <- readRDS(paste0(base.path, "obj/retina.new_seurat.rds"))

Convert to URD object
suburd <- seuratToURD(object.seurat)

Combined individual stage clustering

Bushra had performed individual clusterings across each stage with different resolutions. Here,
it was better to create a single identifier that included stage + cluster information to combine all
those clusterings (while preventing any overlap).

1

Supplemental Analysis

stages <- sort(unique(suburd@meta$stage))
clust.res.used <- paste0("res.", c("4.5", "4", "5", "5", "4.5", "5", "6",

"6", "6", "5.5", "6", "5"))
names(clust.res.used) <- stages
suburd@group.ids$cluster <- NA
for (stage in stages) {

suburd@group.ids[cellsInCluster(suburd, "stage", stage), "cluster"] <- paste0(stage,
"-", suburd@group.ids[cellsInCluster(suburd, "stage", stage), clust.res.used[stage]])

}

Calculate highly variable genes

We calculated highly variable genes for each stage, used genes that were found as highly in at
least two stages, but were not mitochondrial, ribosomal, heat-shock protein, or tandem duplicated
genes.
Calculated on each stage separaely, final gene list was all genes
that were 'variable' in at least two stages NB: For a couple of
stages, the gamma fit was poor -- the library size distribution
seemed bimodal. Have seen this before in 10X data, but not sure what
it means.
var.genes.by.stage <- lapply(stages, function(stage) {

findVariableGenes(suburd, cells.fit = cellsInCluster(suburd, "stage",
stage), set.object.var.genes = F, diffCV.cutoff = 0.3, main.use = stage,
do.plot = T)

})

2

3

4

5

names(var.genes.by.stage) <- stages
var.genes <- sort(unique(unlist(var.genes.by.stage)))
print(paste0("Length of variable genes is ", length(var.genes)))

[1] "Length of variable genes is 2636"

var.genes.twice <- names(which(table(unlist(var.genes.by.stage)) >= 2))
print(paste0("Length of variable genes shared across at least 2 stages is ",

length(var.genes.twice)))

6

[1] "Length of variable genes shared across at least 2 stages is 1724"

Remove mitochondrial genes
var.mito <- grep("^mt-|^AC0", var.genes.twice, value = T)
Remove ribosomal genes
var.ribo <- grep("^rps|^rpl", var.genes.twice, value = T)
Remove hsp genes
var.hsp <- grep("^hsp", var.genes.twice, value = T)
Remove genes with duplicates
var.dups <- grep("of many", var.genes.twice, value = T)
suburd@var.genes <- setdiff(var.genes.twice, c(var.mito, var.ribo, var.hsp,

var.dups))
print(paste0("Length of final variable genes list (after removing mito, ribo, hsp genes) is ",

length(suburd@var.genes)))

[1] "Length of final variable genes list (after removing mito, ribo, hsp genes) is 1595"

To prevent downstream problems, we also removed any cells from the data that had the exact
same expression of the variable genes (i.e. cells with completely duplicated coordinates in the
high-dimensional space we would use for analysis downstream).
Check for duplicate data points - cells with exact same expression of
variable genes
vg.dups <- duplicated(as.data.frame(as.matrix(t(suburd@logupx.data[suburd@var.genes,

]))))
if (length(which(vg.dups)) > 0) {

print(paste("Removing", length(which(vg.dups)), "cell(s) with duplicated variable gene expression."))
not.dup.cells <- colnames(suburd@logupx.data)[!vg.dups]
suburd <- urdSubset(suburd, not.dup.cells)

}

[1] "Removing 6 cell(s) with duplicated variable gene expression."

Calculate KNN graph and remove outliers

We then calculated a k-nearest neighbor graph and removed cells that had unusual distance to
their nearest neighbor, or unusual distance to their 20th nearest neighbor (given their distance
to their nearest neighbor). These sorts of outliers often cause problems or skew diffusion maps
(used downstream).
Calculate k-nn
suburd <- calcKNN(suburd)

Check what the outliers are
outliers <- knnOutliers(suburd, nn.1 = 1, nn.2 = 20, x.max = 40, slope.r = 1.05,

int.r = 4.2, slope.b = 0.75, int.b = 11.5, title = "Identifying Outliers by k-NN Distance.")

7

length(outliers)

[1] 521

suburd <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
outliers))

Remove kidins220a+ population

A cell cluster was observed in 15 dpf that was positive for expression of kidins220a, and foxg1b
(which is exclusive to the retina). However, no similar clusters were observed in other stages,
suggesting that we did not recover the progenitors of this population, so we excluded it from the
URD analysis.
suburd <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),

cellsInCluster(suburd, "cluster", "12-15d-96")))

Remove cell type doublets

Add UMAP projection

While not strictly required, a UMAP projection can make it easier to assess the expression of NMF
modules and whether thresholds for overlap are set correctly.

8

add UMAP command

Load pre-calculated UMAP
umap <- readRDS(paste0(base.path, "/umap/umap_retina.rds"))

Add projection to URD object
suburd@tsne.y <- umap[colnames(suburd@logupx.data),]

Load NMF results and import into object

NMF results were calculated by providing suburd@logupx.data to an external NMF pipeline written
in Python. The output results are imported here, scaled, and added to the URD object.
Load the NMF results
load(paste0(base.path, "/NMF/retina/result_tbls.Robj"))

The results object contains NMF runs for several K values. k=45 was
chosen for this tissue, so this extracts the results for that
particular parameter
k.use <- "45"
nmf.cells <- result_obj[[paste0("K=", k.use)]][[1]]$C
rownames(nmf.cells) <- paste0("nmf", 1:nrow(nmf.cells))
colnames(nmf.cells) <- gsub("\\.", "-", colnames(nmf.cells))
nmf.genes <- result_obj[[paste0("K=", k.use)]][[1]]$G
colnames(nmf.genes) <- paste0("nmf", 1:nrow(nmf.cells))

Some stages were subsampled in the original object and accidentally
cropped out cells that had scGESTALT barcodes. Those were added back
in, and their expression was decomposed with original NMF gene matrix
to give an additional NMF cell matrix for those cells.
new.nmf.c <- read.csv(paste0(base.path, "/NMF/retina/retina_new_nmfC_k45.csv"),

row.names = 1)
rownames(new.nmf.c) <- paste0("nmf", 1:nrow(new.nmf.c))
colnames(new.nmf.c) <- gsub("\\.", "-", colnames(new.nmf.c))

Combine old and new NMF results
nmf.cells <- cbind(nmf.cells, new.nmf.c)

Trim NMF results to match cells in current object
nmf.cells <- nmf.cells[, colnames(suburd@logupx.data)]

Scale NMF results 0-1
nmf.cells.scaled <- sweep(nmf.cells, 1, apply(nmf.cells, 1, max), "/")

Add scaled NMF results to the URD object
suburd@nmf.c1 <- as(t(as.matrix(nmf.cells.scaled)), "dgCMatrix")

Select cell-type specific modules

Several NMF modules will be poor markers of cell types — these are often modules driven mostly
be the expression of 1-2 genes (where the gene loading of the first gene is much greater than that

9

of the fourth gene, for instance), or modules that don’t exhibit any restriction in a tSNE or UMAP
projection.
Plot size parameters
plot.height = 8
plot.width = 8
dpi = 150

Plot every module to determine which exhibit cell-type specificity
This saves directly to the hard drive: two example plots are shown
below.

for (n in colnames(suburd@nmf.c1)) { png(paste0(path, '/doublets/',
subset, '-plots/', n, '.png'), width=dpi*plot.width,
height=dpi*plot.height) plot(plotDim(suburd, n)) dev.off() }

gridExtra::grid.arrange(grobs = list(plotDim(suburd, "nmf4", plot.title = "nmf4: strong cell-type restriction"),
plotDim(suburd, "nmf2", plot.title = "nmf2: poor cell-type restriction")),
ncol = 1)

Warning: Removed 520 rows containing missing values (geom_point).

Warning: Removed 520 rows containing missing values (geom_point).

10

Module Gene 1 : Gene 4 Ratios
top.genes <- result_obj[[paste0("K=", k.use)]][[1]]$top30genes
top.weights <- top.genes[, grep("Weights", colnames(top.genes), value = T)]
colnames(top.weights) <- paste0("nmf", 1:nrow(nmf.cells))
top.weights.ratio <- top.weights[1,]/top.weights[4,]

Which modules exhibit cell-type restriction?
modules.ok.ratio <- names(top.weights.ratio)[which(top.weights.ratio <

5)]
restricted.modules <- paste0("nmf", c(4:5, 8:13, 15:18, 21:29, 31:35, 37:39,

41:44))
good.modules <- intersect(modules.ok.ratio, restricted.modules)

11

Determine which module pairs to use for doublet removal

We consider NMF modules pairwise and only use those pairs that don’t are non-overlapping in
the data. (In other words, NMF modules that are mutually exclusive in the majority of the data.)
Here, we determine thresholds for selecting those module pairs.
Determine overlaps between module pairs
nmf.doublet.combos <- NMFDoubletsDefineModules(suburd, modules.use = good.modules,

module.thresh.high = 0.4, module.thresh.low = 0.15)

Determine thresholds for NMF modules
frac.overlap.max = 0.03
frac.overlap.diff.max = 0.1
module.expressed.thresh = 0.33

Determine which module pairs to use for doublets
NMFDoubletsPlotModuleThresholds(nmf.doublet.combos, frac.overlap.max = frac.overlap.max,

frac.overlap.diff.max = frac.overlap.diff.max)

These commands save plots directly to the hard-drive.

Make plots to see how your thresholds are
NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,

"-doublet-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "pass", sort = "near", n.plots = 25)

NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,

12

"-ok-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "discarded", sort = "near", n.plots = 25)

Define doublet cells
nmf.doublets <- NMFDoubletsDetermineCells(suburd, nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,

frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max) # 376 cells / 19837 cells = 1.9%

Plot doublet cells on the UMAP
suburd <- groupFromCells(suburd, "nmf.doublets", cells = nmf.doublets)
plot(plotDimHighlight(suburd, clustering = "nmf.doublets", cluster = "TRUE",

plot.title = paste0("NMF doublets: ", length(nmf.doublets), " cells"),
point.size = 2, highlight.color = "blue"))

Warning: Removed 520 rows containing missing values (geom_point).

Crop object to exclude doublets
suburd.cropped <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),

nmf.doublets))

And then save the completed object for use downstream in building a tree using URD.
saveRDS(suburd.cropped, file = paste0(base.path, "/obj/URD_retina_ND.rds"))

13

Retina: 2 - URD tree
Jeff Farrell
9/07/2019

Contents
Load data 1

Processed on the cluster 1

Calculate diffusion map and pseudotime 2
Calculate diffusion map . 2
Calculate pseudotime . 4

Calculate biased transition matrix 9

Perform biased random walks 9
Determine tips . 9
Perform the biased random walks . 11
Process the random walks . 12

Build the URD tree 12

Save the URD tree 13

Load data

suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

Load procesed URD object
object <- readRDS(paste0(base.path, "obj/URD_retina_ND.rds"))

Processed on the cluster

Most of the following steps were run on a computing cluster. These individual tissue subsets
can be run on a modern, well-equipped laptop. The use of a computing cluster allows multiple
parameter choices to be tried in parallel, and also allows further parallelization of the random
walk procedure, speeding it up. Below, we should the commands that one would run on their
laptop, and then generally load the pre-processed results from the cluster that were used in the
paper. If you want to parallelize your own processing on a compute cluster, the scripts we used
will be available at http://github.com/farrellja/URD/cluster/

1

http://github.com/farrellja/URD/cluster/

Calculate diffusion map and pseudotime

These two steps are run in the cluster script URD-DM-PT.R.

Calculate diffusion map

To run locally: Calculate a diffusion map projection
object <- calcDM(object, knn = 140, sigma.use = 14)

Or: Load a pre-computed diffusion map projection
dm <- readRDS(paste0(base.path, "dm/dm_retinanewnokND_knn-140_sigma-14.rds"))
object <- importDM(object, dm)

Plot diffusion maps
stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",

"gold", "goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2",
"lightgrey")

Plot by stage
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "stage", plot.title = "", outer.title = "Diffusion map labeled by Stage",
legend = T, alpha = 0.45, discrete.colors = stage.colors)

2

Plot with final cell types labeled
object@group.ids$final.cluster <- NA
object@group.ids[cellsInCluster(object, "stage", "12-15d"), "final.cluster"] <- object@group.ids[cellsInCluster(object,

"stage", "12-15d"), "res.5"]
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "final.cluster", plot.title = "", outer.title = "Diffusion map with final clusters",
legend = T, alpha = 0.6)

3

Calculate pseudotime

URD requires a starting point or ‘root’ for determining pseudotime. Here, we used all cells from
the first timepoint (i.e. 12 hpf) as the root.
Here, we used all cells from the first timepoint (i.e. 12 hours) as
the root.
root.cells <- cellsInCluster(object, "stage", "01-12h")
plotDimHighlight(object, "stage", "01-12h", plot.title = "Root is 12 hpf cells")

Warning: Removed 500 rows containing missing values (geom_point).

4

To run locally: Run graph-search simulations to determine pseudotime
flood.result <- floodPseudotime(object, root.cells = root.cells, n = 100,

minimum.cells.flooded = 2, verbose = T)

Or load a pre-computed graph-search simulation result
flood.result <- readRDS(paste0(base.path, "flood/flood_retinanewnokND_knn-140_sigma-14.rds"))

Process the graph-search simulations to determine the pseudotime of
each cell
object <- floodPseudotimeProcess(object, flood.result, floods.name = "pseudotime",

max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

If enough simulations have been run, then as additional simulations
are added, the overall change in pseudotime of cells should reach an
asymptote. If it does not, then floodPseudotime should be run with a
higher n.
pseudotimePlotStabilityOverall(object)

5

plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "pseudotime", plot.title = "", outer.title = "Diffusion Map labeled by pseudotime",
legend = F, alpha = 0.4)

6

plotDim(object, "pseudotime", plot.title = "UMAP projection colored by pseudotime")

Warning: Removed 500 rows containing missing values (geom_point).

7

plotDists(object, "pseudotime", "stage", plot.title = "Pseudotime by stage")

8

Calculate biased transition matrix

In order to perform biased random walks, we must first bias the transition matrix to ensure that
walks proceed towards the root and do not turn into other differentiated cell types. This is per-
formed in the cluster script URD-TM.R.
Calculate parameters for biasing the transition matrix.
diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime",

optimal.cells.forward = 40, max.cells.back = 80, pseudotime.direction = "<",
do.plot = T, print.values = T)

[1] "Mean pseudotime back (~80 cells) 0.00295569803650678"
[1] "Chance of accepted move to equal pseudotime is 0.822024945232085"
[1] "Mean pseudotime forward (~40 cells) -0.00148141113789574"

Calculate the biased matrix.
biased.tm <- pseudotimeWeightTransitionMatrix(object, pseudotime = "pseudotime",

logistic.params = diffusion.logistic, pseudotime.direction = "<")

Perform biased random walks

Then, we perform biased walks starting from each tip. Visited cells are inferred to lie along the
trajectory that connects the root to each cell type. This is performed in the cluster script URD-
Walk.R.

Determine tips

We used clusters from 15 dpf as the tips for performing biased random walks. Here we define
the cells belonging to each of those clusters.

9

All clusters at 15 days
clusters.15day <- unique(object@group.ids[grep("15d", object@group.ids$stage),

"res.5"])
All cells at 15 days
cells.15day <- rownames(object@group.ids)[grep("15d", object@group.ids$stage)]
Cell lists of each cluster at 15dpf
cells.15dpf.clusters <- lapply(clusters.15day, function(clust) intersect(cells.15day,

cellsInCluster(object, "res.5", clust)))
names(cells.15dpf.clusters) <- paste0("15d-", clusters.15day)

We also load a .csv file that contains information about the tips. It has four columns:
• id: Cluster ID for the tip
• use: Whether this cluster should be used when building the tree
• name: The name for this tip, which will be used on 2D plots
• short.name: The ‘short’ name for this tip, which would be used on 3D plots (though we did

not use that feature in this study).
Load CSV
tip.names <- read.csv(paste0(base.path, "tips/tip_names_retinanewnokND.csv"),

header = F, stringsAsFactors = F, colClasses = c("character", "logical",
"character", "character"))

Name columns and rows
names(tip.names) <- c("id", "use", "name", "short.name")
rownames(tip.names) <- gsub("_", "-", tip.names$id)

Sort alphabetically
tip.names <- tip.names[order(rownames(tip.names)),]

These are the tips that were considered during the construction of the retina URD tree (some were
excluded during tree construction later in the buildTree command).
Define a 'tips' clustering
object@group.ids$tip <- NA
object@group.ids$tip.id <- NA
object@group.ids$tip.name <- NA

If the tip will be used in the tree, define its cells in the
clustering
for (i in 1:nrow(tip.names)) {

tip.cells <- cells.15dpf.clusters[[rownames(tip.names)[i]]]
object@group.ids[tip.cells, "tip"] <- as.character(i)
object@group.ids[tip.cells, "tip.id"] <- rownames(tip.names)[i]
object@group.ids[tip.cells, "tip.name"] <- as.character(tip.names[i,

"name"])
}

Plot the tips
plotDim(object, "tip.name")

Warning: Removed 500 rows containing missing values (geom_point).

10

Perform the biased random walks

Biased random walks then need to be run starting from each tip. This can be performed on a
laptop, but is an ideal candidate for parallelization on a cluster. (The walks from each tip can be
run as a separate job.)
IF RUNNING LOCALLY

Loop through each cluster
walks <- lapply(rownames(tip.names), function(c) {

Exclude any tip cells that for whatever reason didn't end up in the
biased TM (e.g. maybe not assigned a pseudotime).
tip.cells <- intersect(cells.15dpf.clusters[[c]], rownames(biased.tm))
Perform the random walk simulation
this.walk <- simulateRandomWalk(start.cells = tip.cells, transition.matrix = biased.tm,

end.cells = root.cells, n = 50000, end.visits = 1, verbose.freq = 1000,
max.steps = 5000)

return(this.walk)
})
names(walks) <- rownames(tip.names)

Alternatively, this loop is automated by the function
simulateRandomWalksFromTips

Alternatively, a set of pre-calculated walks can be loaded. Since the walks are a simulation (and

11

therefore not deterministic), this is particularly crucial for reproducing results.
IF LOADING PRE-CALCULATED WALKS

Get list of files in the walks directory
walks.files <- list.files(paste0(base.path, "/walks/retinanewnokND/"),

pattern = ".rds")

Load the walks previously performed for each cluster
walks <- lapply(rownames(tip.names), function(c) {

walk.file <- grep(pattern = paste0("_tip-", c, "_"), x = walks.files,
value = T)[1]

return(readRDS(paste0(base.path, "/walks/retinanewnokND/", walk.file)))
})
names(walks) <- rownames(tip.names)

Process the random walks

The walks are then converted to visitation frequency by importing them into the URD object.
for (i in 1:nrow(tip.names)) {

Load the individual walk visitation frequencies into the object
object <- processRandomWalks(object, walks = walks[[i]], walks.name = i,

n.subsample = 1, verbose = F)
}

Build the URD tree

Then, a branching tree is constructed, by joining trajectories in an agglomerative fashion when
cells are highly visited by walks from multiple tips. The following steps were performed in the
cluster script URD-Tree.R.
Tree building is destructive, so create a copy of the object
object.tree <- object

Load tip cells
object.tree <- loadTipCells(object.tree, "tip")

Determine tips to use
tips.to.use <- which(tip.names$use)

Build the tree
object.tree <- buildTree(object.tree, pseudotime = "pseudotime", divergence.method = "preference",

cells.per.pseudotime.bin = 40, bins.per.pseudotime.window = 5, save.all.breakpoint.info = T,
p.thresh = 0.01, verbose = F, tips.use = as.character(tips.to.use))

Name the tips of the tree
object.tree <- nameSegments(object.tree, segments = tips.to.use, segment.names = as.character(tip.names[tips.to.use,

"name"], short.names = as.character(tip.names[tips.to.use, "short.name"])))

plotTree(object.tree, "stage", discrete.colors = stage.colors, label.segments = T)

12

Save the URD tree

The tree is then saved for use in downstream analysis, and can easily be loaded for further pe-
rusal.
saveRDS(object.tree, file = paste0(base.path, "tree/URD-Tree-Retina.rds"))

13

Retina: 3 - URD Cascades and Figures

Jeff Farrell

10/08/2019, updated 07/30/2020

Contents
Load data 2

Plot gene expression on the tree 2
Plot tree by stage . 2
Plot tree with gene expression: main figures . 3
Plot tree with gene expression: supplemental figures 4

Determine genes enriched in trajectories to particular cell types 5
Comparison between major cell types . 5
AUCPR along tree . 7

Functions for curating differential expression results 7
threshold.tree.markers . 7
threshold.clade.markers . 8
divide.branches . 8

Functions for heatmap generation 9
Color scale . 9
determine.timing . 9
filter.heatmap.genes . 10

Heatmaps of gene cascades 10
Photoreceptors . 11

Prepare cascade . 11
Generate heatmap: all genes . 12
Generate heatmap: main figure . 15

Amacrine cells . 17
Prepare cascade . 17
Generate heatmap: all genes . 18

Retinal ganglion cells . 20
Prepare cascade . 20
Generate heatmap: all genes . 20
Generate heatmap: main figure . 22

Horizontal Cells . 24
Prepare cascade . 24
Generate heatmap: all genes . 24

Muller Glia . 27
Prepare cascade . 27
Generate heatmap: all genes . 27

Retinal Pigmented Epithelium . 29

1

Prepare cascade . 29
Generate heatmap: all genes . 29

Continuous differentiation 31
RGC cells . 31
Progenitor cells . 31

Progenitors over time 32
Identify populations . 32
Differential expression between neural progenitor populations 36

boot.fc . 36
Empirical p-value . 37
Tissue-specific changes . 38
Limit to well-expressed . 39
Result . 39

Preservation of embryonic molecular profiles in larval progenitors 40
Identify populations to compare . 40
Determine proportion of cells in each state . 42

Load data
Load URD
library(URD)

Loading required package: ggplot2

Loading required package: Matrix

Registered S3 method overwritten by 'xts':
method from
as.zoo.xts zoo

Basic location
base.path <- "~/Documents/R sessions/urd-cluster-bushra/"

Load completed retina tree object
obj.path <- paste0(base.path, "tree/retinanewnokND/tree-retinanewnokND_knn-140_sigma-14_40F-80B_NO-15d-29-15d-39-15d-43-15d-62_pref_01.rds")
obj <- readRDS(obj.path)

Plot gene expression on the tree
Plot tree by stage

stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3", "gold",
"goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2", "lightgrey")

plotTree(obj, "stage", label.type = "group", discrete.colors = stage.colors)

2

Plot tree with gene expression: main figures

gridExtra::grid.arrange(grobs = lapply(c("vsx1", "lmo4a", "pax6a", "rem1"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 2)

3

Plot tree with gene expression: supplemental figures

gridExtra::grid.arrange(grobs = lapply(c("foxd1", "her15.1", "her4.1", "hes2.2",
"stx3a", "dmbx1a", "prkca", "rx3", "irx7", "fezf2", "ndrg1b", "opn1mw1", "gnat1",
"pbx1a", "tfap2c", "slc18a3a", "rbpms2a", "ompa", "sdpra", "rpe65a"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 4)

4

Determine genes enriched in trajectories to particular cell types
Comparison between major cell types
We took each major group (“clade”) of branches from the end of the tree as a single entity
(i.e. cone bipolar cells, photoreceptors, amacrine cells, retinal ganglion cells, horizontal cells)
and compared them against each other pairwise to look for differentially expressed genes.
Get the parent segment of each clade to consider as a group
combined.tips <- c("24", "25", "19", "8", "15")

5

Get the cells in that segment and all child segments
cells.combined.tips <- lapply(combined.tips, function(t) whichCells(obj, label = "segment",

value = segChildrenAll(obj, t, include.self = T)))
names(cells.combined.tips) <- combined.tips

Loop through each of these clades and look for differentially expressed genes
combined.markers <- lapply(combined.tips, function(tip) {

Find all of the other clades
opposing.tips <- setdiff(combined.tips, tip)
Perform pairwise comparisons to each other clade
m.o <- lapply(opposing.tips, function(tip.opposing) {

message(paste0(Sys.time(), ': Comparing tip ', tip, ' to ', tip.opposing, '.'))
Find differentially expressed genes between the pair of clades
ma <- markersAUCPR(object = obj, cells.1 = cells.combined.tips[[tip]], cells.2 = cells.combined.tips[[tip.opposing]],

effect.size = 0.4, auc.factor = 1.1)
In order to facilitate combining all of the results later, add columns about
which two clades were compared and also a duplicate entry of the name of each
gene that's recovered.
ma$gene <- rownames(ma)
ma$tip1 <- tip
ma$tip2 <- tip.opposing
return(ma)

})
names(m.o) <- opposing.tips
return(m.o)

})
names(combined.markers) <- combined.tips

Require that genes are markers against at least 3 other clades
combined.markers.beatmult <- lapply(combined.markers, function(m) {

names(which(table(unlist(lapply(m, rownames))) >= 3))
})

Since genes might be a marker in a comparison to several other clades, combine
the results into a single table, where each gene is listed only once with the
info from the pairwise comparison where it had the strongest differential
expression.
combined.markers.best <- lapply(1:length(combined.markers.beatmult), function(i) {

cm <- do.call("rbind", combined.markers[[i]])
cm <- cm[cm$gene %in% combined.markers.beatmult[[i]],]
cmb <- do.call("rbind", lapply(combined.markers.beatmult[[i]], function(g) {

cmr <- cm[cm$gene == g,]
return(cmr[which.max(cmr$AUCPR.ratio),])

}))
rownames(cmb) <- cmb$gene
cmb <- cmb[order(cmb$AUCPR.ratio, decreasing = T),]
cmb$exp.global <- apply(obj@logupx.data[rownames(cmb), unlist(obj@tree$cells.in.segment)],

1, mean.of.logs)
cmb$exp.global.fc <- cmb$nTrans_1 - cmb$exp.global
return(cmb)

})
names(combined.markers.best) <- combined.tips

6

AUCPR along tree
We also used the AUCPRTestAlongTree function to ask for genes that are differential markers
of a lineage using URD’s tree structure. This makes a comparison at each branchpoint from a
particular cell type up to the root.
Get all of the tips from the tree
tips.in.tree <- as.character(obj@tree$tips)

Tree segments to use as root for each particular cell population.
roots <- rep("29", length(tips.in.tree))
names(roots) <- tips.in.tree
roots["11"] <- "31"
roots["6"] <- "30"
roots[c("4", "17", "8")] <- "26"

Perform a loop of tests with each tip.
markers <- lapply(tips.in.tree, function(t) {

this.root <- roots[t]
message(paste0(Sys.time(), ': Starting tip ', t, ' and root ', this.root))
these.markers <- aucprTestAlongTree(obj, pseudotime = "pseudotime", tips = as.character(t),

genes.use = NULL, must.beat.sibs = 0.6, report.debug = F, root = this.root,
auc.factor = 1.1, log.effect.size = 0.4)

these.markers$gene <- rownames(these.markers)
these.markers$tip <- t
return(these.markers)

})
names(markers) <- tips.in.tree

Functions for curating differential expression results
We further curated those differentially expressed genes using the following functions:

threshold.tree.markers
Function to threshold markers from a markersAUCPRAlongTree test with additional criteria

• markers: list of results from markersAUCPRAlongTree tests
• tip: which tip (or element of the list to pursue)
• global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
• aucpr.ratio.all: classifier score that gene must exhibit along trajectory test vs. rest of the data
• branch.fc: fold.change that gene must have (in best case) vs. the opposing branch at any
branchpoint along the trajectory.

• Returns markers with only a subset of rows retained.
threshold.tree.markers <- function(markers, tip, global.fc = 0.1, branch.fc = 0.4,

aucpr.ratio.all = 1.03) {
m <- markers[[tip]]
First off -- lose global FC < x
bye.globalfc <- rownames(m)[m$expfc.all < global.fc]
Second -- get rid of branch FC < x
bye.branchfc <- rownames(m)[m$expfc.maxBranch < branch.fc]
Third -- get rid of stuff essentially worse than random classification on
global level

7

bye.badglobalaucpr <- rownames(m)[m$AUCPR.ratio.all < aucpr.ratio.all]
bye.all <- unique(c(bye.globalfc, bye.branchfc, bye.badglobalaucpr))
m.return <- m[setdiff(rownames(m), bye.all),]
return(m.return)

}

threshold.clade.markers
Function to threshold markers of particular clades (see “Combined major branch families”) using
additional criteria

• markers: result of markersAUCPR
• global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
(during testing, branches were compared pairwise. This compares one branch to all others
together.)

• Returns markers with a subset of rows retained
threshold.clade.markers <- function(markers, global.fc = 0.1) {

m <- markers
First off -- lose global FC < x
bye.globalfc <- rownames(m)[m$exp.global.fc < global.fc]
m.return <- m[setdiff(rownames(m), bye.globalfc),]
return(m.return)

}

divide.branches
Function to compare genes between two branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making photoreceptor heatmap, use to divide into photoreceptor, cone, and rod markers)

• object: An URD object
• genes: (Character vector) Genes to test
• clust.1: (Character) Cluster 1
• clust.2: (Character) Cluster 2
• clustering: (Character) Clustering to pull from
• exp.fc: (Numeric) Minimum expression fold-change between branches to consider different
• exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a
branch

• exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

• Returns list of gene names (“specific.1” = specific to clust.1, “specific.2” = specific to clust.2,
“markers” = all genes tested)

divide.branches <- function(object, genes, clust.1, clust.2, clustering = "segment",
exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {
Double check which markers are unique to one or the other population
mcomp <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.2, clustering = clustering,

effect.size = -Inf, auc.factor = 0, genes.use = genes, frac.min.diff = 0,
frac.must.express = 0)

specific.b <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[, 4] < exp.thresh &
mcomp[, 5] > pmin((mcomp[, 4] + exp.diff), 1)]

specific.a <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[, 5] < exp.thresh &
mcomp[, 4] > pmin((mcomp[, 5] + exp.diff), 1)]

8

r <- list(specific.a, specific.b, mcomp)
names(r) <- c("specific.1", "specific.2", "markers")
return(r)

}

Functions for heatmap generation
These functions were used in the production of heatmaps:

Color scale
Generate color scale to use with heatmaps.
cols <- (scales::gradient_n_pal(RColorBrewer::brewer.pal(9, "YlOrRd")))(seq(0, 1,

length.out = 50))

determine.timing
Determines order to plot genes in heatmap. “Expression” is defined as 20% higher expression
than the minimum observed value. “Peak” expression is defined as 50% higher expression than
minimum observed value. The two longest stretches of “peak” expression are found, and then
the later one is used. The onset time of the stretch of expression that contains that peak is also
determined. Genes are then ordered by the pseudotime at which they enter “peak” expression,
leave “peak” expression, start “expression”, and leave “expression”.

• s: result from geneSmoothFit
• genes: genes to order; default is all genes that were fit.
• Returns s but with an additional list entry ($timing) of the order to plot genes

determine.timing <- function(s, genes = rownames(s$mean.expression)) {
s$timing <- as.data.frame(do.call("rbind", lapply(genes, function(g) {

sv <- as.numeric(s$scaled.smooth[g,])
pt <- as.numeric(colnames(s$scaled.smooth))
Figure out baseline expression & threshold for finding peaks
min.val <- max(min(sv), 0)
peak.val <- ((1 - min.val)/2) + min.val
exp.val <- ((1 - min.val)/5) + min.val
Run-length encoding of above/below the peak-threshold
peak.rle <- rle(sv >= peak.val)
peak.rle <- data.frame(lengths = peak.rle$lengths, values = peak.rle$values)
peak.rle$end <- cumsum(peak.rle$lengths)
peak.rle$start <- head(c(0, peak.rle$end) + 1, -1)
Run-length encoding of above/below the expressed-threshold
exp.rle <- rle(sv >= exp.val)
exp.rle <- data.frame(lengths = exp.rle$lengths, values = exp.rle$values)
exp.rle$end <- cumsum(exp.rle$lengths)
exp.rle$start <- head(c(0, exp.rle$end) + 1, -1)
Take top-two longest peak RLE & select later one. Find stretches that are
above peak value
peak <- which(peak.rle$values)
Order by length and take 1 or 2 longest ones
peak <- peak[order(peak.rle[peak, "lengths"], decreasing = T)][1:min(2, length(peak))]

9

Order by start and take latest one.
peak <- peak[order(peak.rle[peak, "start"], decreasing = T)][1]
Identify the actual peak value within that stretch
peak <- which.max(sv[peak.rle[peak, "start"]:peak.rle[peak, "end"]]) + peak.rle[peak,

"start"] - 1
Identify the start and stop of the expressed stretch that contains the peak
exp.start <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <= peak),

"start"]
exp.end <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <= peak), "end"]
Identify values of expression at start and stop
smooth.start <- sv[exp.start]
smooth.end <- sv[exp.end]
Convert to pseudotime?
exp.start <- pt[exp.start]
exp.end <- pt[exp.end]
peak <- pt[peak]
Return a vector
v <- c(exp.start, peak, exp.end, smooth.start, smooth.end)
names(v) <- c("pt.start", "pt.peak", "pt.end", "exp.start", "exp.end")
return(v)

})))
rownames(s$timing) <- genes

Decide on ordering of genes
s$gene.order <- rownames(s$timing)[order(s$timing$pt.peak, s$timing$pt.start,

s$timing$pt.end, s$timing$exp.end, decreasing = c(F, F, F, T), method = "radix")]

return(s)
}

filter.heatmap.genes
Removes undesired (mitochondrial, ribosomal, tandem duplicated genes) from heatmaps for pre-
sentation purposes.

• genes: (Character vector) genes to check
• Returns genes with undesired genes removed.

filter.heatmap.genes <- function(genes) {
mt.genes <- grep("^mt-", ignore.case = T, genes, value = T)
many.genes <- grep("\\(1 of many\\)", ignore.case = T, genes, value = T)
ribo.genes <- grep("^rpl|^rps", ignore.case = T, genes, value = T)
cox.genes <- grep("^cox", ignore.case = T, genes, value = T)
return(setdiff(genes, c(mt.genes, many.genes, ribo.genes, cox.genes)))

}

Heatmaps of gene cascades
Using the genes that were determined as differentially expressed along the way to particular cell
types, we generated expression cascades and plotted them as heatmaps.

10

Photoreceptors
Prepare cascade

PHOTORECEPTORS: Seg 25 -> Cones (Seg 2) + Rods (Seg 12)

Get markers from the two approaches:

Lineage markers from above the combined clades
t25 <- threshold.clade.markers(combined.markers.best[["25"]], global.fc = 0.05)
Cone markers from aucprTestAlongTree
m2 <- threshold.tree.markers(markers, "2", global.fc = 0.6)
Rod markers from aucprTestAlongTree
m12 <- threshold.tree.markers(markers, "12", global.fc = 0.6)
pr.markers <- unique(c(rownames(t25), rownames(m2), rownames(m12)))

Pseudotime for rods and cones is very different; for heatmaps, would like to
normalize these, so that spline curves that consider both of them are not out
of sync. Need to stretch pseudotime of cells in segment 12 / rods.

Make a duplicate of the pseudotime measurement (pseudotime.212)
obj@pseudotime$pseudotime.212 <- obj@pseudotime$pseudotime
Grab pseudotime of branchpoint
pt.start.212 <- as.numeric(obj@tree$segment.pseudotime.limits["2", "start"])
Figure out lengths (and ratio) of the two branches in pseudotime
pt.end.212 <- as.numeric(obj@tree$segment.pseudotime.limits[c("2", "12"), "end"]) -

pt.start.212
pt.ratio.212 <- pt.end.212[1]/pt.end.212[2]
For cells in the shorter branch (12), subtract the starting pseudotime,
multiply by the ratio of branch lengths, then add the starting pseudotime back
in order to stretch the branch.
obj@pseudotime[cellsInCluster(obj, "segment", "12"), "pseudotime.212"] <- (obj@pseudotime[cellsInCluster(obj,

"segment", "12"), "pseudotime.212"] - pt.start.212) * pt.ratio.212 + pt.start.212

Calculate spline curves Using segments 29, 25, 2, and 12. Calculating a curve
using only 29/25/2 for cone-specific genes, 29/25/12 for rod-specific genes,
and 29/25/2+12 for genes that mark both. Should work now that pseudotimes are
aligned.
spline.2 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,

"segment", c("29", "25", "2")), genes = pr.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.12 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,
"segment", c("29", "25", "12")), genes = pr.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.212 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,
"segment", c("29", "25", "2", "12")), genes = pr.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

Want to plot a heatmap that shows expression in photoreceptor progenitors and
then each branch (i.e. rods, cones) as separate columns. Going to crop each
spline fit to the correct pseudotime range and then combine them into a single
one that can be plotted as a three-column heatmap.

11

pt.2v12 <- obj@tree$segment.pseudotime.limits["2", "start"] # pseudotime where the crop should happen
splines.pr <- list(cropSmoothFit(spline.212, pt.min = -Inf, pt.max = pt.2v12), cropSmoothFit(spline.2,

pt.min = pt.2v12, pt.max = Inf), cropSmoothFit(spline.12, pt.min = pt.2v12, pt.max = Inf))
names(splines.pr) <- c("Photoreceptor Progenitors", "Rods", "Cones")
splines.pr.hm <- combineSmoothFit(splines.pr) # Combine into a single one

Calculate gene expression timing for ordering rows
spline.212 <- determine.timing(s = spline.212)
spline.2 <- determine.timing(s = spline.2)
spline.12 <- determine.timing(s = spline.12)

Decide which markers are specific to one cell type or both
d2v12 <- divide.branches(obj, pr.markers, clust.1 = "2", clust.2 = "12", exp.fc = 0.4,

exp.thresh = 0.2, exp.diff = 0.1)

Generate gene ordering based on timing & specificity
order.212 <- filter.heatmap.genes(setdiff(spline.212$gene.order, c(d2v12$specific.1,

d2v12$specific.2)))
order.2 <- filter.heatmap.genes(intersect(spline.2$gene.order, d2v12$specific.1))
order.12 <- filter.heatmap.genes(intersect(spline.12$gene.order, d2v12$specific.2))
gene.order <- c(order.212, order.2, order.12)

Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.212)),

rep("cone", length(order.2)), rep("rod", length(order.12))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t25[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t25[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t25[table.save$gene, "exp.global.fc"]
table.save$cone.AUCPR.ratio.all <- m2[table.save$gene, "AUCPR.ratio.all"]
table.save$cone.AUCPR.ratio.maxBranch <- m2[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$cone.exp.fc.all <- m2[table.save$gene, "expfc.all"]
table.save$cone.exp.fc.best <- m2[table.save$gene, "expfc.maxBranch"]
table.save$rod.AUCPR.ratio.all <- m12[table.save$gene, "AUCPR.ratio.all"]
table.save$rod.AUCPR.ratio.maxBranch <- m12[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$rod.exp.fc.all <- m12[table.save$gene, "expfc.all"]
table.save$rod.exp.fc.best <- m12[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-photoreceptor.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the heatmap
scale doesn't get messed up.
splines.pr.hm$scaled.smooth[splines.pr.hm$scaled.smooth < 0] <- 0
Determine where to place column separators (i.e. how many columns will each
cell type occupy in the heatmap)
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.pr, function(x) ncol(x$scaled.smooth))),

-1)))
Determine where to place row separators (i.e. how many common markers, and
markers are specific to each cell type)
rowsep <- cumsum(c(length(order.212), length(order.2)))
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-photoreceptor.pdf'), width=6, height=10)

12

gplots::heatmap.2(x = as.matrix(splines.pr.hm$scaled.smooth[gene.order,]), Rowv = F,
Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.1, 0.2))
title(main = "Photoreceptors")
title(main = "Precursors", line = -41, adj = 0)
title(main = "Cones", line = -41, adj = 0.45)
title(main = "Rods", line = -41, adj = 0.76)

13

14

dev.off()

Generate heatmap: main figure

Generate heatmap with only particular genes labeled for main figure
genes.to.plot <- c("isl2a", "prdm1a", "otx5", "crx", "six7", "nr2f1b", "nr2e3", "aplnrb",

"aplnra", "apln")
rownames.to.plot <- gene.order
rtp <- rownames.to.plot %in% genes.to.plot
rownames.to.plot[!rtp] <- ""
rownames.to.plot[rtp] <- paste0("- ", rownames.to.plot[rtp])
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-photoreceptor-mainfig.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.pr.hm$scaled.smooth[gene.order,]), Rowv = F,

Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
key = F, cexCol = 0.8, cexRow = 1.8, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.1, 0.2),
labRow = rownames.to.plot)

title(main = "Photoreceptors")
title(main = "Precursors", line = -41, adj = 0)
title(main = "Cones", line = -41, adj = 0.45)
title(main = "Rods", line = -41, adj = 0.76)

15

16

dev.off()

Amacrine cells
Prepare cascade

AMACRINE CELLS: Seg 19 -> Amarcine (Seg 4) + Starburst Amacrine (Seg 17)

Get markers from the two approaches:

Lineage markers from above the combined clades
t19 <- threshold.clade.markers(combined.markers.best[["19"]], global.fc = 0.05)
Amacrine markers from aucprTestAlongTree
m4 <- threshold.tree.markers(markers, "4", global.fc = 0.6)
Starburst amacrine markers from aucprTestAlongTree
m17 <- threshold.tree.markers(markers, "17", global.fc = 0.6)
am.markers <- unique(c(rownames(t19), rownames(m4), rownames(m17)))

These have pretty equivalent pseudotimes, so don't need to worry about
stretching them to match or anything.

Calculate spline curves Using segments 29, 26, 19, and 4/17. Calculating a
curve using only 29/26/19/4 for amacrine-specific genes, 29/26/19/4 for
starburst-specific genes, and 29/26/19/4+17 for genes that mark both amacrine
populations.
spline.4 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("29", "26", "19", "4")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

spline.17 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("29", "26", "19", "17")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

spline.417 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("29", "26", "19", "4", "17")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

Want to plot a heatmap that shows expression in amacrine progenitors and then
each branch (i.e. amacrine_gaba, starburst_amacrine) as separate columns. Going
to crop each spline fit to the correct pseudotime range and then combine them
into a single one that can be plotted as a three-column heatmap.

pt.4v17 <- obj@tree$segment.pseudotime.limits["4", "start"] # pseudotime where the crop should happen
splines.am <- list(cropSmoothFit(spline.417, pt.min = -Inf, pt.max = pt.4v17), cropSmoothFit(spline.4,

pt.min = pt.4v17, pt.max = Inf), cropSmoothFit(spline.17, pt.min = pt.4v17, pt.max = Inf))
names(splines.am) <- c("Amacrine Precursors", "Amacrine", "Starburst Amacrine")
splines.am.hm <- combineSmoothFit(splines.am) # Combine into a single one

Calculate gene expression timing for ordering rows
spline.417 <- determine.timing(s = spline.417)
spline.4 <- determine.timing(s = spline.4)
spline.17 <- determine.timing(s = spline.17)

17

Decide which markers are specific to one cell type or both
d4v17 <- divide.branches(obj, am.markers, clust.1 = "4", clust.2 = "17", exp.fc = 0.4,

exp.thresh = 0.2, exp.diff = 0.1)

Generate gene ordering based on timing & specificity
order.417 <- filter.heatmap.genes(setdiff(spline.417$gene.order, c(d4v17$specific.1,

d4v17$specific.2)))
order.4 <- filter.heatmap.genes(intersect(spline.4$gene.order, d4v17$specific.1))
order.17 <- filter.heatmap.genes(intersect(spline.17$gene.order, d4v17$specific.2))
gene.order <- c(order.417, order.4, order.17)

Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.417)),

rep("amacrine", length(order.4)), rep("starburst", length(order.17))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t19[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t19[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t19[table.save$gene, "exp.global.fc"]
table.save$am.AUCPR.ratio.all <- m4[table.save$gene, "AUCPR.ratio.all"]
table.save$am.AUCPR.ratio.maxBranch <- m4[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$am.exp.fc.all <- m4[table.save$gene, "expfc.all"]
table.save$am.exp.fc.best <- m4[table.save$gene, "expfc.maxBranch"]
table.save$star.AUCPR.ratio.all <- m17[table.save$gene, "AUCPR.ratio.all"]
table.save$star.AUCPR.ratio.maxBranch <- m17[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$star.exp.fc.all <- m17[table.save$gene, "expfc.all"]
table.save$star.exp.fc.best <- m17[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-amacrine.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the heatmap
scale doesn't get messed up.
splines.am.hm$scaled.smooth[splines.am.hm$scaled.smooth < 0] <- 0
Determine where to place column separators (i.e. how many columns will each
cell type occupy in the heatmap)
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.am, function(x) ncol(x$scaled.smooth))),

-1)))
Determine where to place row separators (i.e. how many common markers, and
markers are specific to each cell type)
rowsep <- cumsum(c(length(order.417), length(order.4)))
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-amacrine.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.am.hm$scaled.smooth[gene.order,]), Rowv = F,

Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.05, 0.2))
title(main = "Amacrine Cells")
title(main = "Precursors", line = -41, adj = 0.05)
title(main = "Amacrine", line = -41, adj = 0.475)
title(main = "Starburst", line = -41, adj = 0.75)

18

19

dev.off()

Retinal ganglion cells
Prepare cascade

RGCs: Seg 8

Get markers from the two approaches:

Lineage markers from above the combined clades
t8 <- threshold.clade.markers(combined.markers.best[["8"]], global.fc = 0.05)
RGC markers from aucprTestAlongTree
m8 <- threshold.tree.markers(markers, "8", global.fc = 0.6)
rgc.markers <- unique(c(rownames(t8), rownames(m8)))

Calculate spline curves Using segments 29, 26, and 8.
spline.8 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("29", "26", "8")), genes = rgc.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

Calculate gene expression timing for ordering rows
spline.8 <- determine.timing(s = spline.8)
order.8 <- filter.heatmap.genes(spline.8$gene.order)

Output gene table
table.save <- data.frame(gene = order.8, stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t8[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t8[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t8[table.save$gene, "exp.global.fc"]
table.save$rgc.AUCPR.ratio.all <- m8[table.save$gene, "AUCPR.ratio.all"]
table.save$rgc.AUCPR.ratio.maxBranch <- m8[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$rgc.exp.fc.all <- m8[table.save$gene, "expfc.all"]
table.save$rgc.exp.fc.best <- m8[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-rgc.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the heatmap
scale doesn't get messed up.
spline.8$scaled.smooth[spline.8$scaled.smooth < 0] <- 0
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-rgc.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.8$scaled.smooth[order.8,]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Retinal Ganglion Cells")

20

21

dev.off()

Generate heatmap: main figure

genes.to.plot <- c("sox11a", "sox11b", "sox6", "irx4a", "pou4f2", "pou4f1", "rbpms2b",
"rbpms2a")

rownames.to.plot <- order.8
rtp <- rownames.to.plot %in% genes.to.plot
rownames.to.plot[!rtp] <- ""
rownames.to.plot[rtp] <- paste0("- ", rownames.to.plot[rtp])
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-rgc-mainfig.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.8$scaled.smooth[order.8,]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 1.8, margins = c(8, 10), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, labRow = rownames.to.plot)
title(main = "Retinal Ganglion Cells")

22

23

dev.off()

Horizontal Cells
Prepare cascade

Horizontal Cells: Seg 15

Get markers from the two approaches:

Lineage markers from above the combined clades
t15 <- threshold.clade.markers(combined.markers.best[["15"]], global.fc = 0.05)
Horizontal Cell markers from aucprTestAlongTree
m15 <- threshold.tree.markers(markers, "15", global.fc = 0.6)
horiz.markers <- unique(c(rownames(t15), rownames(m15)))

Calculate spline curves Using segments 29 and 15.
spline.15 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("29", "15")), genes = horiz.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

Calculate gene expression timing for ordering rows
spline.15 <- determine.timing(s = spline.15)
order.15 <- filter.heatmap.genes(spline.15$gene.order)

Output gene table
table.save <- data.frame(gene = order.15, stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t15[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t15[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t15[table.save$gene, "exp.global.fc"]
table.save$horiz.AUCPR.ratio.all <- m15[table.save$gene, "AUCPR.ratio.all"]
table.save$horiz.AUCPR.ratio.maxBranch <- m15[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$horiz.exp.fc.all <- m15[table.save$gene, "expfc.all"]
table.save$horiz.exp.fc.best <- m15[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-horiz.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the heatmap
scale doesn't get messed up.
splines.am.hm$scaled.smooth[splines.am.hm$scaled.smooth < 0] <- 0
Determine where to place column separators (i.e. how many columns will each
cell type occupy in the heatmap)
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.am, function(x) ncol(x$scaled.smooth))),

-1)))
Determine where to place row separators (i.e. how many common markers, and
markers are specific to each cell type)
rowsep <- cumsum(c(length(order.417), length(order.4)))
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-amacrine.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.am.hm$scaled.smooth[gene.order,]), Rowv = F,

Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",

24

key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,
4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "Amacrine Cells")
title(main = "Precursors", line = -41, adj = 0.05)
title(main = "Amacrine", line = -41, adj = 0.475)
title(main = "Starburst", line = -41, adj = 0.75)

25

26

dev.off()

Muller Glia
Prepare cascade

Muller Glia: Seg 6

Get markers from the two approaches
m6 <- threshold.tree.markers(markers, "6", global.fc = 0.6) # Muller Glia markers from aucprTestAlongTree
muller.markers <- rownames(m6)

Calculate spline curves Using segments 29 and 15.
spline.6 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("30", "6")), genes = muller.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

Calculate gene expression timing for ordering rows
spline.6 <- determine.timing(s = spline.6)
order.6 <- filter.heatmap.genes(spline.6$gene.order)

Output gene table
table.save <- data.frame(gene = order.6, stringsAsFactors = F)
table.save$muller.AUCPR.ratio.all <- m6[table.save$gene, "AUCPR.ratio.all"]
table.save$muller.AUCPR.ratio.maxBranch <- m6[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$muller.exp.fc.all <- m6[table.save$gene, "expfc.all"]
table.save$muller.exp.fc.best <- m6[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-muller.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the heatmap
scale doesn't get messed up.
spline.6$scaled.smooth[spline.6$scaled.smooth < 0] <- 0
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-muller.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.6$scaled.smooth[order.6,]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Muller Glia")

27

28

dev.off()

Retinal Pigmented Epithelium
Prepare cascade

RPE: Seg 11

Get markers from the two approaches
m11 <- threshold.tree.markers(markers, "11", global.fc = 0.6) # RPE markers from aucprTestAlongTree
rpe.markers <- rownames(m11)

Just want to plot part of cells from upstream segment 31, which is very long.
Going to use cells from segment 11 and from segment 31 with pseudotime > 0.23
cells.rpe <- unique(c(whichCells(obj, "pseudotime", c(0.23, 0.30308134)), cellsInCluster(obj,

"segment", "11")))

Calculate spline curves
spline.11 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.rpe, genes = rpe.markers,

method = "spline", moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

Calculate gene expression timing for ordering rows
spline.11 <- determine.timing(s = spline.11)
order.11 <- filter.heatmap.genes(spline.11$gene.order)

Output gene table
table.save <- data.frame(gene = order.11, stringsAsFactors = F)
table.save$rpe.AUCPR.ratio.all <- m11[table.save$gene, "AUCPR.ratio.all"]
table.save$rpe.AUCPR.ratio.maxBranch <- m11[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$rpe.exp.fc.all <- m11[table.save$gene, "expfc.all"]
table.save$rpe.exp.fc.best <- m11[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/retina-rpe.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the heatmap
scale doesn't get messed up.
spline.11$scaled.smooth[spline.11$scaled.smooth < 0] <- 0
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/retina-rpe.pdf'), width=6, height=16)
gplots::heatmap.2(x = as.matrix(spline.11$scaled.smooth[order.11,]), Rowv = F, Colv = F,

dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Retinal Pigmented Epithelium")

29

30

dev.off()

Continuous differentiation
Retinal cell types were often found with similar molecular states across many stages of develop-
ment. This reflects that pseudotime accurately represents the asynchrony introduced by contin-
uous differentation.

RGC cells

gridExtra::grid.arrange(grobs = list(plotTreeHighlight(obj, label.name = "clus.orig",
label.value = "7-36h_27", highlight.size = 1, title = "36 hpf Cluster 27: RGCs",
label.x = F), plotTreeHighlight(obj, label.name = "clus.orig", label.value = "12-15d_38",
highlight.size = 1, title = "15 dpf Cluster 38: RGCs", label.x = F)), ncol = 2)

Warning: Removed 5 rows containing missing values (geom_point).

Warning: Removed 17 rows containing missing values (geom_point).

Progenitor cells

gridExtra::grid.arrange(grobs = list(plotTreeHighlight(obj, label.name = "clus.orig",
label.value = "6-24h_22", highlight.size = 1, title = "24 hpf Cluster 22: Progenitor Cells",
label.x = F), plotTreeHighlight(obj, label.name = "clus.orig", label.value = "7-36h_32",
highlight.size = 1, title = "36 hpf Cluster 32: Progenitor Cells", label.x = F),

31

plotTreeHighlight(obj, label.name = "clus.orig", label.value = "12-15d_39", highlight.size = 1,
title = "15 dpf Cluster 39: Progenitor Cells", label.x = F)), ncol = 2)

Warning: Removed 9 rows containing missing values (geom_point).

Warning: Removed 4 rows containing missing values (geom_point).

Progenitors over time
Retinal progenitors with similar transcriptional states are found across many different time points.
We wanted to know whether there were significant transcriptional changes within those progeni-
tors between early stages and late stages.

Identify populations
First we grabbed early (24 / 36 hpf) and late (15 dpf) progenitors from two sections of the tree.
Progenitors / 24-36 hpf / Segment 30
prog.early.s30 <- intersect(cellsInCluster(obj, "stage", c("06-24h", "07-36h")),

cellsInCluster(obj, "segment", "30"))
obj <- groupFromCells(obj, group.id = "prog.early.s30", cells = prog.early.s30)
plotTreeHighlight(obj, "prog.early.s30", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 24-36 hpf / Segment 30")

32

Progenitors / 24-36 hpf / Segment 29
prog.early.s29 <- intersect(cellsInCluster(obj, "stage", c("06-24h", "07-36h")),

cellsInCluster(obj, "segment", "29"))
obj <- groupFromCells(obj, group.id = "prog.early.s29", cells = prog.early.s29)
plotTreeHighlight(obj, "prog.early.s29", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 24-36 hpf / Segment 29")

33

Progenitors / 15 dpf / Cluster 39 / Segment 30
prog.15d.c39.s30 <- intersect(cellsInCluster(obj, "clus.orig", "12-15d_39"), cellsInCluster(obj,

"segment", "30"))
obj <- groupFromCells(obj, group.id = "prog.15d.c39.s30", cells = prog.15d.c39.s30)
plotTreeHighlight(obj, "prog.15d.c39.s30", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 15 dpf / Cluster 39 / Segment 30")

34

Progenitors / 15 dpf / Cluster 39 / Segment 29
prog.15d.c39.s29 <- intersect(cellsInCluster(obj, "clus.orig", "12-15d_39"), cellsInCluster(obj,

"segment", "29"))
obj <- groupFromCells(obj, group.id = "prog.15d.c39.s29", cells = prog.15d.c39.s29)
plotTreeHighlight(obj, "prog.15d.c39.s29", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 15 dpf / Cluster 39 / Segment 29")

35

Differential expression between neural progenitor populations
Then we determined what was differentially expressed between them.
Compare 15d ('late') vs. early - S29
markers.nb.lve.s29 <- markersAUCPR(obj, cells.1 = prog.15d.c39.s29, cells.2 = prog.early.s29,

auc.factor = 1.1, effect.size = 0.4)

Compare 15d ('late') vs. early - S30
markers.nb.lve.s30 <- markersAUCPR(obj, cells.1 = prog.15d.c39.s30, cells.2 = prog.early.s30,

auc.factor = 1.1, effect.size = 0.4)

boot.fc

• object: An URD object
• cells.1: Cells from group 1 of the differential expression
• cells.2: Cells from group 2 of the differential expression
• cells.segment: All cells in the segment that can be pulled for bootstrapping
• genes.test: Genes to test in the bootstrapping
• exp.fc: Exp.fc from the original differential expression test to compare for bootstrap
• exp.data: Can pre-calculated un-logged expression data to pass to the function (getUPXData)
• n: (Numeric) Number of bootstrap simulations to run
• Returns list: p is the empirical p-value for each differential expression, boot.fc contains all of
the test information.

Function to bootstrap fold-change
boot.fc <- function(object, cells.1, cells.2, cells.segment, genes.test, exp.fc,

36

exp.data = NULL, n = 1000) {

Pull random populations of equivalent sizes
l1 <- length(cells.1)
l2 <- length(cells.2)
random.pops <- lapply(1:1000, function(i) {

y <- sample(x = cells.segment, size = l1 + l2, replace = F)
return(list(a = y[1:l2], b = y[(l2 + 1):(l1 + l2)]))

})

Get un-logged expression data, if not provided
if (is.null(exp.data))

exp.data <- getUPXData(object)

Calculate the expression fold-change for each random population
fc.boot <- as.data.frame(lapply(1:n, function(i) {

exp.a <- exp.data[genes.test, random.pops[[i]][["a"]]]
exp.b <- exp.data[genes.test, random.pops[[i]][["b"]]]
exp.fc <- log2((rowMeans(exp.a)/rowMeans(exp.b)) + 1)
return(exp.fc)

}))
names(fc.boot) <- paste0("rep", 1:n)

Figure out p-value (proportion of these that beat provided exp.fc)
beat.boot <- sweep(fc.boot, 1, exp.fc, ">")
p.boot <- rowSums(beat.boot)/n

Return information
return(list(p = p.boot, boot.fc = fc.boot))

}

Empirical p-value

Because these are relatively small populations, there’s a decent chance that (due to the variability
and noise inherent in scRNAseq data) that choosing any two similarly sized populations would
find a number of differentially expressed genes also. Thus, we used an empirically-determined
p-value to limit ourselves to differentially expressed genes that probably wouldn’t arise by chance.
We asked that our real comparison had a greater expression fold-change than two populations
from a given segment of the same size chosen at random at least 99% of the time (i.e. p < 0.01).
Try a bootstrapping approach to determine which markers are real, vs. which
ones would arise just from small number of compared cells. Going to just do it
on expression fc, so that the computation is reasonably fast.

Isolate cells from each segment
cells.seg.29 <- cellsInCluster(obj, "segment", "29")
cells.seg.30 <- cellsInCluster(obj, "segment", "30")

Get un-logged expression data to pass to the function
exp.data <- getUPXData(obj)

Run the actual bootstrapping.
boot.s30.lve <- boot.fc(object, cells.1 = prog.15d.c39.s30, cells.2 = prog.early.s30,

cells.segment = cells.seg.30, genes.test = rownames(markers.nb.lve.s30), exp.fc = markers.nb.lve.s30$exp.fc,

37

exp.data = exp.data, n = 1000)

boot.s29.lve <- boot.fc(object, cells.1 = prog.15d.c39.s29, cells.2 = prog.early.s29,
cells.segment = cells.seg.29, genes.test = rownames(markers.nb.lve.s29), exp.fc = markers.nb.lve.s29$exp.fc,
exp.data = exp.data, n = 1000)

Limit markers to those that pass the bootstrap test
markers.nbb.lve.s30 <- markers.nb.lve.s30[which(boot.s30.lve$p <= 0.01),]
markers.nbb.lve.s29 <- markers.nb.lve.s29[which(boot.s29.lve$p <= 0.01),]

Tissue-specific changes

We also then divided genes based on whether they changed in all cells between 24/36 hpf and
15 dpf, or specifically in progenitors. Genes that change in all cells could represent either (a)
global transcriptional changes in the tissue, or (b) changes in ambient RNA that is included with
most cells based on highly expressed genes during different stages.
Add global stage information to these - genes must change more in progenitors
than just generally.

Figure out early/late cells
cells.early <- cellsInCluster(obj, "stage", c("06-24h", "07-36h"))
cells.late <- cellsInCluster(obj, "stage", "12-15d")

Calculate markers across stages generally with no restrictions
markers.nbball.lve <- markersAUCPR(object = obj, cells.1 = cells.late, cells.2 = cells.early,

effect.size = -Inf, frac.must.express = 0, auc.factor = 0, genes.use = unique(c(rownames(markers.nbb.lve.s30),
rownames(markers.nbb.lve.s29))))

Transfer information to NBB comparisons
markers.nbb.lve.s30$exp.fc.stage <- markers.nbball.lve[rownames(markers.nbb.lve.s30),

"exp.fc"]
markers.nbb.lve.s30$posFrac_stage1 <- markers.nbball.lve[rownames(markers.nbb.lve.s30),

"posFrac_1"]

markers.nbb.lve.s29$exp.fc.stage <- markers.nbball.lve[rownames(markers.nbb.lve.s29),
"exp.fc"]

markers.nbb.lve.s29$posFrac_stage1 <- markers.nbball.lve[rownames(markers.nbb.lve.s29),
"posFrac_1"]

Calculate ratios (i.e. how much more does a gene change in progenitors than in
the entire tissue)
markers.nbb.lve.s30$exp.fc.ratio <- pmin(markers.nbb.lve.s30$exp.fc, 1000) - pmin(markers.nbb.lve.s30$exp.fc.stage,

1000)
markers.nbb.lve.s29$exp.fc.ratio <- pmin(markers.nbb.lve.s29$exp.fc, 1000) - pmin(markers.nbb.lve.s29$exp.fc.stage,

1000)

markers.nbb.lve.s30$posFrac.ratio <- markers.nbb.lve.s30$posFrac_1/markers.nbb.lve.s30$posFrac_stage1
markers.nbb.lve.s29$posFrac.ratio <- markers.nbb.lve.s29$posFrac_1/markers.nbb.lve.s29$posFrac_stage1

38

Limit to well-expressed

We also limited ourselves to genes that had a decent level of expression. (In this case, they were
detected in at least 20% of progenitor cells, and had a mean expression of at least 0.8.)
All genes that change in segment 30
markers.nbbexp.lve.s30 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s30$posFrac_1 >=

0.2), which(markers.nbb.lve.s30$nTrans_1 >= 0.8))),]

All genes that change in segment 30
markers.nbbexp.lve.s29 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s29$posFrac_1 >=

0.2), which(markers.nbb.lve.s29$nTrans_1 >= 0.8))),]

Genes that change in segment 30 more than in the entire tissue
markers.nbbselect.lve.s30 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s30$posFrac_1 >=

0.2), which(markers.nbb.lve.s30$nTrans_1 >= 0.8), which(markers.nbb.lve.s30$exp.fc.ratio >=
1.2), which(markers.nbb.lve.s30$posFrac.ratio >= 1.1))),]

Genes that change in segment 29 more than in the entire tissue
markers.nbbselect.lve.s29 <- markers.nbb.lve.s29[Reduce(intersect, list(which(markers.nbb.lve.s29$posFrac_1 >=

0.2), which(markers.nbb.lve.s29$nTrans_1 >= 0.8), which(markers.nbb.lve.s29$exp.fc.ratio >=
1.2), which(markers.nbb.lve.s29$posFrac.ratio >= 1.1))),]

Result

That recovered a total of 71 genes that vary in progenitors between 24/36 hpf and 15 dpf, of
which 16 change more in neural progenitors than the rest of the tissue.
All genes that change in progenitors
unique(c(rownames(markers.nbbexp.lve.s29), rownames(markers.nbbexp.lve.s30)))

[1] "hbbe2" "hbz" "ba1.1"
[4] "rho" "crabp1a" "si:ch211-251b21.1"
[7] "hbaa1" "pde6h" "tsc22d3"
[10] "si:xx-by187g17.1" "ba1" "rpe65a"
[13] "zgc:153704" "arr3a" "lin7a"
[16] "crygm1" "gnat1" "ptgdsb.1"
[19] "gngt1" "rgs16" "cabp2a"
[22] "junba" "crygm2b" "zgc:112320"
[25] "si:dkey-183i3.5" "krt91" "cabp5a"
[28] "sagb" "crygmx" "scinla"
[31] "rbp4l" "gngt2b" "rs1a"
[34] "mt2" "fosab" "cebpd"
[37] "snap25b" "CNDP1" "crabp2a"
[40] "cryba4" "jdp2b" "cst3"
[43] "higd1a" "mt-nd3" "si:dkey-16p21.8"
[46] "crybb1" "crygn2" "gadd45ba"
[49] "gapdhs" "eno1a" "mif"
[52] "ggctb" "ckbb" "glula"
[55] "tsc22d1" "sod2" "btg2"
[58] "sod1" "stmn1b" "si:dkey-238o13.4"
[61] "fabp11a" "mdkb" "gstp1"
[64] "slc3a2b" "si:dkey-238c7.12" "CABZ01102240.1"
[67] "atp5ia" "atpif1b" "cadm3"
[70] "h1f0"

39

Genes that change in progenitors more than the rest of the tissue
unique(c(rownames(markers.nbbselect.lve.s29), rownames(markers.nbbselect.lve.s30)))

[1] "si:ch211-114n24.6" "rps29" "rrm2.1"
[4] "si:ch211-193l2.6" "si:dkey-238o13.4" "crabp1a"
[7] "si:ch211-251b21.1" "CNDP1" "junba"
[10] "crabp2a" "cryba4" "crybb1"
[13] "crygn2" "fabp11a" "si:dkey-238c7.12"
[16] "cadm3"

Preservation of embryonic molecular profiles in larval progenitors
We were looking to compare the molecular profiles of embryonic and post-embryonic progenitors.
Here, in the retina, we find progenitors at larval stages whose molecular signatures are preserved
from embryonic stages. For comparison, in the hypothalamus, we find that progenitors at larval
stages are transcriptionally different from embryonic progenitors (see Hypothalamus 3).

Identify populations to compare
We defined progenitor / precursor / neuron populations based on their location in the tree, cross-
referenced with the expression of markers of each of these types
obj@group.ids$precursor.group <- NA

cells.s31 <- intersect(cellsInCluster(obj, "segment", "31"), whichCells(obj, "pseudotime",
c(0.05, 1)))

obj@group.ids[cells.s31, "precursor.group"] <- "1a_prog_transient"

cells.prog.late <- cellsInCluster(obj, "segment", c("30", "29"))
obj@group.ids[cells.prog.late, "precursor.group"] <- "1b_prog_longterm"

cells.precursor <- intersect(cellsInCluster(obj, "segment", c("24", "25", "26", "15")),
whichCells(obj, "pseudotime", c(0, 0.535)))

obj@group.ids[cells.precursor, "precursor.group"] <- "2_precursor"

cells.neurons <- setdiff(whichCells(obj, "pseudotime", c(0.535, 1)), cellsInCluster(obj,
"segment", c("6", "11")))

obj@group.ids[cells.neurons, "precursor.group"] <- "3_neurons"

Colors for ggplot
stage.colors <- RColorBrewer::brewer.pal(12, "Paired")[c(10, 9, 7, 1)]

Plot tree to show where the groups are
plotTree(obj, "precursor.group", discrete.colors = stage.colors)

Warning: Removed 2530 rows containing missing values (geom_point).

40

Plot genes in each group
plotDot(obj, genes = c("rx1", "foxd1", "her2", "hes2.2", "insm1a", "neurod4", "foxg1b",

"elavl3", "elavl4"), clustering = "precursor.group", scale.by = "area") + theme_bw()

41

Determine proportion of cells in each state
We then determined the proportion of cells from different stages that fell into each of these tran-
scriptional states.
We combined stages to reduce number of plots
obj@group.ids$stage.collapsed <- plyr::mapvalues(x = obj@group.ids$stage, from = c("01-12h",

"02-14h", "03-16h", "04-18h", "05-20h", "06-24h", "07-36h", "08-2d", "09-3d",
"10-5d", "11-8d", "12-15d"), to = c(rep("01-12h-24h", 6), rep("02-36h-3d", 3),
rep("03-5d-15d", 3)))

Count number of cells from each stage group in each precursor group
stage.group.count <- plyr::count(obj@group.ids, vars = c("stage.collapsed", "precursor.group"))

Remove cells that weren't part of a precursor group
stage.group.count <- stage.group.count[complete.cases(stage.group.count),]

Cast into a data frame and convert NA to 0 (no cells of that type observed)
stage.group.df <- reshape2::dcast(stage.group.count, formula = stage.collapsed ~

precursor.group)

Using freq as value column: use value.var to override.

stage.group.df[is.na(stage.group.df)] <- 0

Normalize by the number of precursors from each stage group
stage.group.df[, 2:5] <- sweep(stage.group.df[, 2:5], 1, rowSums(stage.group.df[,

2:5]), "/")

42

Melt for ggplot
stage.group.df.melt <- reshape2::melt(stage.group.df, id.vars = "stage.collapsed")

Plot proportions
ggplot(stage.group.df.melt, aes(x = variable, y = value, group = stage.collapsed,

fill = variable)) + geom_bar(stat = "identity") + facet_wrap(~stage.collapsed) +
theme_bw() + scale_fill_manual(values = stage.colors) + theme(axis.title.x = element_blank(),
axis.text.x = element_blank(), axis.ticks.x = element_blank())

43

Hypothalamus: 1 - URD object & doublet
removal

Jeff Farrell
8/22/2019

Contents
Import data into URD 1

Convert Seurat object to URD . 1
Combined individual stage clustering . 1

Calculate highly variable genes 2

Calculate KNN graph and remove outliers 7

Remove cell type doublets 8
Add UMAP projection . 8
Load NMF results and import into object . 9
Select cell-type specific modules . 9
Determine which module pairs to use for doublet removal 10

Import data into URD

Convert Seurat object to URD

We first loaded a Seurat object that contained just cells from the clusters that belonged to the
hypothalamus from each stage.
suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

Load Seurat object that has been cropped to hypothalamus cells
object.seurat <- readRDS(paste0(base.path, "obj/hypo_seurat.rds"))

Convert to URD object
suburd <- seuratToURD(object.seurat)

Combined individual stage clustering

Bushra had performed individual clusterings across each stage with different resolutions. Here,
it was better to create a single identifier that included stage + cluster information to combine all
those clusterings (while preventing any overlap).

1

stages <- sort(unique(suburd@meta$stage))
clust.res.used <- paste0("res.", c("4.5", "4", "5", "5", "4.5", "5", "6",

"6", "6", "5.5", "6", "5"))
names(clust.res.used) <- stages
suburd@group.ids$cluster <- NA
for (stage in stages) {

suburd@group.ids[cellsInCluster(suburd, "stage", stage), "cluster"] <- paste0(stage,
"-", suburd@group.ids[cellsInCluster(suburd, "stage", stage), clust.res.used[stage]])

}

Calculate highly variable genes

We calculated highly variable genes for each stage, used genes that were found as highly in at
least two stages, but were not mitochondrial, ribosomal, heat-shock protein, or tandem duplicated
genes.
Calculated on each stage separaely, final gene list was all genes
that were 'variable' in at least two stages NB: For a couple of
stages, the gamma fit was poor -- the library size distribution
seemed bimodal. Have seen this before in 10X data, but not sure what
it means.
var.genes.by.stage <- lapply(stages, function(stage) {

findVariableGenes(suburd, cells.fit = cellsInCluster(suburd, "stage",
stage), set.object.var.genes = F, diffCV.cutoff = 0.3, main.use = stage,
do.plot = T)

})

2

3

4

5

names(var.genes.by.stage) <- stages
var.genes <- sort(unique(unlist(var.genes.by.stage)))
print(paste0("Length of variable genes is ", length(var.genes)))

[1] "Length of variable genes is 1783"

var.genes.twice <- names(which(table(unlist(var.genes.by.stage)) >= 2))
print(paste0("Length of variable genes shared across at least 2 stages is ",

length(var.genes.twice)))

6

[1] "Length of variable genes shared across at least 2 stages is 957"

Remove mitochondrial genes
var.mito <- grep("^mt-|^AC0", var.genes.twice, value = T)
Remove ribosomal genes
var.ribo <- grep("^rps|^rpl", var.genes.twice, value = T)
Remove hsp genes
var.hsp <- grep("^hsp", var.genes.twice, value = T)
Remove genes with duplicates
var.dups <- grep("of many", var.genes.twice, value = T)
suburd@var.genes <- setdiff(var.genes.twice, c(var.mito, var.ribo, var.hsp,

var.dups))
print(paste0("Length of final variable genes list (after removing mito, ribo, hsp genes) is ",

length(suburd@var.genes)))

[1] "Length of final variable genes list (after removing mito, ribo, hsp genes) is 856"

To prevent downstream problems, we also removed any cells from the data that had the exact
same expression of the variable genes (i.e. cells with completely duplicated coordinates in the
high-dimensional space we would use for analysis downstream).
Check for duplicate data points - cells with exact same expression of
variable genes
vg.dups <- duplicated(as.data.frame(as.matrix(t(suburd@logupx.data[suburd@var.genes,

]))))
if (length(which(vg.dups)) > 0) {

print(paste("Removing", length(which(vg.dups)), "cell(s) with duplicated variable gene expression."))
not.dup.cells <- colnames(suburd@logupx.data)[!vg.dups]
suburd <- urdSubset(suburd, not.dup.cells)

}

[1] "Removing 1 cell(s) with duplicated variable gene expression."

Calculate KNN graph and remove outliers

We then calculated a k-nearest neighbor graph and removed cells that had unusual distance to
their nearest neighbor, or unusual distance to their 20th nearest neighbor (given their distance
to their nearest neighbor). These sorts of outliers often cause problems or skew diffusion maps
(used downstream).
Calculate k-nn
suburd <- calcKNN(suburd)

Check what the outliers are
outliers <- knnOutliers(suburd, nn.1 = 1, nn.2 = 20, x.max = 40, slope.r = 1.1,

int.r = 3, slope.b = 0.66, int.b = 11.5, title = "Identifying Outliers by k-NN Distance.")

7

length(outliers)

[1] 87

suburd <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
outliers))

Remove cell type doublets

Add UMAP projection

While not strictly required, a UMAP projection can make it easier to assess the expression of NMF
modules and whether thresholds for overlap are set correctly.
add UMAP command

Load pre-calculated UMAP
umap <- readRDS(paste0(base.path, "/umap/umap_hypo.rds"))

Add projection to URD object
suburd@tsne.y <- umap

8

Load NMF results and import into object

NMF results were calculated by providing suburd@logupx.data to an external NMF pipeline written
in Python. The output results are imported here, scaled, and added to the URD object.
Load the NMF results
load(paste0(base.path, "/NMF/hypo/result_tbls.Robj"))

The results object contains NMF runs for several K values. k=28 was
chosen for this tissue, so this extracts the results for that
particular parameter
k.use <- "28"
nmf.cells <- result_obj[[paste0("K=", k.use)]][[1]]$C
rownames(nmf.cells) <- paste0("nmf", 1:nrow(nmf.cells))
colnames(nmf.cells) <- gsub("\\.", "-", colnames(nmf.cells))
nmf.genes <- result_obj[[paste0("K=", k.use)]][[1]]$G
colnames(nmf.genes) <- paste0("nmf", 1:nrow(nmf.cells))

Scale NMF results 0-1
nmf.cells.scaled <- sweep(nmf.cells, 1, apply(nmf.cells, 1, max), "/")

Add scaled NMF results to the URD object
suburd@nmf.c1 <- as(t(as.matrix(nmf.cells.scaled)), "dgCMatrix")

Select cell-type specific modules

Several NMF modules will be poor markers of cell types — these are often modules driven mostly
be the expression of 1-2 genes (where the gene loading of the first gene is much greater than that
of the fourth gene, for instance), or modules that don’t exhibit any restriction in a tSNE or UMAP
projection.
Plot size parameters
plot.height = 6
plot.width = 16
dpi = 150

Plot every module to determine which exhibit cell-type specificity
This saves directly to the hard drive: two example plots are shown
below.

for (n in colnames(suburd@nmf.c1)) { png(paste0(path, '/doublets/',
subset, '-plots/', n, '.png'), width=dpi*plot.width,
height=dpi*plot.height) plot(plotDim(suburd, n)) dev.off() }

gridExtra::grid.arrange(grobs = list(plotDim(suburd, "nmf2", plot.title = "nmf2: exhibits poor restriction"),
plotDim(suburd, "nmf27", plot.title = "nmf27: exhibits good cell-type")),
ncol = 2)

9

Module Gene 1 : Gene 4 Ratios
top.genes <- result_obj[[paste0("K=", k.use)]][[1]]$top30genes
top.weights <- top.genes[, grep("Weights", colnames(top.genes), value = T)]
colnames(top.weights) <- paste0("nmf", 1:nrow(nmf.cells))
top.weights.ratio <- top.weights[1,]/top.weights[4,]

Which modules exhibit cell-type restriction?
modules.bad.ratio <- names(top.weights.ratio)[which(top.weights.ratio >

3)]
unrestricted.modules <- paste0("nmf", c("12", "19", "24", "28"))
good.modules <- setdiff(colnames(suburd@nmf.c1), c(modules.bad.ratio, unrestricted.modules))

Determine which module pairs to use for doublet removal

We consider NMF modules pairwise and only use those pairs that don’t are non-overlapping in
the data. (In other words, NMF modules that are mutually exclusive in the majority of the data.)
Here, we determine thresholds for selecting those module pairs.
Determine overlaps between module pairs
nmf.doublet.combos <- NMFDoubletsDefineModules(suburd, modules.use = good.modules,

module.thresh.high = 0.4, module.thresh.low = 0.15)

Determine thresholds for NMF modules
frac.overlap.max = 0.03
frac.overlap.diff.max = 0.11

10

module.expressed.thresh = 0.33

Determine which module pairs to use for doublets
NMFDoubletsPlotModuleThresholds(nmf.doublet.combos, frac.overlap.max = frac.overlap.max,

frac.overlap.diff.max = frac.overlap.diff.max)

These commands save plots directly to the hard-drive.

Make plots to see how your thresholds are
NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,

"-doublet-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "pass", sort = "near", n.plots = 25)

NMFDoubletsPlotModuleCombos(suburd, path = paste0(path, "/doublets/", subset,
"-ok-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "discarded", sort = "near", n.plots = 25)

Define doublet cells
nmf.doublets <- NMFDoubletsDetermineCells(suburd, nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,

frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max) # 49 cells / 11307 cells = 0.43%

Plot doublet cells on the UMAP
suburd <- groupFromCells(suburd, "nmf.doublets", cells = nmf.doublets)
plot(plotDimHighlight(suburd, clustering = "nmf.doublets", cluster = "TRUE",

plot.title = paste0("NMF doublets: ", length(nmf.doublets), " cells"),

11

point.size = 2, highlight.color = "blue"))

Crop object to exclude doublets
suburd.cropped <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),

nmf.doublets))

And then save the completed object for use downstream in building a tree using URD.
saveRDS(suburd.cropped, file = paste0(base.path, "/obj/URD_hypo_ND.rds"))

12

Hypothalamus: 2 - URD tree
Jeff Farrell
9/07/2019

Contents
Load data 1

Processed on the cluster 1

Calculate diffusion map and pseudotime 2
Calculate diffusion map . 2
Calculate pseudotime . 4

Calculate biased transition matrix 9

Perform biased random walks 9
Determine tips . 9
Perform the biased random walks . 11
Process the random walks . 12

Build the URD tree 12

Save the URD tree 13

Load data

suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

Load procesed URD object
object <- readRDS(paste0(base.path, "obj/URD_hypo_ND.rds"))

Processed on the cluster

Most of the following steps were run on a computing cluster. These individual tissue subsets
can be run on a modern, well-equipped laptop. The use of a computing cluster allows multiple
parameter choices to be tried in parallel, and also allows further parallelization of the random
walk procedure, speeding it up. Below, we should the commands that one would run on their
laptop, and then generally load the pre-processed results from the cluster that were used in the
paper. If you want to parallelize your own processing on a compute cluster, the scripts we used
will be available at http://github.com/farrellja/URD/cluster/

1

http://github.com/farrellja/URD/cluster/

Calculate diffusion map and pseudotime

These two steps are run in the cluster script URD-DM-PT.R.

Calculate diffusion map

To run locally: Calculate a diffusion map projection
object <- calcDM(object, knn = 100, sigma.use = 8)

Or: Load a pre-computed diffusion map projection
dm <- readRDS(paste0(base.path, "dm/dm_hypoND_knn-100_sigma-8.rds"))
object <- importDM(object, dm)

Plot diffusion maps
stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",

"gold", "goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2",
"lightgrey")

Plot by stage
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "stage", plot.title = "", outer.title = "Diffusion map labeled by Stage",
legend = T, alpha = 0.45, discrete.colors = stage.colors)

2

Plot with final cell types labeled
object@group.ids$final.cluster <- NA
object@group.ids[cellsInCluster(object, "stage", "12-15d"), "final.cluster"] <- object@group.ids[cellsInCluster(object,

"stage", "12-15d"), "res.5"]
plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "final.cluster", plot.title = "", outer.title = "Diffusion map with final clusters",
legend = T, alpha = 0.6)

3

Calculate pseudotime

URD requires a starting point or ‘root’ for determining pseudotime. Here, we used all cells from
the first timepoint (i.e. 12 hpf) as the root.
Here, we used all cells from the first timepoint (i.e. 12 hours) as
the root.
root.cells <- cellsInCluster(object, "stage", "01-12h")
plotDimHighlight(object, "stage", "01-12h", plot.title = "Root is 12 hpf cells")

4

To run locally: Run graph-search simulations to determine pseudotime
flood.result <- floodPseudotime(object, root.cells = root.cells, n = 100,

minimum.cells.flooded = 2, verbose = T)

Or load a pre-computed graph-search simulation result
flood.result <- readRDS(paste0(base.path, "flood/flood_hypoND_knn-100_sigma-8.rds"))

Process the graph-search simulations to determine the pseudotime of
each cell
object <- floodPseudotimeProcess(object, flood.result, floods.name = "pseudotime",

max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

If enough simulations have been run, then as additional simulations
are added, the overall change in pseudotime of cells should reach an
asymptote. If it does not, then floodPseudotime should be run with a
higher n.
pseudotimePlotStabilityOverall(object)

5

plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "pseudotime", plot.title = "", outer.title = "Diffusion Map labeled by pseudotime",
legend = F, alpha = 0.4)

6

plotDim(object, "pseudotime", plot.title = "UMAP projection colored by pseudotime")

7

plotDists(object, "pseudotime", "stage", plot.title = "Pseudotime by stage")

8

Calculate biased transition matrix

In order to perform biased random walks, we must first bias the transition matrix to ensure that
walks proceed towards the root and do not turn into other differentiated cell types. This is per-
formed in the cluster script URD-TM.R.
Calculate parameters for biasing the transition matrix.
diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime",

optimal.cells.forward = 40, max.cells.back = 80, pseudotime.direction = "<",
do.plot = T, print.values = T)

[1] "Mean pseudotime back (~80 cells) 0.00498088811519173"
[1] "Chance of accepted move to equal pseudotime is 0.821561374686937"
[1] "Mean pseudotime forward (~40 cells) -0.00250030667341253"

Calculate the biased matrix.
biased.tm <- pseudotimeWeightTransitionMatrix(object, pseudotime = "pseudotime",

logistic.params = diffusion.logistic, pseudotime.direction = "<")

Perform biased random walks

Then, we perform biased walks starting from each tip. Visited cells are inferred to lie along the
trajectory that connects the root to each cell type. This is performed in the cluster script URD-
Walk.R.

Determine tips

We used clusters from 15 dpf as the tips for performing biased random walks. Here we define
the cells belonging to each of those clusters.

9

All clusters at 15 days
clusters.15day <- unique(object@group.ids[grep("15d", object@group.ids$stage),

"res.5"])
All cells at 15 days
cells.15day <- rownames(object@group.ids)[grep("15d", object@group.ids$stage)]
Cell lists of each cluster at 15dpf
cells.15dpf.clusters <- lapply(clusters.15day, function(clust) intersect(cells.15day,

cellsInCluster(object, "res.5", clust)))
names(cells.15dpf.clusters) <- paste0("15d-", clusters.15day)

We also load a .csv file that contains information about the tips. It has four columns:
• id: Cluster ID for the tip
• use: Whether this cluster should be used when building the tree
• name: The name for this tip, which will be used on 2D plots
• short.name: The ‘short’ name for this tip, which would be used on 3D plots (though we did

not use that feature in this study).
Load CSV
tip.names <- read.csv(paste0(base.path, "tips/tip_names_hypoND.csv"), header = F,

stringsAsFactors = F, colClasses = c("character", "logical", "character",
"character"))

Name columns and rows
names(tip.names) <- c("id", "use", "name", "short.name")
rownames(tip.names) <- gsub("_", "-", tip.names$id)

Sort alphabetically
tip.names <- tip.names[order(rownames(tip.names)),]

These are the tips that were considered during the construction of the retina URD tree (some were
excluded during tree construction later in the buildTree command).
Define a 'tips' clustering
object@group.ids$tip <- NA
object@group.ids$tip.id <- NA
object@group.ids$tip.name <- NA

If the tip will be used in the tree, define its cells in the
clustering
for (i in 1:nrow(tip.names)) {

tip.cells <- cells.15dpf.clusters[[rownames(tip.names)[i]]]
object@group.ids[tip.cells, "tip"] <- as.character(i)
object@group.ids[tip.cells, "tip.id"] <- rownames(tip.names)[i]
object@group.ids[tip.cells, "tip.name"] <- as.character(tip.names[i,

"name"])
}

Plot the tips
plotDim(object, "tip.name")

10

Perform the biased random walks

Biased random walks then need to be run starting from each tip. This can be performed on a
laptop, but is an ideal candidate for parallelization on a cluster. (The walks from each tip can be
run as a separate job.)
IF RUNNING LOCALLY

Loop through each cluster
walks <- lapply(rownames(tip.names), function(c) {

Exclude any tip cells that for whatever reason didn't end up in the
biased TM (e.g. maybe not assigned a pseudotime).
tip.cells <- intersect(cells.15dpf.clusters[[c]], rownames(biased.tm))
Perform the random walk simulation
this.walk <- simulateRandomWalk(start.cells = tip.cells, transition.matrix = biased.tm,

end.cells = root.cells, n = 50000, end.visits = 1, verbose.freq = 1000,
max.steps = 5000)

return(this.walk)
})
names(walks) <- rownames(tip.names)

Alternatively, this loop is automated by the function
simulateRandomWalksFromTips

Alternatively, a set of pre-calculated walks can be loaded. Since the walks are a simulation (and

11

therefore not deterministic), this is particularly crucial for reproducing results.
IF LOADING PRE-CALCULATED WALKS

Get list of files in the walks directory
walks.files <- list.files(paste0(base.path, "/walks/hypoND/"), pattern = ".rds")

Load the walks previously performed for each cluster
walks <- lapply(rownames(tip.names), function(c) {

walk.file <- grep(pattern = paste0("_tip-", c, "_"), x = walks.files,
value = T)[1]

return(readRDS(paste0(base.path, "/walks/hypoND/", walk.file)))
})
names(walks) <- rownames(tip.names)

Process the random walks

The walks are then converted to visitation frequency by importing them into the URD object.
for (i in 1:nrow(tip.names)) {

Load the individual walk visitation frequencies into the object
object <- processRandomWalks(object, walks = walks[[i]], walks.name = i,

n.subsample = 1, verbose = F)
}

Build the URD tree

Then, a branching tree is constructed, by joining trajectories in an agglomerative fashion when
cells are highly visited by walks from multiple tips. The following steps were performed in the
cluster script URD-Tree.R.
Tree building is destructive, so create a copy of the object
object.tree <- object

Load tip cells
object.tree <- loadTipCells(object.tree, "tip")

Determine tips to use
tips.to.use <- which(tip.names$use)

Build the tree
object.tree <- buildTree(object.tree, pseudotime = "pseudotime", divergence.method = "ks",

cells.per.pseudotime.bin = 40, bins.per.pseudotime.window = 5, save.all.breakpoint.info = T,
p.thresh = 1e-04, verbose = F, tips.use = as.character(tips.to.use))

Name the tips of the tree
object.tree <- nameSegments(object.tree, segments = tips.to.use, segment.names = as.character(tip.names[tips.to.use,

"name"], short.names = as.character(tip.names[tips.to.use, "short.name"])))

plotTree(object.tree, "stage", discrete.colors = stage.colors, label.segments = T)

12

Save the URD tree

The tree is then saved for use in downstream analysis, and can easily be loaded for further pe-
rusal.
saveRDS(object.tree, file = paste0(base.path, "tree/URD-Tree-Hypo.rds"))

13

Hypothalamus: 3 - URD Cascades and Figures

Jeff Farrell

10/08/2019, updated 07/30/2020

Contents
Load data 2

Plot gene expression on the tree 2
Plot tree by stage . 2
Plot tree with gene expression: main figures . 3
Plot tree with gene expression: supplemental figures 5

Determine genes enriched in trajectories to particular cell types 6
Comparison between major cell types . 6
AUCPR along tree . 8
Markers of the prdx1- neuron clade . 8

Functions for curating differential expression results 9
threshold.tree.markers . 9
divide.branches . 9
divide.branches.triple . 10

Functions for heatmap generation 11
Color scale . 11
determine.timing . 12
filter.heatmap.genes . 13

Heatmaps of gene cascades 13
Pdyn+ neurons . 13

Prepare cascade . 13
Generate heatmap: all genes . 14

Prdx1+ neurons vs. other neurons . 16
Prepare cascade . 16
Generate heatmap: all genes . 17

nrgna+ neurons . 19
Prepare cascade . 19
Generate heatmap: all genes . 20
Generate heatmap: main figure . 22

GABAergic neurons . 24
Prepare cascade . 24
Generate heatmap: all genes . 25

Embryonic molecular profiles are not found in larval progenitors 28
Identify populations to compare . 28
Determine proportion of cells in each state . 30

1

Load data
Load URD
library(URD)

Loading required package: ggplot2

Loading required package: Matrix

Registered S3 method overwritten by 'xts':
method from
as.zoo.xts zoo

Basic location
base.path <- "~/Documents/R sessions/urd-cluster-bushra/"

Load completed hypothalamus tree object
obj.path <- paste0(base.path, "tree/hypoND/tree-hypoND_knn-100_sigma-8_40F-80B_NO-_ks_0001.rds")
obj <- readRDS(obj.path)

Plot gene expression on the tree
Plot tree by stage

stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",
"gold", "goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2",
"lightgrey")

plotTree(obj, "stage", label.type = "group", discrete.colors = stage.colors)

2

Plot tree with gene expression: main figures

gridExtra::grid.arrange(grobs = lapply(c("shha", "pdyn", "rx3", "nrgna"),
plotTree, object = obj, label.x = F, plot.cells = F), ncol = 2)

3

gridExtra::grid.arrange(grobs = lapply(c("dlx5a", "dlx6a", "vax1"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 2)

4

Plot tree with gene expression: supplemental figures

gridExtra::grid.arrange(grobs = lapply(c("nkx2.4b", "ascl1a", "insm1a",
"tubb5", "scg2b", "dlx2a", "nkx2.4a", "nrgna", "tac1", "synpr", "sp8a",
"gad1b", "npy", "sst1.1", "tph2", "fezf1", "pdyn", "slc17a6b", "prdx1",
"pou3f1"), plotTree, object = obj, label.x = F, plot.cells = F), ncol = 4)

5

Determine genes enriched in trajectories to particular cell types
Comparison between major cell types
We took each major group (“clade”) of branches from the end of the tree as a single entity
(i.e. prdx1+ neurons, pdyn+ neurons, GABAergic dlx+ neurons, nrgna+ neurons) and compared
them against each other to look for differentially expressed genes.
Get the parent segment of each clade to consider as a group
combined.tips <- c("3", "4", "9", "10")

6

Get the cells in that segment and all child segments
cells.combined.tips <- lapply(combined.tips, function(t) whichCells(obj,

label = "segment", value = segChildrenAll(obj, t, include.self = T)))
names(cells.combined.tips) <- combined.tips

Loop through each of these clades and look for differentially
expressed genes
combined.markers <- lapply(combined.tips, function(tip) {

Find all of the other clades
opposing.tips <- setdiff(combined.tips, tip)
Perform pairwise comparisons to each other clade
m.o <- lapply(opposing.tips, function(tip.opposing) {

message(paste0(Sys.time(), ': Comparing tip ', tip, ' to ',
tip.opposing, '.')) Find differentially expressed genes between the
pair of clades
ma <- markersAUCPR(object = obj, cells.1 = cells.combined.tips[[tip]],

cells.2 = cells.combined.tips[[tip.opposing]], effect.size = 0.5,
auc.factor = 1.1)

In order to facilitate combining all of the results later, add
columns about which two clades were compared and also a duplicate
entry of the name of each gene that's recovered.
if (nrow(ma) > 0) {

ma$gene <- rownames(ma)
ma$tip1 <- tip
ma$tip2 <- tip.opposing

}
return(ma)

})
names(m.o) <- opposing.tips
return(m.o)

})
names(combined.markers) <- combined.tips

Require that genes are markers against at least 2 other clades
combined.markers.beatmult <- lapply(combined.markers, function(m) {

names(which(table(unlist(lapply(m, rownames))) >= 2))
})

Since genes might be a marker in a comparison to several other
clades, combine the results into a single table, where each gene is
listed only once with the info from the pairwise comparison where it
had the strongest differential expression.
combined.markers.best <- lapply(1:length(combined.markers.beatmult), function(i) {

cm <- do.call("rbind", combined.markers[[i]])
cm <- cm[cm$gene %in% combined.markers.beatmult[[i]],]
cmb <- do.call("rbind", lapply(combined.markers.beatmult[[i]], function(g) {

cmr <- cm[cm$gene == g,]
return(cmr[which.max(cmr$AUCPR.ratio),])

}))
rownames(cmb) <- cmb$gene
if (!is.null(cmb)) {

cmb <- cmb[order(cmb$AUCPR.ratio, decreasing = T),]
cmb$exp.global <- apply(obj@logupx.data[rownames(cmb), unlist(obj@tree$cells.in.segment)],

7

1, mean.of.logs)
cmb$exp.global.fc <- cmb$nTrans_1 - cmb$exp.global

}
return(cmb)

})
names(combined.markers.best) <- combined.tips

AUCPR along tree
We also used the AUCPRTestAlongTree function to ask for genes that are differential markers
of a lineage using URD’s tree structure. This makes a comparison at each branchpoint from a
particular cell type up to the root.
Get all of the tips from the tree
tips.in.tree <- as.character(obj@tree$tips)

Tree segments to use as root
roots <- rep("12", length(tips.in.tree))
names(roots) <- tips.in.tree
roots["3"] <- "13"

Define parameters to use for calculation Used more permissive values
in the sst1.1+ / tph2+ / gabaergic dlx+ neuronal comparisons due to
the small number of cells in these populations
auc.use <- rep(1.2, length(tips.in.tree))
names(auc.use) <- tips.in.tree
auc.use[c("1", "6", "7")] <- 1.15
log.effect.use <- rep(0.8, length(tips.in.tree))
names(log.effect.use) <- tips.in.tree
log.effect.use[c("1", "6", "7")] <- 0.6

Perform a loop of tests with each tip.
markers <- lapply(tips.in.tree, function(t) {

this.root <- roots[t]
this.auc <- auc.use[t]
this.log <- log.effect.use[t]
message(paste0(Sys.time(), ': Starting tip ', t, ' and root ',
this.root, ' with params ', this.auc, ' AUC and ', this.log, ' effect
size.'))
these.markers <- aucprTestAlongTree(obj, pseudotime = "pseudotime",

tips = as.character(t), genes.use = NULL, must.beat.sibs = 0.6,
report.debug = F, root = this.root, auc.factor = this.auc, log.effect.size = this.log)

these.markers$gene <- rownames(these.markers)
these.markers$tip <- t
return(these.markers)

})
names(markers) <- tips.in.tree

Markers of the prdx1- neuron clade

Calculate from segment 12 against segment 3 specifically
nonprdx.markers <- markersAUCPR(obj, clust.1 = "12", clust.2 = "3", clustering = "segment",

8

effect.size = 0.8, auc.factor = 1.2)
Also look at segment 12 vs. rest of the hypothalamus with lower
thresholds
nonprdx.markers.global <- markersAUCPR(obj, clust.1 = "12", clust.2 = as.character(c(1:11,

13)), clustering = "segment", effect.size = 0.4, auc.factor = 1.1)

Warning in names(genes.data)[4:7] <- paste(c("posFrac", "posFrac", "nTrans", :
number of items to replace is not a multiple of replacement length

Functions for curating differential expression results
We further curated those differentially expressed genes using the following functions:

threshold.tree.markers
Function to threshold markers from a markersAUCPRAlongTree test with additional criteria

• markers: list of results from markersAUCPRAlongTree tests
• tip: which tip (or element of the list to pursue)
• global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
• aucpr.ratio.all: classifier score that gene must exhibit along trajectory test vs. rest of the data
• branch.fc: fold.change that gene must have (in best case) vs. the opposing branch at any
branchpoint along the trajectory.

• Returns markers with only a subset of rows retained.
threshold.tree.markers <- function(markers, tip, global.fc = 0.1, branch.fc = 0.4,

aucpr.ratio.all = 1.03) {
m <- markers[[tip]]
First off -- lose global FC < x
bye.globalfc <- rownames(m)[m$expfc.all < global.fc]
Second -- get rid of branch FC < x
bye.branchfc <- rownames(m)[m$expfc.maxBranch < branch.fc]
Third -- get rid of stuff essentially worse than random
classification on global level
bye.badglobalaucpr <- rownames(m)[m$AUCPR.ratio.all < aucpr.ratio.all]
bye.all <- unique(c(bye.globalfc, bye.branchfc, bye.badglobalaucpr))
m.return <- m[setdiff(rownames(m), bye.all),]
return(m.return)

}

divide.branches
Function to compare genes between two branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making photoreceptor heatmap, use to divide into photoreceptor, cone, and rod markers)

• object: An URD object
• genes: (Character vector) Genes to test
• clust.1: (Character) Cluster 1
• clust.2: (Character) Cluster 2
• clustering: (Character) Clustering to pull from
• exp.fc: (Numeric) Minimum expression fold-change between branches to consider different

9

• exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a
branch

• exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

• Returns list of gene names (“specific.1” = specific to clust.1, “specific.2” = specific to clust.2,
“markers” = all genes tested)

divide.branches <- function(object, genes, clust.1, clust.2, clustering = "segment",
exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {
Double check which markers are unique to one or the other population
mcomp <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.2,

clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)

specific.b <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[,
4] < exp.thresh & mcomp[, 5] > pmin((mcomp[, 4] + exp.diff), 1)]

specific.a <- rownames(mcomp)[abs(mcomp$exp.fc) > exp.fc & mcomp[,
5] < exp.thresh & mcomp[, 4] > pmin((mcomp[, 5] + exp.diff), 1)]

r <- list(specific.a, specific.b, mcomp)
names(r) <- c("specific.1", "specific.2", "markers")
return(r)

}

divide.branches.triple
Function to compare genes between three branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making gad2+ heatmap, use to divide into general, dlx+, sst+, and tph2+ markers).

• object: An URD object
• genes: (Character vector) Genes to test
• clust.1: (Character) Cluster 1
• clust.2: (Character) Cluster 2
• clust.3: (Character) Cluster 3
• clustering: (Character) Clustering to pull from
• exp.fc: (Numeric) Minimum expression fold-change between branches to consider different
• exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a
branch

• exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

• Returns list of gene names (“nonspecific” = genes not in specific.1/2/3, “specific.1” = spe-
cific to clust.1, “specific.2” = specific to clust.2, “specific.3” = specific to clust.3, each pair-
wise comparison, and “markers” = all genes tested)

divide.branches.triple <- function(object, genes, clust.1, clust.2, clust.3,
clustering = "segment", exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {
Double check which markers are unique to one or the other population
mcomp12 <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.2,

clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)

mcomp23 <- markersAUCPR(object, clust.1 = clust.2, clust.2 = clust.3,
clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)

mcomp13 <- markersAUCPR(object, clust.1 = clust.1, clust.2 = clust.3,
clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = 0, frac.must.express = 0)

10

specific.1v2 <- rownames(mcomp12)[abs(mcomp12$exp.fc) > exp.fc & mcomp12[,
5] < exp.thresh & mcomp12[, 4] > pmin((mcomp12[, 5] + exp.diff),
1)]

specific.2v1 <- rownames(mcomp12)[abs(mcomp12$exp.fc) > exp.fc & mcomp12[,
4] < exp.thresh & mcomp12[, 5] > pmin((mcomp12[, 4] + exp.diff),
1)]

specific.2v3 <- rownames(mcomp23)[abs(mcomp23$exp.fc) > exp.fc & mcomp23[,
5] < exp.thresh & mcomp23[, 4] > pmin((mcomp23[, 5] + exp.diff),
1)]

specific.3v2 <- rownames(mcomp23)[abs(mcomp23$exp.fc) > exp.fc & mcomp23[,
4] < exp.thresh & mcomp23[, 5] > pmin((mcomp23[, 4] + exp.diff),
1)]

specific.1v3 <- rownames(mcomp13)[abs(mcomp13$exp.fc) > exp.fc & mcomp13[,
5] < exp.thresh & mcomp13[, 4] > pmin((mcomp13[, 5] + exp.diff),
1)]

specific.3v1 <- rownames(mcomp13)[abs(mcomp13$exp.fc) > exp.fc & mcomp13[,
4] < exp.thresh & mcomp13[, 5] > pmin((mcomp13[, 4] + exp.diff),
1)]

specific.1 <- unique(setdiff(c(specific.1v2, specific.1v3), c(specific.2v3,
specific.3v2)))

specific.2 <- unique(setdiff(c(specific.2v1, specific.2v3), c(specific.1v3,
specific.3v1)))

specific.3 <- unique(setdiff(c(specific.3v2, specific.3v1), c(specific.2v1,
specific.1v2)))

nonspecific <- setdiff(genes, c(specific.1, specific.2, specific.3))

markers.comp <- list(mcomp12, mcomp13, mcomp23)
names(markers.comp) <- c("1v2", "1v3", "2v3")

r <- list(nonspecific, specific.1, specific.2, specific.3, specific.1v2,
specific.1v3, specific.2v1, specific.2v3, specific.3v1, specific.3v2,
markers.comp)

names(r) <- c("nonspecific", "specific.1", "specific.2", "specific.3",
"specific.1v2", "specific.1v3", "specific.2v1", "specific.2v3",
"specific.3v1", "specific.3v2", "markers")

return(r)
}

Functions for heatmap generation
These functions were used in the production of heatmaps:

Color scale
Generate color scale to use with heatmaps.
cols <- (scales::gradient_n_pal(RColorBrewer::brewer.pal(9, "YlOrRd")))(seq(0,

1, length.out = 50))

11

determine.timing
Determines order to plot genes in heatmap. “Expression” is defined as 20% higher expression
than the minimum observed value. “Peak” expression is defined as 50% higher expression than
minimum observed value. The two longest stretches of “peak” expression are found, and then
the later one is used. The onset time of the stretch of expression that contains that peak is also
determined. Genes are then ordered by the pseudotime at which they enter “peak” expression,
leave “peak” expression, start “expression”, and leave “expression”.

• s: result from geneSmoothFit
• genes: genes to order; default is all genes that were fit.
• Returns s but with an additional list entry ($timing) of the order to plot genes

determine.timing <- function(s, genes = rownames(s$mean.expression)) {
s$timing <- as.data.frame(do.call("rbind", lapply(genes, function(g) {

sv <- as.numeric(s$scaled.smooth[g,])
pt <- as.numeric(colnames(s$scaled.smooth))
Figure out baseline expression & threshold for finding peaks
min.val <- max(min(sv), 0)
peak.val <- ((1 - min.val)/2) + min.val
exp.val <- ((1 - min.val)/5) + min.val
Run-length encoding of above/below the peak-threshold
peak.rle <- rle(sv >= peak.val)
peak.rle <- data.frame(lengths = peak.rle$lengths, values = peak.rle$values)
peak.rle$end <- cumsum(peak.rle$lengths)
peak.rle$start <- head(c(0, peak.rle$end) + 1, -1)
Run-length encoding of above/below the expressed-threshold
exp.rle <- rle(sv >= exp.val)
exp.rle <- data.frame(lengths = exp.rle$lengths, values = exp.rle$values)
exp.rle$end <- cumsum(exp.rle$lengths)
exp.rle$start <- head(c(0, exp.rle$end) + 1, -1)
Take top-two longest peak RLE & select later one. Find stretches
that are above peak value
peak <- which(peak.rle$values)
Order by length and take 1 or 2 longest ones
peak <- peak[order(peak.rle[peak, "lengths"], decreasing = T)][1:min(2,

length(peak))]
Order by start and take latest one.
peak <- peak[order(peak.rle[peak, "start"], decreasing = T)][1]
Identify the actual peak value within that stretch
peak <- which.max(sv[peak.rle[peak, "start"]:peak.rle[peak, "end"]]) +

peak.rle[peak, "start"] - 1
Identify the start and stop of the expressed stretch that contains
the peak
exp.start <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <=

peak), "start"]
exp.end <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <=

peak), "end"]
Identify values of expression at start and stop
smooth.start <- sv[exp.start]
smooth.end <- sv[exp.end]
Convert to pseudotime?
exp.start <- pt[exp.start]
exp.end <- pt[exp.end]
peak <- pt[peak]

12

Return a vector
v <- c(exp.start, peak, exp.end, smooth.start, smooth.end)
names(v) <- c("pt.start", "pt.peak", "pt.end", "exp.start", "exp.end")
return(v)

})))
rownames(s$timing) <- genes

Decide on ordering of genes
s$gene.order <- rownames(s$timing)[order(s$timing$pt.peak, s$timing$pt.start,

s$timing$pt.end, s$timing$exp.end, decreasing = c(F, F, F, T),
method = "radix")]

return(s)
}

filter.heatmap.genes
Removes undesired (mitochondrial, ribosomal, tandem duplicated genes) from heatmaps for pre-
sentation purposes.

• genes: (Character vector) genes to check
• Returns genes with undesired genes removed.

filter.heatmap.genes <- function(genes) {
mt.genes <- grep("^mt-", ignore.case = T, genes, value = T)
many.genes <- grep("\\(1 of many\\)", ignore.case = T, genes, value = T)
ribo.genes <- grep("^rpl|^rps", ignore.case = T, genes, value = T)
cox.genes <- grep("^cox", ignore.case = T, genes, value = T)
hsp.genes <- grep("^hsp", ignore.case = T, genes, value = T)
return(setdiff(genes, c(mt.genes, many.genes, ribo.genes, cox.genes,

hsp.genes)))
}

Heatmaps of gene cascades
Using the genes that were determined as differentially expressed along the way to particular cell
types, we generated expression cascades and plotted them as heatmaps.

Pdyn+ neurons
Prepare cascade

Pdyn+ neurons: Seg 4

Get markers from the two approaches
t <- combined.markers.best[["4"]] # pdyn+ markers from above the combined clades
t <- t[t$exp.global.fc >= 0.8,] # limited to those with good global parameters
m <- threshold.tree.markers(markers, "4", global.fc = 0.6) # Pdyn+ Cell markers from aucprTestAlongTree
pdyn.markers <- unique(c(rownames(t), rownames(m)))

Just want to plot part of cells from upstream segment 12, which is
very long. Going to use cells from segments 4, 11, and from segment

13

12 with pseudotime > 0.23
cells.plot <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),

whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("11", "4"))))

Calculate spline curve
spline.plot <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot,

genes = pdyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

Calculate gene expression timing for ordering rows
spline.plot <- determine.timing(s = spline.plot)
order.plot <- filter.heatmap.genes(spline.plot$gene.order)

Output gene table
table.save <- data.frame(gene = order.plot, stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$pdyn.AUCPR.ratio.all <- m[table.save$gene, "AUCPR.ratio.all"]
table.save$pdyn.AUCPR.ratio.maxBranch <- m[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$pdyn.exp.fc.all <- m[table.save$gene, "expfc.all"]
table.save$pdyn.exp.fc.best <- m[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-pdyn.csv"))

Generate heatmap: all genes

Generate heatmap Make sure any values <0 in the spline curves get set
to 0 so that the heatmap scale doesn't get messed up.
spline.plot$scaled.smooth[spline.plot$scaled.smooth < 0] <- 0
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/hypo-pdyn.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(spline.plot$scaled.smooth[order.plot,]),

Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.6, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA)
title(main = "pdyn+ Neurons")

14

15

dev.off()

Prdx1+ neurons vs. other neurons
Prepare cascade

Prdx1+ neurons: Seg 3

Get markers from the two approaches
t <- combined.markers.best[["3"]] # prdx1+ markers from above the combined clades
t <- t[t$exp.global.fc >= 0.8,] # limited to those with good global parameters
m <- threshold.tree.markers(markers, "3", global.fc = 0.6) # prdx1+ Cell markers from aucprTestAlongTree
prdx.markers <- unique(c(rownames(t), rownames(m)))

Get markers for the opposing segment
opposing.prdx.markers <- intersect(rownames(nonprdx.markers), rownames(nonprdx.markers.global))

prdx.hm.markers <- unique(c(prdx.markers, opposing.prdx.markers))

Calculate spline curves Using segments 13 and 12 or 3.
spline.12 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,

"segment", c("13", "12")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

spline.3 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("13", "3")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

spline.123 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("13", "12", "3")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

Want to plot a heatmap that shows expression in most upstream
progenitors and then each branch (i.e. prdx1- vs. prdx1+ neurons) as
separate columns. Going to crop each spline fit to the correct
pseudotime range and then combine them into a single one that can be
plotted as a three-column heatmap.

pt.12v3 <- obj@tree$segment.pseudotime.limits["3", "start"] # pseudotime where the crop should happen
splines.prdx <- list(cropSmoothFit(spline.123, pt.min = -Inf, pt.max = pt.12v3),

cropSmoothFit(spline.12, pt.min = pt.12v3, pt.max = Inf), cropSmoothFit(spline.3,
pt.min = pt.12v3, pt.max = Inf))

names(splines.prdx) <- c("Hypo Precursors", "Prdx1-", "Prdx1+")
splines.prdx.hm <- combineSmoothFit(splines.prdx) # Combine into a single one

Calculate gene expression timing for ordering rows
spline.12 <- determine.timing(s = spline.12)
spline.3 <- determine.timing(s = spline.3)
spline.123 <- determine.timing(s = spline.123)

Decide which markers are specific to one cell type or both
d12v3 <- divide.branches(obj, prdx.hm.markers, clust.1 = "12", clust.2 = "3",

16

exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

Generate gene ordering based on timing & specificity
order.123 <- filter.heatmap.genes(setdiff(spline.123$gene.order, c(d12v3$specific.1,

d12v3$specific.2)))
order.12 <- filter.heatmap.genes(intersect(spline.12$gene.order, d12v3$specific.1))
order.3 <- filter.heatmap.genes(intersect(spline.3$gene.order, d12v3$specific.2))
gene.order <- c(order.123, order.12, order.3)

Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.123)),

rep("prdx1-", length(order.12)), rep("prdx1+", length(order.3))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$non.AUCPR.ratio <- nonprdx.markers[table.save$gene, "AUCPR.ratio"]
table.save$non.exp.fc <- nonprdx.markers[table.save$gene, "exp.fc"]
table.save$non.exp.fc.global <- nonprdx.markers.global[table.save$gene,

"exp.fc"]
table.save$prdx.AUCPR.ratio.all <- m[table.save$gene, "AUCPR.ratio.all"]
table.save$prdx.AUCPR.ratio.maxBranch <- m[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$prdx.exp.fc.all <- m[table.save$gene, "expfc.all"]
table.save$prdx.exp.fc.best <- m[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-prdx1-vs-non.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the
heatmap scale doesn't get messed up.
splines.prdx.hm$scaled.smooth[splines.prdx.hm$scaled.smooth < 0] <- 0
Determine where to place column separators (i.e. how many columns
will each cell type occupy in the heatmap)
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.prdx, function(x) ncol(x$scaled.smooth))),

-1)))
Determine where to place row separators (i.e. how many common
markers, and markers are specific to each cell type)
rowsep <- cumsum(c(length(order.123), length(order.12)))
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/hypo-prdx-vs-non.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.prdx.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.35, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "Precursors", line = -41, adj = 0)
title(main = "prdx1 -", line = -41, adj = 0.425)
title(main = "prdx1 +", line = -41, adj = 0.725)

17

18

dev.off()

nrgna+ neurons
Prepare cascade

Get markers from the two approaches
t <- combined.markers.best[["10"]] # Markers from above the combined clades
t <- t[t$exp.global.fc >= 0.8,] # limited to those with good global parameters
m2 <- threshold.tree.markers(markers, "2", global.fc = 0.6) # Markers from aucprTestAlongTree
m5 <- threshold.tree.markers(markers, "5", global.fc = 0.6) # Markers from aucprTestAlongTree
tacsyn.markers <- unique(c(rownames(t), rownames(m2), rownames(m5)))

Just want to plot part of cells from upstream segment 12, which is
very long. Going to use cells from segments 2 or 5, 10, and from
segment 12 with pseudotime > 0.23
cells.plot.2 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),

whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "2"))))

cells.plot.5 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "5"))))

cells.plot.25 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "2", "5"))))

Calculate spline curves
spline.2 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.2,

genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.5 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.5,
genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.25 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.25,
genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

Want to plot a heatmap that shows expression in upstream progenitors
and then each branch (i.e. gabaergic_tac1 vs. synpr+) as separate
columns. Going to crop each spline fit to the correct pseudotime
range and then combine them into a single one that can be plotted as
a three-column heatmap.

pt.2v5 <- obj@tree$segment.pseudotime.limits["2", "start"] # pseudotime where the crop should happen
splines.tacsyn <- list(cropSmoothFit(spline.25, pt.min = -Inf, pt.max = pt.2v5),

cropSmoothFit(spline.2, pt.min = pt.2v5, pt.max = Inf), cropSmoothFit(spline.5,
pt.min = pt.2v5, pt.max = Inf))

names(splines.tacsyn) <- c("Precursors", "Synpr-", "Synpr+")
splines.tacsyn.hm <- combineSmoothFit(splines.tacsyn) # Combine into a single one

Calculate gene expression timing for ordering rows
spline.2 <- determine.timing(s = spline.2)
spline.5 <- determine.timing(s = spline.5)

19

spline.25 <- determine.timing(s = spline.25)

Decide which markers are specific to one cell type or both
d2v5 <- divide.branches(obj, tacsyn.markers, clust.1 = "2", clust.2 = "5",

exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

Generate gene ordering based on timing & specificity
order.25 <- filter.heatmap.genes(setdiff(spline.25$gene.order, c(d2v5$specific.1,

d2v5$specific.2)))
order.2 <- filter.heatmap.genes(intersect(spline.2$gene.order, d2v5$specific.1))
order.5 <- filter.heatmap.genes(intersect(spline.5$gene.order, d2v5$specific.2))
gene.order <- c(order.25, order.2, order.5)

Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.25)),

rep("synpr-", length(order.2)), rep("synpr+", length(order.5))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$nonsynpr.AUCPR.ratio.all <- m2[table.save$gene, "AUCPR.ratio.all"]
table.save$nonsynpr.AUCPR.ratio.maxBranch <- m2[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$nonsynpr.exp.fc.all <- m2[table.save$gene, "expfc.all"]
table.save$nonsynpr.exp.fc.best <- m2[table.save$gene, "expfc.maxBranch"]
table.save$synpr.AUCPR.ratio.all <- m5[table.save$gene, "AUCPR.ratio.all"]
table.save$synpr.AUCPR.ratio.maxBranch <- m5[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$synpr.exp.fc.all <- m5[table.save$gene, "expfc.all"]
table.save$synpr.exp.fc.best <- m5[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-nrgna.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the
heatmap scale doesn't get messed up.
splines.tacsyn.hm$scaled.smooth[splines.tacsyn.hm$scaled.smooth < 0] <- 0
Determine where to place column separators (i.e. how many columns
will each cell type occupy in the heatmap)
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.tacsyn, function(x) ncol(x$scaled.smooth))),

-1)))
Determine where to place row separators (i.e. how many common
markers, and markers are specific to each cell type)
rowsep <- cumsum(c(length(order.25), length(order.2)))
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/hypo-nrgna.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.tacsyn.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.35, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "synpr-", line = -41, adj = 0.535)
title(main = "synpr+", line = -41, adj = 0.75)

20

21

dev.off()

Generate heatmap: main figure

Plot heatmap with only certain genes labeled for main figure

genes.to.plot <- c("rgs5b", "dlx5a", "isl1", "nkx2.4a", "nkx2.2a", "hmx3a",
"dlx1a", "dlx2b", "sp8a", "pbx3b")

rownames.to.plot <- gene.order
rtp <- rownames.to.plot %in% genes.to.plot
rownames.to.plot[!rtp] <- ""
rownames.to.plot[rtp] <- paste0("- ", rownames.to.plot[rtp])

Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/hypo-nrgna-mainfig.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.tacsyn.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 1.8, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2), labRow = rownames.to.plot)

title(main = "synpr-", line = -41, adj = 0.535)
title(main = "synpr+", line = -41, adj = 0.75)

22

23

dev.off()

GABAergic neurons
Prepare cascade

Get markers from the two approaches
t <- combined.markers.best[["9"]] # Markers from above the combined clades
m1 <- threshold.tree.markers(markers, "1", global.fc = 0.6) # Markers from aucprTestAlongTree
m6 <- threshold.tree.markers(markers, "6", global.fc = 0.6) # Markers from aucprTestAlongTree
m7 <- threshold.tree.markers(markers, "7", global.fc = 0.6) # Markers from aucprTestAlongTree
gaba.markers <- unique(c(rownames(t), rownames(m1), rownames(m6), rownames(m7)))

Defining cell populations to use in the heatmap Just want to use a
tiny bit of segment 12 and then the rest of the gabaergic clade
cells.plot.1 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),

whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "1"))))

cells.plot.6 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "8", "6"))))

cells.plot.7 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "8", "7"))))

cells.plot.167 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "8", "1", "6", "7"))))

Calculate spline curves
spline.1 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.1,

genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.6 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.6,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.7 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.7,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.167 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.167,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

Want to plot a heatmap that shows expression in upstream progenitors
and then each branch as separate columns. Going to crop each spline
fit to the correct pseudotime range and then combine them into a
single one that can be plotted as a three-column heatmap.

pt.1 <- obj@tree$segment.pseudotime.limits["1", "start"] # pseudotime where the crop should happen
splines.gaba <- list(cropSmoothFit(spline.167, pt.min = -Inf, pt.max = pt.1),

cropSmoothFit(spline.1, pt.min = pt.1, pt.max = Inf), cropSmoothFit(spline.6,
pt.min = pt.1, pt.max = Inf), cropSmoothFit(spline.7, pt.min = pt.1,
pt.max = Inf))

names(splines.gaba) <- c("Precursors", "dlx+", "sst1.1+", "tph2+")

24

splines.gaba.hm <- combineSmoothFit(splines.gaba) # Combine into a single one

Calculate gene expression timing for ordering rows
spline.1 <- determine.timing(s = spline.1)
spline.6 <- determine.timing(s = spline.6)
spline.7 <- determine.timing(s = spline.7)
spline.167 <- determine.timing(s = spline.167, genes = setdiff(gaba.markers,

"sst1.2"))

Decide which markers are specific to one cell type or not specific
d <- divide.branches.triple(obj, gaba.markers, clust.1 = "1", clust.2 = "6",

clust.3 = "7", exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

Generate gene ordering based on timing & specificity
order.167 <- filter.heatmap.genes(intersect(spline.167$gene.order, d$nonspecific))
order.1 <- filter.heatmap.genes(intersect(spline.1$gene.order, d$specific.1))
order.6 <- filter.heatmap.genes(intersect(spline.6$gene.order, d$specific.2))
order.7 <- filter.heatmap.genes(intersect(spline.7$gene.order, d$specific.3))
gene.order <- c(order.167, order.1, order.6, order.7)

Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("multiple", length(order.167)),

rep("dlx+", length(order.1)), rep("sst+", length(order.6)), rep("tph2+",
length(order.7))), stringsAsFactors = F)

table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$dlx.AUCPR.ratio.all <- m1[table.save$gene, "AUCPR.ratio.all"]
table.save$dlx.AUCPR.ratio.maxBranch <- m1[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$dlx.exp.fc.all <- m1[table.save$gene, "expfc.all"]
table.save$dlx.exp.fc.best <- m1[table.save$gene, "expfc.maxBranch"]
table.save$sst.AUCPR.ratio.all <- m6[table.save$gene, "AUCPR.ratio.all"]
table.save$sst.AUCPR.ratio.maxBranch <- m6[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$sst.exp.fc.all <- m6[table.save$gene, "expfc.all"]
table.save$sst.exp.fc.best <- m6[table.save$gene, "expfc.maxBranch"]
table.save$tph.AUCPR.ratio.all <- m7[table.save$gene, "AUCPR.ratio.all"]
table.save$tph.AUCPR.ratio.maxBranch <- m7[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$tph.exp.fc.all <- m7[table.save$gene, "expfc.all"]
table.save$tph.exp.fc.best <- m7[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste0(base.path, "/heatmaps/hypo-gaba.csv"))

Generate heatmap: all genes

Make sure any values <0 in the spline curves get set to 0 so that the
heatmap scale doesn't get messed up.
splines.gaba.hm$scaled.smooth[splines.gaba.hm$scaled.smooth < 0] <- 0
Determine where to place column separators (i.e. how many columns
will each cell type occupy in the heatmap)
colsep <- cumsum(as.numeric(head(unlist(lapply(splines.gaba, function(x) ncol(x$scaled.smooth))),

-1)))
Determine where to place row separators (i.e. how many common
markers, and markers are specific to each cell type)

25

rowsep <- cumsum(c(length(order.167), length(order.1), length(order.6)))
Open a PDF and generate the heatmap pdf(paste0(base.path,
'/heatmaps/hypo-gaba.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.gaba.hm$scaled.smooth[gene.order,

]), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 1, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,
rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "dlx+", line = -41, adj = 0.45)
title(main = "sst+", line = -41, adj = 0.61)
title(main = "tph2+", line = -41, adj = 0.75)

26

27

dev.off()

Embryonic molecular profiles are not found in larval progenitors
We were looking to compare the molecular profiles of embryonic and post-embryonic progenitors.
In the retina, we found progenitors at larval stages whose molecular signatures were preserved
from embryonic stages (see Retina 3). Here, we find that, in the hypothalamus, progenitors at
larval stages are transcriptionally different from embryonic progenitors.

Identify populations to compare
We defined progenitor / precursor / neuron populations based on their location in the tree, cross-
referenced with the expression of markers of each of these types.
obj@group.ids$precursor.group <- NA

cells.s13 <- intersect(cellsInCluster(obj, "segment", "13"), whichCells(obj,
"pseudotime", c(0.05, 1)))

cells.s3neurons <- intersect(cellsInCluster(obj, "segment", "3"), whichCells(obj,
"pseudotime", c(0.5, 1)))

cells.s3precursors <- intersect(cellsInCluster(obj, "segment", "3"), whichCells(obj,
"pseudotime", c(0.3, 0.5)))

obj@group.ids[cells.s13, "precursor.group"] <- "1_progenitors"

obj@group.ids[c(cells.s3precursors, cellsInCluster(obj, "segment", c("12",
"11", "10"))), "precursor.group"] <- "2_precursors"

obj@group.ids[c(cells.s3neurons, cellsInCluster(obj, "segment", c("9",
"1", "4", "8", "6", "7", "2", "5"))), "precursor.group"] <- "3_neurons"

Colors for ggplot
stage.colors <- RColorBrewer::brewer.pal(12, "Paired")[c(10, 7, 1)]

Plot tree to show where the groups are
plotTree(obj, "precursor.group", discrete.colors = stage.colors)

Warning: Removed 175 rows containing missing values (geom_point).

28

Plot genes in each group
plotDot(obj, genes = c("rx3", "shha", "nkx2.4b", "ascl1a", "scrt2", "scg2b",

"elavl3", "elavl4"), clustering = "precursor.group", scale.by = "area") +
theme_bw()

29

Determine proportion of cells in each state
We then determined the proportion of cells from different stages that fell into each of these tran-
scriptional states.
Combine stages to reduce number of plots
obj@group.ids$stage.collapsed <- plyr::mapvalues(x = obj@group.ids$stage,

from = c("01-12h", "02-14h", "03-16h", "04-18h", "05-20h", "06-24h",
"07-36h", "08-2d", "09-3d", "10-5d", "11-8d", "12-15d"), to = c(rep("01-12h-24h",
6), rep("02-36h-3d", 3), rep("03-5d-15d", 3)))

Count number of cells from each stage group in each precursor group
stage.group.count <- plyr::count(obj@group.ids, vars = c("stage.collapsed",

"precursor.group"))

Remove cells that weren't part of a precursor group
stage.group.count <- stage.group.count[complete.cases(stage.group.count),

]

Cast into a data frame and convert NA to 0 (no cells of that type
observed)
stage.group.df <- reshape2::dcast(stage.group.count, formula = stage.collapsed ~

precursor.group)

Using freq as value column: use value.var to override.

stage.group.df[is.na(stage.group.df)] <- 0

30

Normalize by the number of precursors from each stage group
stage.group.df[, 2:4] <- sweep(stage.group.df[, 2:4], 1, rowSums(stage.group.df[,

2:4]), "/")

Melt for ggplot
stage.group.df.melt <- reshape2::melt(stage.group.df, id.vars = "stage.collapsed")

Plot proportions
ggplot(stage.group.df.melt, aes(x = variable, y = value, group = stage.collapsed,

fill = variable)) + geom_bar(stat = "identity") + facet_wrap(~stage.collapsed) +
theme_bw() + scale_fill_manual(values = stage.colors) + theme(axis.title.x = element_blank(),
axis.text.x = element_blank(), axis.ticks.x = element_blank())

31

Supplemental Videos and Spreadsheets

Click here to access/download
Supplemental Videos and Spreadsheets

Raj2020_SupTable.xlsx

https://www.editorialmanager.com/neuron/download.aspx?id=1269369&guid=8f865622-defb-4a90-be11-ba6013a3fd88&scheme=1

