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ABSTRACT

Neurogenesis comprises many steps from progenitor proliferation to neuronal differentiation and
maturation. These processes are highly regulated, but the landscape of transcriptional changes
underlying brain development are poorly characterized. Here, we describe a developmental
single-cell RNA-seq catalog of ~220,000 zebrafish brain cells encompassing 12 stages from 12
hours post-fertilization to 15 days post-fertilization. We characterize known and novel gene
markers for ~800 clusters and provide an overview of the diversification of neurons and
progenitors across these timepoints. We also introduce an optimized version of the GESTALT
lineage recorder that enables higher expression and recovery of Cas9-edited barcodes to query
lineage segregation. Cell type characterization indicates that most embryonic neural progenitor
states are transitory and transcriptionally distinct from neural progenitors of post-embryonic
stages. Reconstruction of cell specification trajectories reveals that late-stage retinal neural
progenitors transcriptionally overlap cell states observed in the embryo. The zebrafish brain
development atlas provides a resource to define and manipulate specific subsets of neurons and
to uncover the molecular mechanisms underlying vertebrate neurogenesis.

INTRODUCTION

The vertebrate brain develops from a limited pool of embryonic neural progenitor cells that cycle
through rounds of proliferation, diversification, and terminal differentiation into an extensive
catalogue of distinct neuronal and glial cell types. A central goal in developmental neurobiology
is to investigate how neuronal complexity arises through molecular specification and commitment
by studying the origins and fates of cells during development. Fundamental insights into these
processes have been gained via classic approaches using genetic markers, perturbations and
fate mapping (Cepko, 2014; Kretzschmar and Watt, 2012; Ma et al., 2017; Wamsley and Fishell,
2017; Wilson et al., 2002; Woo and Fraser, 1995; Woodworth et al., 2017). These approaches
have recently been complemented by single-cell genomics technologies in the developing
nervous system, including the spinal cord (Delile et al., 2019; Rosenberg et al., 2018); cortex
(Nowakowski et al., 2017; Zhong et al., 2018); olfactory system (H. Li et al., 2017); cerebellum
(Carter et al., 2018; Tambalo et al., 2020); retina (Clark et al., 2019; Hu et al., 2019; Xu et al.,
2020); and whole animal (Farnsworth et al., 2020). These studies have provided transcriptome-
level views of the rich heterogeneous states that cells progress through as they proliferate,
migrate and differentiate. Nevertheless, existing datasets are limited in their scope as they focus
on specific brain regions, survey limited timepoints or do not enrich for neural cell types, thereby
missing transitions and cellular diversity. Thus, there is a need for a large-scale
neurodevelopmental single-cell resource that profiles whole brain development across a range of
closely-spaced embryonic and post-embryonic stages. In addition, such an atlas would help
address fundamental questions about the dynamics of brain development. For example, it is
poorly understood how embryonic neural progenitors are molecularly related to post-embryonic
neural progenitors. Furthermore, the transcriptional programs that are activated or suppressed as
neural progenitors become fate-restricted and differentiate are largely unknown.
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Here we present resources to obtain global views of neurogenesis, cell type heterogeneity,
specification trajectories and lineage relationships in the developing zebrafish brain. We
generated a single-cell RNA-seq (scRNA-seq) atlas consisting of ~220,000 cells from 12 hours
post fertilization (hpf) to 15 days post fertilization (dpf). We also created a new version of the
scGESTALT CRISPR-Cas9 lineage recorder (Raj et al., 2018b) with improved barcode capture
and used it to query early lineage decisions. Using the cell type atlas, we analyzed the expansion
of neuronal diversity, the loss of transitory embryonic progenitors, and the maintenance of distinct
larval progenitor states. We reconstructed cell specification trajectories of the zebrafish retina and
hypothalamus, revealing gene expression cascades and distinct specification programs.
Collectively, the zebrafish brain development atlas reveals molecular and cellular changes at an
unprecedented scale and resolution, and lays the foundation for the detailed analysis of neuronal
diversification.

RESULTS

Building a developmental atlas of the zebrafish brain with single-cell transcriptomics

To reveal the landscape of cell states and cell types during brain development, we profiled
223,037 cells across 12 stages of zebrafish embryonic and larval development using the 10X
Chromium scRNA-seq platform. Samples spanned from 12 hpf (shortly after gastrulation), when
the embryo is undergoing early developmental patterning, to 15 dpf, when larvae are mature,
exhibit complex behaviors, and are expected to exhibit substantial cell type diversity (Figure 1A).
To enrich for brain cell types, we dissected the heads of animals from 12 hpf to 3 dpf, and the
brains and eyes from 5 dpf to 15 dpf (Figure 1B). To determine cell type diversity in the head and
brain of zebrafish, data from each stage was analyzed individually using Louvain clustering
(Figure 1C and Sup Figure 1). This approach identified a total of 815 cell clusters across all 12
timepoints (Sup Table). To classify each cluster, we compared enriched gene markers with
existing gene expression annotations in the ZFIN database and literature, as described previously
(Raj et al., 2018b). Plotting expression of known cell type markers identified clusters
corresponding to neural progenitors (sox719a), dozens of neuron subtypes (elavl3, gad2,
slc17a6b), eye cells (foxg1b, lim2.4, pmela, cal14, gnat1, opn1mw1), radial glia (mfge8a, s100b),
neural crest (sox10), oligodendrocytes (mbpa), blood cells (cahz, etv2, cd74a), cartilage (matn4,
col9a2), pharyngeal arches (pmp22a, prrx1b, barx1), sensory placodes (dIx3b, six1b), and
epidermal cells (epcam, cldni), among others. As expected, cell type complexity increased with
developmental time. We validated new marker expression across several cell types identified in
our dataset, such as sdpra in the trigeminal placode, sox7a in the hypothalamus, and ompa in the
retina (Figure 1D-F). Our analysis also revealed groups of embryonic clusters that were absent
or transcriptionally distinct from larval clusters, suggesting that many embryonic cell states are
transitory. Several of these transitions are known developmental changes (e.g. loss of placodes
and rhombomeres), but changes in neural progenitor cell states are poorly understood (see
below).
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To enable direct comparison of cell types across our time course, we subsetted the 12 hpf dataset
to only comprise neural populations and blood cells found in the brain, eliminating non-relevant
head cells from earlier stages, such as mesoderm, placodes, and periderm. This approach
resulted in an initial set of 21 clusters at 12 hpf (Figure 2A) that diversified into 98 clusters by 15
dpf (Figure 2C). Notably, most clusters could be uniquely identified using a minimal group of 2-3
enriched gene markers (Figure 2B, 2D). For example, at 12 hpf, the optic vesicle is identified by
expression of rx2 and rx3; hindbrain rhombomeres 5/6 by hoxb3a and eng2b; and ventral
diencephalon by nkx2.4a and dbx7a. Similarly, at 15 dpf, the cerebellar granule cells are marked
by expression of oprd1b and zic2a; optic tectum by pax7a and tal1; and a new retinal cell type by
kidins220a, foxg1b (exclusively detected in retinal cells) and tbx3a. We did not find unique gene
combinations for cycling progenitors, differentiating progenitors and newly born neurons, as many
of these subtypes had similar expression signatures of pan neuronal or pan progenitor marker
genes, such as elavi3 and tubb5 in neurons, and rp/5a and npm1a in progenitors (Figure 2D, grey
box).

At 12 hpf, the early demarcation of multiple brain regions is already apparent and by 15 dpf these
regions expand and diversify further. For example, the optic vesicle at 12 hpf is defined by one
cluster and is the origin of 18 retinal cell types at 15 dpf. Similarly, a single cluster of ventral
diencephalon cells (expressing shha, nkx2.4a, nkx2.1, rx3) at 12 hpf develops into 7 major
hypothalamus cell types at 15 dpf. An exception to this diversification is the loss of rhombomeres
(r1-r7) in the hindbrain (Moens and Prince, 2002).

To further explore brain neuronal subtypes at 15 dpf, we analyzed the expression of transcription
factors, neuropeptides and their receptors, and genes involved in neuronal physiology (e.g.
neurotransmitters, transporters, receptors, and channels) (R. Chen et al., 2017; Pandey et al.,
2018; Tiklova et al., 2019; Zeisel et al., 2018). Our results indicate that nearly all identified neuron
subtypes can be distinguished from one another via the expression of individual or combinations
of genes belonging to these categories (Figure 3A-C). For example, cluster 2 and 84 neurons are
GABAergic forebrain neurons that express dlx2a and dix5a, while cluster 84 neurons additionally
express six3b, griala and gria2b.

We next asked if neuron clusters detected at 15 dpf are found in the earlier larval stages, when
most behavioral experiments are performed (Sup Figure 2). 68% (23/34 clusters) and 74% (25/34
clusters) of 15 dpf neuron clusters have a closely matching counterpart at 5 dpf and 8 dpf (based
on enriched marker gene expression), respectively (Figure 3D). Sampling issues might have
prevented the identification of additional overlapping clusters, but our data indicate a large overlap
between identified cell types from 5 to 15 dpf. These results suggest that the zebrafish brain
already has considerable cell type diversity at early larval stages. Furthermore, 97% (33/34) of 15
dpf clusters overlapped with clusters identified in our previously described 23-25 dpf juvenile brain
dataset (Raj et al., 2018b). Thus, by 15 dpf late larval stage, nearly all of the brain cell types that
persist into the early juvenile stage have already been established. Notably, among cell types that
are “missing” or under-represented at 15 dpf but readily detected at 23-25 dpf are cell types in
the optic tectum, cerebellum and the torus longitudinalis, suggesting that these structures undergo
further diversification after 15 dpf. In contrast, many cell types in the pallium, habenula (Pandey
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et al., 2018), hypothalamus and preoptic area are detected across these stages, suggesting that
they develop earlier.

In summary, we generated a zebrafish brain development cell type atlas spanning 12 stages of
brain organogenesis. The complete dataset can be explored using the accompanying app:
https://github.com/brlauuu/zf brain.

Neurogenic expansion during brain development

During development, cell composition shifts from predominantly progenitor populations to more
differentiated cell types (Schmidt et al., 2013). To better characterize how differentiation varies
during neuronal development, we first asked if our dataset captured the two neurogenic phases
(primary and secondary) before and after 2 dpf that have been traditionally defined through
histological analyses (Allende and Weinberg, 1994; Korzh et al., 1998; Mueller and Wullimann,
2003). We considered neural progenitors as non-differentiated neuronal precursor cells that may
or may not be proliferating, and express a subset of classical progenitor markers e.g. sox19a, dla,
s100b, and cell cycle genes. Since the brain is undergoing substantial molecular changes during
these developmental windows, we defined the transcriptional programs and cells that exhibit
these programs as progenitor cell states. We calculated the percentage of the dataset that
corresponds to neural progenitor cells, neurons (expressing markers such as elavi3, elavi4) or
other cell types across each timepoint in our dataset. Since the earlier stages (12 hpf to 3 dpf)
contained non-brain and non-eye cell types, while later stages were restricted to these tissues,
we subsetted the early timepoints to only brain and eye cells. With increasing developmental time,
we observed a progressive decrease in the fraction of the dataset comprising neural progenitor
cells (from 53.8% to 18.3%) with a concomitant increase in neurons (from 4.5% to 58%) (Figure
4A). For example, we observed an initial increase in the number of distinct progenitor clusters
from 12 hpf to 18 hpf (early embryo stages), while the number of neuron clusters remained low
(Figure 4A, right panels). From 20 hpf to 3 dpf (intermediate stages), the total progenitor clusters
decreased while neuron clusters started to increase. For example, neuronal clusters expanded
from 11 at 20 hpf to 23 at 36 hpf. This burst coincides with the presumed timing of late-stage
primary neurogenesis in zebrafish (Mueller and Wullimann, 2003). Notably, by 5 to 15 dpf (late
larva stages), a second expansion of neuronal populations, corresponding to the secondary
neurogenic phase (Mueller and Wullimann, 2003), had occurred (53 neuronal subtypes at 5 dpf).
At 5 dpf, we detected cell types identified as early as 36 hpf (e.g. tal1*, gata3” neurons in the optic
tectum, and tfap2e*, barhl2* neurons in the thalamus), as well as subtypes only observed during
the second phase, such as nrgnb+ prkcda+ neurons in the forebrain and cone bipolar cell
subtypes in the retina. Collectively, our dataset captures both phases of neurogenesis and reveals
the diversification of neurons in multiple brain structures.

Dampening of spatial and developmental signatures during the transition from
embryonic to larval neural progenitors

We next analyzed our dataset to determine how cell states change during the transition from the
embryonic to post-embryonic brain. The zebrafish brain undergoes lifetime constitutive
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neurogenesis due to the persistence of neural progenitor pools distributed along the brain’s axis
(Schmidt et al., 2013). However, the embryonic origins and transcriptional programs that underlie
their development are poorly understood. Furthermore, how the molecular identities of embryonic
and post-embryonic neural progenitor cell states compare have not been well characterized. To
address these questions, we asked how neural progenitor gene expression signatures globally
change from embryo to larva. Based on the results described above, we defined early embryonic
brain progenitors as neural cell transcriptional states from 12 hpf to 18 hpf, intermediate stage
brain progenitors as neural cell transcriptional states from 20 hpf to 3 dpf, and larval brain
progenitors as neural cell transcriptional states from 5 dpf to 15 dpf (Figure 4B, Sup Figure 3).
We determined the greatest sources of variation within these populations. For embryonic brain
progenitors we found that the top 3 principal components comprise genes implicated in spatial
and developmental patterning (Gibbs et al., 2017; Moens and Prince, 2002; Wilson et al., 2002;
Wilson and Rubenstein, 2000). Cells exhibit characteristic anteroposterior and dorsoventral axial
signatures (Figure 4C, top panel). For example, the telencephalon (anterior forebrain) is marked
by foxg1a and emx3a expression, the midbrain by pax2a and eng2a, and the hindbrain is
segmented into rhombomeres marked by distinct combinatorial patterns of egr2b and hox gene
expression. Furthermore, all cells are in a highly proliferative state with strong expression of cell
cycle genes such as pcna, mki67 and cdca7a. Collectively, the expression signatures are
reflective of a developmental state during which the embryo is orchestrating a rapid expansion of
neural progenitor populations concurrent with their acquisition of positional information and overt
absence of differentiation (Schmidt et al., 2013; Stigloher et al., 2008).

In contrast, larval neural progenitors comprised two major groups: proliferating (expressing cell
cycle genes pcna and top2a) and non-proliferating (depleted expression of cell cycle markers)
(Figure 4D, bottom panel). Indeed, the top 3 principal components in the larval progenitors
comprised genes that mark stem cells (PC1, PC3) and differentiation (PC2). The non-proliferating
group is subdivided into radial glia (stem cells) and her2* neural progenitors expressing proneural
genes insm1b and scrt2. The proliferating group is subdivided into her2* and scrt2 neural
progenitor cells, her2 progenitors, her2* and neurod1® progenitor cells, and upper rhombic lip
progenitors (localized to cerebellum) expressing atoh1c and oprd1b.

Strikingly, most larval progenitors were characterized by a reduced spatial signature (except for
the cerebellar upper rhombic lip pool), such that cells were less enriched in region-specific
transcription factors relative to embryonic progenitors (Figure 4D, top panel). For example, radial
glia exist in multiple pools along the brain axis (Than-Trong and Bally-Cuif, 2015), but they formed
a single cluster in our dataset (marked by expression of fabp7a, cx43, s100b and aqgp7a.1). This
result suggests that radial glia are largely transcriptionally similar. Although some expression of
region-specific transcription factors was detected in larval progenitor clusters, these signatures
were not sufficiently strong to resolve clusters as they were during embryonic stages.

To explore the apparent dearth of spatial signatures further, we calculated pairwise correlation
scores for 79 transcription factors and signaling proteins with known spatial expression patterns
in the forebrain and midbrain based on previously described histological analysis (ZFIN), and
which were identified as gene markers for neuronal clusters in our dataset. These genes showed
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strongest correlations in embryonic progenitors, followed by intermediate stage progenitors, and
were weakly correlated in larval progenitors (Figure 4E).

Since spatial signatures are encoded by a combinatorial code of genes with overlapping
expression patterns, we asked whether the same subsets of genes co-varied with each of the 79
spatial markers across embryonic, intermediate, and larval neural progenitors. We found that
intermediate stage progenitors showed overlap in co-varying genes with both embryonic and
larval progenitors. For example, 44/79 genes had >40% overlap in their top 20 co-varying genes
between embryonic and intermediate stage progenitors, and 23/79 genes had >40% overlap
between intermediate and larval stage progenitors. In contrast, we found low overlap across
embryonic and larval stages (3/79 genes had >40% overlap in their top 20 co-varying genes).
Additionally, when we searched for genes that strongly co-varied with these 79 spatial markers
(Pearson correlation >0.4), we found 38 genes during embryonic stages, 17 genes during
intermediate stages, but only 4 genes during larval stages (Figure 4F).

Taken together, these results demonstrate that intermediate stage progenitors resemble a hybrid
of early embryonic and late larval progenitor signatures. Furthermore, the overall spatial code
between embryonic and larval progenitors are distinct, and the embryonic spatial code involves a
larger collection of genes. Notably, the signatures of larval progenitors resemble juvenile neural
progenitor pools (Raj et al., 2018b), indicating developmental switches in neural progenitor
identities from embryo to larva that are maintained to at least juvenile stages. Thus, embryonic
states that existed in early progenitors are largely altered in late-stage progenitors: while spatial
patterning signals are the greatest source of variation between embryonic neural progenitors,
these signals are dampened in post-embryonic neural progenitors.

An optimized scGESTALT lineage recorder

A long-term goal in developmental neurobiology is to understand the lineage relationships of
neurons. As a first step to derive lineage relationships of the cell types identified in the brain
development atlas, we performed lineage recording experiments with scGESTALT. This lineage
recorder enables simultaneous cell type and cell lineage identification by combining scRNA-seq
with CRISPR-Cas9 barcode editing (McKenna et al., 2016; Raj et al., 2018b). To enable higher
recovery of edited barcodes from single cells, we optimized the design and library preparation of
the lineage recording cassette, including barcode editing of a transgene coding region and
compatibility with the 10x platform (see Methods). To test the performance of this new recording
cassette, we barcoded early embryonic lineage relationships by injecting Cas9 protein and target
guide RNAs into 1-cell embryos (Figure 5A) and then isolated four 15 dpf larval brains. We
recovered barcodes and transcriptional profiles of 5,794 cells total (barcode recovery rate 30-75%
compared to 6-28% of our previous sScGESTALT version (Raj et al., 2018b)). Edited barcodes
showed no overlap between animals, displayed a diverse spectrum of repair products that
spanned single and multiple sites, and were of varying clone sizes (Figure 5B-D, Sup Figure 4A).
These features closely resembled the editing patterns obtained with our previous recorders
(McKenna et al.,, 2016; Raj et al., 2018b). Using the recovered barcodes and associated
transcriptomes, we reconstructed lineage trees representing cell lineage segregations formed



306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

during early embryogenesis (for one example see Sup Figure 4B). These lineage trees
accompany our transcriptional cell type atlas and are available to explore at
https://scgestalt. mckennalab.org/

Since the injection of editing reagents into 1-cell embryos saturates editing within 4-6 hours
(McKenna et al., 2016) , we expected early lineage divergences to be overrepresented in our
dataset. We first asked if our recorder captured diverse multi-lineage tissue origins of the eye,
which is derived from neuroectoderm, surface ectoderm and mesoderm (Figure 5E). Eye cell
types were identified as clusters that contained cells from scRNA-seq samples comprising eye
tissue exclusively. Retinal cell types were defined as clusters expressing the pan-retinal marker
foxg1b (Figure 1F), whereas non-retinal cell types were depleted in foxg7b. We performed
pairwise comparisons of all eye clusters with at least 4 independent barcodes (each with at least
2 cells). Since <1% of all barcoded cells were captured by scRNA-seq, we asked if there is cell
type-specific barcode enrichment greater than expected by chance (‘lineage segregation” in
Figure 5E). For cluster pairs where we did not observe significant lineage segregation, we asked
if this was due to a lack of sampling (“lineage status undefined”) or true lack of cell type-specific
barcode enrichment (“no lineage segregation”). The latter case would indicate that two cell types
shared a more recent common ancestor than cell types that segregated earlier. We found that
multiple retinal and non-retinal cell types segregated from each other, as would be expected due
to early separation of their tissue origins. Interestingly, however, a few non-retinal cell types (e.g.
clusters 34, 44, 49) did not fully segregate from retinal cell types, suggesting that they shared a
common progenitor. Furthermore, there was extensive lineage segregation between various non-
retinal cell types (e.g. clusters 45, 47, 86). In contrast, we did not observe lineage segregation
between the different retinal cell types, likely due to the termination of barcode editing prior to
terminal divisions. The exception was cluster 28 (cones), which segregated from clusters 15 and
32 (cone bipolar cells) and 28 (retinal ganglion cells). Thus, lineage splits between retinal and
non-retinal cell types, and within non-retinal subtypes preceded most splits within retinal subtypes.

Next, we asked if our recorder captured lineage divergences between neurons across brain
regions and the retina. Although the hindbrain and retina formed distinct lineages early in
development, forebrain and midbrain neurons continued to share progenitors across the same
barcoding period (Figure 5F). Pairwise comparisons of all forebrain and midbrain clusters
revealed examples of emerging segregation along multiple spatial axes (Figure 5G). For example,
we saw evidence of dorsal-ventral split: cluster 9 pallium (dorsal) separated from cluster 25 sub-
pallium (ventral). Furthermore, barcode enrichments confirmed rostral-caudal splits: cluster 64
habenula separated from clusters 9 and 25 pallium (telencephalon, rostral) and clusters 0 and 13
optic tectum (caudal). Overall, the lineage segregations agreed with classic fate mapping
experiments (Woo and Fraser, 1995) and correlate with the anteroposterior and dorsoventral
gene expression signatures of early progenitors (Figure 4).

To query the lineage relationships of brain progenitor cell types, we performed pairwise
comparisons of progenitor clusters at 15 dpf (Figure 5H). Notably, the upper rhombic lip (URL)
progenitors (cluster 12) formed a separate lineage from all progenitor classes except cluster 74,
a cycling progenitor subtype expressing pif1. Since URL progenitors give rise to granule cells in
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the cerebellum, we asked if the two cell types shared barcodes. We found that the proportion of
barcode overlap was highest between granule cells and URL progenitors (Figure 5I). The URL
progenitors formed a distinct cluster as early as 12 hpf (cluster 9) in our transcriptional dataset.
Thus, URL progenitors become discrete in both lineage and transcriptional signature relatively
early in development.

In summary, we present an optimized scGESTALT cassette with improved lineage barcode
expression and recovery by scRNA-seq. The barcodes display high sequence diversity, which is
important for generating large-scale distinct labels in a developing animal. The scGESTALT
transgenic line is available as a resource for the community and can be paired with other
transgenic lines for temporal, spatial or cell-type specific control of barcode editing (see
Discussion).

Cell specification trajectories in the retina and hypothalamus

With the exception of a few model systems (Clark et al., 2019; Delile et al., 2019; Guo and J. Y.
H. Li, 2019; Holguera and Desplan, 2018; Kim et al., 2019; Tambalo et al., 2019), little is known
about gene expression cascades that accompany the development of progenitors into terminally
differentiated neurons. To address how different neuronal populations become molecularly
specialized, we reconstructed gene expression trajectories from 12 hpf to 15 dpf. We first tested
our approach on the subsetted retina dataset in which cell types expand from a single cluster at
12 hpf to 18 clusters at 15 dpf (Figure 2). UMAP embedding of the subsetted dataset revealed
progressive paths from the embryonic state to defined cell types at 15 dpf (Figure 6A, Sup Figure
5A). One outlier cluster that expressed kidins220a and whose progenitor state may not have been
captured in our timepoints, was excluded from further analysis. Although UMAP represents
continuity in the data, it does not order individual cells according to their relative developmental
time (i.e. pseudotime). Therefore, we also used URD (Farrell et al., 2018) to construct a branching
specification tree that represents the developmental trajectories in the retina at a higher resolution
(Figure 6B, Sup Figure 5B, Sup Figure 6A-B). Many of the major branching features agreed with
the UMAP representation. For example, the trajectories revealed the early segregation of RPE,
shared branching of photoreceptor cells, a path towards multiple cone bipolar cell subtypes, and
a common branchpoint between amacrine and retinal ganglion cells (RGC).

Plotting gene expression of known early regulators of eye development and terminal cell type
markers on the URD tree supported the inferred specification branches (Figure 6C, Sup Figure
7). For example, pax6a was most enriched in the amacrine and RGC branches, and vsx1 marked
cone bipolar cells with fezf2 marking one specific subtype. Notably, our analysis also revealed
previously unknown markers and characteristics of horizontal and amacrine cells. Zebrafish
horizontal cells are GABAergic (gad2*, gad1b®), but unlike mammals where these cells do not
express GABA membrane uptake transporters (Deniz et al., 2011), zebrafish cells expressed
sic6a1l (likely a duplication of slc6a1 involved in GABA uptake from the synaptic cleft), suggesting
that they may be capable of uptake. Additionally, whereas s/c32a1 GABA transporter is expressed
in mouse horizontal and amacrine cells (Cueva et al., 2002), we observed restriction of sic32a1
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to amacrine cells and s/c6a/ to horizontal cells. Finally, we detected several novel horizontal cell
markers such as ompa and prkacaa (Figure 1F).

To discover the gene expression trajectories from precursors to different retinal cell types, we
used differential gene expression approaches that characterize pseudotime-ordered molecular
trajectories. This analysis revealed known and novel regulatory steps (Figure 6D, Sup Figure 8).
For example, RGC specification trajectories confirmed several known differentiation regulators
including sox711a, sox11b, sox6, irx4a, and pou4f2 (Rheaume et al., 2018). Similarly, known
regulators of photoreceptor differentiation such as is/2a (Fischer et al., 2011), prdm1a (Brzezinski
et al., 2010), ofx5 (Viczian et al., 2003), and crx (Shen and Raymond, 2004) were expressed early
in our photoreceptor trajectories, while known regulators of cone versus rod fate, such as six7
(Ogawa et al., 2015), nr2f1b (Satoh et al., 2009), and nr2e3 (J. Chen et al., 2005) were expressed
as those trajectories diverged. Furthermore, our analysis revealed novel transcription factors
within the gene expression cascades. For example, we detected runx1t1, foxp1b, mef2aa in the
RGC pathway; tfap2a in horizontal cell trajectory; and tbx3a and tbx2a in amacrine cell branches.
Interestingly, among signaling pathways, we found that both apelin receptors (aplnra, apinrb)
were expressed in photoreceptor progenitors, while one of their ligands (ap/n) was expressed in
differentiating cones; this suggests a potential cell autonomous role for apelin signaling in
photoreceptor cells in addition to its role in preventing photoreceptor degeneration via vascular
remodeling (McKenzie et al., 2012).

A surprising result from this analysis was that a Muller glia pathway was detected earlier in
zebrafish than expected based on studies in mouse, where these cells are detected late (Centanin
and Wittbrodt, 2014; Clark et al., 2019). We found a cluster of cells as early as 20 hpf (cluster 50)
that expresses markers (e.g. cahz, rlbp1a) that are shared with the Muller glia cluster (cluster 33)
at 15 dpf (Sup Table). smFISH analysis of Muller glia markers validated their expression at 36 hpf
and 2 dpf (Sup Figure 9). Similarly, in our transcriptional trajectories (Figure 6B), the Muller glia
expression program is the earliest non-epithelial retinal program to diverge, commencing with the
expression of several her-family transcription factors (her4, her12, and her15), then proceeding
through a cascade of intermediate overlapping expression states such as onset of fabp7a,
s100a10b, and later connexin genes that are characteristic of Muller glia fate (Sup Figure 8). Cells
from all timepoints can already be found in the early part of the Muller glia branch. These
observations suggest that cells early in development transition from a naive progenitor state to a
Muller glia-like transcriptional state, and do so continually during larval development.

To extend our analysis to a central brain region, we reconstructed specification trajectories and
expression cascades for hypothalamic neurons. These cells expanded from a single ventral
diencephalon cluster at 12 hpf to 7 clusters at 15 dpf (Figure 6E-H, Sup Figure 6C-D, Sup Figure
10). The earliest branchpoint denoted segregation of prdx1* and prdx1 cells. Committed
hypothalamic progenitors in the prdx1 trajectory gave rise to neuronal precursors expressing
proneural transcription factors such as ascl1a, scrt2, insm1a and elavi3 (early neuron fate marker)
(Sup Figure 11). The specified cell types then matured over time and were characterized by
expression of neuronal maturation markers such as tubb5, gap43, ywhag2, snap25a, scg2b and
elavl4. The prdx1 group further diverged into two major groups: nrgna* and nrgna trajectories

10



437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480

(Figure 6F). The nrgna® branch segregated into GABAergic tac1”, synpr subtype and GABAergic
tac1®, synpr® positive subtype. The nrgna  branch subdivided into glutamatergic pdyn® neurons
and a GABAergic branch that further resolved to sst71.7* and tph2* neuron subtypes. We detected
expression of known regulators of hypothalamus development in the early branches such as
shha, rx3, nkx2.4b. We also identified new candidate regulators in later branches including nrgna
in the synpr* and synpr trajectories, and sox7a, sox1b and sox74 in the pdyn™ trajectory (Sup
Figure 12, Figure 1E). The results in the retina and hypothalamus demonstrate that the brain
development atlas can be used to reconstruct neuronal differentiation trajectories and define the
underlying gene expression cascades

Differences in progenitor specification strategies between retina and hypothalamus

Pseudotime analysis represents cell trajectories in relative but not absolute time (Bendall et al.,
2014; Trapnell et al., 2014). Therefore, comparing the developmental and pseudotime age of cells
can define whether molecular states are unique to a given developmental stage or persist through
development (Figure 6B, 6F). For example, mapping RGC and pdyn* neurons from different
developmental stages onto the pseudotime trajectory showed the expected maturation of these
cell types with developmental age (Sup Figure 13). In addition, even at 15 dpf some RGC and
pdyn® neurons were still in an immature state, consistent with the continuous growth and
differentiation in the zebrafish retina and brain (Centanin and Wittbrodt, 2014; Schmidt et al.,
2013).

To systematically analyze the relationships of pseudotime state and developmental stage, we
mapped differentiated cells, precursors and progenitors found in different pseudotime windows to
their origin in developmental time. We found that the proportion of differentiated cells increased,
whereas the number of early progenitors in both retina and hypothalamus decreased with
developmental age. In contrast, precursor cells from an intermediate pseudotime window were
present in embryo and larva. These precursor cells expressed genes that were an intermediate
of progenitor (e.g. insm1a, her4.1 in hypothalamus (Xie and Dorsky, 2017); hes2.2, rx2 in retina)
and early differentiation genes (e.g. tubb5, gap43 in hypothalamus; foxg1b in retina). In addition,
a second class of retinal progenitors mapped to an earlier pseudotime trajectory but was also
present from embryonic to late larval stages (Figure 7, Sup Figure 14). Comparison of these
progenitors between 24-36 hpf and 15 dpf identified only 71 differentially expressed genes. The
majority of these genes (56/71) increased in all cells of the retina between these stages, while a
few (15/71) were only upregulated in the 15 dpf group. A similar population was not detected in
the hypothalamus. These observations suggest that as the retina grows, some progenitor cell
states observed in the embryo persist later in development without extensive maturation.

DISCUSSION

As the brain develops, embryonic neural progenitor pools transition through many cellular states
as they become more committed, diversify into post-embryonic neural progenitors, and undergo
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terminal differentiation. Although regulators and transcriptional changes of this process have been
identified (e.g. using specific driver lines and in situ detection of select genes), the global
transcriptional networks mediating the sequential activation and maturation of neurogenic
programs from embryo to later stages are largely unknown. To help address this question, we
used scRNA-seq to generate a zebrafish brain development atlas. This resource supports the
identification of marker genes, the comparison of cell types, and the dissection of cell specification
and differentiation trajectories during vertebrate brain development.

Our data address how the transcriptional programs of neural progenitors vary and contribute to
fate-restriction during development. Different models to explain these processes have been
proposed. For example, neural progenitors of the medial and lateral mouse ganglionic eminence,
which give rise to cortical interneurons, have been found to converge to a shared mitotic signature
regardless of their region of origin, followed by expression of cardinal fate-specific transcription
factors post-mitotically (Mayer et al., 2018). In contrast, the spinal cord has dedicated pools of
domain-specific neural progenitors that retain domain-specific signatures (Delile et al., 2019;
Jessell, 2000; Lee and Pfaff, 2001; Sagner and Briscoe, 2019). Our results indicate that early
embryonic neural progenitors in the brain are transcriptionally distinct from late larval neural
progenitors. Gene expression profiles of neural progenitors switch from strong spatially
segregated signatures in early embryos to proliferative and non-proliferative states in late larvae.
These cell state changes might reflect developmental shifts from an establishment program during
gastrulation, where strong spatial patterning cues set up regional boundaries, to a maintenance
program at late stages, where progenitors are geographically confined and express dampened
regional restriction signatures. Although expression of some spatially-enriched transcription
factors (e.g. pax6a, eng2a, nkx2.4a) and signaling proteins detected in embryonic progenitors are
also detected in late progenitors, the overall signatures are different, as these factors co-vary with
different sets of genes in larva relative to embryo.

The expression of pan-progenitor markers at larval stages raises the question of how neural
progenitor pools remain or become fate restricted. There are several different scenarios that might
address this question. First, it is conceivable that embryo and larva share a minimal core set of
regionally-restricted transcription factors that are sufficient to ensure spatial restriction, despite
differences in their relative expression levels and downstream targets. Spatial genes that are
highly expressed in the embryo may be lowly expressed in the larva, and be sufficient to maintain
regionally-restricted cell states. Second, cell-type specific transcription factors rather than
spatially defined regulators might guide specification and differentiation at these stages,
independent of positional information. Such signatures would be difficult to analyze via scRNA-
seq, which is biased towards recovering highly expressed genes. Third, it is also possible that
restrictions at the genomic level, such as chromatin accessibility, may ensure that cells maintain
the signature of their spatial origin. Fate mapping experiments of early and late neural progenitors,
profiling open chromatin states of neural progenitors, and transcriptome analyses that recover
lowly expressed genes will provide further insight into these questions.

Our reconstruction of specification trajectories for cell types in the retina and hypothalamus
revealed several findings. First, our data supports a multipotent progenitor model whereby
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multiple differentiated cell types can be traced to common post-embryonic progenitors. For
example, all retinal neurons can be traced to an early pseudotime progenitor branch containing
cells from larval stages, consistent with multipotency and fate stochasticity of zebrafish retinal
progenitors (Boije et al., 2015; He et al., 2012). The early emergence of Muller glia observed in
both the time course atlas and eye trajectory reconstruction is particularly interesting in light of
clonal analyses. For example, single retinal progenitor cells in zebrafish give rise to clones
comprised of neurons and one Muller glia cell (Rulands et al., 2018). This observation has been
interpreted as evidence for a progenitor that first gives rise to neurons and then differentiates into
a Muller glia cell. However, it is also conceivable based on our data that an early common
progenitor divides, with one daughter expanding to give rise retinal neurons while the other
daughter forms Muller glia. Second, our results reveal that whereas progenitor cell types in the
rest of the brain appear molecularly distinct between the embryo and larva, there are progenitor
cell states in the eye that are maintained from the embryo to larva (Figure 4 and Figure 7). A
subset of 15 dpf retinal progenitors have similar transcriptional states as observed in the
embryonic eye. This observation raises the possibility that a subset of long-term retinal
progenitors may be “frozen” in an embryonic phase that could possibly underlie the multi-fate
potential of these cells. An independent study of zebrafish retinal stem cells has proposed a
similar conclusion (Xu et al., 2020). Collectively, these findings highlight differences in neurogenic
programs in the central nervous system, and underscore the power of investigating multiple
specification trajectories simultaneously.

Our results also highlight differences between zebrafish and mammalian neurogenesis. For
example, we detected pan-neuronal transcriptional signatures (e.g. neurod1, ascl1a, insm1a,
neurog1) in zebrafish radial glia and other progenitors at late stages of development, suggesting
that neurons remain the principal output of these cells. This is consistent with fate mapping studies
that have shown that zebrafish radial glia persist into adulthood and contribute to neurogenesis
(Schmidt et al., 2013). In contrast, radial glia progenitor cells in the developing embryonic mouse
brain shift from neurogenic to gliogenic programs (Mission et al., 1991; Schmechel and Rakic,
1979).

While developmental atlases and trajectories can help identify cellular differentiation paths, a full
understanding of cell type specification requires lineage tracing experiments. To catalyze such
approaches we introduced improvements to scGESTALT through a redesigned recorder cassette
for optimized mMRNA expression and library compatibility with the 10X Chromium scRNA-seq
platform. The resulting higher recovery of barcodes allows more dense reconstruction of lineage
trees. Our analysis revealed differences between the timing of segregation between different brain
regions: neuronal lineages in the retina and hindbrain diverged earlier than the forebrain and
midbrain. These results complement classic zebrafish fate maps of brain compartmentalization
(Woo and Fraser, 1995) and recent analysis of clonal cells in forebrain and midbrain (Solek et al.,
2017). Furthermore, our findings support early transcriptional and lineage segregation of
cerebellar upper rhombic lip progenitors relative to other classes of progenitor cells. To query
additional lineage divergences and combine with cellular trajectories, our optimized recorder can
be readily adapted for barcoding lineages at developmental windows that correspond to different
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branches of the specification trees (Raj et al., 2018b) or combined with cell- or tissue-specific
Cas9 driver lines to introduce lineage labels in populations of interest.

The resources presented here lay the groundwork for characterizing lineage histories and
transcriptional changes underlying the development and diversification of the vertebrate brain.
Future extensions include the generation of transgenic reporters to select populations of interest
and perform deeper analyses of cell type heterogeneity and differentiation (Pandey et al., 2018).
Cell specification trajectories can be extended to include additional subregions of the brain to
generate increasingly complex trees and combined with other zebrafish scRNA-seq datasets
(Cosacak et al., 2019; Farnsworth et al., 2020; Farrell et al., 2018; Lange et al., 2020; Pandey et
al., 2018; Tambalo et al., 2020; Wagner et al., 2018; Xu et al., 2020) to trace complete trajectories
from gastrulation to adulthood. Finally, it will be interesting to perform comparative studies by
using our atlas in conjunction with data described in a recent preprint (La Manno et al., 2020).

METHODS

Zebrafish husbandry

All vertebrate animal work was performed at the facilities of Harvard University, Faculty of Arts &
Sciences (HU/FAS). This study was approved by the Harvard University/Faculty of Arts &
Sciences Standing Committee on the Use of Animals in Research & Teaching under Protocol No.
25-08. The HU/FAS animal care and use program maintains full AAALAC accreditation, is
assured with OLAW (A3593-01), and is currently registered with the USDA.

Chromogenic in situ hybridization

Embryos were dechorionated with forceps and then fixed in 4% PFA in 1X PBS (pH 7.4) overnight
at 4°C. After fixation, embryos were dehydrated in methanol series (0%, 25%, 50%, 75% and
100% MetOH in PBSTween 0.3% (PBST)) and stored in 100% methanol at -20°C. Embryos were
rehydrated by reversing the methanol series for 10 min in each step at room temperature (RT)
and washed 2 x 5 min in PBST. To bleach pigment in 2 dpf fish, larvae were incubated for 10 min
in bleaching solution (3% H202/0.5% KOH in ddH20) at room temperature and washed 3 x 5 min
in PBST (Thisse et al., 2004). For permeabilization, 2 dpf larvae were incubated with Proteinase
K (10 pg/ml in PBST) for 2 min at RT and postfixed in 4% PFA in 1X PBS for 30 min at RT.
Afterwards, embryos were washed 3 x 5 min in PBST at RT, prehybridized in HYB™ solution (50%
Deionized Formamide (Amresco), 5X SSC (Ambion), 0.1% Tween-20, 5mg/ml Torula RNA
(Sigma) in ddH20) for 3 hours at 69°C, and hybridized overnight with the antisense probes diluted
in HYB*at 69°C. The rest of the steps were performed as described previously, by hand (Navajas
Acedo et al., 2019). Before imaging, embryos were cleared using an increasing MetOH series.
For imaging of 12 hpf embryos, the yolk was dissected away, and the embryos were flat mounted
on a microscope slide and covered with a cover slip. Larvae were photographed on a Zeiss
AxioZoom.V16.

The antisense probes were synthetized from DNA fragments amplified from TLAB zebrafish
cDNA using the following primers: kif17 (Fw GAAGGAAAGACTGCATCCTGAC; Rv
CTGCTGTCCCAAAATAGGAGTT), ptgs2a (Fw CGAGGACTATGTTCAGCACTTG; Rv
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TGCACATCGATCACAATACAAA), tp63 (Fw TGCTTTGCTAAATTGTGCTGTC; Rv
ATTGCCGCTTATGAGAATCAAG), cavin2a (Fw GAGCCTTCTCGTGCTAACAAGT; Rv
CAGGCATTTCAGTTCAATTTCA), sox7a (Fw AATCAAGACCGCGTAAAGAGAC; Rv
TTTGGTGGAGTGTTTCTGAATG), pdyn (Fw AAGAGAACGCCATACTGAAAGG; Rv
GCAGTTACGAATTGCCATGATA), dix1a (Fw AAGGAGGAGAGGTTCGTTTCA; Rv
AGTGTGTGTCAGCAGGTGTCTT).

smFISH staining and imaging

Single-molecule FISH probe sets were generated as previously described and coupled to either
Atto 647N NHS ester (Millipore Sigma #18373) (foxg1b, cahz) or Atto 550 NHS ester (Millipore
Sigma # 92835) (ompa, rlbp1a) (Lord et al., 2019). Sectioned larvae were affixed to polylysine-
coated #1.5 coverslips, and staining was carried out as previously described (Lord et al., 2019),
with each coverslip contained in a well of a plastic 6-well plate. During the probe hybridization
step, coverslips were placed upside-down onto a 100l droplet of probe solution on Parafilm
(Farack and ltzkovitz, 2020). Sample mounting was performed as previously described (Lord et
al., 2019). Mounted samples were imaged on an Olympus spinSR spinning disk microscope
fitted with a UPLAPO 60X/1.5 oil immersion objective using 0.3um slices.

smFISH image processing

All image processing was performed in Fiji (Schindelin et al., 2012). Rolling-ball background
subtraction (radius 25 pixels) was performed on smFISH channels before maximum intensity
projections were produced from 30 slices (Figure 1F) or 50 slices (Sup Figure 9) of processed z-
stacks. Channels were scaled individually, maximizing for visibility.

Optimization of scGESTALT lineage cassette

In our previous iteration of scGESTALT, the barcode capture rate by scRNA-seq was 6-28%. (Raj
et al., 2018b), thereby limiting the density of lineage tree reconstruction. To improve recovery we
adapted a different transgenic cassette (Yoshinari et al., 2012) for lineage recording. This cassette
has the following modifications compared to our previous recorder: (1) The heat-shock inducible
(hsp70I) promoter of the previous version is now replaced with a constitutive ubiquitous promoter
(medaka beta-actin) to drive strong widespread expression of the barcode mRNA. Expression of
the cassette was confirmed by fluorescence and the signal was more intense than that obtained
with the heat shock promoter. Furthermore, this version eliminates the requirement to heat shock
edited animals to express the barcode prior to scRNA-seq experiments. (2) We adapted the 3’
end of the DsRed open reading frame as a lineage recorder cassette with up to 8 sgRNA target
sites positioned next to each other. This vastly improved expression of the construct compared to
our previous version where the recording cassette was placed downstream of the DsRed open
reading frame. (3) We made library preparation compatible with the 10X Genomics platform.

To generate scGESTALT.2 barcode founder fish, one-cell embryos were injected with zebrafish

codon optimized Tol2 mRNA and pT2Olactb:loxP-dsR2-loxP-EGFP vector (gift from Atsushi
Kawakami (Yoshinari et al., 2012) ). Potential founder fish were screened for widespread DsRed
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expression and grown to adulthood. Adult founder transgenic fish were identified by outcrossing
to wild type fish and screening clutches of embryos for ubiquitous DsRed expression. Single copy
scGESTALT.2 F1 transgenics were identified using gPCR, as described previously (McKenna et
al., 2016; Pan et al., 2013; Raj et al., 2018b).

SgRNAs specific to sites 1-8 of the scGESTALT.2 array were generated by in vitro transcription
as previously described (Raj et al., 2018a). To initiate early barcode editing, single copy
scGESTALT.2 F1 male transgenic adults were crossed to wildtype female adults and one-cell
embryos were injected with 1.5 nl of Cas9 protein (NEB) and sgRNAs 1-8 in salt solution (8 uM
Cas9, 100 ng/ul pooled sgRNAs, 50 mM KCI, 3 mM MgCl,, 5 mM Tris HCI pH 8.0, 0.05% phenol
red). Since editing results in loss of DsRed signal, transgenic animals were distinguished from
wild type animals by amplifying the sScGESTALT.2 barcode by PCR using genomic DNA from the
tail fin at 15 dpf. In the experiments presented in this study, early lineage decisions were barcoded
by injecting reagents at the one-cell stage. It is worth noting that the scGESTALT.2 barcode can
be readily paired with a two-step barcoding protocol. This would require the establishment of a
second stable transgenic line for in vivo expression of Cas9 and a subset of sgRNAs matching
the target sequences of the new barcode cassette to enable sequential barcoding at early and
late stages. Such a line can be established using a similar step-by-step guidance that is detailed
in (Raj et al., 2018a).

Processing of samples for scRNA-seq time course

Wild type embryos (12 hpf, 14 hpf, 16 hpf, 18 hpf, 20 hpf, 24 hpf, 36 hpf) and larvae (2 dpf, 3 dpf,
5 dpf, 8 dpf) were used for scRNA-seq analysis. Samples for 15 dpf had a mix of wild type and
barcode edited larvae. Two of the 15 dpf samples consisted of only eye cells (no brain). Embryos
from 12 hpf to 36 hpf were first de-chorionated by incubating in 1 mg/ml pronase (Sigma-Aldrich)
at 28 C for 6-7 min until chorions began to blister, and then washed three times in ~200 ml of
zebrafish embryo medium (5 mM NacCl, 0.17 mM KCI, 0.33 mM CaCl,, 0.33 mM MgSQas, 0.1%
methylene blue) in a glass beaker. Embryos were de-yolked using two pairs of watchmaker
forceps, and the heads were chopped just anterior of the spinal cord. All processing steps were
done using 100 mm Petri dishes coated with Sylgard (Raj et al., 2018a). Samples from 2 and 3
dpf were processed similarly to the embryos, except they were not de-chorionated as they had
hatched out of the chorions. Larvae from 5 dpf to 15 dpf were dissected to remove whole brains
and eyes as described previously (Raj et al., 2018a). The following numbers of embryos and
larvae were used for each timepoint: 12 hpf — ~20 embryos; 14 hpf — ~20 embryos; 16 hpf — ~18
embryos; 18 hpf — ~18 embryos; 20 hpf — ~30 embryos; 24 hpf — ~30 embryos; 36 hpf — ~15
embryos; 2 dpf — ~30 larvae; 3 dpf —~30 larvae; 5 dpf — ~25 larvae; 8 dpf — ~ 25 larvae; 15 dpf
— ~15 larvae. Tissues were dissociated into single cells using the Papin Dissociation Kit
(Worthington) as described previously (Raj et al., 2018a). Cells were resuspended in 50 pl to 150
ul of DPBS (Life Technologies) depending on anticipated amount of material, and counted using
a hemocytometer. Samples were run on the 10X Genomics scRNA-seq platform according to the
manufacturer’s instructions (Single Cell 3’ v2 kit). Libraries were processed according to the
manufacturer’s instructions. Transcriptome libraries were sequenced using NextSeq 75 cycle kits.

scGESTALT.2 library prep
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To generate scGESTALT.2 libraries, lineage edited 15 dpf samples post cDNA amplification and
prior to fragmentation were split into two halves. One half was processed for transcriptome
libraries as instructed by the manufacturer. The other half was processed for lineage libraries as
follows. To enrich for scGESTALT.2 lineage barcodes, 5 ul of the whole transcriptome cDNA
was PCR amplified using Phusion polymerase (NEB) and 10XPCR1_F (CTACACGACGCTCTT
CCGATCT) and GP10X2_R (GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT GCTGCTTC
ATCTACAAGGTGAAG). The reaction (98 C, 30s; [98 C, 10 s; 67 C, 25s; 72 C, 30 s] x 14-15
cycles; 72 C, 2 min) was cleaned up with 0.6X AMPure beads and eluted in 20 ul EB buffer
(Omega). Finally, adapters and sample indexes were incorporated in another PCR reaction
using Phusion polymerase and 10XP5Part1long (AATGATACGGCGACCACCGA
GATCTACACTCTTTCC CTACACGACGCTCTTCCGATCT) and 10XP7Part2Ax
(CAAGCAGAAGACGGCATACGAGAT-xxxxxxxx-GTGACTGGAGTTCAGACGTGT), where x
represents index bases. These include A1: GGTTTACT; A2: TTTCATGA,; A3: CAGTACTG,; A4:
TATGATTC. Thus, up to 4 scGESTALT.2 samples were multiplexed in a sequencing run.
Libraries were sequenced using MiSeq 300 cycle kits and 20% PhiX spike-in. Sequencing
parameters: Read1 250 cycles, Read2 14 cycles, Index1 8 cycles, Index2 8 cycles. Standard
sequencing primers were used.

Bioinformatic processing of raw sequencing data and cell type clustering analysis
Transcriptome sequencing data were processed using Cell Ranger 2.1.0 according to the
manufacturer’s guidelines. scGESTALT.2 sequencing data were processed with a custom
pipeline (https://github.com/aaronmck/SC GESTALT) as previously described (Raj et al., 2018b).
The scGESTALT.2 barcode for each cell was matched to its corresponding cell type (tSNE cluster
membership) assignment using the cell identifier introduced during transcriptome capture. Cells
with fewer than 500 expressed genes, greater than 9% mitochondrial content or very high
numbers of UMIs and gene counts that were outliers of a normal distribution (likely
doublets/multiplets) were removed from further analysis. Clustering analysis was performed using
the Seurat v2.3.4 package (Butler et al., 2018) as described previously (Raj et al., 2018b). For
Figure 3 and Sup Figure 2, we selected the list of transcription factors, neuropeptides and their
receptors, and genes involved in neuron electrophysiology from our enriched marker analysis and
previous literature (R. Chen et al., 2017; Pandey et al., 2018; Tiklova et al., 2019; Zeisel et al.,
2018).

Construction of lineage trees from GESTALT barcodes.

All unique barcodes were then encoded into an event matrix and weights file, as described
previously (McKenna et al., 2016; Raj et al., 2018b), and were processed using PHYLIP mix with
Camin-Sokal maximum parsimony (Felsenstein, 1989). Individual cells were then grafted onto the
leaves matching their barcode sequence. After the subtrees were attached, we repeatedly
eliminated unsupported internal branching by recursively pruning parent-child nodes that had
identical barcodes. Cell annotations are then added to the corresponding leaves. The resulting
tree was converted to a JSON object, annotated with cluster membership, and visualized with
custom tools using the D3 software framework.

Lineage segregation analysis between cell types
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We combined all barcodes obtained from 4 fish. For our analysis, we only considered barcodes
with at least two cells, and we only analyzed cell types with at least 4 barcodes. To test
segregation between any two cell types/clusters, we first retrieved all barcodes that were present
in at least one of the two cell types. Then, we split these barcodes into two categories: “shared
barcode” or “specific barcode”. A shared barcode was defined as one that contains cells from
both cell types. In contrast, a specific barcode was defined as one that only contains cells from
one of the two cell types. Our null hypothesis is that the two cell types come from the same
ancestor at the time of Cas9 editing. Thus, we asked whether the number of observed specific
barcodes can be explained by chance under the null hypothesis. If it cannot be explained by
chance, it indicates that the two cell types have segregated.

To do so, we performed a randomization test as below:

1. We generated a pool of cells. The size of the pool is the total number of cells from the two
cell types. The ratio of the two cell types in the pool is equal to the ratio observed in the
real data. Under the null hypothesis, the pool of cells come from the same ancestor, so
they would share the same barcode.

2. For each barcode, we randomly sampled the same number of cells of this barcode from
the pool of cells.

3. We repeated this for all the barcodes, and then calculated the number of barcodes that
only contain one cell type (i.e. “specific barcode”).

4. We repeated steps 2 and 3 5000 times.

5. We calculated how many times (for example n times) the number of specific barcodes
from the random sampling process is greater than or equal to the number of specific
barcodes from the real data.

6. The probability that the number of specific barcodes can be explained by chance under
the null hypothesis is n/5000.

7. If the probability < 0.01 (pvalue < 0.01), we rejected the null hypothesis.

Next, for each cell type we split its corresponding pairwise comparison cell types into two
categories: “with segregation” or “other”. For the “other” category, we considered two
interpretations. First, it could signify that there is no segregation between the two cell types.
Second, it could suggest that we did not recover enough cells with barcode information, such that
there is not enough power to detect lineage segregation (low sampling). To distinguish between
the two scenarios, for each cell type in the two categories, we calculated the ratio between the
number of cells with barcodes and the number of all cells from scRNA-seq. If the ratio of one cell
type from the “other” category is greater than or equal to the smallest ratio from the first category
(“with segregation”), it indicates this cell type did not have low sampling issues. Thus, it supports
the interpretation that there is no segregation between the queried cell types. Otherwise, we
assign the cell type pair as “undefined” (i.e. insufficient sampling power to query lineage
segregation).

Granule cell analysis
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For each progenitor cell type, we used barcodes that did not include any cells from the other nine
progenitor cell types. The Jaccard Index between each progenitor cell type and granule cell was
calculated as below:

the number of shared barcodes between the two cell types

d Index =
Jaccard Index the number of barcodes in either cell type

Analyzing dampened spatial correlations in progenitors

Progenitors were isolated by subsetting the data to include clusters expressing markers such as
sox19a, her genes, pcna, mki67, fabp7a, gfap, id1, etc (Supplementary Table). Cells from 12 hpf
— 18 hpf were considered embryonic progenitors, cells from 20 hpf — 3 dpf were considered
intermediate progenitors, and cells from 5 dpf — 15 dpf were considered larval progenitors.
Variable genes were calculated for embryonic, intermediate and larval progenitors separately
using the FindVariableGenes function from Seurat v2.3.4 with parameters: x.low.cutoff = 0.015,
x.high.cutoff= 3, y.cutoff= 0.7. Then, a list of 79 transcription factors with known spatial signatures
was assembled by consulting previously described histological analysis (ZFIN) together with
those that were identified as gene markers for neuronal clusters in our dataset.. Separately in the
three progenitor groups, the pairwise Pearson correlation was calculated pairwise between all
genes detected as variable in each progenitor group. For several thresholds between 0.2-0.8,
the number of genes that correlated more strongly than the threshold with any of the 79 spatial
transcription factors (excluding self-correlation) were determined. The strongest correlations were
observed in the embryonic population, followed by the intermediate population, and for any
threshold, more genes correlated with the spatial TFs in the embryonic progenitors than the larval
progenitors.

Construction and analysis of branching transcriptional trajectories using URD

We built branching transcriptional trajectories from cells of the retina and hypothalamus to
determine the molecular events that occur as cells diversify and differentiate in these tissues.
First, cells from the retina and hypothalamus were isolated from each stage by determining
clusters that belonged to these tissues by expression of marker genes.

Determination of variable genes

For URD trajectory analyses, a more restrictive set of variable genes was calculated on each
subset of the data, as previously described (Farrell et al., 2018; Pandey et al., 2018) using the
URD findVariableGenes function, with parameter diffCV.cutoff = 0.3. Briefly, a curve was fit that
related each gene’s coefficient of variation to its mean expression level and represents the
expected coefficient of variation resulting from technical noise, given a gene’s mean expression
value; genes with much higher coefficients of variation likely encode biological variability and were
used downstream.

Removal of outliers

Poorly connected outliers can disrupt diffusion map calculation and so were removed from the
data. A k-nearest neighbor network was calculated between cells (Euclidean distance in variable
genes) with 100 nearest neighbors. Cells were then removed based on either unusually high
distance to their nearest neighbor or unusually high distance to their 20" nearest neighbor, given
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their distance to their nearest neighbor using the URD function knnOuitliers (retina: x.max = 40,
slope.r = 1.05, int.r = 4.3, slope.b = 0.75, int.b = 11.5; hypothalamus: x.max = 40, slope.r = 1.1,
int.r = 3, slope.b = 0.66, int.b = 11.5).

Removal of doublets by NMF modules

To remove putative cell doublets (i.e. where two cells are encapsulated into a single droplet and
processed as one cell), which can disrupt trajectory relationships, we removed cells that
expressed multiple NMF (non-negative matrix factorization) modules characteristic of different
expression programs, as previously described (Siebert et al.,, 2019). NMF modules were
computed using a previously published NMF framework (https://github.com/YiqunW/NMF)
(Farrell et al., 2018). The analysis was performed on log-normalized read count data for a set of
variable genes using the run_nmf.py script with the following parameters: -rep 5 -scl “false” -miter
10000 -perm True -run_perm True -tol 1e-6 -a 2 -init “random” -analyze True. Several k
parameters were evaluated for each tissue, and k was chosen to maximize the number of
modules, while minimizing the proportion of modules defined primarily by a single gene (retina, k
= 45; hypothalamus, k = ). Modules were used downstream that (a) had a ratio between their top-
weighted and second-highest weighted gene of < 5, and (b) exhibited a strong cell-type signature,
as determined by plotting on a UMAP representation and looking for spatial restriction. Pairs of
modules that were appropriate for using to remove doublets (and that did not define transition
states) were determined using the URD function NMFDoubletsDefineModules with parameters
module.thresh.high = 0.4, and module.thresh.low = 0.15. Putative doublets were identified using
the URD function NMFDoubletsDetermineCells with parameters frac.overlap.max = 0.03,
frac.overlap.diff.max = 0.1, module.expressed.thresh = 0.33 and were then removed.

Choice of root and tips

Branching transcriptional trajectories in the retina and hypothalamus were constructed using URD
1.1.1 (Farrell 2018). Briefly, cells from the first stage of the time course (12 hpf) were selected as
the ‘root’ or starting point for the tree. Terminal cell types comprised the clusters at 15 dpf from
these tissues, with the exception of clusters that were clearly progenitor or precursors based on
known gene expression (retina: 29, 39, 43). Additionally, in the retina, one cluster (96) was
excluded because it did not seem that any related cell types had been recovered in previous
stages.

Construction of branching transcriptional trajectories

A diffusion map was calculated using destiny (Haghverdi et al., 2015; 2016), using 140 (retina) or
100 (hypothalamus) nearest neighbors (approximately the square root of the number of cells in
the data), and with a globally-defined sigma of 14 (retina) or 8 (hypothalamus) — slightly smaller
than the suggested sigma from destiny. Pseudotime was then computed using the simulated
‘flood’ procedure previously described (Farrell et al., 2018), using the following parameters: n =
100, minimum.cells.flooded = 2. Biased random walks were performed to determine the cells
visited from each terminal population in the data as previously described (Farrell et al., 2018),
using the following parameters: optimal.cells.forward = 40, max.cells.back = 80, n.per.tip = 50000,
end.visits = 1. The branching tree was then constructed using URD’s buildTree function with the
following parameters: divergence.method = "ks" (hypothalamus) or divergence.method =
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"preference" (retina), save.all.breakpoint.info = TRUE, cells.per.pseudotime.bin = 40,
bins.per.pseudotime.window = 5, p.thresh = 0.0001 (hypothalamus) or , p.thresh = 0.01 (retina),
and min.cells.per.segment = 10. The resulting trees were then evaluated using known marker
genes and branch regulators.

Finding genes that vary during differentiation

Genes were selected for inclusion in gene cascades based on their differential expression relative
to other cell types in the tissue. See the Supplementary Analysis for the full set of commands
used. Within each tissue, cells were first compared in large populations that defined major cell
types (retina: cone bipolar cells, photoreceptors, amacrine cells, retinal ganglion cells, horizontal
cells, Muller glia, retinal pigmented epithelium; hypothalamus: prdx7+ neurons, pdyn+ neurons,
GABAergic dix+ neurons, nrgna+ neurons). Comparisons were performed pairwise, and genes
were considered differential in a population if they were upregulated compared to at least 2
(hypothalamus) or 3 (retina) other groups. Genes were considered differentially expressed based
on their expression fold-change (retina: 21.32-fold change, hypothalamus: = 1.41-fold change)
and their performance as a precision-recall classifier for the two cell populations compared (= 1.1-
fold better than a random classifier). Additionally, the aucprTestAlongTree function from URD was
used to select additional genes by performing pairwise comparisons, starting from a terminal cell
type and comparing at each branchpoint along the way, back to the root (Farrell et al., 2018).
Genes were selected based on expression fold-change between branchpoints (hypothalamus:
21.74-fold upregulated; hypothalamus, populations with small cell numbers (GABAergic dix+
cells): 21.51-fold upregulated; retina: 21.32-fold upregulated), their function as a precision-recall
classifier between branchpoints (hypothalamus: =1.2-fold better than a random classifier;
hypothalamus, populations with small cell numbers (GABAergic dix+ cells): 21.15-fold better than
a random classifier; retina: 21.1-fold better than a random classifier), their function as a precision
recall classifier globally (i.e. between the entire trajectory leading to a cell type and the rest of the
tissue): 21.03-fold better than a random classifier, and their upregulation globally (i.e. between
the entire trajectory leading to a cell type and the rest of the tissue): 21.07-fold upregulated.
Mitochondrial, ribosomal, and tandem duplicated genes were excluded. Cells were ordered
according to pseudotime, split into groups of at least 25 cells that differ at least 0.005 in
pseudotime, and the mean expression was determined with a 5-group moving window. A spline
curve was fit to the mean expression vs. pseudotime relationship of selected genes, using the
smooth.spline function from R’s stats package, with the parameter spar = 0.5. Genes were then
sorted according to their peak expression in pseudotime, normalized to their max expression
observed in the tissue, and plotted on a heatmap.

Analyzing progenitor populations

To determine whether retinal progenitors mature transcriptionally over time, we looked for genes
that were differentially expressed between young and old progenitors. We chose cells that
occupied the same region of the URD tree from either early (24 / 36 hpf) or late (15 dpf) stages.
We looked for genes that were differentially expressed in 15 dpf progenitors that: (1) were 1.1-
fold better as a precision-recall classifier than random, (2) changed 21.32-fold in expression, (3)
were expressed in at least 20% of progenitors, (4) had a mean expression value = 0.8, and (5)
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were more differentially expressed than equally sized cell populations chosen at random at least
99% of the time.

To determine whether cells were found in progenitor or precursor states long-term, we first defined
progenitor and precursor states by cells’ assignment in the URD tree, cross-referenced with the
expression of progenitor / precursor markers. We then determined how many cells from different
stages fell into each of these different states.

ACKNOWLEDGEMENTS

We thank members of the Schier lab for discussion and advice, the Bauer Core Facility (Harvard)
and the Molecular Biology Core Facility (Dana Farber Cancer Institute) for sequencing services,
the Harvard zebrafish facility staff for technical support, and the Imaging Core Facility of the
Biozentrum for microscopy resources. We thank M. Shafer and J. Gagnon for comments on the
manuscript, and H. Boije for comments on retinal lineages. This work was supported by a
postdoctoral fellowship from the Canadian Institutes of Health Research and 1K99HD098298 to
B.R., 1K99HD091291 to J.A.F., ROOHG010152 to A.M., RO1HD85905, DP1HD094764, ERC
834788, an Allen Discovery Center grant, and a McKnight Foundation Technological Innovations
in Neuroscience Award to A.F.S.

AUTHOR CONTRIBUTIONS

B.R. and A.F.S. conceived and designed the study. B.R., J.A.F., J.L., J.E.K, and A.F.S. interpreted
the data. B.R., J.A.F. and A.F.S. wrote the manuscript. B.R. and J.L.L. generated transgenic lines.
B.R. performed scRNA-seq and scGESTALT experiments and data processing. J.L. analyzed
SCGESTALT data with assistance from B.R. and J.E.K. L.Y.D. generated violin plots of neuron
subtype diversity. J.N.A. performed chromogenic in situs. A.N.C. and J.E.K. performed smFISH
experiments. J.A.F. performed URD trajectory analysis with assistance from B.R. A.M. generated
lineage trees. B.R. developed the R Shiny app for scRNA-seq data exploration.

REFERENCES

Allende, M.L., Weinberg, E.S., 1994. The expression pattern of two zebrafish achaete-scute
homolog (ash) genes is altered in the embryonic brain of the cyclops mutant. Dev. Biol. 166,
509-530. doi:10.1006/dbio.1994.1334

Bendall, S.C., Davis, K.L., Amir, E.-A.D., Tadmor, M.D., Simonds, E.F., Chen, T.J., Shenfeld,
D.K., Nolan, G.P., Pe'er, D., 2014. Single-cell trajectory detection uncovers progression and
regulatory coordination in human B cell development. Cell 157, 714-725.
doi:10.1016/j.cell.2014.04.005

Boije, H., Rulands, S., Dudczig, S., Simons, B.D., Harris, W.A., 2015. The Independent
Probabilistic Firing of Transcription Factors: A Paradigm for Clonal Variability in the
Zebrafish Retina. Developmental Cell 34, 532—-543. doi:10.1016/j.devcel.2015.08.011

22



961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

Brzezinski, J.A., Lamba, D.A., Reh, T.A., 2010. Blimp1 controls photoreceptor versus bipolar
cell fate choice during retinal development. Development 137, 619-629.
doi:10.1242/dev.043968

Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R., 2018. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat Biotechnol
36, 411-420. doi:10.1038/nbt.4096

Carter, R.A,, Bihannic, L., Rosencrance, C., Hadley, J.L., Tong, Y., Phoenix, T.N., Natarajan, S.,
Easton, J., Northcott, P.A., Gawad, C., 2018. A Single-Cell Transcriptional Atlas of the
Developing Murine Cerebellum. Current Biology 28, 2910-2920.e2.
doi:10.1016/j.cub.2018.07.062

Centanin, L., Wittbrodt, J., 2014. Retinal neurogenesis. Development 141, 241-244.
doi:10.1242/dev.083642

Cepko, C., 2014. Intrinsically different retinal progenitor cells produce specific types of progeny.
Nat. Rev. Neurosci. 15, 615-627. doi:10.1038/nrn3767

Chen, J., Rattner, A., Nathans, J., 2005. The rod photoreceptor-specific nuclear receptor Nr2e3
represses transcription of multiple cone-specific genes. J. Neurosci. 25, 118—129.
doi:10.1523/JNEUROSCI.3571-04.2005

Chen, R., Wu, X, Jiang, L., Zhang, Y., 2017. Single-Cell RNA-Seq Reveals Hypothalamic Cell
Diversity. Cell Rep 18, 3227-3241. doi:10.1016/j.celrep.2017.03.004

Clark, B.S., Stein-O'Brien, G.L., Shiau, F., Cannon, G.H., Davis-Marcisak, E., Sherman, T.,
Santiago, C.P., Hoang, T.V., Rajaii, F., James-Esposito, R.E., Gronostajski, R.M., Fertig,
E.J., Goff, L.A., Blackshaw, S., 2019. Single-Cell RNA-Seq Analysis of Retinal Development
Identifies NFI Factors as Regulating Mitotic Exit and Late-Born Cell Specification. Neuron
102, 1111-1126.€5. doi:10.1016/j.neuron.2019.04.010

Cosacak, M.1., Bhattarai, P., Reinhardt, S., Petzold, A., Dahl, A., Zhang, Y., Kizil, C., 2019.
Single-Cell Transcriptomics Analyses of Neural Stem Cell Heterogeneity and Contextual
Plasticity in a Zebrafish Brain Model of Amyloid Toxicity. Cell Rep 27, 1307-1318.e3.
doi:10.1016/j.celrep.2019.03.090

Cueva, J.G., Haverkamp, S., Reimer, R.J., Edwards, R., Wassle, H., Brecha, N.C., 2002.
Vesicular gamma-aminobutyric acid transporter expression in amacrine and horizontal cells.
J. Comp. Neurol. 445, 227-237. doi:10.1002/cne.10166

Delile, J., Rayon, T., Melchionda, M., Edwards, A., Briscoe, J., Sagner, A., 2019. Single cell
transcriptomics reveals spatial and temporal dynamics of gene expression in the developing
mouse spinal cord. Development 146, dev173807. doi:10.1242/dev.173807

Deniz, S., Wersinger, E., Schwab, Y., Mura, C., Erdelyi, F., Szabd, G., Rendon, A., Sahel, J.-A,,
Picaud, S., Roux, M.J., 2011. Mammalian retinal horizontal cells are unconventional
GABAergic neurons. J. Neurochem. 116, 350-362. doi:10.1111/j.1471-4159.2010.07114.x

Farack, L., Itzkovitz, S., 2020. Protocol for Single-Molecule Fluorescence In Situ Hybridization
for Intact Pancreatic Tissue. STAR Protocols 1, 100007. doi:10.1016/j.xpro.2019.100007

Farnsworth, D.R., Saunders, L.M., Miller, A.C., 2020. A single-cell transcriptome atlas for
zebrafish development. Dev. Biol. 459, 100-108. doi:10.1016/j.ydbio.2019.11.008

Farrell, J.A., Wang, Y., Riesenfeld, S.J., Shekhar, K., Regev, A., Schier, A.F., 2018. Single-cell
reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360,
eaar3131. doi:10.1126/science.aar3131

Felsenstein, J., 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics, Vol. 5
(1989), pp. 164-166 5, 164—166.

Fischer, A.J., Bongini, R., Bastaki, N., Sherwood, P., 2011. The maturation of photoreceptors in
the avian retina is stimulated by thyroid hormone. Neuroscience 178, 250-260.
doi:10.1016/j.neuroscience.2011.01.022

23



1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060

Gibbs, H.C., Chang-Gonzalez, A., Hwang, W., Yeh, A.T., Lekven, A.C., 2017. Midbrain-
Hindbrain Boundary Morphogenesis: At the Intersection of Wnt and Fgf Signaling. Front.
Neuroanat. 11, 64. doi:10.3389/fnana.2017.00064

Guo, Q., Li, J.Y.H., 2019. Defining developmental diversification of diencephalon neurons
through single cell gene expression profiling. Development 146, dev174284.
doi:10.1242/dev.174284

Haghverdi, L., Buettner, F., Theis, F.J., 2015. Diffusion maps for high-dimensional single-cell
analysis of differentiation data. Bioinformatics 31, 2989-2998.
doi:10.1093/bioinformatics/btv325

Haghverdi, L., Battner, M., Wolf, F.A., Buettner, F., Theis, F.J., 2016. Diffusion pseudotime
robustly reconstructs lineage branching. Nat. Methods 13, 845-848.
doi:10.1038/nmeth.3971

He, J., Zhang, G., Aimeida, A.D., Cayouette, M., Simons, B.D., Harris, W.A., 2012. How variable
clones build an invariant retina. Neuron 75, 786—-798. doi:10.1016/j.neuron.2012.06.033

Holguera, I., Desplan, C., 2018. Neuronal specification in space and time. Science 362, 176—
180. doi:10.1126/science.aas9435

Hu, Y., Wang, X., Hu, B., Mao, Y., Chen, Y., Yan, L., Yong, J., Dong, J., Wei, Y., Wang, W.,
Wen, L., Qiao, J., Tang, F., 2019. Dissecting the transcriptome landscape of the human
fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. PLoS
Biol. 17, €3000365. doi:10.1371/journal.pbio.3000365

Jessell, T.M., 2000. Neuronal specification in the spinal cord: inductive signals and
transcriptional codes. Nat. Rev. Genet. 1, 20—-29. doi:10.1038/35049541

Kim, D.W., Washington, P.W., Wang, Z.Q., Lin, S., Sun, C., Jiang, L., Blackshaw, S., 2019.
Single cell RNA-Seq analysis identifies molecular mechanisms controlling hypothalamic
patterning and differentiation. bioRxiv 83, 657148. doi:10.1101/657148

Korzh, V., Sleptsova, I., Liao, J., He, J., Gong, Z., 1998. Expression of zebrafish bHLH genes
ngn1 and nrd defines distinct stages of neural differentiation. Dev. Dyn. 213, 92—104.
doi:10.1002/(SICI)1097-0177(199809)213:1<92::AID-AJA9>3.0.CO;2-T

Kretzschmar, K., Watt, F.M., 2012. Lineage tracing. Cell 148, 33—45.
doi:10.1016/j.cell.2012.01.002

La Manno, G., Siletti, K., Furlan, A., Gyllborg, D., Vinsland, E., Langseth, C.M., Khven, I.,
Johnsson, A., Nilsson, M., Lénnerberg, P., Linnarsson, S., 2020. Molecular architecture of
the developing mouse brain. bioRxiv 135C, 2020.07.02.184051.
doi:10.1101/2020.07.02.184051

Lange, C., Rost, F., Machate, A., Reinhardt, S., Lesche, M., Weber, A., Kuscha, V., Dahl, A.,
Rulands, S., Brand, M., 2020. Single cell sequencing of radial glia progeny reveals the
diversity of newborn neurons in the adult zebrafish brain. Development 147, dev185595.
doi:10.1242/dev.185595

Lee, S.-K,, Pfaff, S.L., 2001. Transcriptional networks regulating neuronal identity in the
developing spinal cord. Nat. Neurosci. 4, 1183-1191. doi:10.1038/nn750

Li, H., Horns, F., Wu, B., Xie, Q., Li, J., Li, T., Luginbuhl, D.J., Quake, S.R., Luo, L., 2017.
Classifying Drosophila Olfactory Projection Neuron Subtypes by Single-Cell RNA
Sequencing. Cell 171, 1206—-1220.e22. doi:10.1016/j.cell.2017.10.019

Lord, N.D., Carte, A.N., Abitua, P.B., Schier, A.F., 2019. The pattern of Nodal morphogen
signaling is shaped by co-receptor expression. bioRxiv 125, 2019.12.30.891101.
doi:10.1101/2019.12.30.891101

Ma, J., Shen, Z., Yu, Y.-C., Shi, S.-H., 2017. Neural lineage tracing in the mammalian brain.
Curr. Opin. Neurobiol. 50, 7-16. doi:10.1016/j.conb.2017.10.013

Mayer, C., Hafemeister, C., Bandler, R.C., Machold, R., Batista Brito, R., Jaglin, X., Allaway, K.,
Butler, A., Fishell, G., Satija, R., 2018. Developmental diversification of cortical inhibitory
interneurons. Nature 555, 457-462. doi:10.1038/nature25999

24



1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

McKenna, A., Findlay, G.M., Gagnon, J.A., Horwitz, M.S., Schier, A.F., Shendure, J., 2016.
Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science
353, aaf7907. doi:10.1126/science.aaf7907

McKenzie, J.A.G., Fruttiger, M., Abraham, S., Lange, C.A K., Stone, J., Gandhi, P., Wang, X,
Bainbridge, J., Moss, S.E., Greenwood, J., 2012. Apelin is required for non-neovascular
remodeling in the retina. Am. J. Pathol. 180, 399—409. doi:10.1016/j.ajpath.2011.09.035

Mission, J.P., Takahashi, T., Caviness, V.S., 1991. Ontogeny of radial and other astroglial cells
in murine cerebral cortex. Glia 4, 138-148. doi:10.1002/glia.440040205

Moens, C.B., Prince, V.E., 2002. Constructing the hindbrain: insights from the zebrafish. Dev.
Dyn. 224, 1-17. doi:10.1002/dvdy.10086

Mueller, T., Wullimann, M.F., 2003. Anatomy of neurogenesis in the early zebrafish brain. Brain
Res. Dev. Brain Res. 140, 137-155. doi:10.1016/s0165-3806(02)00583-7

Navajas Acedo, J., Voas, M.G., Alexander, R., Woolley, T., Unruh, J.R., Li, H., Moens, C.,
Piotrowski, T., 2019. PCP and Wnt pathway components act in parallel during zebrafish
mechanosensory hair cell orientation. Nat Comms 10, 3993-17. doi:10.1038/s41467-019-
12005-y

Nowakowski, T.J., Bhaduri, A., Pollen, A.A., Alvarado, B., Mostajo-Radji, M.A., Di Lullo, E.,
Haeussler, M., Sandoval-Espinosa, C., Liu, S.J., Velmeshev, D., Ounadjela, J.R., Shuga, J.,
Wang, X., Lim, D.A., West, J.A., Leyrat, A A., Kent, W.J., Kriegstein, A.R., 2017.
Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human
cortex. Science 358, 1318-1323. doi:10.1126/science.aap8809

Ogawa, Y., Shiraki, T., Kojima, D., Fukada, Y., 2015. Homeobox transcription factor Six7
governs expression of green opsin genes in zebrafish. Proceedings of the Royal Society B:
Biological Sciences 282, 20150659. doi:10.1098/rspb.2015.0659

Pan, Y.A., Freundlich, T., Weissman, T.A., Schoppik, D., Wang, X.C., Zimmerman, S., Ciruna,
B., Sanes, J.R., Lichtman, J.W., Schier, A.F., 2013. Zebrabow: multispectral cell labeling for
cell tracing and lineage analysis in zebrafish. Development 140, 2835-2846.
doi:10.1242/dev.094631

Pandey, S., Shekhar, K., Regev, A., Schier, A.F., 2018. Comprehensive Identification and
Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq. 28, 1052—
1065.e7. doi:10.1016/j.cub.2018.02.040

Raj, B., Gagnon, J.A., Schier, A.F., 2018a. Large-scale reconstruction of cell lineages using
single-cell readout of transcriptomes and CRISPR-Cas9 barcodes by scGESTALT. Nat
Protoc 13, 2685-2713. doi:10.1038/s41596-018-0058-x

Raj, B., Wagner, D.E., McKenna, A., Pandey, S., Klein, A.M., Shendure, J., Gagnon, J.A,,
Schier, A.F., 2018b. Simultaneous single-cell profiling of lineages and cell types in the
vertebrate brain. Nat Biotechnol 36, 442—450. doi:10.1038/nbt.4103

Rheaume, B.A., Jereen, A., Bolisetty, M., Sajid, M.S., Yang, Y., Renna, K., Sun, L., Robson, P.,
Trakhtenberg, E.F., 2018. Single cell transcriptome profiling of retinal ganglion cells
identifies cellular subtypes. Nat Comms 9, 1-17. doi:10.1038/s41467-018-05134-3

Rosenberg, A.B., Roco, C.M., Muscat, R.A., Kuchina, A., Sample, P., Yao, Z., Graybuck, L.T.,
Peeler, D.J., Mukherjee, S., Chen, W., Pun, S.H., Sellers, D.L., Tasic, B., Seelig, G., 2018.
Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding.
Science 360, 176—182. doi:10.1126/science.aam8999

Rulands, S., Iglesias-Gonzalez, A.B., Boije, H., 2018. Deterministic fate assignment of Miller
glia cells in the zebrafish retina suggests a clonal backbone during development. Eur. J.
Neurosci. 48, 3597-3605. doi:10.1111/ejn.14257

Sagner, A., Briscoe, J., 2019. Establishing neuronal diversity in the spinal cord: a time and a
place. Development 146, dev182154. doi:10.1242/dev.182154

Satoh, S., Tang, K, lida, A., Inoue, M., Kodama, T., Tsai, S.Y., Tsai, M.-J., Furuta, Y.,
Watanabe, S., 2009. The spatial patterning of mouse cone opsin expression is regulated by

25



1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162

bone morphogenetic protein signaling through downstream effector COUP-TF nuclear
receptors. J. Neurosci. 29, 12401-12411. doi:10.1523/JNEUROSCI.0951-09.2009

Schindelin, J., Arganda-Carreras, |., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch,
S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.-Y., White, D.J., Hartenstein, V., Eliceiri,
K., Tomancak, P., Cardona, A., 2012. Fiji: an open-source platform for biological-image
analysis. Nat. Methods 9, 676-682. doi:10.1038/nmeth.2019

Schmechel, D.E., Rakic, P., 1979. A Golgi study of radial glial cells in developing monkey
telencephalon: morphogenesis and transformation into astrocytes. Anat. Embryol. 156,
115-152. doi:10.1007/BF00300010

Schmidt, R., Strahle, U., Scholpp, S., 2013. Neurogenesis in zebrafish - from embryo to adult.
Neural Development 8, 3. doi:10.1186/1749-8104-8-3

Shen, Y.-C., Raymond, P.A., 2004. Zebrafish cone-rod (crx) homeobox gene promotes
retinogenesis. Dev. Biol. 269, 237-251. doi:10.1016/j.ydbio.2004.01.037

Siebert, S., Farrell, J.A., Cazet, J.F., Abeykoon, Y., Primack, A.S., Schnitzler, C.E., Juliano,
C.E., 2019. Stem cell differentiation trajectories in Hydra resolved at single-cell resolution.
Science 365, eaav9314. doi:10.1126/science.aav9314

Solek, C.M., Feng, S., Perin, S., Weinschutz Mendes, H., Ekker, M., 2017. Lineage tracing of
dix1a/2a and dIx5a/6a expressing cells in the developing zebrafish brain. Dev. Biol. 427,
131-147. doi:10.1016/j.ydbio.2017.04.019

Stigloher, C., Chapouton, P., Adolf, B., Bally-Cuif, L., 2008. Identification of neural progenitor
pools by E(Spl) factors in the embryonic and adult brain. Brain Res. Bull. 75, 266—-273.
doi:10.1016/j.brainresbull.2007.10.032

Tambalo, M., Mitter, R., Wilkinson, D.G., 2020. A single cell transcriptome atlas of the
developing zebrafish hindbrain. Development 147, dev184143. doi:10.1242/dev.184143

Tambalo, M., Mitter, R., Wilkinson, D.G., 2019. A single cell transcriptome atlas of the
developing zebrafish hindbrain. bioRxiv 124, 745141. doi:10.1101/745141

Than-Trong, E., Bally-Cuif, L., 2015. Radial glia and neural progenitors in the adult zebrafish
central nervous system. Glia 63, 1406—1428. doi:10.1002/glia.22856

Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J.-P.,
Thisse, C., 2004. Spatial and temporal expression of the zebrafish genome by large-scale in
situ hybridization screening. Methods Cell Biol. 77, 505-519. doi:10.1016/s0091-
679x(04)77027-2

Tiklova, K., Bjérklund, A K., Lahti, L., Fiorenzano, A., Nolbrant, S., Gillberg, L., Volakakis, N.,
Yokota, C., Hilscher, M.M., Hauling, T., Holmstrém, F., Joodmardi, E., Nilsson, M., Parmar,
M., Perlmann, T., 2019. Single-cell RNA sequencing reveals midbrain dopamine neuron
diversity emerging during mouse brain development. Nat Comms 10, 581-12.
doi:10.1038/s41467-019-08453-1

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J., Livak,
K.J., Mikkelsen, T.S., Rinn, J.L., 2014. The dynamics and regulators of cell fate decisions
are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32, 381-386.
doi:10.1038/nbt.2859

Viczian, A.S., Vignali, R., Zuber, M.E., Barsacchi, G., Harris, W.A., 2003. XOtx5b and XOtx2
regulate photoreceptor and bipolar fates in the Xenopus retina. Development 130, 1281—
1294. doi:10.1242/dev.00343

Wagner, D.E., Weinreb, C., Collins, Z.M., Briggs, J.A., Megason, S.G., Klein, A.M., 2018.
Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo.
Science 360, 981-987. doi:10.1126/science.aar4362

Wamsley, B., Fishell, G., 2017. Genetic and activity-dependent mechanisms underlying
interneuron diversity. Nat. Rev. Neurosci. 18, 299-309. doi:10.1038/nrn.2017.30

Wilson, S.W., Brand, M., Eisen, J.S., 2002. Patterning the zebrafish central nervous system.
Results Probl Cell Differ 40, 181-215.

26



1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

1211

Wilson, S.W., Rubenstein, J.L., 2000. Induction and dorsoventral patterning of the
telencephalon. Neuron 28, 641-651. doi:10.1016/s0896-6273(00)00171-9

Woo, K., Fraser, S.E., 1995. Order and coherence in the fate map of the zebrafish nervous
system. Development 121, 2595-2609.

Woodworth, M.B., Girskis, K.M., Walsh, C.A., 2017. Building a lineage from single cells: genetic
techniques for cell lineage tracking. Nat. Rev. Genet. 18, 230-244.
doi:10.1038/nrg.2016.159

Xie, Y., Dorsky, R.I., 2017. Development of the hypothalamus: conservation, modification and
innovation. Development 144, 1588-1599. doi:10.1242/dev.139055

Xu, B., Tang, X., Jin, M., Zhang, H., Du, L., Yu, S., He, J., 2020. Unifying developmental
programs for embryonic and postembryonic neurogenesis in the zebrafish retina.
Development 147, dev185660. doi:10.1242/dev.185660

Yoshinari, N., Ando, K., Kudo, A., Kinoshita, M., Kawakami, A., 2012. Colored medaka and
zebrafish: Transgenics with ubiquitous and strong transgene expression driven by the
medaka B-actinpromoter. Develop. Growth Differ. 54, 818—828. doi:10.1073/pnas.94.8.3789

Zeisel, A., Hochgerner, H., Lénnerberg, P., Johnsson, A., Memic, F., van der Zwan, J., Haring,
M., Braun, E., Borm, L.E., La Manno, G., Codeluppi, S., Furlan, A., Lee, K., Skene, N.,
Harris, K.D., Hjerling-Leffler, J., Arenas, E., Ernfors, P., Marklund, U., Linnarsson, S., 2018.
Molecular Architecture of the Mouse Nervous System. Cell 174, 999-1014.e22.
doi:10.1016/j.cell.2018.06.021

Zhong, S., Zhang, S., Fan, X., Wu, Q., Yan, L., Dong, J., Zhang, H., Li, L., Le Sun, Pan, N., Xu,
X., Tang, F., Zhang, J., Qiao, J., Wang, X., 2018. A single-cell RNA-seq survey of the
developmental landscape of the human prefrontal cortex. Nature 555, 524-528.
doi:10.1038/nature25980

Figure 1. Developmental compendium of zebrafish head and brain cell types

A. Schematic of the developmental stages profiled. Red hatched line represents head regions that were
selected for enrichment of brain cells in early development. Samples from 5 to 15 dpf were dissected to obtain
brain and eye specifically. h, hours post fertilization; d, days post fertilization

B. Schematic of scRNA-seq using 10X Genomics platform.

C. Cell type heterogeneity within each stage. Clusters at each stage were assigned to a region or tissue type
based on known markers and color coded to reflect their classification. tSNE implementations: Barnes-Hut (12h
to 3d), Fourier transform (5d and 15d).

D. In situ hybridization for novel markers in the trigeminal placode at 12 hpf. klf17 is expressed on the anterior
polster and ventral mesoderm, delineating the border of the embryo. Trigeminal ganglia markers ptgs2a, tp63
and sdpra (cavin2a) are expressed bilaterally (asterisks) posterior to the eye. Eyes are delineated by dotted
lines. A: Anterior; P: Posterior. Scale bar equals 100 um.

E. In situ hybridization validation of novel marker sox7a in the hypothalamus at 2 dpf. Top panels, lateral view
of brain; Bottom panels, ventral view of brain. dix7a and pdyn are known hypothalamus. Eyes are delineated by
dotted lines. VHyp: Ventral Hypothalamus; TVZ: Telencephalic Ventricular Zone; ADi: Anterior Diencephalon;
AFb: Anterior Forebrain; VDi: Ventral Diencephalon; Le: Lens. Scale bar equals 200 pm.

F. smFISH validation of novel marker ompa in horizontal cells of the retina at 5 dpf. Left panel, retina section
stained with DAPI (grey), pan-retinal foxg1b (cyan) and ompa (yellow). Strong yellow signal in photoreceptors
represent autofluorescence. White box indicates area that was zoomed in for the right panels. Dotted lines
indicate the horizontal cell layer. PR, photoreceptor cells; HC, horizontal cells; BC, bipolar cells; AC, amacrine
cells; RGC, retinal ganglion cells

Figure 2. Brain cell type diversification from 12 hpf to 15 dpf
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A. tSNE plot of 12 hpf dataset. Only clusters corresponding to neural and blood cell types are shown. Inferred
identities of each cluster are described.

B. Dot plot of gene expression pattern of select marker genes (columns) for each cluster (row). Dot size
indicates the percentage of cells expressing the marker; color represents the average scaled expression level.
C. tSNE plot of 15 dpf dataset. Inferred identities of each cluster are described.

D. Dot plot of gene expression patterns of select marker genes for each cluster. Layout is same as (B). Grey
box represents generic neuronal and progenitor genes.

tSNE implementations: Barnes-Hut (A), Fourier transform (C)

Figure 3. Neuron subtype diversity at 15 dpf

A-C. Violin plots of select marker gene expression in identified brain neuron subtypes from 15 dpf. Retina
neurons and nascent neurons are omitted from the analysis. Cluster numbers are indicated at the bottom along
with their inferred spatial location in the brain. Cluster 76 has unknown spatial location. Detailed cluster
descriptions are in Supplementary Table 1 and can be explored interactively in the accompanying app at
https://github.com/brlauuu/zf_brain.

A. Expression of transcription factors.

B. Expression of neuropeptides and their receptors.

C. Expression of genes involved in neuron electrophysiology including neurotransmitters, transporters,
receptors, and channels.

D. Matrix showing whether neuron subtypes identified at 15 dpf are also detected in earlier larval (5 and 8 dpf)
and later juvenile (25 dpf (Raj et al., 2018b)) stages. Clusters were matched across stages by comparing
marker gene expression. The cluster number at 15 dpf is shown and an orange circle indicates that the subtype
is detected in another stage.

Figure 4. Developmental diversification of neurons and progenitors

A. Area plot of the percentage of dataset at each timepoint corresponding to neural progenitors, neurons, and
other cell types. Right panels, Total number of clusters of progenitors and neurons at each stage of brain
development.

B. tSNE plot of embryonic, intermediate and larval neural progenitors. All progenitor cells were analyzed
together after subsetting from the whole dataset.

C-D. Heatmaps of select gene expression in early embryonic (C) and late larval (D) brain neural progenitors.
Top panel, genes enriched in embryonic progenitors. Bottom panel, genes enriched in larval progenitors.
Embryonic progenitors have a strong spatial signature (forebrain, midbrain, hindbrain) and are depleted in
genes that distinguish larval progenitor subtypes (C). Larval progenitors segregate into non-proliferative and
proliferative groups that can be resolved into additional subtypes characterized by expression of various gene
combinations (D). TF, transcription factor. *pax6a is expressed in multiple regions

E. Heatmap of Pearson correlation values of 79 spatial markers in embryonic, intermediate and larval neural
progenitors. Spatial markers were selected based on existing literature. Groups of co-varying genes in the
midbrain and forebrain are highlighted with dashed boxes.

F. Plot showing number of highly variable genes that co-vary with any of the selected 79 spatial markers in
embryonic and larval progenitors. Co-variation was determined by Pearson correlation, with several thresholds
(from stringent to relaxed) displayed along the x-axis.

Figure 5. Optimization of scGESTALT lineage recorder for better barcode recovery

A. Schematic overview of CRISPR-Cas9 lineage recording. Optimized scGESTALT comprises a barcode
cassette in the 3’end of DsRed transgene (single copy) and the medaka beta-actin promoter. Embryos are
injected with Cas9 protein and DsRed sgRNAs and animals are profiled at 15 dpf by scRNA-seq.

B. Pairwise comparisons using cosine dissimilarity of barcode edit patterns from four (ZF1-4) edited 15 dpf
larval brains.
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C. Chord diagram of the nature and frequency of deletions within and between target sites. Each colored sector
represents a target site. Links between target sites represent inter-site deletions; self-links represent intra-site
deletions. Link widths are proportional to the edit frequencies.

D. Type of edit at each target site within the barcode from edited ZF1-4 larval brains.

E. Heat map of lineage relationships between non-retinal and retinal cell types in the eye. All clusters with >3
cells and all barcodes with >1 cell were used to determine if there is enrichment of cell type-specific barcodes
across each cluster pair. Blue indicates significant enrichment and lineage segregation. Purple indicates no
significant enrichment and no lineage segregation. Grey indicates insufficient sampling power and undefined
lineage status. Cluster numbers are indicated (e.g. C45) and either cell type gene markers (e.g. cldna®) or the
exact name of the cell type (e.g. cone bipolar cells) are indicated along the rows. Along the columns, the
numbers within the brackets indicate the number of barcodes and number of cells, respectively, for that cluster.
F. Heat map of lineage relationships between brain regions and the retina. Neuron clusters that could be
pseudospatially assigned to the each region were used (see Supplementary Table). Analysis, layout and color
code are same as in E.

G. Heat map of lineage relationships between neuronal cell types in the forebrain and midbrain. Analysis,
layout and color code are same as in E. The brain region each cluster belongs to is indicated (e.g. pallium,
hypothalamus), and for clusters where a more precise location could be inferred a gene marker is indicated
(e.g. pitx2*).

H. Heat map of lineage relationships between brain progenitor clusters. Analysis, layout and color code is same
as in E. Cell type marker genes are indicated along with the cluster number. URL, upper rhombic lip

I. Bar plot of the proportion (based on Jaccard Index) of granule cell (cerebellum neurons) barcodes that are
shared with each brain progenitor cluster. Cluster numbers are the same as in H.

Figure 6. Cell specification trajectories in the retina and hypothalamus

A. UMAP visualization of retinal cell types. Retinal cells (based on clustering analysis) from 12 hpf to 15 dpf
were subsetted from the full dataset and analyzed together. Cells are color coded by stage.

B. Cell specification tree of zebrafish retinal development. Trajectories were generated by URD and visualized
as a branching tree. Cells are color coded by stage. 12 hpf cells were assigned as the root and 15 dpf
differentiated cells were assigned as tips. CBP, cone bipolar cells (6 subtypes are numbered); RGC, retinal
ganglion cells; RPE, retinal pigment epithelium

C. Expression of select genes are shown on the retina specification tree.

D. Heat maps of gene expression cascades of photoreceptor cell trajectories and retinal ganglion cell
trajectories. Cells were selected based on high expression along trajectories leading to these cell types,
compared to expression along opposing branchpoints. Red, high expression. Yellow, low expression

E. UMAP visualization of hypothalamus cell types. Hypothalamus cells (based on clustering analysis) from 12
hpf to 15 dpf were subsetted from the full dataset and analyzed together. Cells are color coded by stage.

F. Cell specification tree of zebrafish hypothalamus development. Trajectories were generated by URD and
visualized as a branching tree. Cells are color coded by stage. 12 hpf cells were assigned as the root and 15
dpf differentiated cells were assigned as tips.

G. Expression of select genes are shown on the hypothalamus specification tree.

H. Heat map of gene expression cascade of nrgna+ cell trajectories. Red, high expression. Yellow, low
expression

Figure 7. Progenitor differences between retina and hypothalamus

Retinal and hypothalamus cells were divided into progenitor (purple), precursor (orange), and differentiated
(blue) cells, as shown on the URD tree. The fraction of cells in each of these transcriptional states was then
determined for three developmental periods (12—24 hpf, 36 hpf — 3 dpf, and 5-15 dpf). In the retina, cells can
be found in a progenitor state (light purple) that persists post-embryonically.
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Sup Figure 1. Zebrafish brain cell types identified at each stage of time course

tSNE plots of cell types at each stage of the time course. Cells are color coded by stage.

tSNE implementations: Barnes-Hut (12 hpf to 3 dpf, 8 dpf), Fourier transform (5 dpf and 15 dpf). Cluster numbers are
indicated on each plot. Detailed cluster descriptions are in Supplementary Table 1 and can be explored interactively in
the accompanying app at https://github.com/brlauuu/zf_brain.

Sup Figure 2. Neuron subtype diversity at 5 and 8 dpf

Violin plots of select marker gene expression in identified brain neuron subtypes from 5 dpf (left) and 8 dpf (right).
Retina neurons and nascent (immature) neurons are omitted from the analysis. Cluster numbers are indicated at the
bottom along with their inferred spatial location in the brain. Clusters 69 (5 dpf) and 51 (8 dpf) have unknown spatial
location. Detailed cluster descriptions are in Supplementary Table 1 and can be explored interactively in the
accompanying app at https://github.com/brlauuu/zf_brain.

Sup Figure 3. Embryonic, intermediate and larval stage neural progenitor populations

tSNE plots showing embryonic (12 hpf — 18 hpf), intermediate (20 hpf — 3 dpf) and larval (5 dpf — 15 dpf) stage
progenitor clusters that were subsetted from the dataset. Cluster numbers match plots shown in Sup Figure 1. Detailed
cluster descriptions are in Supplementary Table 1 and can be explored interactively in the accompanying app at
https://github.com/brlauuu/zf_brain.

Sup Figure 4. Optimized scGESTALT lineage recorder enables reconstruction of more dense

lineage trees

A. Size and diversity of clones from edited ZF1-4 larval brains. Each colored rectangle represents a unique clone and
the area represents the size of the clone.

B. A reconstructed scGESTALT brain lineage tree from one zebrafish 15 dpf brain. 302 barcodes recovered from ZF1
were assembled into a lineage tree. Barcode edits are represented as red (deletions), blue (insertions), and black
(substitutions). Associated cells are color coded by cell type and region. Interactive trees are presented at:
https://scgestalt.mckennalab.org/. Each tip on the tree has an associated cell type assignment (color coded), a lineage
barcode schematic, and a cluster number. For reasons of space, the tree is split into multiple columns and dashed lines
connect subsections of the tree together.

Sup Figure 5.

Retinal cell type marker expression and trajectory analysis

A. UMAP plots highlighting expression of select genes enriched in retinal cell types. rx3, vsx2, hes2.2 are enriched in
early embryonic retinal progenitors; foxg1b is enriched in differentiated cells; pax6a is enriched in progenitors, retinal
ganglion cells (RGC) and amacrine cells; crx is enriched in photoreceptor cells and cone bipolar cells; gngt2a is
enriched in cones; gnat1 is enriched in rods; ompa is enriched in horizontal cells; tfap2a is enriched in RGCs and
horizontal cells; apoeb is enriched in early progenitors and muller glia; rbpms2a is enriched in amacrine cells; vsx1 is
enriched in cone bipolar cells; cabp5b is enriched in cone bipolar cells; rpe65a is enriched in retinal pigment epithelium;
kidins220a is enriched in new retinal subtype.

B. tSNE plot of 15 dpf brain and eye cell types. Retinal cell types used as the endpoint cell types (tips) for URD analysis
are color coded. Cluster number and cell type description are indicated on the legend. Cluster 96 was discarded from all
analysis, see Results.

Sup Figure 6.

Retina and hypothalamus URD trajectory analysis

A. Cell specification tree of zebrafish retinal development generated with URD, reproduction of Figure 6B for
comparison. CBP, cone bipolar cells (6 subtypes are numbered); RGC, retinal ganglion cells; RPE, retinal pigment
epithelium

B. Assessing robustness of cell assignment on URD retina trees. Trees were recalculated with random subsets of 50%
of the cells from the original retinal dataset (sampled per stage so that proportions of cells from each stage remained



constant). The parameters used were the same, except the number of nearest neighbors used was reduced to reflect
the smaller dataset. The position of cells on trees was compared to the original tree. Cells assigned the same segment
are colored blue (“Same”), cells that moved to a parent or child segment (“Parent/Child”) are colored green, cells that
changed assignment to a different location are colored red (“Changed”), and cells that were not assigned a location in
the original tree are colored grey. 82.1% cells retained their original assignment, 12.5% cells shifted to either parent or
child segments (reflects small shifts in pseudotime of branchpoint assignment), and 5.5% cells shifted to a different
location.

C. Cell specification trees of zebrafish hypothalamus development generated with URD, reproduction of Figure 6F for
comparison.

D. Assessing robustness of cell assignment on URD hypothalamus trees. Trees were recalculated with random subsets
of 50% of the cells from the original hypothalamus dataset (sampled per stage so that proportions of cells from each
stage remained constant). The parameters used were the same, except the number of nearest neighbors used was
reduced to reflect the smaller dataset. The position of cells on trees was compared to the original tree. Cells assigned
the same segment are colored blue (“Same”), cells that moved to a parent or child segment (“Parent/Child”) are colored
green, cells that changed assignment to a different location are colored red (“Changed”), and cells that were not
assigned a location in the original tree are colored grey. 80.1% cells retained their original assignment, 13.6% cells
shifted to either parent or child segments (reflects small shifts in pseudotime of branchpoint assignment or small
changes in tree structure), and 6.3% cells shifted to a different location.

Sup Figure 7. Gene expression along retina cell trajectories

Expression of select genes are shown on the retina URD specification tree. Cell types: 1. Cone bipolar cell (CBP_3); 2.
Cone bipolar cell (CBP_6); 3. Cone bipolar cell (CBP_1); 4. Cone bipolar cell (CBP_4); 5. Cone bipolar cell (CBP_5); 6.
Cone bipolar cell (CBP_2); 7. Cones; 8. Rods; 9. Amacrine cells (Amacrine_1); 10. Amacrine cells (Amacrine_2); 11.
Retinal ganglion cells (RGC); 12. Horizontal cells; 13. Muller glia; 14. Retinal pigment epithelium (RPE)

Sup Figure 8. Gene expression cascades of retinal cell trajectories

Heat maps of gene expression cascades of photoreceptor cell, amacrine cell, retinal ganglion cell, muller glia, horizontal
cell and retinal pigment epithelium cell trajectories. Cells were selected based on high expression along trajectories
leading to these cell types, compared to expression along opposing branchpoints. Red, high expression. Yellow, low
expression. X-axis represents cell states along the cascade progression.

Sup Figure 9. Miiller glia-like cells are detected early in zebrafish retina development

Detection of Muller glia markers cahz and ribp1a in the retina at A. 36 hpf and B. 2 dpf

A. Left panel, retina section stained with DAPI (grey), cahz (cyan) and ribp1a (yellow). White box indicates area that
was zoomed in for the right panels.

B. Left panel, retina section stained with DAPI (grey), cahz (cyan) and ribp1a (yellow). White and red boxes indicate
area that were zoomed in for the middle and right panels, respectively. Middle panels denote cells that co-express
ribp1a and cahz. Right panels denote cells that are ribp1a* and cahz

Sup Figure 10. Hypothalamus cell type marker expression and trajectory analysis

A. UMAP plots highlighting expression of select genes enriched in hypothalamus cell types. dbx1a, fezf2, rx3 are
enriched in early embryonic hypothalamus progenitors; fezf1 is enriched in pdyn* subtype; nrgna is enriched in two
subtypes (synpr* and synpr), dix2a is expressed in several subtypes; nkx2.4a is expressed in early progenitors and
prdx1* subtype; synpr, npy, tph2, pdyn and prdx1 are enriched in specific subtypes

B. tSNE plot of 15 dpf brain and eye cell types. Hypothalamus cell types used as the endpoint cell types (tips) for URD
analysis are color coded. Cluster number and cell type description are indicated on the legend.

Sup Figure 11. Gene expression along hypothalamus cell trajectories
Expression of select genes are shown on the hypothalamus specification tree. Cell types: 1. GABA tac1+, nrgna+; 2.
synpr+; nrgna+; 3. sst1.1+; 4. tph2+; 5. GABA dix+; 6. pdyn+; 7. prdx1+



Sup Figure 12. Gene expression cascades of hypothalamus cell trajectories

Heat maps of gene expression cascades of profiled hypothalamus cell trajectories. Cells were selected based on high
expression along trajectories leading to these cell types, compared to expression along opposing branchpoints. Red,
high expression. Yellow, low expression. X-axis represents cell states along the cascade progression.

Sup Figure 13. Cell type maturation along URD trajectories

Retinal ganglion cells (A) and pdyn+ hypothalamic neurons (B) cells were plotted (red circles) on URD cell specification
trajectories across the stages indicated. The cell types matured with developmental age, as expected. Additionally, later
stages also contained immature cell states (early pseudotime) consistent with continuous neurogenesis.

Sup Figure 14. Gene markers of embryonic and larval progenitors in retina and hypothalamus
Dot plot of gene expression pattern of select marker genes that were used to define progenitor and precursor states
(rows) for segments (columns) of the retina (left) or hypothalamus (right) cell specification trees (see Figure 7E). Dot
size indicates the percentage of cells expressing the marker; color represents the average scaled expression level.
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Sup Figure 3
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Supplemental Analysis

Retina: 1 - URD object & doublet removal

Jeff Farrell
8/22/2019
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Import data into URD

Convert Seurat object to URD

We first loaded a Seurat object that contained just cells from the clusters that belonged to the
hypothalamus from each stage.

suppressPackageStartupMessages (library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load Seurat object that has been cropped to hypothalamus cells
object.seurat <- readRDS(paste@(base.path, "obj/retina.new_seurat.rds"))

# Convert to URD object
suburd <- seuratToURD(object.seurat)

Combined individual stage clustering

Bushra had performed individual clusterings across each stage with different resolutions. Here,
it was better to create a single identifier that included stage + cluster information to combine all
those clusterings (while preventing any overlap).



stages <- sort(unique(suburd@meta$stage))
clust.res.used <- paste@("res.", c("4.5", "4",6 "5'", U5" U4, 5" U5N UGN,

"e", "6", "5.5", "6", "5"))
names(clust.res.used) <- stages
suburd@group.ids$cluster <— NA
for (stage in stages) {

suburd@group.ids[cellsInCluster(suburd, "stage", stage), "cluster"] <- paste0(stage,

"-", suburd@group.ids[cellsInCluster(suburd, "stage", stage), clust.res.used[stagell)

Calculate highly variable genes

We calculated highly variable genes for each stage, used genes that were found as highly in at
least two stages, but were not mitochondrial, ribosomal, heat-shock protein, or tandem duplicated
genes.

# Calculated on each stage separaely, final gene list was all genes

# that were 'variable' in at least two stages NB: For a couple of

# stages, the gamma fit was poor —— the library size distribution

# seemed bimodal. Have seen this before in 10X data, but not sure what

# it means.

var.genes.by.stage <— lapply(stages, function(stage) {

findVariableGenes(suburd, cells.fit = cellsInCluster(suburd, '"stage",

stage), set.object.var.genes = F, diffCV.cutoff = 0.3, main.use = stage,
do.plot = T)
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names(var.genes.by.stage) <- stages
var.genes <- sort(unique(unlist(var.genes.by.stage)))
print(paste@('"Length of variable genes is ", length(var.genes)))

## [1] "Length of variable genes is 2636"

var.genes.twice <- names(which(table(unlist(var.genes.by.stage)) >= 2))
print(paste0("Length of variable genes shared across at least 2 stages is ",
length(var.genes.twice)))
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## [1] "Length of variable genes shared across at least 2 stages is 1724"

# Remove mitochondrial genes

var.mito <- grep("”mt-|~AC0", var.genes.twice, value = T)
# Remove ribosomal genes
var.ribo <- grep("~rps|~rpl", var.genes.twice, value = T)

# Remove hsp genes

var.hsp <- grep("~hsp", var.genes.twice, value = T)

# Remove genes with duplicates

var.dups <- grep("of many", var.genes.twice, value = T)

suburd@var.genes <- setdiff(var.genes.twice, c(var.mito, var.ribo, var.hsp,
var.dups))

print(paste@('Length of final variable genes list (after removing mito, ribo, hsp genes) is ",
length(suburd@var.genes)))

## [1] "Length of final variable genes list (after removing mito, ribo, hsp genes) is 1595"

To prevent downstream problems, we also removed any cells from the data that had the exact
same expression of the variable genes (i.e. cells with completely duplicated coordinates in the
high-dimensional space we would use for analysis downstream).

# Check for duplicate data points — cells with exact same expression of
# variable genes
vg.dups <- duplicated(as.data.frame(as.matrix(t(suburd@logupx.datalsuburd@var.genes,
1))
if (length(which(vg.dups)) > 0) {
print(paste("Removing", length(which(vg.dups)), "cell(s) with duplicated variable gene expression."))
not.dup.cells <- colnames(suburd@logupx.data) [!vg.dups]
suburd <- urdSubset(suburd, not.dup.cells)
+

## [1] "Removing 6 cell(s) with duplicated variable gene expression."

Calculate KNN graph and remove outliers

We then calculated a k-nearest neighbor graph and removed cells that had unusual distance to
their nearest neighbor, or unusual distance to their 20th nearest neighbor (given their distance
to their nearest neighbor). These sorts of outliers often cause problems or skew diffusion maps
(used downstream).

# Calculate k-nn
suburd <— calcKNN(suburd)

# Check what the outliers are
outliers <— knnOutliers(suburd, nn.1 =1, nn.2 = 20, x.max = 40, slope.r = 1.05,
int.r = 4.2, slope.b = 0.75, int.b = 11.5, title = "Identifying Outliers by k-NN Distance.")



Identifying Outliers by k-NN Distance.

count

l64

16

Distance to neighbor 20

0 10 20 30 40
Distance to neighbor 1

length(outliers)

## [1] 521

suburd <— urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
outliers))

Remove kidins220a+ population

A cell cluster was observed in 15 dpf that was positive for expression of kidins220a, and foxg1b
(which is exclusive to the retina). However, no similar clusters were observed in other stages,
suggesting that we did not recover the progenitors of this population, so we excluded it from the
URD analysis.

suburd <— urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
cellsInCluster(suburd, "cluster", "12-15d-96")))

Remove cell type doublets

Add UMAP projection

While not strictly required, a UMAP projection can make it easier to assess the expression of NMF
modules and whether thresholds for overlap are set correctly.

8



## add UMAP command

# Load pre-calculated UMAP
umap <- readRDS(paste@(base.path, "/umap/umap_retina.rds"))

# Add projection to URD object
suburd@tsne.y <— umap[colnames(suburd@logupx.data), ]

Load NMF results and import into object

NMF results were calculated by providing suburd@logupx.data to an external NMF pipeline written
in Python. The output results are imported here, scaled, and added to the URD object.

# Load the NMF results
load(paste@(base.path, "/NMF/retina/result_tbls.Robj"))

# The results object contains NMF runs for several K values. k=45 was
# chosen for this tissue, so this extracts the results for that

# particular parameter

k.use <-— "45"

nmf.cells <- result_obj[[pasted("K=", k.use)]ll[[1]1$C

rownames (nmf.cells) <- paste@("nmf", l:nrow(nmf.cells))

colnames (nmf.cells) <- gsub("\\.", "-", colnames(nmf.cells))

nmf.genes <- result_obj[[pasted("K=", k.use)l]1[[1]]1%$G

colnames (nmf.genes) <- paste@('nmf", 1l:nrow(nmf.cells))

# Some stages were subsampled in the original object and accidentally

# cropped out cells that had scGESTALT barcodes. Those were added back

# in, and their expression was decomposed with original NMF gene matrix

# to give an additional NMF cell matrix for those cells.

new.nmf.c <- read.csv(paste0@(base.path, "/NMF/retina/retina_new_nmfC_k45.csv"),
row.names = 1)

rownames (new.nmf.c) <— paste@("nmf", l:nrow(new.nmf.c))

colnames (new.nmf.c) <- gsub("\\.", "-", colnames(new.nmf.c))

# Combine old and new NMF results
nmf.cells <- chbind(nmf.cells, new.nmf.c)

# Trim NMF results to match cells in current object
nmf.cells <— nmf.cells[, colnames(suburd@logupx.data)]l

# Scale NMF results 0-1
nmf.cells.scaled <- sweep(nmf.cells, 1, apply(nmf.cells, 1, max), "/")

# Add scaled NMF results to the URD object
suburd@nmf.cl <- as(t(as.matrix(nmf.cells.scaled)), "dgCMatrix")
Select cell-type specific modules

Several NMF modules will be poor markers of cell types — these are often modules driven mostly
be the expression of 1-2 genes (where the gene loading of the first gene is much greater than that



of the fourth gene, for instance), or modules that don’t exhibit any restriction in a tSNE or UMAP
projection.

# Plot size parameters

plot.height = 8

plot.width = 8

dpi = 150

# Plot every module to determine which exhibit cell-type specificity
# This saves directly to the hard drive: two example plots are shown
# below.

# for (n in colnames(suburd@nmf.cl)) { png(paste@(path, '/doublets/',

# subset, '-plots/', n, '.png'), width=dpixplot.width,

# height=dpixplot.height) plot(plotDim(suburd, n)) dev.off() }

gridExtra::grid.arrange(grobs = list(plotDim(suburd, "nmf4", plot.title = "nmf4: strong cell-type restriction"),
plotDim(suburd, "nmf2", plot.title = "nmf2: poor cell-type restriction")),

ncol = 1)

## Warning: Removed 520 rows containing missing values (geom_point).

## Warning: Removed 520 rows containing missing values (geom_point).
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nmf4: strong cell-type restriction

tSNE2
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tSNE1

nmf2: poor cell-type restriction

tSNE2

-10 4

-15 4

-50 40 -30 -20 -10 0 10
tSNE1

# Module Gene 1 : Gene 4 Ratios

top.genes <- result_obj[[paste@d("K=", k.use)l][[1]]1$top30@genes

top.weights <- top.genes[, grep("Weights", colnames(top.genes), value = T)]
colnames (top.weights) <- paste@("nmf", 1l:nrow(nmf.cells))

top.weights.ratio <— top.weights[1l, ]/top.weights[4, ]

# Which modules exhibit cell-type restriction?

modules.ok.ratio <— names(top.weights.ratio) [which(top.weights.ratio <
5)1

restricted.modules <- paste@("nmf", c(4:5, 8:13, 15:18, 21:29, 31:35, 37:39,
41:44))

good.modules <- intersect(modules.ok.ratio, restricted.modules)
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Determine which module pairs to use for doublet removal

We consider NMF modules pairwise and only use those pairs that don't are non-overlapping in
the data. (In other words, NMF modules that are mutually exclusive in the majority of the data.)
Here, we determine thresholds for selecting those module pairs.

# Determine overlaps between module pairs
nmf.doublet.combos <- NMFDoubletsDefineModules(suburd, modules.use = good.modules,
module.thresh.high = 0.4, module.thresh.low = 0.15)

# Determine thresholds for NMF modules
frac.overlap.max = 0.03
frac.overlap.diff.max = 0.1
module.expressed.thresh = 0.33

# Determine which module pairs to use for doublets
NMFDoubletsPlotModuleThresholds (nmf.doublet.combos, frac.overlap.max = frac.overlap.max,
frac.overlap.diff.max = frac.overlap.diff.max)
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# These commands save plots directly to the hard-drive.

# Make plots to see how your thresholds are

NMFDoubletsPlotModuleCombos (suburd, path = paste@(path, "/doublets/", subset,
"—doublet-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "pass", sort = "near", n.plots = 25)

NMFDoubletsPlotModuleCombos (suburd, path = paste@(path, "/doublets/", subset,
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"—ok-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "discarded", sort = '"near", n.plots = 25)

# Define doublet cells
nmf.doublets <- NMFDoubletsDetermineCells(suburd, nmf.doublet.combos, module.expressed.thresh = module.expressed.
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max) # 376 cells / 19837 cell

# Plot doublet cells on the UMAP

suburd <— groupFromCells(suburd, "nmf.doublets", cells = nmf.doublets)

plot(plotDimHighlight(suburd, clustering = "nmf.doublets", cluster = "TRUE",
plot.title = paste@("NMF doublets: ", length(nmf.doublets), " cells"),
point.size = 2, highlight.color = "blue"))

## Warning: Removed 520 rows containing missing values (geom_point).

NMF doublets: 376 cells (Highlight TRUE)
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# Crop object to exclude doublets
suburd.cropped <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
nmf.doublets))

And then save the completed object for use downstream in building a tree using URD.
saveRDS (suburd.cropped, file = paste@(base.path, "/obj/URD_retina_ND.rds"))
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Load data

suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load procesed URD object
object <- readRDS(paste@(base.path, "obj/URD_retina_ND.rds"))

Processed on the cluster

Most of the following steps were run on a computing cluster. These individual tissue subsets
can be run on a modern, well-equipped laptop. The use of a computing cluster allows multiple
parameter choices to be tried in parallel, and also allows further parallelization of the random
walk procedure, speeding it up. Below, we should the commands that one would run on their
laptop, and then generally load the pre-processed results from the cluster that were used in the
paper. If you want to parallelize your own processing on a compute cluster, the scripts we used
will be available at http://github.com/farrellja/URD/cluster/


http://github.com/farrellja/URD/cluster/

Calculate diffusion map and pseudotime

These two steps are run in the cluster script URD-DM-PT.R.

Calculate diffusion map

# To run locally: Calculate a diffusion map projection
object <- calcDM(object, knn = 140, sigma.use = 14)

# Or: Load a pre-computed diffusion map projection
dm <- readRDS(paste@(base.path, "dm/dm_retinanewnokND_knn-140_sigma-14.rds"))
object <- importDM(object, dm)

# Plot diffusion maps

stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",
""gold", '"goldenrod", "darkorange", "indianredl", "plum", "deepskyblue2",
"lightgrey")

# Plot by stage

plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "stage", plot.title = "", outer.title = "Diffusion map labeled by Stage",
legend = T, alpha = 0.45, discrete.colors = stage.colors)
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# Plot with final cell types labeled

object@group.ids$final.cluster <— NA

object@group.ids[cellsInCluster(object, "stage", "12-15d"), "final.cluster"] <- object@group.ids[cellsInCluster(c
"stage", "12-15d"), "res.5"]

plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "final.cluster", plot.title = "", outer.title = "Diffusion map with final clusters",
legend = T, alpha = 0.6)
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Calculate pseudotime

URD requires a starting point or ‘root’ for determining pseudotime. Here, we used all cells from
the first timepoint (i.e. 12 hpf) as the root.

# Here, we used all cells from the first timepoint (i.e. 12 hours) as

# the root.

root.cells <- cellsInCluster(object, "stage", "01-12h")

plotDimHighlight(object, "stage", "@01-12h", plot.title = "Root is 12 hpf cells")

## Warning: Removed 500 rows containing missing values (geom_point).



Root is 12 hpf cells (Highlight 01-12h)
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# To run locally: Run graph-search simulations to determine pseudotime
flood.result <- floodPseudotime(object, root.cells = root.cells, n = 100,
minimum.cells.flooded = 2, verbose = T)

# 0r load a pre-computed graph-search simulation result

01-12h
02-14h
03-16h
04-18h
05-20h
06-24h
07-36h
08-2d
09-3d
10-5d
11-8d
12-15d
NA

flood.result <- readRDS(paste@(base.path, "flood/flood_retinanewnokND_knn-140_sigma-14.rds"))

# Process the graph-search simulations to determine the pseudotime of

# each cell

object <- floodPseudotimeProcess(object, flood.result, floods.name = "pseudotime",
max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

# If enough simulations have been run, then as additional simulations
# are added, the overall change in pseudotime of cells should reach an
# asymptote. If it does not, then floodPseudotime should be run with a
# higher n.

pseudotimePlotStabilityOverall(object)



Overall Pseudotime Stability
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plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "pseudotime", plot.title = "", outer.title = "Diffusion Map labeled by pseudotime",
legend = F, alpha = 0.4)



Diffusion Map labeled by pseudotime

020
0.151 0154
0.101 0.101
o™
3] )
a a
0.05-
0.051
0.00-
0.001
.0.054
02 0.1 00 0.1
DC3
0.151 024
0.10-
0.1
0.05-
) e
Q 0.004 O o
a v Q 0.0- Ny s rasreca s
-0.054 .
011
-0.101
-0.15 T T : T T T T T T T
0.1 0.0 0.1 02 03 02 01 00 01 02 03
DC7 DC9
0.1-
02-
0.0-
3 ©
O -0.14 QO 004
a a
-0.24
021
03+

0.1
DC13

0.0

0.1

0.4 0.2 0.0 0.2
DC15

DC6

DC12

DC18

0.14

0.04

-0.11

-0.2 1

-0.05

0.00

0.05

0.10

0.15

0.14

0.04

-0.11

-0.2 1

0.24

0.14

0.04

-0.11

-0.2 1

plotDim(object, "pseudotime", plot.title = "UMAP projection colored by pseudotime")

## Warning: Removed 500 rows containing missing values (geom_point).




UMAP projection colored by pseudotime
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plotDists(object, "pseudotime", "stage", plot.title = "Pseudotime by stage")
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Calculate biased transition matrix

In order to perform biased random walks, we must first bias the transition matrix to ensure that
walks proceed towards the root and do not turn into other differentiated cell types. This is per-
formed in the cluster script URD-TM.R.

# Calculate parameters for biasing the transition matrix.

diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime",
optimal.cells.forward = 40, max.cells.back = 80, pseudotime.direction = "<",
do.plot = T, print.values = T)
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Delta pseudotime

## [1] "Mean pseudotime back (~80 cells) 0.00295569803650678"
## [1] "Chance of accepted move to equal pseudotime is 0.822024945232085"
## [1] "Mean pseudotime forward (~40 cells) -0.00148141113789574"

# Calculate the biased matrix.
biased.tm <- pseudotimeWeightTransitionMatrix(object, pseudotime = "pseudotime",
logistic.params = diffusion.logistic, pseudotime.direction = "<")

Perform biased random walks

Then, we perform biased walks starting from each tip. Visited cells are inferred to lie along the
trajectory that connects the root to each cell type. This is performed in the cluster script URD-
Walk.R.

Determine tips

We used clusters from 15 dpf as the tips for performing biased random walks. Here we define
the cells belonging to each of those clusters.



# All clusters at 15 days

clusters.15day <- unique(object@group.ids[grep("15d", object@group.ids$stage),
"res.5"])

# All cells at 15 days

cells.15day <- rownames(object@group.ids) [grep("15d", object@group.ids$stage)]

# Cell lists of each cluster at 15dpf

cells.15dpf.clusters <— lapply(clusters.15day, function(clust) intersect(cells.15day,
cellsInCluster(object, "res.5", clust)))

names (cells.15dpf.clusters) <- paste@("15d-", clusters.15day)

We also load a .csv file that contains information about the tips. It has four columns:

id: Cluster ID for the tip
use: Whether this cluster should be used when building the tree
name: The name for this tip, which will be used on 2D plots
short.name: The ‘short’ name for this tip, which would be used on 3D plots (though we did
not use that feature in this study).
# Load CSV
tip.names <- read.csv(paste0@(base.path, "tips/tip_names_retinanewnokND.csv"),
header = F, stringsAsFactors = F, colClasses = c('"character", "logical",
"character", "character"))

# Name columns and rows
names(tip.names) <- c("id", "use", "name", "short.name")
rownames (tip.names) <- gsub("_", "-", tip.names$id)

# Sort alphabetically
tip.names <- tip.names[order(rownames(tip.names)), 1

These are the tips that were considered during the construction of the retina URD tree (some were
excluded during tree construction later in the buildTree command).

# Define a 'tips' clustering
object@group.ids$tip <— NA
object@group.ids$tip.id <— NA
object@group.ids$tip.name <— NA

# If the tip will be used in the tree, define its cells in the

# clustering

for (i in l:nrow(tip.names)) {
tip.cells <- cells.15dpf.clusters[[rownames(tip.names) [i]]]
object@group.ids[tip.cells, "tip"] <- as.character(i)
object@group.ids[tip.cells, "tip.id"] <— rownames(tip.names) [i]
object@group.ids[tip.cells, "tip.name"] <- as.character(tip.names[i,

"name"])

# Plot the tips
plotDim(object, "tip.name")

## Warning: Removed 500 rows containing missing values (geom_point).
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Perform the biased random walks

Biased random walks then need to be run starting from each tip. This can be performed on a
laptop, but is an ideal candidate for parallelization on a cluster. (The walks from each tip can be
run as a separate job.)

## IF RUNNING LOCALLY

# Loop through each cluster
walks <- lapply(rownames(tip.names), function(c) {
# Exclude any tip cells that for whatever reason didn't end up in the
# biased TM (e.g. maybe not assigned a pseudotime).
tip.cells <- intersect(cells.15dpf.clusters[[c]], rownames(biased.tm))
# Perform the random walk simulation
this.walk <- simulateRandomWalk(start.cells = tip.cells, transition.matrix = biased.tm,
end.cells = root.cells, n = 50000, end.visits = 1, verbose.freq = 1000,
max.steps = 5000)
return(this.walk)
1)

names (walks) <- rownames(tip.names)

# Alternatively, this loop is automated by the function
# simulateRandomWalksFromTips

Alternatively, a set of pre-calculated walks can be loaded. Since the walks are a simulation (and
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therefore not deterministic), this is particularly crucial for reproducing results.
## IF LOADING PRE-CALCULATED WALKS

# Get list of files in the walks directory
walks.files <- list.files(paste@(base.path, "/walks/retinanewnokND/"),
pattern = ".rds")

# Load the walks previously performed for each cluster
walks <- lapply(rownames(tip.names), function(c) {
walk.file <- grep(pattern = pasteo("_tip-", c, "_"), x = walks.files,
value = T)[1]
return(readRDS (paste@(base.path, "/walks/retinanewnokND/", walk.file)))
1)

names (walks) <- rownames(tip.names)

Process the random walks

The walks are then converted to visitation frequency by importing them into the URD object.

for (i in l:nrow(tip.names)) {
# Load the individual walk visitation frequencies into the object
object <- processRandomWalks(object, walks = walks[[i]], walks.name = i,
n.subsample = 1, verbose = F)

Build the URD tree

Then, a branching tree is constructed, by joining trajectories in an agglomerative fashion when
cells are highly visited by walks from multiple tips. The following steps were performed in the
cluster script URD-Tree.R.

# Tree building is destructive, so create a copy of the object
object.tree <- object

# Load tip cells
object.tree <- loadTipCells(object.tree, "tip")

# Determine tips to use
tips.to.use <— which(tip.names$use)

# Build the tree

object.tree <— buildTree(object.tree, pseudotime = "pseudotime", divergence.method = "preference",
cells.per.pseudotime.bin = 40, bins.per.pseudotime.window = 5, save.all.breakpoint.info = T,
p.thresh = 0.01, verbose = F, tips.use = as.character(tips.to.use))

# Name the tips of the tree
object.tree <— nameSegments(object.tree, segments = tips.to.use, segment.names = as.character(tip.names[tips.to.L
"name"], short.names = as.character(tip.names[tips.to.use, "short.name"]1)))

plotTree(object.tree, "stage", discrete.colors = stage.colors, label.segments = T)

12



stage

01-12h
02-14h
03-16h

04-18h
@® 05-20h

06-24h

07-36h

Pseudotime

08-2d

@ 09-3d

10-5d

® 11-8d

12-15d

Save the URD tree

The tree is then saved for use in downstream analysis, and can easily be loaded for further pe-
rusal.

saveRDS(object.tree, file = paste@(base.path, "tree/URD-Tree—Retina.rds"))
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Load data
# Load URD
library(URD)

## Loading required package: ggplot2
## Loading required package: Matrix

## Registered S3 method overwritten by 'xts':
## method from
##  as.zoo.xts zoo

# Basic location
base.path <- "~/Documents/R sessions/urd-cluster—-bushra/"

# Load completed retina tree object

obj.path <- paste@(base.path, "tree/retinanewnokND/tree-retinanewnokND_knn-140_sigma-14_40F-80B_N0-15d-29-15d-39-
obj <- readRDS(obj.path)

Plot gene expression on the tree

Plot tree by stage

stage.colors <- c("antiquewhite", "#FFCCCC", "#99CCe00", "#33CC00", "cyan3", "gold",
"goldenrod", "darkorange", "indianred1", "plum", "deepskyblue2", "lightgrey")

plotTree(obj, "stage", label.type = "group", discrete.colors = stage.colors)
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Plot tree with gene expression: main figures

gridExtra::grid.arrange(grobs = lapply(c("vsx1", "1lmo4a", "pax6a", "reml"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 2)
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Plot tree with gene expression: supplemental figures

gridExtra::grid.arrange(grobs = lapply(c("foxd1", "her15.1", "her4.1", "hes2.2",
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"pbxla", "tfap2c", "slcl8a3a", "rbpms2a", "ompa", "sdpra", "rpe65a"), plotTree,

object
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F, plot.cells = F), ncol = 4)
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Determine genes enriched in trajectories to particular cell types

Comparison between major cell types
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We took each major group (“clade”) of branches from the end of the tree as a single entity
(i.e. cone bipolar cells, photoreceptors, amacrine cells, retinal ganglion cells, horizontal cells)
and compared them against each other pairwise to look for differentially expressed genes.

# Get the parent segment of each clade to consider as a group
combined.tips <- c("24", "25", "19", "8", "15")



# Get the cells in that segment and all child segments

cells.combined.tips <- lapply(combined.tips, function(t) whichCells(obj, label = "segment",
value = segChildrenAll(obj, t, include.self = T)))

names(cells.combined.tips) <- combined.tips

# Loop through each of these clades and look for differentially expressed genes
combined.markers <- lapply(combined.tips, function(tip) {
# Find all of the other clades
opposing.tips <- setdiff(combined.tips, tip)
# Perform pairwise comparisons to each other clade
m.o <- lapply(opposing.tips, function(tip.opposing) {
# message(pasted(Sys.time(), ': Comparing tip ', tip, ' to ', tip.opposing, '."'))
# Find differentially expressed genes between the pair of clades
ma <- markersAUCPR(object = obj, cells.1l = cells.combined.tips[[tip]], cells.2 = cells.combined.tips[[tij
effect.size = 0.4, auc.factor = 1.1)
# In order to facilitate combining all of the results later, add columns about
# which two clades were compared and also a duplicate entry of the name of each
# gene that's recovered.
ma$gene <— rownames(ma)
ma$tipl <- tip
ma$tip2 <- tip.opposing
return(ma)

1)
names(m.o) <— opposing.tips
return(m.o)

)

names (combined.markers) <- combined.tips

# Require that genes are markers against at least 3 other clades
combined.markers.beatmult <- lapply(combined.markers, function(m) {
names (which(table(unlist(lapply(m, rownames))) >= 3))

H

# Since genes might be a marker in a comparison to several other clades, combine
# the results into a single table, where each gene is listed only once with the
# info from the pairwise comparison where it had the strongest differential
# expression.
combined.markers.best <- lapply(1l:length(combined.markers.beatmult), function(i) {
cm <- do.call("rbind", combined.markers[[i]])
cm <— cm[cm$gene %in% combined.markers.beatmult[[il], ]
cmb <— do.call("rbind", lapply(combined.markers.beatmult[[i]], function(g) {
cmr <— cm[cm$gene == g, |
return(cmr[which.max(cmr$AUCPR. ratio), 1)
1))
rownames (cmb) <- cmb$gene
cmb <— cmb[order(cmb$AUCPR. ratio, decreasing = T), ]
cmb$exp.global <- apply(obj@logupx.data[rownames(cmb), unlist(obj@tree$cells.in.segment)],
1, mean.of.logs)
cmb$exp.global.fc <— cmb$nTrans_1 - cmb$exp.global
return(cmb)
1)

names (combined.markers.best) <- combined.tips



AUCPR along tree

We also used the AUCPRTestAlongTree function to ask for genes that are differential markers
of a lineage using URD’s tree structure. This makes a comparison at each branchpoint from a
particular cell type up to the root.

# Get all of the tips from the tree
tips.in.tree <- as.character(obj@tree$tips)

# Tree segments to use as root for each particular cell population.
roots <- rep('"29", length(tips.in.tree))

names(roots) <- tips.in.tree

roots["11"] <- "31"

roots["6"] <- "30"

roots[c("4", "17", "8")] <- "26"

# Perform a loop of tests with each tip.
markers <- lapply(tips.in.tree, function(t) {
this.root <- roots[t]
# message(paste0(Sys.time(), ': Starting tip ', t, ' and root ', this.root))
these.markers <- aucprTestAlongTree(obj, pseudotime = "pseudotime", tips = as.character(t),
genes.use = NULL, must.beat.sibs = 0.6, report.debug = F, root = this.root,
auc.factor = 1.1, log.effect.size = 0.4)
these.markers$gene <- rownames(these.markers)
these.markers$tip <- t
return(these.markers)
})

names (markers) <- tips.in.tree

Functions for curating differential expression results

We further curated those differentially expressed genes using the following functions:

threshold.tree.markers

Function to threshold markers from a markersAUCPRAlongTree test with additional criteria

markers: list of results from markersAUCPRAlongTree tests

tip: which tip (or element of the list to pursue)

global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
aucpr.ratio.all: classifier score that gene must exhibit along trajectory test vs. rest of the data
branch.fc: fold.change that gene must have (in best case) vs. the opposing branch at any
branchpoint along the trajectory.

e Returns markers with only a subset of rows retained.

threshold.tree.markers <- function(markers, tip, global.fc = 0.1, branch.fc = 0.4,
aucpr.ratio.all = 1.03) {
m <- markers[[tip]]
# First off —— lose global FC < x
bye.globalfc <- rownames(m) [m$expfc.all < global.fc]
# Second —— get rid of branch FC < x
bye.branchfc <- rownames(m) [m$expfc.maxBranch < branch.fcl
# Third —— get rid of stuff essentially worse than random classification on
# global level



bye.badglobalaucpr <- rownames(m) [m$AUCPR.ratio.all < aucpr.ratio.all]
bye.all <- unique(c(bye.globalfc, bye.branchfc, bye.badglobalaucpr))
m.return <- m[setdiff(rownames(m), bye.all), ]

return(m.return)

threshold.clade.markers

Function to threshold markers of particular clades (see “Combined major branch families”) using
additional criteria

e markers: result of markersAUCPR

e global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
(during testing, branches were compared pairwise. This compares one branch to all others
together.)

e Returns markers with a subset of rows retained

threshold.clade.markers <- function(markers, global.fc = 0.1) {
m <— markers
# First off — lose global FC < x
bye.globalfc <- rownames(m) [m$exp.global.fc < global.fc]
m.return <— m[setdiff(rownames(m), bye.globalfc), ]
return(m.return)

divide.branches

Function to compare genes between two branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making photoreceptor heatmap, use to divide into photoreceptor, cone, and rod markers)

object: An URD object

genes: (Character vector) Genes to test

clust.1: (Character) Cluster 1

clust.2: (Character) Cluster 2

clustering: (Character) Clustering to pull from

exp.fc: (Numeric) Minimum expression fold-change between branches to consider different

exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a

branch

e exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

e Returns list of gene names (“specific.1” = specific to clust.1, “specific.2” = specific to clust.2,

“‘markers” = all genes tested)

divide.branches <- function(object, genes, clust.1l, clust.2, clustering = "segment",

exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {

# Double check which markers are unique to one or the other population

mcomp <- markersAUCPR(object, clust.l = clust.1l, clust.2 = clust.2, clustering = clustering,
effect.size = -Inf, auc.factor = @, genes.use = genes, frac.min.diff = 0,
frac.must.express = 0)

specific.b <— rownames(mcomp) [abs(mcomp$exp.fc) > exp.fc & mcomp[, 4] < exp.thresh &
mcomp[, 51 > pmin((mcomp[, 4] + exp.diff), 1)]

specific.a <— rownames(mcomp) [abs(mcomp$exp.fc) > exp.fc & mcomp[, 5] < exp.thresh &
mcomp[, 4] > pmin((mcomp[, 5] + exp.diff), 1)]



r <- list(specific.a, specific.b, mcomp)
names(r) <- c("specific.1", "specific.2", "markers")
return(r)

Functions for heatmap generation

These functions were used in the production of heatmaps:

Color scale

Generate color scale to use with heatmaps.

cols <- (scales::gradient_n_pal(RColorBrewer: :brewer.pal(9, "Y10rRd")))(seq(0@, 1,
length.out = 50))

determine.timing

Determines order to plot genes in heatmap. “Expression” is defined as 20% higher expression
than the minimum observed value. “Peak” expression is defined as 50% higher expression than
minimum observed value. The two longest stretches of “peak” expression are found, and then
the later one is used. The onset time of the stretch of expression that contains that peak is also
determined. Genes are then ordered by the pseudotime at which they enter “peak” expression,
leave “peak” expression, start “expression”, and leave “expression”.

e s: result from geneSmoothFit
® genes: genes to order; default is all genes that were fit.
e Returns s but with an additional list entry (stiming) of the order to plot genes

determine.timing <- function(s, genes = rownames(s$mean.expression)) {
s$timing <- as.data.frame(do.call("rbind", lapply(genes, function(g) {

sv <- as.numeric(s$scaled.smoothlg, 1)
pt <- as.numeric(colnames(s$scaled.smooth))
# Figure out baseline expression & threshold for finding peaks
min.val <— max(min(sv), 0)
peak.val <-= ((1 - min.val)/2) + min.val
exp.val <= ((1 - min.val)/5) + min.val
# Run-length encoding of above/below the peak-threshold
peak.rle <- rle(sv >= peak.val)
peak.rle <- data.frame(lengths = peak.rle$lengths, values = peak.rle$values)
peak.rle$end <— cumsum(peak.rle$lengths)
peak.rle$start <- head(c(0, peak.rle$end) + 1, -1)
# Run-length encoding of above/below the expressed-threshold
exp.rle <- rle(sv >= exp.val)
exp.rle <- data.frame(lengths = exp.rle$lengths, values = exp.rle$values)
exp.rlesend <— cumsum(exp.rle$lengths)
exp.rle$start <— head(c(0, exp.rlesend) + 1, -1)
# Take top-two longest peak RLE & select later one. Find stretches that are
# above peak value
peak <- which(peak.rle$values)
# Order by length and take 1 or 2 longest ones
peak <- peak[order(peak.rle[peak, "lengths"], decreasing = T)][1:min(2, length(peak))]



# Order by start and take latest one.

peak <- peakl[order(peak.rle[peak, "start"], decreasing = T)1[1]

# Identify the actual peak value within that stretch

peak <- which.max(sv[peak.rle[peak, "start"]l:peak.rle[peak, "end"]]) + peak.rlelpeak,
"start"] - 1

# Identify the start and stop of the expressed stretch that contains the peak

exp.start <— exp.rle[which(exp.rle$end >= peak & exp.rle$start <= peak),
"start"]

exp.end <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <= peak), "end"]

# Identify values of expression at start and stop

smooth.start <- sv[exp.startl]

smooth.end <- sv[exp.end]

# Convert to pseudotime?

exp.start <— ptlexp.start]

exp.end <- ptlexp.end]

peak <- ptlpeak]

# Return a vector

v <- c(exp.start, peak, exp.end, smooth.start, smooth.end)

names(v) <- c("pt.start", "pt.peak", "pt.end", "exp.start", "exp.end")

return(v)

1))

rownames (s$timing) <— genes

# Decide on ordering of genes
s$gene.order <- rownames(s$timing) [order(s$timing$pt.peak, s$timing$pt.start,
s$timing$pt.end, s$timing$exp.end, decreasing = c(F, F, F, T), method = "radix")]

return(s)

filter.neatmap.genes

Removes undesired (mitochondrial, ribosomal, tandem duplicated genes) from heatmaps for pre-
sentation purposes.

¢ genes: (Character vector) genes to check
® Returns genes with undesired genes removed.

filter.heatmap.genes <— function(genes) {
mt.genes <- grep("”mt-", ignore.case = T, genes, value = T)
many.genes <— grep("\\(1 of many\\)", ignore.case = T, genes, value = T)
ribo.genes <- grep("~rpl|~rps", ignore.case = T, genes, value = T)
cox.genes <— grep("~cox", ignore.case = T, genes, value = T)
return(setdiff(genes, c(mt.genes, many.genes, ribo.genes, cox.genes)))

Heatmaps of gene cascades

Using the genes that were determined as differentially expressed along the way to particular cell
types, we generated expression cascades and plotted them as heatmaps.
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Photoreceptors

Prepare cascade
## PHOTORECEPTORS: Seg 25 —> Cones (Seg 2) + Rods (Seg 12)
# Get markers from the two approaches:

# Lineage markers from above the combined clades

t25 <- threshold.clade.markers(combined.markers.best[["25"]], global.fc = 0.05)
# Cone markers from aucprTestAlongTree

m2 <- threshold.tree.markers(markers, "2", global.fc = 0.6)

# Rod markers from aucprTestAlongTree

ml2 <- threshold.tree.markers(markers, "12", global.fc = 0.6)

pr.markers <— unique(c(rownames(t25), rownames(m2), rownames(ml2)))

## Pseudotime for rods and cones is very different; for heatmaps, would like to
## normalize these, so that spline curves that consider both of them are not out
## of sync. Need to stretch pseudotime of cells in segment 12 / rods.

# Make a duplicate of the pseudotime measurement (pseudotime.212)

obj@pseudotime$pseudotime.212 <- obj@pseudotime$pseudotime

# Grab pseudotime of branchpoint

pt.start.212 <- as.numeric(obj@tree$segment.pseudotime.limits["2", "start"])

# Figure out lengths (and ratio) of the two branches in pseudotime

pt.end.212 <- as.numeric(obj@tree$segment.pseudotime.limits[c("2", "12"), "end"]) -
pt.start.212

pt.ratio.212 <- pt.end.212[1]/pt.end.212[2]

# For cells in the shorter branch (12), subtract the starting pseudotime,

# multiply by the ratio of branch lengths, then add the starting pseudotime back

# 1in order to stretch the branch.

obj@pseudotime[cellsInCluster(obj, "segment', "12"), "pseudotime.212"] <- (obj@pseudotime[cellsInCluster(obj,
"segment", "12"), "pseudotime.212"] - pt.start.212) x pt.ratio.212 + pt.start.212

# Calculate spline curves Using segments 29, 25, 2, and 12. Calculating a curve
# using only 29/25/2 for cone-specific genes, 29/25/12 for rod-specific genes,
# and 29/25/2+12 for genes that mark both. Should work now that pseudotimes are

# aligned.
spline.2 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,
"segment", c("29", "25", "2")), genes = pr.markers, method = "spline", moving.window = 5,

cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.12 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,
"segment", c("29", "25", "12")), genes = pr.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.212 <- geneSmoothFit(obj, pseudotime = "pseudotime.212", cells = cellsInCluster(obj,
"segment", c("29", "25", "2", "12")), genes = pr.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

# Want to plot a heatmap that shows expression in photoreceptor progenitors and
# then each branch (i.e. rods, cones) as separate columns. Going to crop each

# spline fit to the correct pseudotime range and then combine them into a single
# one that can be plotted as a three-column heatmap.
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pt.2v12 <- obj@tree$segment.pseudotime.limits["2", "start"] # pseudotime where the crop should happen

splines.pr <— list(cropSmoothFit(spline.212, pt.min = -Inf, pt.max = pt.2v12), cropSmoothFit(spline.2,
pt.min = pt.2v12, pt.max = Inf), cropSmoothFit(spline.12, pt.min = pt.2v12, pt.max = Inf))

names(splines.pr) <— c("Photoreceptor Progenitors", "Rods", "Cones")

splines.pr.hm <— combineSmoothFit(splines.pr) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.212 <- determine.timing(s = spline.212)
spline.2 <- determine.timing(s = spline.2)

spline.12 <- determine.timing(s = spline.12)

# Decide which markers are specific to one cell type or both
d2v12 <- divide.branches(obj, pr.markers, clust.1l = "2", clust.2 = "12", exp.fc = 0.4,
exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity

order.212 <- filter.heatmap.genes(setdiff(spline.212%gene.order, c(d2v12$specific.1,
d2v12$specific.2)))

order.2 <- filter.heatmap.genes(intersect(spline.2$gene.order, d2v12$specific.1))

order.12 <- filter.heatmap.genes(intersect(spline.12%$gene.order, d2v12$specific.2))

gene.order <- c(order.212, order.2, order.12)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.212)),
rep('cone", length(order.2)), rep("rod", length(order.12))), stringsAsFactors = F)
table.save$clade.AUCPR. ratio <- t25[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <— t25[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t25[table.save$gene, "exp.global.fc"]
table.save$cone.AUCPR. ratio.all <— m2[table.save$gene, "AUCPR.ratio.all"]
table.save$cone.AUCPR. ratio.maxBranch <- m2[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$cone.exp.fc.all <- m2[table.save$gene, "expfc.all"l]
table.save$cone.exp.fc.best <- m2[table.save$gene, "expfc.maxBranch"]
table.save$rod.AUCPR.ratio.all <- ml2[table.save$gene, "AUCPR.ratio.all"]
table.save$rod.AUCPR. ratio.maxBranch <- ml2[table.save$gene, "AUCPR.ratio.maxBranch"]
table.saves$rod.exp.fc.all <- ml2[table.save$gene, "expfc.all"]
table.saves$rod.exp.fc.best <- ml2[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, '"/heatmaps/retina-photoreceptor.csv"))

Generate heatmap: all genes

# Make sure any values <@ in the spline curves get set to @ so that the heatmap

# scale doesn't get messed up.

splines.pr.hm$scaled.smooth[splines.pr.hm$scaled.smooth < @] <— @

# Determine where to place column separators (i.e. how many columns will each

# cell type occupy in the heatmap )

colsep <— cumsum(as.numeric(head(unlist(lapply(splines.pr, function(x) ncol(x$scaled.smooth))),
-1)))

# Determine where to place row separators (i.e. how many common markers, and

# markers are specific to each cell type)

rowsep <— cumsum(c(length(order.212), length(order.2)))

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/retina-photoreceptor.pdf'), width=6, height=10)
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gplots::heatmap.2(x = as.matrix(splines.pr.hm$scaled.smooth[gene.order, 1), Rowv = F,
Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
key = F, cexCol = 0.8, cexRow = @.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,
4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.1, 0.2))
title(main = "Photoreceptors")
title(main = "Precursors", line = -41, adj = 0)
title(main = "Cones", line = -41, adj = 0.45)
title(main = "Rods", line = -41, adj = 0.76)
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Photoreceptors

Precursors Cones Rods
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# dev.off()

Generate heatmap: main figure

## Generate heatmap with only particular genes labeled for main figure

genes.to.plot <- c("isl2a", "prdmla", "otx5", "crx", "six7", "nr2flb", "nr2e3", "aplnrb",
"aplnra", "apln")

rownames.to.plot <- gene.order

rtp <- rownames.to.plot %in% genes.to.plot

rownames.to.plot[!rtp] <- ""

rownames.to.plot[rtp] <- paste@("- ", rownames.to.plot[rtp])

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/retina-photoreceptor-mainfig.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(splines.pr.hm$scaled.smooth[gene.order, 1), Rowv = F,
Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = '"none",
key = F, cexCol = 0.8, cexRow = 1.8, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, colsep = colsep, rowsep rowsep, sepwidth = c(0.1, 0.2),

labRow = rownames.to.plot)

title(main = "Photoreceptors")

title(main = "Precursors", line = -41, adj = 0)

title(main = "Cones", line = -41, adj = 0.45)

title(main = "Rods", line = -41, adj = 0.76)
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# dev.off()

Amacrine cells

Prepare cascade
## AMACRINE CELLS: Seg 19 —> Amarcine (Seg 4) + Starburst Amacrine (Seg 17)
# Get markers from the two approaches:

# Lineage markers from above the combined clades

t19 <- threshold.clade.markers(combined.markers.best[["19"]]1, global.fc = 0.05)
# Amacrine markers from aucprTestAlongTree

m4 <- threshold.tree.markers(markers, "4", global.fc = 0.6)

# Starburst amacrine markers from aucprTestAlongTree

ml7 <- threshold.tree.markers(markers, "17", global.fc = 0.6)

am.markers <— unique(c(rownames(t19), rownames(m4), rownames(ml7)))

## These have pretty equivalent pseudotimes, so don't need to worry about
## stretching them to match or anything.

# Calculate spline curves Using segments 29, 26, 19, and 4/17. Calculating a

# curve using only 29/26/19/4 for amacrine-specific genes, 29/26/19/4 for

# starburst-specific genes, and 29/26/19/4+17 for genes that mark both amacrine

# populations.

spline.4 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("29", "26", "19", "4")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

spline.17 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c¢("29", "26", "19", "17")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

spline.417 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c¢("29", "26", "19", "4", "17")), genes = am.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5,
verbose = F)

# Want to plot a heatmap that shows expression in amacrine progenitors and then
# each branch (i.e. amacrine_gaba, starburst_amacrine) as separate columns. Going
# to crop each spline fit to the correct pseudotime range and then combine them
# into a single one that can be plotted as a three-column heatmap.

pt.4vl7 <- obj@tree$segment.pseudotime. limits["4", "start"] # pseudotime where the crop should happen

splines.am <- list(cropSmoothFit(spline.417, pt.min = -Inf, pt.max = pt.4v17), cropSmoothFit(spline.4,
pt.min = pt.4v17, pt.max = Inf), cropSmoothFit(spline.17, pt.min = pt.4v1l7, pt.max = Inf))

names(splines.am) <-— c("Amacrine Precursors", "Amacrine", "Starburst Amacrine")

splines.am.hm <— combineSmoothFit(splines.am) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.417 <- determine.timing(s = spline.417)
spline.4 <- determine.timing(s = spline.4)

spline.17 <- determine.timing(s = spline.17)
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# Decide which markers are specific to one cell type or both
d4v17 <- divide.branches(obj, am.markers, clust.1l = "4", clust.2 = "17", exp.fc = 0.4,
exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity

order.417 <- filter.heatmap.genes(setdiff(spline.417$gene.order, c(d4vl7$specific.1,
d4v17$specific.2)))

order.4 <- filter.heatmap.genes(intersect(spline.4$gene.order, d4v17$specific.1))

order.17 <- filter.heatmap.genes(intersect(spline.17$gene.order, d4vl17$specific.2))

gene.order <- c(order.417, order.4, order.17)

# Output gene table

table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.417)),
rep("amacrine", length(order.4)), rep('starburst", length(order.17))), stringsAsFactors = F)

table.save$clade.AUCPR.ratio <- t19[table.save$gene, "AUCPR.ratio"]

table.save$clade.exp.fc <- t19[table.save$gene, "exp.fc"]

table.save$clade.exp.fc.global <- t19[table.save$gene, "exp.global.fc"]

table.save$am.AUCPR. ratio.all <- m4[table.save$gene, "AUCPR.ratio.all"]

table.save$am.AUCPR. ratio.maxBranch <- m4[table.save$gene, "AUCPR.ratio.maxBranch"]

table.save$am.exp.fc.all <- m4[table.save$gene, "expfc.all"]

table.save$am.exp.fc.best <— m4[table.save$gene, "expfc.maxBranch"]

table.save$star.AUCPR.ratio.all <— ml7[table.save$gene, "AUCPR.ratio.all"]

table.save$star.AUCPR. ratio.maxBranch <— ml7[table.save$gene, "AUCPR.ratio.maxBranch"]

table.save$star.exp.fc.all <- ml7[table.save$gene, "expfc.all"]

table.save$star.exp.fc.best <— ml7[table.save$gene, "expfc.maxBranch"]

write.csv(table.save, quote = F, file = paste@(base.path, '"/heatmaps/retina-amacrine.csv"))

Generate heatmap: all genes

# Make sure any values <@ in the spline curves get set to @ so that the heatmap
# scale doesn't get messed up.
splines.am.hm$scaled.smooth[splines.am.hm$scaled.smooth < @] <— @
# Determine where to place column separators (i.e. how many columns will each
# cell type occupy in the heatmap )
colsep <— cumsum(as.numeric(head(unlist(lapply(splines.am, function(x) ncol(x$scaled.smooth))),
-1)))
# Determine where to place row separators (i.e. how many common markers, and
# markers are specific to each cell type)
rowsep <— cumsum(c(length(order.417), length(order.4)))
# Open a PDF and generate the heatmap pdf(paste@(base.path,
# '/heatmaps/retina-amacrine.pdf'), width=6, height=10)
gplots::heatmap.2(x = as.matrix(splines.am.hm$scaled.smooth[gene.order, 1), Rowv = F,
Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = '"none",
key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,
4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.05, 0.2))
title(main = "Amacrine Cells")
title(main = "Precursors", line = -41, adj = 0.05)
title(main = "Amacrine", line = -41, adj = 0.475)
title(main = "Starburst", line = -41, adj = 0.75)
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# dev.off()

Retinal ganglion cells

Prepare cascade
## RGCs: Seg 8
# Get markers from the two approaches:

# Lineage markers from above the combined clades

t8 <- threshold.clade.markers(combined.markers.best[["8"]], global.fc = 0.05)
# RGC markers from aucprTestAlongTree

m8 <- threshold.tree.markers(markers, "8", global.fc = 0.6)

rgc.markers <- unique(c(rownames(t8), rownames(m8)))

# Calculate spline curves Using segments 29, 26, and 8.

spline.8 <- geneSmoothFit(obj, pseudotime = "pseudotime'", cells = cellsInCluster(obj,
"segment", c("29", "26", "8")), genes = rgc.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.8 <- determine.timing(s = spline.8)
order.8 <- filter.heatmap.genes(spline.8%gene.order)

# Output gene table

table.save <- data.frame(gene = order.8, stringsAsFactors = F)
table.save$clade.AUCPR. ratio <— t8[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t8[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t8[table.save$gene, "exp.global.fc"]
table.save$rgc.AUCPR.ratio.all <- m8[table.save$gene, "AUCPR.ratio.all"]
table.save$rgc.AUCPR. ratio.maxBranch <- m8[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$rgc.exp.fc.all <- m8[table.save$gene, "expfc.all"]
table.save$rgc.exp.fc.best <- m8[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, "/heatmaps/retina-rgc.csv"))

Generate heatmap: all genes

# Make sure any values <@ in the spline curves get set to @ so that the heatmap

# scale doesn't get messed up.

spline.8%scaled.smooth[spline.8%scaled.smooth < 0] <- 0@

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/retina-rgc.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(spline.8%scaled.smooth[order.8, 1), Rowv = F, Colv = F,
dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Retinal Ganglion Cells")
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# dev.off()

Generate heatmap: main figure

genes.to.plot <- c("sox1la", "sox1lb", "sox6", "irx4a", "poud4f2", '"poudfl", "rbpms2b",
"rbpms2a")

rownames.to.plot <- order.8

rtp <— rownames.to.plot %in% genes.to.plot

rownames.to.plot[!rtp] <- ""

rownames.to.plot[rtp] <- paste@("- ", rownames.to.plot[rtpl)

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/retina-rgc-mainfig.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(spline.8%scaled.smooth[order.8, 1), Rowv = F, Colv = F,
dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 1.8, margins = c(8, 10), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA, labRow = rownames.to.plot)
title(main = "Retinal Ganglion Cells")
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# dev.off()

Horizontal Cells

Prepare cascade
## Horizontal Cells: Seg 15
# Get markers from the two approaches:

# Lineage markers from above the combined clades

t15 <- threshold.clade.markers(combined.markers.best[["15"]], global.fc = 0.05)
# Horizontal Cell markers from aucprTestAlongTree

ml5 <- threshold.tree.markers(markers, "15", global.fc = 0.6)

horiz.markers <— unique(c(rownames(t15), rownames(m15)))

# Calculate spline curves Using segments 29 and 15.

spline.15 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("29", "15")), genes = horiz.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.15 <- determine.timing(s = spline.15)
order.15 <- filter.heatmap.genes(spline.15%gene.order)

# Output gene table

table.save <- data.frame(gene = order.15, stringsAsFactors = F)
table.save$clade.AUCPR. ratio <— tl15[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- tl5[table.save$gene, "exp.fc"]

table.save$clade.exp.fc.global <- t15[table.save$gene, "exp.global.fc"]
table.save$horiz.AUCPR.ratio.all <- ml5[table.save$gene, "AUCPR.ratio.all"]
table.save$horiz.AUCPR.ratio.maxBranch <- ml5[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$horiz.exp.fc.all <— ml5[table.save$gene, "expfc.all"]
table.save$horiz.exp.fc.best <- ml5[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, '"/heatmaps/retina-horiz.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the heatmap

# scale doesn't get messed up.

splines.am.hm$scaled.smooth[splines.am.hm$scaled.smooth < @] <— @

# Determine where to place column separators (i.e. how many columns will each

# cell type occupy in the heatmap )

colsep <— cumsum(as.numeric(head(unlist(lapply(splines.am, function(x) ncol(x$scaled.smooth))),
-1)))

# Determine where to place row separators (i.e. how many common markers, and

# markers are specific to each cell type)

rowsep <— cumsum(c(length(order.417), length(order.4)))

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/retina—amacrine.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(splines.am.hm$scaled.smooth[gene.order, 1), Rowv = F,
Colv = F, dendrogram = "none", col = cols, trace = "none", density.info = "none",
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key = F, cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,
4), labCol = NA, colsep = colsep, rowsep = rowsep, sepwidth = c(0.05, 0.2))
title(main = "Amacrine Cells")
title(main = "Precursors", line = —41, adj = 0.05)
title(main = "Amacrine", line = -41, adj = 0.475)
title(main = "Starburst", line = -41, adj = 0.75)
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# dev.off()

Muller Glia

Prepare cascade
## Muller Glia: Seg 6

# Get markers from the two approaches
m6 <- threshold.tree.markers(markers, "6", global.fc = 0.6) # Muller Glia markers from aucprTestAlongTree
muller.markers <— rownames(m6)

# Calculate spline curves Using segments 29 and 15.

spline.6 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("30", "6")), genes = muller.markers, method = "spline", moving.window = 5,
cells.per.window = 25, pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.6 <- determine.timing(s = spline.6)
order.6 <- filter.heatmap.genes(spline.6%$gene.order)

# Output gene table

table.save <- data.frame(gene = order.6, stringsAsFactors = F)
table.save$muller.AUCPR.ratio.all <- m6[table.save$gene, "AUCPR.ratio.all"]
table.save$muller.AUCPR. ratio.maxBranch <- mé6[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$muller.exp.fc.all <- m6[table.save$gene, "expfc.all"]
table.save$muller.exp.fc.best <- m6[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, '"/heatmaps/retina-muller.csv"))

Generate heatmap: all genes

# Make sure any values <@ in the spline curves get set to @ so that the heatmap

# scale doesn't get messed up.

spline.6$scaled.smooth[spline.6$scaled.smooth < 0] <- 0@

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/retina-muller.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(spline.6%$scaled.smooth[order.6, 1), Rowv = F, Colv = F,
dendrogram = "none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c¢(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Muller Glia")
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# dev.off()

Retinal Pigmented Epithelium

Prepare cascade
## RPE: Seg 11

# Get markers from the two approaches
mll <- threshold.tree.markers(markers, "11", global.fc = 0.6) # RPE markers from aucprTestAlongTree
rpe.markers <— rownames(mll)

# Just want to plot part of cells from upstream segment 31, which is very long.

# Going to use cells from segment 11 and from segment 31 with pseudotime > 0.23

cells.rpe <— unique(c(whichCells(obj, "pseudotime", c(@0.23, 0.30308134)), cellsInCluster(obj,
"segment", "11")))

# Calculate spline curves

spline.11l <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.rpe, genes = rpe.markers,
method = "spline", moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.11l <- determine.timing(s = spline.11)
order.11 <- filter.heatmap.genes(spline.l1l%$gene.order)

# Output gene table

table.save <- data.frame(gene = order.11, stringsAsFactors = F)
table.save$rpe.AUCPR.ratio.all <- mll[table.save$gene, "AUCPR.ratio.all"]
table.save$rpe.AUCPR. ratio.maxBranch <- mll[table.save$gene, "AUCPR.ratio.maxBranch"]
table.saves$rpe.exp.fc.all <- mll[table.save$gene, "expfc.all"]
table.save$rpe.exp.fc.best <- mll[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, "/heatmaps/retina-rpe.csv"))

Generate heatmap: all genes

# Make sure any values <@ in the spline curves get set to @ so that the heatmap

# scale doesn't get messed up.

spline.11$scaled.smooth[spline.11$scaled.smooth < 0] <- @

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/retina-rpe.pdf'), width=6, height=16)

gplots::heatmap.2(x = as.matrix(spline.l1l$scaled.smooth[order.11, 1), Rowv = F, Colv = F,
dendrogram = '"none", col = cols, trace = "none", density.info = "none", key = F,
cexCol = 0.8, cexRow = 0.15, margins = c(8, 8), lwid = c(0.3, 4), lhei = c(0.3,

4), labCol = NA)
title(main = "Retinal Pigmented Epithelium")
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# dev.off()

Continuous differentiation

Retinal cell types were often found with similar molecular states across many stages of develop-
ment. This reflects that pseudotime accurately represents the asynchrony introduced by contin-

uous differentation.

RGC cells

gridExtra::grid.arrange(grobs = list(plotTreeHighlight(obj, label.name = "clus.orig",
label.value = "7-36h_27", highlight.size = 1, title = "36 hpf Cluster 27: RGCs",
label.x = F), plotTreeHighlight(obj, label.name = "clus.orig", label.value = "12-15d_38",

highlight.size = 1, title = "15 dpf Cluster 38: RGCs", label.x = F)), ncol = 2)

## Warning: Removed 5 rows containing missing values (geom_point).

## Warning: Removed 17 rows containing missing values (geom_point).

36 hpf Cluster 27: RGCs 15 dpf Cluster 38: RGCs

i

Progenitor cells

Pseudotime
Pseudotime

gridExtra::grid.arrange(grobs = list(plotTreeHighlight(obj, label.name = "clus.orig",
label.value = "6-24h_22", highlight.size = 1, title = "24 hpf Cluster 22: Progenitor Cells",
label.x = F), plotTreeHighlight(obj, label.name = "clus.orig", label.value = "7-36h_32",
highlight.size = 1, title = "36 hpf Cluster 32: Progenitor Cells", label.x = F),
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plotTreeHighlight(obj, label.name = "clus.orig", label.value = "12-15d_39", highlight.size = 1,
title = "15 dpf Cluster 39: Progenitor Cells", label.x = F)), ncol = 2)

## Warning: Removed 9 rows containing missing values (geom_point).

## Warning: Removed 4 rows containing missing values (geom_point).

24 hpf Cluster 22: Progenitor Cells 36 hpf Cluster 32: Progenitor Cells

Pseudotime
Pseudotime

saniilil auniihil

15 dpf Cluster 39: Progenitor Cells

Pseudotime

Ty

Progenitors over time

Retinal progenitors with similar transcriptional states are found across many different time points.
We wanted to know whether there were significant transcriptional changes within those progeni-
tors between early stages and late stages.

Identify populations

First we grabbed early (24 / 36 hpf) and late (15 dpf) progenitors from two sections of the tree.

# Progenitors / 24-36 hpf / Segment 30

prog.early.s30 <- intersect(cellsInCluster(obj, "stage", c("06-24h", "@7-36h")),
cellsInCluster(obj, '"segment", "30"))

obj <- groupFromCells(obj, group.id = "prog.early.s30", cells = prog.early.s30)

plotTreeHighlight(obj, "prog.early.s30", "TRUE", highlight.size = 1, highlight.alpha = 0.5,
title = "Progenitors / 24-36 hpf / Segment 30")
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# Progenitors / 24-36 hpf / Segment 29
prog.early.s29 <- intersect(cellsInCluster(obj, "stage", c("06-24h", "@7-36h")),

cellsInCluster(obj, "segment", "29"))
obj <- groupFromCells(obj, group.id = "prog.early.s29", cells = prog.early.s29)
plotTreeHighlight(obj, "prog.early.s29", "TRUE", highlight.size = 1, highlight.alpha =
title = "Progenitors / 24-36 hpf / Segment 29")
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# Progenitors / 15 dpf / Cluster 39 / Segment 30
prog.15d.c39.s30 <- intersect(cellsInCluster(obj, "clus.orig", "12-15d_39"), cellsInCluster(obj,

“Segment“ , ||30|| ) )
obj <- groupFromCells(obj, group.id = "prog.15d.c39.s30", cells = prog.15d.c39.s30)
plotTreeHighlight(obj, "prog.15d.c39.s30", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 15 dpf / Cluster 39 / Segment 30")
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# Progenitors / 15 dpf / Cluster 39 / Segment 29
prog.15d.c39.s29 <- intersect(cellsInCluster(obj, "clus.orig", "12-15d_39"), cellsInCluster(obj,

“Segment“ , ||29|| ) )
obj <- groupFromCells(obj, group.id = "prog.15d.c39.s29", cells = prog.15d.c39.s529)
plotTreeHighlight(obj, "prog.15d.c39.s29", "TRUE", highlight.size = 1, highlight.alpha = 0.5,

title = "Progenitors / 15 dpf / Cluster 39 / Segment 29")
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Differential expression between neural progenitor populations

Then we determined what was differentially expressed between them.

# Compare 15d ('late') vs. early - 529

markers.nb.lve.s29 <- markersAUCPR(obj, cells.l = prog.15d.c39.s29, cells.2 = prog.early.s29,
auc.factor = 1.1, effect.size = 0.4)

# Compare 15d ('late') vs. early — S30
markers.nb.lve.s30 <- markersAUCPR(obj, cells.1
auc.factor = 1.1, effect.size = 0.4)

prog.15d.c39.s30, cells.2 = prog.early.s30,

boot.fc

object: An URD object

cells.1: Cells from group 1 of the differential expression

cells.2: Cells from group 2 of the differential expression

cells.segment: All cells in the segment that can be pulled for bootstrapping

genes.test: Genes to test in the bootstrapping

exp.fc: Exp.fc from the original differential expression test to compare for bootstrap
exp.data: Can pre-calculated un-logged expression data to pass to the function (getupxbata)
n: (Numeric) Number of bootstrap simulations to run

Returns list: p is the empirical p-value for each differential expression, boot. fc contains all of
the test information.

# Function to bootstrap fold-change
boot.fc <- function(object, cells.1, cells.2, cells.segment, genes.test, exp.fc,
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exp.data = NULL, n = 1000) {

# Pull random populations of equivalent sizes

11 <- length(cells.1)

12 <- length(cells.2)

random.pops <- lapply(1:1000, function(i) {
y <- sample(x = cells.segment, size = 11 + 12, replace = F)
return(list(a = y[1:12], b = y[(12 + 1):(11 + 12)]))

1)

# Get un-logged expression data, if not provided
if (is.null(exp.data))
exp.data <- getUPXData(object)

# Calculate the expression fold-change for each random population
fc.boot <- as.data.frame(lapply(1:n, function(i) {
exp.a <- exp.datalgenes.test, random.pops[[il][["a"]]]
exp.b <- exp.datalgenes.test, random.pops[[il]l[["b"]]]
exp.fc <— log2((rowMeans(exp.a)/rowMeans(exp.b)) + 1)
return(exp.fc)
)
names(fc.boot) <- paste0@('rep", 1:n)

# Figure out p-value (proportion of these that beat provided exp.fc)
beat.boot <- sweep(fc.boot, 1, exp.fc, ">")
p.boot <- rowSums(beat.boot)/n

# Return information
return(list(p = p.boot, boot.fc = fc.boot))

Empirical p-value

Because these are relatively small populations, there’s a decent chance that (due to the variability
and noise inherent in scRNAseq data) that choosing any two similarly sized populations would
find a number of differentially expressed genes also. Thus, we used an empirically-determined
p-value to limit ourselves to differentially expressed genes that probably wouldn't arise by chance.
We asked that our real comparison had a greater expression fold-change than two populations
from a given segment of the same size chosen at random at least 99% of the time (i.e. p < 0.01).

# Try a bootstrapping approach to determine which markers are real, vs. which
# ones would arise just from small number of compared cells. Going to just do it
# on expression fc, so that the computation is reasonably fast.

# Isolate cells from each segment
cells.seg.29 <- cellsInCluster(obj, "segment", "29")
cells.seqg.30 <- cellsInCluster(obj, "segment", "30")

# Get un-logged expression data to pass to the function
exp.data <- getUPXData(obj)

# Run the actual bootstrapping.

boot.s30.1lve <- boot.fc(object, cells.1 = prog.15d.c39.s30, cells.2 = prog.early.s30,
cells.segment = cells.seq.30, genes.test = rownames(markers.nb.lve.s30), exp.fc = markers.nb.lve.s30%exp.fc,
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exp.data = exp.data, n = 1000)

boot.s29.1lve <- boot.fc(object, cells.1l = prog.15d.c39.s29, cells.2 = prog.early.s29,
cells.segment = cells.seg.29, genes.test = rownames(markers.nb.lve.s29), exp.fc = markers.nb.lve.s29%exp.fc,
exp.data = exp.data, n = 1000)

# Limit markers to those that pass the bootstrap test
markers.nbb.lve.s30 <- markers.nb.lve.s30[which(boot.s30.lve$p <= 0.01), ]
markers.nbb.lve.s29 <- markers.nb.lve.s29[which(boot.s29.lve$p <= 0.01), |

Tissue-specific changes

We also then divided genes based on whether they changed in all cells between 24/36 hpf and
15 dpf, or specifically in progenitors. Genes that change in all cells could represent either (a)
global transcriptional changes in the tissue, or (b) changes in ambient RNA that is included with
most cells based on highly expressed genes during different stages.

# Add global stage information to these - genes must change more in progenitors
# than just generally.

# Figure out early/late cells
cells.early <- cellsInCluster(obj, "stage", c("06-24h", "07-36h"))
cells.late <- cellsInCluster(obj, '"stage", "12-15d")

# Calculate markers across stages generally with no restrictions
markers.nbball. lve <- markersAUCPR(object = obj, cells.1 = cells.late, cells.2 = cells.early,
effect.size = -Inf, frac.must.express = @, auc.factor = 0, genes.use = unique(c(rownames(markers.nbb.lve.s30
rownames (markers.nbb. lve.s29))))

# Transfer information to NBB comparisons

markers.nbb. lve.s30$exp.fc.stage <- markers.nbball. lve[rownames(markers.nbb.lve.s30),
"exp.fc"]

markers.nbb. lve.s30%$posFrac_stagel <- markers.nbball.lve[rownames(markers.nbb.lve.s30),
"posFrac_1"1

markers.nbb. lve.s29%exp.fc.stage <- markers.nbball. lve[rownames(markers.nbb.lve.s29),
"exp.fc"l]

markers.nbb.lve.s29%posFrac_stagel <- markers.nbball.lve[rownames(markers.nbb.lve.s29),
"posFrac_1"1

# Calculate ratios (i.e. how much more does a gene change in progenitors than in

# the entire tissue)

markers.nbb.lve.s30%exp.fc.ratio <— pmin(markers.nbb.lve.s30%exp.fc, 1000) - pmin(markers.nbb.lve.s30%exp.fc.stac
1000)

markers.nbb. lve.s29%exp.fc.ratio <— pmin(markers.nbb.lve.s29%exp.fc, 1000) - pmin(markers.nbb.lve.s29%exp.fc.stac
1000)

markers.nbb. lve.s30$posFrac.ratio <— markers.nbb.lve.s30$posFrac_1/markers.nbb.lve.s30$posFrac_stagel
markers.nbb. lve.s29$posFrac.ratio <- markers.nbb.lve.s29$posFrac_1/markers.nbb.lve.s29¢$posFrac_stagel
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Limit to well-expressed
We also limited ourselves to genes that had a decent level of expression. (In this case, they were

detected in at least 20% of progenitor cells, and had a mean expression of at least 0.8.)

# All genes that change in segment 30
markers.nbbexp.lve.s30 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s30$posFrac_1 >=

0.2), which(markers.nbb.lve.s30$nTrans_1 >= 0.8))), I

# All genes that change in segment 30

markers.nbbexp.lve.s29 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s29%$posFrac_1 >=

0.2), which(markers.nbb.lve.s29$nTrans_1 >= 0.8))), I

# Genes that change in segment 30 more than in the entire tissue

markers.nbbselect.lve.s30 <- markers.nbb.lve.s30[Reduce(intersect, list(which(markers.nbb.lve.s30$posFrac_1 >=
0.2), which(markers.nbb.lve.s30%$nTrans_1 >= 0.8), which(markers.nbb.lve.s30$exp.fc.ratio >=

1.2), which(markers.nbb.lve.s30$posFrac.ratio >= 1.1))), 1

# Genes that change in segment 29 more than in the entire tissue

markers.nbbselect.lve.s29 <- markers.nbb.lve.s29[Reduce(intersect, list(which(markers.nbb.lve.s29%$posFrac_1 >=
0.2), which(markers.nbb.lve.s29%$nTrans_1 >= 0.8), which(markers.nbb.lve.s29%exp.fc.ratio >=

1.2), which(markers.nbb.lve.s29$posFrac.ratio >= 1.1))), 1

Result

That recovered a total of 71 genes that vary in progenitors between 24/36 hpf and 15 dpf, of
which 16 change more in neural progenitors than the rest of the tissue.

# All genes that change in progenitors

unique(c(rownames(markers.nbbexp.lve.s29), rownames(markers.nbbexp.lve.s30)))

## [1] "hbbe2" "hbz" "bal.1"

## [4] "rho" "crabpla" "si:ch211-251b21.1"
## [7] "hbaal" "pde6h" "tsc22d3"

## [10] "si:xx-by187g17.1" "bal" "rpe65a"

## [13] "zgc:153704" "arr3a" "lin7a"

## [16] "crygml" "gnatl" "ptgdsb.1"

## [19] "gngt1" "rgsl6" "cabp2a"

## [22] "junba" "crygm2b" "zgc:112320"

## [25] "si:dkey-183i3.5" "krto1" "cabp5a"

## [28] "sagb" "crygmx" "scinla"

## [31] "rbp4l" "gngt2b" "rsla"

## [34] "mt2" "fosab" "cebpd"

## [37] "snap25b" "CNDP1" "crabp2a"

## [40] "crybad" "jdp2b" "cst3"

## [43] "higdla" "mt-nd3" "si:dkey-16p21.8"
## [46] "crybbl" "crygn2" ""gadd45ba"

## [49] "gapdhs" "enola" "mif"

## [52] "ggctb" "ckbb" "glula"

## [55] "tsc22d1" "sod2" "btg2"

## [58] "sodl" "stmnlb" "si:dkey-238013.4"
## [61] “fabplla" "mdkb" "gstpl"

## [64] "slc3a2b" "si:dkey-238c7.12" "CABZ01102240.1"
## [67] "atp5ia" "atpiflb" "cadm3"

## [70] "hife"
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# Genes that change in progenitors more than the rest of the tissue
unique(c(rownames(markers.nbbselect.lve.s29), rownames(markers.nbbselect.lve.s30)))

## [1] "si:ch211-114n24.6" "rps29" "rrm2.1"

## [4] "si:ch211-19312.6" '"si:dkey-238013.4" ‘"crabpla"

##  [7] "si:ich211-251b21.1" "CNDP1" "junba"

## [10] "crabp2a" "cryba4" "crybbl"

## [13] "crygn2" "fabplla" "si:dkey-238c7.12"

## [16] "cadm3"

Preservation of embryonic molecular profiles in larval progenitors

We were looking to compare the molecular profiles of embryonic and post-embryonic progenitors.
Here, in the retina, we find progenitors at larval stages whose molecular signatures are preserved
from embryonic stages. For comparison, in the hypothalamus, we find that progenitors at larval
stages are transcriptionally different from embryonic progenitors (see Hypothalamus 3).

Identify populations to compare
We defined progenitor / precursor / neuron populations based on their location in the tree, cross-
referenced with the expression of markers of each of these types

obj@group.ids$precursor.group <— NA

cells.s31 <-— intersect(cellsInCluster(obj, "segment", "31"), whichCells(obj, "pseudotime",
c(0.05, 1)))
obj@group.ids[cells.s31, "precursor.group"] <- "la_prog_transient"

cells.prog.late <- cellsInCluster(obj, "segment", c("30", "29"))
obj@group.ids[cells.prog.late, "precursor.group"] <- "1b_prog_longterm"

cells.precursor <— intersect(cellsInCluster(obj, '"segment", c("24", "25", "26", "15")),
whichCells(obj, "pseudotime", c(0, 0.535)))
obj@group.ids[cells.precursor, "precursor.group"] <- "2_precursor"

cells.neurons <— setdiff(whichCells(obj, "pseudotime", c(0.535, 1)), cellsInCluster(obj,
“Segment”, C(“6“, “11“)))
obj@group.ids[cells.neurons, "precursor.group"] <- "3_neurons"

# Colors for ggplot
stage.colors <- RColorBrewer::brewer.pal(12, "Paired")I[c(1@, 9, 7, 1)]

# Plot tree to show where the groups are
plotTree(obj, "precursor.group", discrete.colors = stage.colors)

## Warning: Removed 2530 rows containing missing values (geom_point).
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# Plot genes in each group
plotDot(obj, genes = c("rx1", "foxdl", "her2", "hes2.2", "insmla", "neurod4", "foxglb",

"elavl3", "elavl4"), clustering = "precursor.group", scale.by = "area") + theme_bw()
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Cluster

Determine proportion of cells in each state

We then determined the proportion of cells from different stages that fell into each of these tran-
scriptional states.

# We combined stages to reduce number of plots
obj@group.ids$stage.collapsed <- plyr::mapvalues(x = obj@group.ids$stage, from = c("01-12h",
"@2-14h", "@3-16h", "04-18h", "@5-20h", "@06-24h", "@7-36h", "08-2d", "@09-3d",
"10-5d", "11-8d", "12-15d"), to = c(rep("01-12h-24h", 6), rep("02-36h-3d", 3),
rep("03-5d-15d", 3)))

# Count number of cells from each stage group in each precursor group
stage.group.count <— plyr::count(obj@group.ids, vars = c("stage.collapsed", "precursor.group"))

# Remove cells that weren't part of a precursor group
stage.group.count <- stage.group.count[complete.cases(stage.group.count), 1

# Cast into a data frame and convert NA to @ (no cells of that type observed)
stage.group.df <- reshape2::dcast(stage.group.count, formula = stage.collapsed ~
precursor.group)

## Using freq as value column: use value.var to override.
stage.group.df[is.na(stage.group.df)] <- 0@
# Normalize by the number of precursors from each stage group

stage.group.df[, 2:5] <- sweep(stage.group.df[, 2:5], 1, rowSums(stage.group.dfl[,
2:51), "/")
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# Melt for ggplot
stage.group.df.melt <- reshape2::melt(stage.group.df, id.vars = "stage.collapsed")

# Plot proportions

ggplot(stage.group.df.melt, aes(x = variable, y = value, group = stage.collapsed,
fill = variable)) + geom_bar(stat = "identity") + facet_wrap(~stage.collapsed) +
theme_bw() + scale_fill_manual(values = stage.colors) + theme(axis.title.x = element_blank(),
axis.text.x = element_blank(), axis.ticks.x = element_blank())
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0.8 1
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Import data into URD

Convert Seurat object to URD

We first loaded a Seurat object that contained just cells from the clusters that belonged to the
hypothalamus from each stage.

suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load Seurat object that has been cropped to hypothalamus cells
object.seurat <— readRDS(paste@(base.path, "obj/hypo_seurat.rds"))

# Convert to URD object
suburd <- seuratToURD(object.seurat)

Combined individual stage clustering

Bushra had performed individual clusterings across each stage with different resolutions. Here,
it was better to create a single identifier that included stage + cluster information to combine all
those clusterings (while preventing any overlap).



stages <- sort(unique(suburd@meta$stage))
clust.res.used <- paste@("res.", c("4.5", "4",6 "5'", U5" U4, 5" U5N UGN,

"e", "6", "5.5", "6", "5"))
names(clust.res.used) <- stages
suburd@group.ids$cluster <— NA
for (stage in stages) {

suburd@group.ids[cellsInCluster(suburd, "stage", stage), "cluster"] <- paste0(stage,

"-", suburd@group.ids[cellsInCluster(suburd, "stage", stage), clust.res.used[stagell)

Calculate highly variable genes

We calculated highly variable genes for each stage, used genes that were found as highly in at
least two stages, but were not mitochondrial, ribosomal, heat-shock protein, or tandem duplicated
genes.

# Calculated on each stage separaely, final gene list was all genes

# that were 'variable' in at least two stages NB: For a couple of

# stages, the gamma fit was poor —— the library size distribution

# seemed bimodal. Have seen this before in 10X data, but not sure what

# it means.

var.genes.by.stage <— lapply(stages, function(stage) {

findVariableGenes(suburd, cells.fit = cellsInCluster(suburd, '"stage",

stage), set.object.var.genes = F, diffCV.cutoff = 0.3, main.use = stage,
do.plot = T)
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names(var.genes.by.stage) <- stages
var.genes <- sort(unique(unlist(var.genes.by.stage)))
print(paste@('"Length of variable genes is ", length(var.genes)))

## [1] "Length of variable genes is 1783"

var.genes.twice <- names(which(table(unlist(var.genes.by.stage)) >= 2))
print(paste0("Length of variable genes shared across at least 2 stages is ",
length(var.genes.twice)))



## [1] "Length of variable genes shared across at least 2 stages is 957"

# Remove mitochondrial genes

var.mito <- grep("”mt-|~AC0", var.genes.twice, value = T)
# Remove ribosomal genes
var.ribo <- grep("~rps|~rpl", var.genes.twice, value = T)

# Remove hsp genes

var.hsp <- grep("~hsp", var.genes.twice, value = T)

# Remove genes with duplicates

var.dups <- grep("of many", var.genes.twice, value = T)

suburd@var.genes <- setdiff(var.genes.twice, c(var.mito, var.ribo, var.hsp,
var.dups))

print(paste@('Length of final variable genes list (after removing mito, ribo, hsp genes) is ",
length(suburd@var.genes)))

## [1] "Length of final variable genes list (after removing mito, ribo, hsp genes) is 856"

To prevent downstream problems, we also removed any cells from the data that had the exact
same expression of the variable genes (i.e. cells with completely duplicated coordinates in the
high-dimensional space we would use for analysis downstream).

# Check for duplicate data points — cells with exact same expression of
# variable genes
vg.dups <- duplicated(as.data.frame(as.matrix(t(suburd@logupx.datalsuburd@var.genes,
1))
if (length(which(vg.dups)) > 0) {
print(paste("Removing", length(which(vg.dups)), "cell(s) with duplicated variable gene expression."))
not.dup.cells <- colnames(suburd@logupx.data) [!vg.dups]
suburd <- urdSubset(suburd, not.dup.cells)
+

## [1] "Removing 1 cell(s) with duplicated variable gene expression."

Calculate KNN graph and remove outliers

We then calculated a k-nearest neighbor graph and removed cells that had unusual distance to
their nearest neighbor, or unusual distance to their 20th nearest neighbor (given their distance
to their nearest neighbor). These sorts of outliers often cause problems or skew diffusion maps
(used downstream).

# Calculate k-nn
suburd <— calcKNN(suburd)

# Check what the outliers are
outliers <- knnOutliers(suburd, nn.1
int.r = 3, slope.b = 0.66, int.b

1, nn.2 = 20, x.max = 40, slope.r = 1.1,
11.5, title = "Identifying Outliers by k-NN Distance.")



Identifying Outliers by k-NN Distance.

count
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## [1] 87

suburd <— urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
outliers))

Remove cell type doublets

Add UMAP projection

While not strictly required, a UMAP projection can make it easier to assess the expression of NMF
modules and whether thresholds for overlap are set correctly.

## add UMAP command

# Load pre-calculated UMAP
umap <— readRDS(paste@(base.path, "/umap/umap_hypo.rds"))

# Add projection to URD object
suburd@tsne.y <- umap



Load NMF results and import into object

NMF results were calculated by providing suburd@logupx.data to an external NMF pipeline written
in Python. The output results are imported here, scaled, and added to the URD object.

# Load the NMF results
load(paste@(base.path, "/NMF/hypo/result_tbls.Robj"))

# The results object contains NMF runs for several K values. k=28 was
# chosen for this tissue, so this extracts the results for that

# particular parameter

k.use <- "28"

nmf.cells <— result_obj[[pasted("K=", k.use)ll[[1]]1%C

rownames (nmf.cells) <- paste@("nmf", l:nrow(nmf.cells))
colnames(nmf.cells) <- gsub("\\.", "-", colnames(nmf.cells))

nmf.genes <- result_obj[[pasted("K=", k.use)]ll1[[1]]13%G
colnames(nmf.genes) <- paste@(''nmf", 1l:nrow(nmf.cells))

# Scale NMF results 0-1
nmf.cells.scaled <- sweep(nmf.cells, 1, apply(nmf.cells, 1, max), "/")

# Add scaled NMF results to the URD object
suburd@nmf.cl <- as(t(as.matrix(nmf.cells.scaled)), "dgCMatrix")

Select cell-type specific modules

Several NMF modules will be poor markers of cell types — these are often modules driven mostly
be the expression of 1-2 genes (where the gene loading of the first gene is much greater than that
of the fourth gene, for instance), or modules that don’t exhibit any restriction in a tSNE or UMAP
projection.

# Plot size parameters

plot.height = 6

plot.width = 16

dpi = 150

# Plot every module to determine which exhibit cell-type specificity
# This saves directly to the hard drive: two example plots are shown
# below.

# for (n in colnames(suburd@nmf.cl)) { png(paste@(path, '/doublets/',
# subset, '-plots/', n, '.png'), width=dpixplot.width,
# height=dpixplot.height) plot(plotDim(suburd, n)) dev.off() }

gridExtra::grid.arrange(grobs = list(plotDim(suburd, "nmf2", plot.title = "nmf2: exhibits poor restriction"),
plotDim(suburd, "nmf27", plot.title = "nmf27: exhibits good cell-type")),
ncol = 2)
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# Module Gene 1 : Gene 4 Ratios

top.genes <- result_obj[[paste@d("K=", k.use)l][[1]]1$top30@genes

top.weights <- top.genes[, grep("Weights", colnames(top.genes), value = T)]
colnames(top.weights) <- paste@("nmf", 1l:nrow(nmf.cells))

top.weights.ratio <— top.weights[1l, ]/top.weights[4, ]

# Which modules exhibit cell-type restriction?

modules.bad.ratio <— names(top.weights.ratio) [which(top.weights.ratio >
3)1]

unrestricted.modules <— paste@("nmf", c("12", "19", "24", "28"))

1.00

0.75

0.50

0.25

0.00

good.modules <- setdiff(colnames(suburd@nmf.cl), c(modules.bad.ratio, unrestricted.modules))

Determine which module pairs to use for doublet removal

We consider NMF modules pairwise and only use those pairs that don't are non-overlapping in

the data. (In other words, NMF modules that are mutually exclusive in the majority of the data.)

Here, we determine thresholds for selecting those module pairs.

# Determine overlaps between module pairs

nmf.doublet.combos <- NMFDoubletsDefineModules(suburd, modules.use = good.modules,

module.thresh.high = 0.4, module.thresh.low = 0.15)
# Determine thresholds for NMF modules

frac.overlap.max = 0.03
frac.overlap.diff.max = 0.11
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module.expressed.thresh = 0.33

# Determine which module pairs to use for doublets
NMFDoubletsPlotModuleThresholds(nmf.doublet.combos, frac.overlap.max = frac.overlap.max,
frac.overlap.diff.max = frac.overlap.diff.max)
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# These commands save plots directly to the hard-drive.

# Make plots to see how your thresholds are

NMFDoubletsPlotModuleCombos (suburd, path = paste@(path, "/doublets/", subset,
"—doublet-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "pass", sort = "near", n.plots = 25)

NMFDoubletsPlotModuleCombos (suburd, path = paste@(path, "/doublets/", subset,
"—ok-combos/"), module.combos = nmf.doublet.combos, module.expressed.thresh = module.expressed.thresh,
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max,
boundary = "discarded", sort = "near", n.plots = 25)

# Define doublet cells
nmf.doublets <- NMFDoubletsDetermineCells(suburd, nmf.doublet.combos, module.expressed.thresh = module.expressed.
frac.overlap.max = frac.overlap.max, frac.overlap.diff.max = frac.overlap.diff.max) # 49 cells / 11307 cell:

# Plot doublet cells on the UMAP

suburd <— groupFromCells(suburd, "nmf.doublets", cells = nmf.doublets)

plot(plotDimHighlight(suburd, clustering = "nmf.doublets", cluster = "TRUE",
plot.title = paste@('"NMF doublets: ", length(nmf.doublets), " cells"),

11



point.size = 2, highlight.color = "blue"))

NMF doublets: 49 cells (Highlight TRUE)
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# Crop object to exclude doublets
suburd.cropped <- urdSubset(suburd, cells.keep = setdiff(colnames(suburd@logupx.data),
nmf.doublets))

And then save the completed object for use downstream in building a tree using URD.
saveRDS (suburd.cropped, file = paste@(base.path, "/obj/URD_hypo_ND.rds"))
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Load data

suppressPackageStartupMessages(library(URD))
suppressPackageStartupMessages(library(Seurat))

base.path <- "~/urd-cluster-bushra/"

# Load procesed URD object
object <- readRDS(paste@(base.path, "obj/URD_hypo_ND.rds"))

Processed on the cluster

Most of the following steps were run on a computing cluster. These individual tissue subsets
can be run on a modern, well-equipped laptop. The use of a computing cluster allows multiple
parameter choices to be tried in parallel, and also allows further parallelization of the random
walk procedure, speeding it up. Below, we should the commands that one would run on their
laptop, and then generally load the pre-processed results from the cluster that were used in the
paper. If you want to parallelize your own processing on a compute cluster, the scripts we used
will be available at http://github.com/farrellja/URD/cluster/


http://github.com/farrellja/URD/cluster/

Calculate diffusion map and pseudotime

These two steps are run in the cluster script URD-DM-PT.R.

Calculate diffusion map

# To run locally: Calculate a diffusion map projection
object <- calcDM(object, knn = 100, sigma.use = 8)

# Or: Load a pre-computed diffusion map projection
dm <- readRDS(paste@(base.path, "dm/dm_hypoND_knn-100_sigma-8.rds"))
object <- importDM(object, dm)

# Plot diffusion maps

stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC00", "cyan3",
""gold", '"goldenrod", "darkorange", "indianredl", "plum", "deepskyblue2",
"lightgrey")

# Plot by stage

plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "stage", plot.title = "", outer.title = "Diffusion map labeled by Stage",
legend = T, alpha = 0.45, discrete.colors = stage.colors)



Diffusion map labeled by Stage
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# Plot with final cell types labeled

object@group.ids$final.cluster <— NA

object@group.ids[cellsInCluster(object, "stage", "12-15d"), "final.cluster"] <- object@group.ids[cellsInCluster(c
"stage", "12-15d"), "res.5"]

plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,
label = "final.cluster", plot.title = "", outer.title = "Diffusion map with final clusters",
legend = T, alpha = 0.6)
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URD requires a starting point or ‘root’ for determining pseudotime. Here, we used all cells from
the first timepoint (i.e. 12 hpf) as the root.

# Here, we used all cells from the first timepoint (i.e. 12 hours) as

# the root.

root.cells <- cellsInCluster(object, "stage", "01-12h")
plotDimHighlight(object, "stage", "@01-12h", plot.title = "Root is 12 hpf cells")



Root is 12 hpf cells (Highlight 01-12h)
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# To run locally: Run graph-search simulations to determine pseudotime
flood.result <- floodPseudotime(object, root.cells = root.cells, n = 100,
minimum.cells.flooded = 2, verbose = T)

# 0r load a pre-computed graph-search simulation result
flood.result <- readRDS(paste@(base.path, "flood/flood_hypoND_knn-100_sigma-8.rds"))

# Process the graph-search simulations to determine the pseudotime of

# each cell

object <- floodPseudotimeProcess(object, flood.result, floods.name = "pseudotime",
max.frac.NA = 0.4, pseudotime.fun = mean, stability.div = 10)

# If enough simulations have been run, then as additional simulations
# are added, the overall change in pseudotime of cells should reach an
# asymptote. If it does not, then floodPseudotime should be run with a
# higher n.

pseudotimePlotStabilityOverall(object)



Overall Pseudotime Stability
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plotDimArray(object = object, reduction.use = "dm", dims.to.plot = 1:18,

label = "pseudotime", plot.title = "", outer.title = "Diffusion Map labeled by pseudotime",
legend = F, alpha = 0.4)



Diffusion Map labeled by pseudotime
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plotDim(object, "pseudotime", plot.title = "UMAP projection colored by pseudotime")



UMAP projection colored by pseudotime
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plotDists(object, "pseudotime", "stage", plot.title = "Pseudotime by stage")

Pseudotime by stage
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Calculate biased transition matrix

In order to perform biased random walks, we must first bias the transition matrix to ensure that
walks proceed towards the root and do not turn into other differentiated cell types. This is per-
formed in the cluster script URD-TM.R.

# Calculate parameters for biasing the transition matrix.

diffusion.logistic <- pseudotimeDetermineLogistic(object, "pseudotime",
optimal.cells.forward = 40, max.cells.back = 80, pseudotime.direction = "<",
do.plot = T, print.values = T)
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Delta pseudotime

## [1] "Mean pseudotime back (~80 cells) 0.00498088811519173"
## [1] "Chance of accepted move to equal pseudotime is 0.821561374686937"
## [1] "Mean pseudotime forward (~40 cells) -0.00250030667341253"

# Calculate the biased matrix.
biased.tm <- pseudotimeWeightTransitionMatrix(object, pseudotime = "pseudotime",
logistic.params = diffusion.logistic, pseudotime.direction = "<")

Perform biased random walks

Then, we perform biased walks starting from each tip. Visited cells are inferred to lie along the
trajectory that connects the root to each cell type. This is performed in the cluster script URD-
Walk.R.

Determine tips

We used clusters from 15 dpf as the tips for performing biased random walks. Here we define
the cells belonging to each of those clusters.



# All clusters at 15 days

clusters.15day <- unique(object@group.ids[grep("15d", object@group.ids$stage),
"res.5"])

# All cells at 15 days

cells.15day <- rownames(object@group.ids) [grep("15d", object@group.ids$stage)]

# Cell lists of each cluster at 15dpf

cells.15dpf.clusters <— lapply(clusters.15day, function(clust) intersect(cells.15day,
cellsInCluster(object, "res.5", clust)))

names (cells.15dpf.clusters) <- paste@("15d-", clusters.15day)

We also load a .csv file that contains information about the tips. It has four columns:

id: Cluster ID for the tip
use: Whether this cluster should be used when building the tree
name: The name for this tip, which will be used on 2D plots
short.name: The ‘short’ name for this tip, which would be used on 3D plots (though we did
not use that feature in this study).
# Load CSV
tip.names <- read.csv(paste@(base.path, "tips/tip_names_hypoND.csv"), header = F,
stringsAsFactors = F, colClasses = c('character", "logical", "character",
"character"))

# Name columns and rows
names(tip.names) <- c("id", "use", "name", "short.name")
rownames (tip.names) <- gsub("_", "-", tip.names$id)

# Sort alphabetically
tip.names <- tip.names[order(rownames(tip.names)), 1

These are the tips that were considered during the construction of the retina URD tree (some were
excluded during tree construction later in the buildTree command).

# Define a 'tips' clustering
object@group.ids$tip <— NA
object@group.ids$tip.id <— NA
object@group.ids$tip.name <— NA

# If the tip will be used in the tree, define its cells in the

# clustering

for (i in l:nrow(tip.names)) {
tip.cells <- cells.15dpf.clusters[[rownames(tip.names) [i]]]
object@group.ids[tip.cells, "tip"] <- as.character(i)
object@group.ids[tip.cells, "tip.id"] <— rownames(tip.names) [i]
object@group.ids[tip.cells, "tip.name"] <- as.character(tip.names[i,

"name"])

# Plot the tips
plotDim(object, "tip.name")
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Perform the biased random walks

Biased random walks then need to be run starting from each tip. This can be performed on a
laptop, but is an ideal candidate for parallelization on a cluster. (The walks from each tip can be
run as a separate job.)

## IF RUNNING LOCALLY

# Loop through each cluster
walks <- lapply(rownames(tip.names), function(c) {
# Exclude any tip cells that for whatever reason didn't end up in the
# biased TM (e.g. maybe not assigned a pseudotime).
tip.cells <- intersect(cells.15dpf.clusters[[c]], rownames(biased.tm))
# Perform the random walk simulation
this.walk <- simulateRandomWalk(start.cells = tip.cells, transition.matrix = biased.tm,
end.cells = root.cells, n = 50000, end.visits = 1, verbose.freq = 1000,
max.steps = 5000)
return(this.walk)
1)

names (walks) <- rownames(tip.names)

# Alternatively, this loop is automated by the function
# simulateRandomWalksFromTips

Alternatively, a set of pre-calculated walks can be loaded. Since the walks are a simulation (and

11



therefore not deterministic), this is particularly crucial for reproducing results.
## IF LOADING PRE-CALCULATED WALKS

# Get list of files in the walks directory
walks.files <- list.files(paste@(base.path, "/walks/hypoND/"), pattern = ".rds")

# Load the walks previously performed for each cluster
walks <— lapply(rownames(tip.names), function(c) {
walk.file <- grep(pattern = pasteo("_tip-", c, "_"), x = walks.files,
value = T)[1]
return(readRDS(paste@(base.path, "/walks/hypoND/", walk.file)))
1)

names (walks) <- rownames(tip.names)

Process the random walks

The walks are then converted to visitation frequency by importing them into the URD object.

for (i in l:nrow(tip.names)) {
# Load the individual walk visitation frequencies into the object
object <- processRandomWalks(object, walks = walks[[i]], walks.name = i,
n.subsample = 1, verbose = F)

Build the URD tree

Then, a branching tree is constructed, by joining trajectories in an agglomerative fashion when
cells are highly visited by walks from multiple tips. The following steps were performed in the
cluster script URD-Tree.R.

# Tree building is destructive, so create a copy of the object
object.tree <- object

# Load tip cells
object.tree <— loadTipCells(object.tree, "tip")

# Determine tips to use
tips.to.use <— which(tip.names$use)

# Build the tree

object.tree <- buildTree(object.tree, pseudotime = "pseudotime", divergence.method = "ks",
cells.per.pseudotime.bin = 40, bins.per.pseudotime.window = 5, save.all.breakpoint.info =T,
p.thresh = 1e-04, verbose = F, tips.use = as.character(tips.to.use))

# Name the tips of the tree
object.tree <— nameSegments(object.tree, segments = tips.to.use, segment.names = as.character(tip.names[tips.to.!l
"name"], short.names = as.character(tip.names[tips.to.use, "short.name"])))

plotTree(object.tree, "stage", discrete.colors = stage.colors, label.segments = T)
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Save the URD tree

The tree is then saved for use in downstream analysis, and can easily be loaded for further pe-
rusal.

saveRDS(object.tree, file = paste@(base.path, "tree/URD-Tree-Hypo.rds"))
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Load data

# Load URD
library(URD)

## Loading required package: ggplot2

## Loading required package: Matrix

## Registered S3 method overwritten by 'xts':
##  method from
#i# as.zo00.xts zoo

# Basic location
base.path <- "~/Documents/R sessions/urd-cluster-bushra/"

# Load completed hypothalamus tree object

obj.path <- paste@(base.path, "tree/hypoND/tree—hypoND_knn-100_sigma—-8_40F-80B_NO-_ks_0001.rds")
obj <- readRDS(obj.path)

Plot gene expression on the tree

Plot tree by stage
stage.colors <- c("antiquewhite", "#FFCCCC", "#99CC00", "#33CC0Q", "cyan3",
"'gold", '"goldenrod", '"darkorange", "indianredl", "plum", "deepskyblue2",

"lightgrey")

plotTree(obj, "stage", label.type = "group", discrete.colors = stage.colors)
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Plot tree with gene expression: main figures

gridExtra::grid.arrange(grobs = lapply(c("shha", "pdyn", "rx3", "nrgna"),
plotTree, object = obj, label.x = F, plot.cells = F), ncol = 2)
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gridExtra::grid.arrange(grobs = lapply(c("dlx5a", "dlx6a", "vaxl"), plotTree,
object = obj, label.x = F, plot.cells = F), ncol = 2)
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Plot tree with gene expression: supplemental figures

gridExtra::grid.arrange(grobs = lapply(c('nkx2.4b", "asclla", "insmla",
"tubb5", "scg2b", "dlx2a", "nkx2.4a", 'nrgna", "tacl", "synpr", "sp8a",
"gadlb", "npy", "sstl.1", "tph2", "fezfl", "pdyn", "slcl7a6b", "prdxl",
"pou3fl"), plotTree, object = obj, label.x = F, plot.cells = F), ncol = 4)
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Determine genes enriched in trajectories to particular cell types

Comparison between major cell types
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We took each major group (“clade”) of branches from the end of the tree as a single entity
(i.e. prdx1+ neurons, pdyn+ neurons, GABAergic dIx+ neurons, nrgna+ neurons) and compared
them against each other to look for differentially expressed genes.

# Get the parent segment of each clade to consider as a group
combined.tips <- c("3", "4", "9", "10")



# Get the cells in that segment and all child segments
cells.combined.tips <- lapply(combined.tips, function(t) whichCells(obj,

label = "segment", value = segChildrenAll(obj, t, include.self = T)))
names(cells.combined.tips) <- combined.tips

# Loop through each of these clades and look for differentially
# expressed genes
combined.markers <- lapply(combined.tips, function(tip) {
# Find all of the other clades
opposing.tips <- setdiff(combined.tips, tip)
# Perform pairwise comparisons to each other clade
m.o <- lapply(opposing.tips, function(tip.opposing) {
# message(pasted(Sys.time(), ': Comparing tip ', tip, ' to ',
# tip.opposing, '.')) Find differentially expressed genes between the
# pair of clades
ma <- markersAUCPR(object = obj, cells.1l = cells.combined.tips[[tip]l],
cells.2 = cells.combined.tips[[tip.opposingl], effect.size = 0.5,
auc.factor = 1.1)
# In order to facilitate combining all of the results later, add
# columns about which two clades were compared and also a duplicate
# entry of the name of each gene that's recovered.
if (nrow(ma) > 0) {
ma$gene <— rownames(ma)
mastipl <- tip
ma$tip2 <- tip.opposing
}
return(ma)
1)
names(m.o) <- opposing.tips
return(m.o)
}

names (combined.markers) <- combined.tips

# Require that genes are markers against at least 2 other clades
combined.markers.beatmult <— lapply(combined.markers, function(m) {
names (which(table(unlist(lapply(m, rownames))) >= 2))

)

# Since genes might be a marker in a comparison to several other
# clades, combine the results into a single table, where each gene is
# listed only once with the info from the pairwise comparison where it
# had the strongest differential expression.
combined.markers.best <- lapply(1l:length(combined.markers.beatmult), function(i) {
cm <- do.call("rbind", combined.markers[[i]])
cm <— cm[cm$gene %in% combined.markers.beatmult[[il], ]
cmb <— do.call("rbind", lapply(combined.markers.beatmult[[i]], function(g) {
cmr <— cm[cm$gene == g, |
return(cmr[which.max(cmr$AUCPR. ratio), 1)
1))
rownames (cmb) <- cmb$gene
if (!is.null(cmb)) {
cmb <— cmb[order(cmb$AUCPR. ratio, decreasing = T), |
cmb$exp.global <- apply(obj@logupx.datalrownames(cmb), unlist(obj@tree$cells.in.segment)],



1, mean.of.logs)
cmb$exp.global. fc <— cmb$nTrans_1 - cmb$exp.global
}
return(cmb)
1)

names (combined.markers.best) <- combined.tips

AUCPR along tree

We also used the AUCPRTestAlongTree function to ask for genes that are differential markers
of a lineage using URD’s tree structure. This makes a comparison at each branchpoint from a
particular cell type up to the root.

# Get all of the tips from the tree
tips.in.tree <- as.character(obj@tree$tips)

# Tree segments to use as root

roots <- rep("12", length(tips.in.tree))
names(roots) <- tips.in.tree

roots["3"] <- "13"

# Define parameters to use for calculation Used more permissive values
# in the sstl.1+ / tph2+ / gabaergic dlx+ neuronal comparisons due to
# the small number of cells in these populations

auc.use <— rep(1l.2, length(tips.in.tree))

names (auc.use) <- tips.in.tree

auc.uselc("1", "6", "7")] <= 1.15

log.effect.use <— rep(0.8, length(tips.in.tree))

names (log.effect.use) <- tips.in.tree

log.effect.uselc("1", "6", "7")] <- 0.6

# Perform a loop of tests with each tip.
markers <- lapply(tips.in.tree, function(t) {
this.root <- roots[t]
this.auc <- auc.uselt]
this.log <- log.effect.usel[t]
# message(pasted(Sys.time(), ': Starting tip ', t, ' and root ‘',
# this.root, ' with params ', this.auc, ' AUC and ', this.log, ' effect
# size.'))
these.markers <- aucprTestAlongTree(obj, pseudotime = "pseudotime",
tips = as.character(t), genes.use = NULL, must.beat.sibs = 0.6,
report.debug = F, root = this.root, auc.factor = this.auc, log.effect.size = this.log)
these.markers$gene <— rownames(these.markers)
these.markers$tip <- t
return(these.markers)
1)

names (markers) <- tips.in.tree

Markers of the prdx1- neuron clade

# Calculate from segment 12 against segment 3 specifically
nonprdx.markers <— markersAUCPR(obj, clust.l = "12", clust.2 = "3", clustering = "segment",



effect.size = 0.8, auc.factor = 1.2)

# Also look at segment 12 vs. rest of the hypothalamus with lower

# thresholds

nonprdx.markers.global <- markersAUCPR(obj, clust.l = "12", clust.2 = as.character(c(1:11,
13)), clustering = "segment", effect.size = 0.4, auc.factor = 1.1)

## Warning in names(genes.data) [4:7] <- paste(c("posFrac", "posFrac", "nTrans",
## number of items to replace is not a multiple of replacement length

Functions for curating differential expression results

We further curated those differentially expressed genes using the following functions:

threshold.tree.markers

Function to threshold markers from a markersAUCPRAlongTree test with additional criteria

markers: list of results from markersAUCPRAlongTree tests

tip: which tip (or element of the list to pursue)

global.fc: fold.change that gene must have along the trajectory pursued vs. rest of the data
aucpr.ratio.all: classifier score that gene must exhibit along trajectory test vs. rest of the data
branch.fc: fold.change that gene must have (in best case) vs. the opposing branch at any
branchpoint along the trajectory.

e Returns markers with only a subset of rows retained.

threshold.tree.markers <- function(markers, tip, global.fc = 0.1, branch.fc = 0.4,
aucpr.ratio.all = 1.03) {
m <— markers[[tip]]
# First off —-- lose global FC < x
bye.globalfc <- rownames(m) [m$expfc.all < global.fc]
# Second —— get rid of branch FC < x
bye.branchfc <- rownames(m) [m$expfc.maxBranch < branch.fc]
# Third —— get rid of stuff essentially worse than random
# classification on global level
bye.badglobalaucpr <- rownames(m) [m$AUCPR.ratio.all < aucpr.ratio.alll]
bye.all <- unique(c(bye.globalfc, bye.branchfc, bye.badglobalaucpr))
m.return <- m[setdiff(rownames(m), bye.all), ]
return(m.return)

divide.branches

Function to compare genes between two branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making photoreceptor heatmap, use to divide into photoreceptor, cone, and rod markers)

object: An URD object

genes: (Character vector) Genes to test

clust.1: (Character) Cluster 1

clust.2: (Character) Cluster 2

clustering: (Character) Clustering to pull from

exp.fc: (Numeric) Minimum expression fold-change between branches to consider different



e exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a
branch

e exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

¢ Returns list of gene names (“specific.1” = specific to clust.1, “specific.2” = specific to clust.2,
“‘markers” = all genes tested)

divide.branches <- function(object, genes, clust.1l, clust.2, clustering = "segment",
exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {
# Double check which markers are unique to one or the other population
mcomp <- markersAUCPR(object, clust.l = clust.1, clust.2 = clust.2,
clustering = clustering, effect.size = -Inf, auc.factor = @, genes.use = genes,
frac.min.diff = @, frac.must.express = 0)
specific.b <— rownames(mcomp) [abs(mcomp$exp.fc) > exp.fc & mcompl,
4] < exp.thresh & mcomp[, 5] > pmin((mcomp[, 4] + exp.diff), 1)]
specific.a <- rownames(mcomp) [abs (mcomp$exp.fc) > exp.fc & mcompl[,
5] < exp.thresh & mcomp[, 4] > pmin((mcomp[, 5] + exp.diff), 1)]
r <- list(specific.a, specific.b, mcomp)
names(r) <- c("specific.1", "specific.2", "markers")
return(r)

divide.branches.triple

Function to compare genes between three branches. Use this on a compiled list of markers to do
a final selection of genes that are specific to one branch or another or markers of both (i.e. when
making gad2+ heatmap, use to divide into general, dIx+, sst+, and tph2+ markers).

object: An URD object

genes: (Character vector) Genes to test

clust.1: (Character) Cluster 1

clust.2: (Character) Cluster 2

clust.3: (Character) Cluster 3

clustering: (Character) Clustering to pull from

exp.fc: (Numeric) Minimum expression fold-change between branches to consider different

exp.thresh: (Numeric) Minimum fraction of cells in order to consider gene expressed in a

branch

e exp.diff: (Numeric) Minimum difference in fraction of cells expressing to consider gene dif-
ferential

e Returns list of gene names (“nonspecific” = genes not in specific.1/2/3, “specific.1” = spe-

cific to clust.1, “specific.2” = specific to clust.2, “specific.3” = specific to clust.3, each pair-

wise comparison, and “markers” = all genes tested)

divide.branches.triple <- function(object, genes, clust.1l, clust.2, clust.3,

clustering = "segment", exp.fc = 0.4, exp.thresh = 0.1, exp.diff = 0.1) {

# Double check which markers are unique to one or the other population

mcompl2 <— markersAUCPR(object, clust.l = clust.1, clust.2 = clust.2,
clustering = clustering, effect.size = -Inf, auc.factor = @, genes.use = genes,
frac.min.diff = @, frac.must.express = 0)

mcomp23 <- markersAUCPR(object, clust.1 = clust.2, clust.2 = clust.3,
clustering = clustering, effect.size = -Inf, auc.factor = @, genes.use = genes,
frac.min.diff = @, frac.must.express 0)

mcompl3 <— markersAUCPR(object, clust.l = clust.1, clust.2 = clust.3,
clustering = clustering, effect.size = -Inf, auc.factor = 0, genes.use = genes,
frac.min.diff = @, frac.must.express 0)
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specific.1v2 <- rownames(mcompl2) [abs(mcompl2$exp.fc) > exp.fc & mcompl2l[,
5] < exp.thresh & mcompl2[, 4] > pmin((mcompl2[, 5] + exp.diff),
1)1

specific.2vl <- rownames(mcompl2) [abs(mcompl2$exp.fc) > exp.fc & mcompl2[,
4] < exp.thresh & mcomp12[, 5] > pmin((mcompl2[, 4] + exp.diff),
1)]

specific.2v3 <- rownames(mcomp23) [abs(mcomp23$exp.fc) > exp.fc & mcomp23[,
5] < exp.thresh & mcomp23[, 4] > pmin((mcomp23[, 5] + exp.diff),
1)]

specific.3v2 <- rownames(mcomp23) [abs(mcomp23$exp.fc) > exp.fc & mcomp23[,
4] < exp.thresh & mcomp23[, 5] > pmin((mcomp23[, 4] + exp.diff),
1)]

specific.1v3 <- rownames(mcompl3) [abs(mcompl3$exp.fc) > exp.fc & mcompl3|[,
5] < exp.thresh & mcomp13[, 4] > pmin((mcompl13[, 5] + exp.diff),
1)]

specific.3vl <— rownames(mcompl3) [abs(mcompl3$exp.fc) > exp.fc & mcompl3[,
4] < exp.thresh & mcompl13[, 5] > pmin((mcomp13[, 4] + exp.diff),
1)1

specific.1l <— unique(setdiff(c(specific.1lv2, specific.1v3), c(specific.2v3,
specific.3v2)))

specific.2 <- unique(setdiff(c(specific.2vl, specific.2v3), c(specific.1v3,
specific.3vl)))

specific.3 <- unique(setdiff(c(specific.3v2, specific.3v1l), c(specific.2vl,
specific.1v2)))

nonspecific <- setdiff(genes, c(specific.1, specific.2, specific.3))

markers.comp <- list(mcompl2, mcompl3, mcomp23)
names (markers.comp) <- c("1v2", "1v3", "2v3")

r <— list(nonspecific, specific.1, specific.2, specific.3, specific.1lv2,
specific.1lv3, specific.2vl, specific.2v3, specific.3vl, specific.3v2,
markers.comp)

names(r) <- c("nonspecific", "specific.1", "specific.2", "specific.3",
"specific.1lv2", "specific.1lv3", "specific.2v1l", "specific.2v3",
"specific.3v1l", "specific.3v2", "markers")

return(r)

Functions for heatmap generation
These functions were used in the production of heatmaps:

Color scale

Generate color scale to use with heatmaps.

cols <- (scales::gradient_n_pal(RColorBrewer::brewer.pal(9, "Y10rRd"))) (seq(0,
1, length.out = 50))
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determine.timing

Determines order to plot genes in heatmap. “Expression” is defined as 20% higher expression
than the minimum observed value. “Peak” expression is defined as 50% higher expression than
minimum observed value. The two longest stretches of “peak” expression are found, and then
the later one is used. The onset time of the stretch of expression that contains that peak is also
determined. Genes are then ordered by the pseudotime at which they enter “peak” expression,
leave “peak” expression, start “expression”, and leave “expression”.

e s: result from geneSmoothFit
® genes: genes to order; default is all genes that were fit.
e Returns s but with an additional list entry (s$timing) of the order to plot genes

determine.timing <- function(s, genes = rownames(s$mean.expression)) {
s$timing <- as.data.frame(do.call("rbind", lapply(genes, function(g) {

sv <- as.numeric(s$scaled.smoothlg, 1)

pt <- as.numeric(colnames(s$scaled.smooth))

# Figure out baseline expression & threshold for finding peaks

min.val <— max(min(sv), 0)

peak.val <= ((1 - min.val)/2) + min.val

exp.val <-= ((1 - min.val)/5) + min.val

# Run-length encoding of above/below the peak-threshold

peak.rle <- rle(sv >= peak.val)

peak.rle <- data.frame(lengths = peak.rle$lengths, values = peak.rle$values)

peak.rle$end <— cumsum(peak.rle$lengths)

peak.rle$start <- head(c(0, peak.rle$end) + 1, -1)

# Run-length encoding of above/below the expressed-threshold

exp.rle <- rle(sv >= exp.val)

exp.rle <- data.frame(lengths = exp.rle$lengths, values = exp.rle$values)

exp.rlesend <— cumsum(exp.rle$lengths)

exp.rle$start <— head(c(0, exp.rlesend) + 1, -1)

# Take top-two longest peak RLE & select later one. Find stretches

# that are above peak value

peak <- which(peak.rle$values)

# Order by length and take 1 or 2 longest ones

peak <- peakl[order(peak.rle[peak, "lengths"], decreasing = T)][1:min(2,
length(peak))]

# Order by start and take latest one.

peak <- peakl[order(peak.rle[peak, "start"], decreasing = T)1[1]

# Identify the actual peak value within that stretch

peak <- which.max(sv[peak.rle[peak, "start"]:peak.rlel[peak, "end"1]) +
peak.rlelpeak, "start"] - 1

# Identify the start and stop of the expressed stretch that contains

# the peak

exp.start <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <=
peak), "start"]

exp.end <- exp.rle[which(exp.rle$end >= peak & exp.rle$start <=
peak), "end"]

# Identify values of expression at start and stop

smooth.start <- sv[exp.start]

smooth.end <- sv[exp.end]

# Convert to pseudotime?

exp.start <— ptlexp.start]

exp.end <- ptlexp.end]

peak <- pt[peak]
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# Return a vector
v <- c(exp.start, peak, exp.end, smooth.start, smooth.end)
names(v) <- c("pt.start", "pt.peak", "pt.end", "exp.start", "exp.end")
return(v)
130D

rownames(s$timing) <- genes

# Decide on ordering of genes

s$gene.order <— rownames(s$timing) [order(s$timing$pt.peak, s$timing$pt.start,
s$timing$pt.end, s$timing$exp.end, decreasing = c(F, F, F, T),
method = "radix")]

return(s)

filter.neatmap.genes

Removes undesired (mitochondrial, ribosomal, tandem duplicated genes) from heatmaps for pre-
sentation purposes.

e genes: (Character vector) genes to check
e Returns genes with undesired genes removed.

filter.heatmap.genes <- function(genes) {
mt.genes <- grep("~mt-", ignore.case = T, genes, value = T)
many.genes <— grep("\\(1 of many\\)", ignore.case = T, genes, value = T)
ribo.genes <- grep("~rpl|~rps", ignore.case = T, genes, value = T)
cox.genes <— grep("~cox", ignore.case = T, genes, value = T)
hsp.genes <- grep('"~hsp", ignore.case = T, genes, value = T)
return(setdiff(genes, c(mt.genes, many.genes, ribo.genes, cox.genes,

hsp.genes)))

Heatmaps of gene cascades

Using the genes that were determined as differentially expressed along the way to particular cell
types, we generated expression cascades and plotted them as heatmaps.

Pdyn+ neurons

Prepare cascade
## Pdyn+ neurons: Seg 4

Get markers from the two approaches

<- combined.markers.best[["4"]] # pdyn+ markers from above the combined clades

<- t[t$exp.global.fc >= 0.8, 1 # limited to those with good global parameters

<— threshold.tree.markers(markers, "4", global.fc = @0.6) # Pdyn+ Cell markers from aucprTestAlongTree
pdyn.markers <- unique(c(rownames(t), rownames(m)))

3 + + H

# Just want to plot part of cells from upstream segment 12, which is
# very long. Going to use cells from segments 4, 11, and from segment
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# 12 with pseudotime > 0.23

cells.plot <— unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(@0.45, Inf))), cellsInCluster(obj, "segment",

c("11", "4"))))

# Calculate spline curve

spline.plot <- geneSmoothFit(obj, pseudotime = "pseudotime", cells
genes = pdyn.markers, method = "spline", moving.window = 5, cells.per.window

pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Calculate gene expression timing for ordering rows
spline.plot <- determine.timing(s = spline.plot)
order.plot <- filter.heatmap.genes(spline.plot$gene.order)

# Output gene table

table.

table

table

table.

write

save <- data.frame(gene = order.plot, stringsAsFactors = F)

.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.
table.
table.
table.

save$clade.exp.fc <— t[table.save$gene, "exp.fc"]

save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
save$pdyn.AUCPR. ratio.all <- m[table.save$gene, "AUCPR.ratio.all"]

cells.plot,

25,

save$pdyn.AUCPR. ratio.maxBranch <- m[table.save$gene, "AUCPR.ratio.maxBranch"]

.save$pdyn.exp.fc.all <- m[table.save$gene, "expfc.all"]
save$pdyn.exp.fc.best <- m[table.save$gene, "expfc.maxBranch"]
.csv(table.save, quote = F, file = paste@(base.path, "/heatmaps/hypo-pdyn.csv"))

Generate heatmap: all genes

## Generate heatmap Make sure any values <@ in the spline curves get set

## to 0 so that the heatmap scale doesn't get messed up.
spline.plot$scaled.smooth[spline.plot$scaled.smooth < 0] <- @
# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/hypo-pdyn.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(spline.plot$scaled.smooth[order.plot, 1),
Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = '"none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.6, margins

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA)

title(main = "pdyn+ Neurons')
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pdyn+ Neurons

tubb5
Imo3
I Ihx5
islr2
rasgeliba
roboz 1
BEGAIN
mpped2a
sox1a
plxnala
sox14
sox1b
nrbalb
tnfaipsl3
si:dkey-27j5.5
nkx2.2a
si:ch211-235e15.1
camkyl
map2k1
camkva
avp

fezf1
gprféa
sle17aBa
vamp
sle17a6b
phldaz
six6b
pedh11
ketdd
rgssh
myelb
nr0b1
sytsb
nr5az2
zge: 114118
ppp3ceh
KITb
gap43d
nellZb
vati
aplsl
pedhl11.1
acsl1a
taci

foxpd
slitrkd
CBFAZT3
chin
calla
Idb2b
camkvb
gabrb3
nptxdl
TMSB15A
adecyap1b
gabra
pdeSa
2ge: 162730
s0x5
soxb
pdyn
igfbpshk
rims2a
docZb
palmdb
b3galnt2
bdnf
si:dkey-19023.8
tac3a
npas4b
tacdh
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# dev.off()

Prdx1+ neurons vs. other neurons

Prepare cascade
## Prdxl+ neurons: Seg 3

# Get markers from the two approaches

t <— combined.markers.best[["3"]1] # prdxl+ markers from above the combined clades

t <- t[t$exp.global.fc >= 0.8, 1 # limited to those with good global parameters

m <- threshold.tree.markers(markers, "3", global.fc = 0.6) # prdxl+ Cell markers from aucprTestAlongTree
prdx.markers <- unique(c(rownames(t), rownames(m)))

# Get markers for the opposing segment
opposing.prdx.markers <— intersect(rownames(nonprdx.markers), rownames(nonprdx.markers.global))

prdx.hm.markers <— unique(c(prdx.markers, opposing.prdx.markers))

# Calculate spline curves Using segments 13 and 12 or 3.

spline.12 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("13", "12")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

spline.3 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("13", "3")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

spline.123 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cellsInCluster(obj,
"segment", c("13", "12", "3")), genes = prdx.hm.markers, method = "spline",
moving.window = 5, cells.per.window = 25, pseudotime.per.window = 0.005,
spar = 0.5, verbose = F)

# Want to plot a heatmap that shows expression in most upstream

# progenitors and then each branch (i.e. prdxl- vs. prdxl+ neurons) as
# separate columns. Going to crop each spline fit to the correct

# pseudotime range and then combine them into a single one that can be
# plotted as a three-column heatmap.

pt.12v3 <- obj@tree$segment.pseudotime.limits["3", "start"] # pseudotime where the crop should happen
splines.prdx <— list(cropSmoothFit(spline.123, pt.min = -Inf, pt.max = pt.12v3),
cropSmoothFit(spline.12, pt.min = pt.12v3, pt.max = Inf), cropSmoothFit(spline.3,
pt.min = pt.12v3, pt.max = Inf))
names (splines.prdx) <- c("Hypo Precursors", "Prdx1-", "Prdx1+")
splines.prdx.hm <— combineSmoothFit(splines.prdx) # Combine into a single one

# Calculate gene expression timing for ordering rows
spline.12 <- determine.timing(s = spline.12)
spline.3 <- determine.timing(s = spline.3)
spline.123 <- determine.timing(s = spline.123)

# Decide which markers are specific to one cell type or both
d12v3 <- divide.branches(obj, prdx.hm.markers, clust.1 = "12", clust.2 = "3",
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exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity

order.123 <- filter.heatmap.genes(setdiff(spline.123$gene.order, c(d12v3$specific.1,
d12v3s$specific.2)))

order.12 <- filter.heatmap.genes(intersect(spline.12%$gene.order, d12v3$specific.1))

order.3 <-— filter.heatmap.genes(intersect(spline.3$gene.order, d12v3$specific.2))

gene.order <— c(order.123, order.12, order.3)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.123)),
rep("prdx1-", length(order.12)), rep("prdx1l+", length(order.3))), stringsAsFactors = F)
table.save$clade.AUCPR. ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <— t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <— t[table.save$gene, "exp.global.fc"]
table.save$non.AUCPR.ratio <- nonprdx.markers[table.save$gene, "AUCPR.ratio"]
table.saves$non.exp.fc <— nonprdx.markers[table.save$gene, "exp.fc"]
table.saves$non.exp.fc.global <— nonprdx.markers.global[table.save$gene,
"exp.fc"l]
table.save$prdx.AUCPR.ratio.all <- m[table.save$gene, "AUCPR.ratio.all"]
table.save$prdx.AUCPR. ratio.maxBranch <— m[table.save$gene, "AUCPR.ratio.maxBranch"]
table.saves$prdx.exp.fc.all <- m[table.save$gene, "expfc.all"]
table.save$prdx.exp.fc.best <— m[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, "/heatmaps/hypo-prdxl-vs-non.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the

# heatmap scale doesn't get messed up.

splines.prdx.hm$scaled.smooth[splines.prdx.hm$éscaled.smooth < @] <- 0

# Determine where to place column separators (i.e. how many columns

# will each cell type occupy in the heatmap )

colsep <— cumsum(as.numeric(head(unlist(lapply(splines.prdx, function(x) ncol(x$scaled.smooth))),
-1)))

# Determine where to place row separators (i.e. how many common

# markers, and markers are specific to each cell type)

rowsep <— cumsum(c(length(order.123), length(order.12)))

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/hypo-prdx-vs—non.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(splines.prdx.hm$scaled.smooth[gene.order,
1), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.35, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,

rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "Precursors", line = -41, adj = 0)

title(main "prdx1l =", line = -41, adj = 0.425)

title(main = "prdx1 +", line = -41, adj = 0.725)
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# dev.off()

nrgna+ neurons

Prepare cascade

# Get markers from the two approaches

t <- combined.markers.best[["10"]1] # Markers from above the combined clades

t <- t[t$exp.global.fc >= 0.8, 1 # limited to those with good global parameters

m2 <- threshold.tree.markers(markers, "2", global.fc = 0.6) # Markers from aucprTestAlongTree
m5 <- threshold.tree.markers(markers, "5", global.fc = 0.6) # Markers from aucprTestAlongTree
tacsyn.markers <— unique(c(rownames(t), rownames(m2), rownames(m5)))

# Just want to plot part of cells from upstream segment 12, which is

# very long. Going to use cells from segments 2 or 5, 10, and from

# segment 12 with pseudotime > 0.23

cells.plot.2 <- unique(c(intersect(cellsInCluster(obj, 'segment", "12"),
whichCells(obj, "pseudotime", c(@.45, Inf))), cellsInCluster(obj, "segment",
c("10", "2"))))

cells.plot.5 <— unique(c(intersect(cellsInCluster(obj, '"segment", "12"),
whichCells(obj, "pseudotime", c(@0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "5"))))

cells.plot.25 <— unique(c(intersect(cellsInCluster(obj, '"segment", "12"),
whichCells(obj, "pseudotime", c(0.45, Inf))), cellsInCluster(obj, "segment",
c("10", "2", "5"))))

# Calculate spline curves

spline.2 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.2,
genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.5 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.5,
genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,

pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.25 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.25,
genes = tacsyn.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Want to plot a heatmap that shows expression in upstream progenitors
# and then each branch (i.e. gabaergic_tacl vs. synpr+) as separate

# columns. Going to crop each spline fit to the correct pseudotime

# range and then combine them into a single one that can be plotted as
# a three-column heatmap.

pt.2v5 <— obj@tree$segment.pseudotime.limits["2", "start"] # pseudotime where the crop should happen
splines.tacsyn <- list(cropSmoothFit(spline.25, pt.min = -Inf, pt.max = pt.2v5),
cropSmoothFit(spline.2, pt.min = pt.2v5, pt.max = Inf), cropSmoothFit(spline.5,
pt.min = pt.2v5, pt.max = Inf))
names(splines.tacsyn) <- c("Precursors", "Synpr-", "Synpr+")
splines.tacsyn.hm <- combineSmoothFit(splines.tacsyn) # Combine into a single one

# Calculate gene expression timing for ordering rows

spline.2 <- determine.timing(s = spline.?2)
spline.5 <- determine.timing(s = spline.5)
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spline.25 <- determine.timing(s = spline.25)

# Decide which markers are specific to one cell type or both
d2v5 <- divide.branches(obj, tacsyn.markers, clust.l = "2", clust.2 = "5",
exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity

order.25 <- filter.heatmap.genes(setdiff(spline.25%$gene.order, c(d2v5$specific.1,
d2v54$specific.2)))

order.2 <- filter.heatmap.genes(intersect(spline.2%gene.order, d2v5$specific.1))

order.5 <- filter.heatmap.genes(intersect(spline.5%gene.order, d2v5$specific.2))

gene.order <- c(order.25, order.2, order.5)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("both", length(order.25)),
rep("synpr-", length(order.2)), rep("synpr+", length(order.5))), stringsAsFactors = F)
table.save$clade.AUCPR. ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"l]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$nonsynpr.AUCPR. ratio.all <- m2[table.save$gene, "AUCPR.ratio.all"]
table.save$nonsynpr.AUCPR. ratio.maxBranch <- m2[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$nonsynpr.exp.fc.all <— m2[table.save$gene, "expfc.all"]
table.save$nonsynpr.exp.fc.best <- m2[table.save$gene, "expfc.maxBranch"]
table.save$synpr.AUCPR.ratio.all <- m5[table.save$gene, "AUCPR.ratio.all"]
table.save$synpr.AUCPR. ratio.maxBranch <— m5[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$synpr.exp.fc.all <— m5[table.save$gene, "expfc.all"]
table.save$synpr.exp.fc.best <— m5[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, "/heatmaps/hypo-nrgna.csv"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the

# heatmap scale doesn't get messed up.

splines.tacsyn.hm$scaled.smooth[splines.tacsyn.hm$scaled.smooth < 0] <- @

# Determine where to place column separators (i.e. how many columns

# will each cell type occupy in the heatmap )

colsep <— cumsum(as.numeric(head(unlist(lapply(splines.tacsyn, function(x) ncol(x$scaled.smooth))),
-1)))

# Determine where to place row separators (i.e. how many common

# markers, and markers are specific to each cell type)

rowsep <— cumsum(c(length(order.25), length(order.2)))

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/hypo-nrgna.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(splines.tacsyn.hm$scaled.smooth[gene.order,
1), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 0.35, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,

rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "synpr-", line = -41, adj = 0.535)

title(main = "synpr+", line = -41, adj = 0.75)

20



heapte
arldd

npina

sckay- 361131
reepd

wdllh

gkl

ndufad

rhdon
alpibda
maplak

anoZ

wyrd

ki

kb

mita

y

i
pldng

towd2
CRE4TH.2
Pt
nizta

oythda
cambh
sedkiny. 27155
s

rgma

kenidb

g

zat 114118
hmida
mapiki
sn3b

l l
[

pankh
addib
PRIFAT
ethib
mp
npr3
sanal
gabrd
gng i3k

arinta
Imamd
pabro3
PRE2rla
oprdin

Lm

TP

calcra
sech73-10311.2
seh73-30500.3
alpZta

ImecE

prech

RAME1

niA2
wichf1-166413
rsageliba

punks
ninik
camkldh
thkop!
Fam 107k
sy 11247 4
g BAOER
faxgte
mmait
tkoolh
nesth

| .LLHI)

|

|
dhrazx

CLAZEzSa1
L]
il
chadl

snee
matZch
dinity

L]

miz

i

phig

grt
sckny.263a1.2
ot e
gdpast
(N3]

phx3b
enhd

fam 1262
scch2ii-132d34
NETMIR
g S0
gulpta
kenti
pmta

[

salda

ﬁ_

il

card
i
widkay-4i23.7

synpr- synpr+

21



# dev.off()

Generate heatmap: main figure
# Plot heatmap with only certain genes labeled for main figure

genes.to.plot <- c("rgs5b", "dlx5a", "isl1", '"nkx2.4a", "nkx2.2a", "hmx3a",
"dlx1la", "dlx2b", "sp8a", "pbx3b")

rownames.to.plot <- gene.order

rtp <- rownames.to.plot %in% genes.to.plot

rownames.to.plot[!rtp] <- ""

rownames.to.plot[rtp] <- paste@("- ", rownames.to.plot[rtp])

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/hypo-nrgna—-mainfig.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(splines.tacsyn.hm$scaled.smooth[gene.order,
1), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 1.8, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,

rowsep = rowsep, sepwidth = c(0.05, 0.2), labRow = rownames.to.plot)

title(main = "synpr-", line = -41, adj = 0.535)

title(main = "synpr+", line = -41, adj 0.75)
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# dev.off()

GABAergic neurons

Prepare cascade

# Get markers from the two approaches

t <- combined.markers.best[["9"]] # Markers from above the combined clades

ml <- threshold.tree.markers(markers, "1", global.fc = @.6) # Markers from aucprTestAlongTree
m6 <- threshold.tree.markers(markers, "6", global.fc 0.6) # Markers from aucprTestAlongTree
m7 <- threshold.tree.markers(markers, "7", global.fc = 0.6) # Markers from aucprTestAlongTree
gaba.markers <- unique(c(rownames(t), rownames(ml), rownames(m6), rownames(m7)))

# Defining cell populations to use in the heatmap Just want to use a

# tiny bit of segment 12 and then the rest of the gabaergic clade

cells.plot.1l <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "1"))))

cells.plot.6 <— unique(c(intersect(cellsInCluster(obj, '"segment", "12"),
whichCells(obj, "pseudotime", c(@0.5, Inf))), cellsInCluster(obj, '"segment",
c("11", "9", "8", "6"))))

cells.plot.7 <- unique(c(intersect(cellsInCluster(obj, '"segment", "12"),
whichCells(obj, "pseudotime", c(0.5, Inf))), cellsInCluster(obj, "segment",
c("11", "9", "8", "7"))))

cells.plot.167 <- unique(c(intersect(cellsInCluster(obj, "segment", "12"),
whichCells(obj, "pseudotime", c(@0.5, Inf))), cellsInCluster(obj, '"segment",
c("11", 9", 8", "1", "6", "7"))))

# Calculate spline curves

spline.1l <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.1,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.6 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.6,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.7 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.7,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,

pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

spline.167 <- geneSmoothFit(obj, pseudotime = "pseudotime", cells = cells.plot.167,
genes = gaba.markers, method = "spline", moving.window = 5, cells.per.window = 25,
pseudotime.per.window = 0.005, spar = 0.5, verbose = F)

# Want to plot a heatmap that shows expression in upstream progenitors
# and then each branch as separate columns. Going to crop each spline
# fit to the correct pseudotime range and then combine them into a

# single one that can be plotted as a three-column heatmap.

pt.1 <- obj@tree$segment.pseudotime. limits["1", "start"] # pseudotime where the crop should happen
splines.gaba <- list(cropSmoothFit(spline.167, pt.min = -Inf, pt.max = pt.1),
cropSmoothFit(spline.1, pt.min = pt.1, pt.max = Inf), cropSmoothFit(spline.6,
pt.min = pt.1, pt.max = Inf), cropSmoothFit(spline.7, pt.min = pt.1,
pt.max = Inf))
names(splines.gaba) <- c("Precursors", "dlx+", "sstl.1+", "tph2+")
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splines.gaba.hm <— combineSmoothFit(splines.gaba) # Combine into a single one

# Calculate gene expression timing for ordering rows

spline.1l <— determine.timing(s = spline.1)

spline.6 <- determine.timing(s = spline.6)

spline.7 <- determine.timing(s = spline.7)

spline.167 <- determine.timing(s = spline.167, genes = setdiff(gaba.markers,
"sst1.2"))

# Decide which markers are specific to one cell type or not specific
d <- divide.branches.triple(obj, gaba.markers, clust.1 = "1", clust.2 = "6",
clust.3 = "7", exp.fc = 0.4, exp.thresh = 0.2, exp.diff = 0.1)

# Generate gene ordering based on timing & specificity

order.167 <— filter.heatmap.genes(intersect(spline.167$gene.order, d$nonspecific))
order.1l <- filter.heatmap.genes(intersect(spline.l$gene.order, d$specific.1))
order.6 <— filter.heatmap.genes(intersect(spline.6%gene.order, d$specific.2))
order.7 <- filter.heatmap.genes(intersect(spline.7$gene.order, d$specific.3))
gene.order <- c(order.167, order.1, order.6, order.7)

# Output gene table
table.save <- data.frame(gene = gene.order, marks = c(rep("multiple", length(order.167)),
rep("dlx+", length(order.1)), rep("sst+", length(order.6)), rep('"tph2+",
length(order.7))), stringsAsFactors = F)
table.save$clade.AUCPR.ratio <- t[table.save$gene, "AUCPR.ratio"]
table.save$clade.exp.fc <- t[table.save$gene, "exp.fc"]
table.save$clade.exp.fc.global <- t[table.save$gene, "exp.global.fc"]
table.save$dlx.AUCPR.ratio.all <- ml[table.save$gene, "AUCPR.ratio.all"]
table.save$d1lx.AUCPR. ratio.maxBranch <- ml[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$dx.exp.fc.all <- ml[table.save$gene, "expfc.all"l]
table.save$dx.exp.fc.best <- ml[table.save$gene, "expfc.maxBranch"]
table.save$sst.AUCPR.ratio.all <- m6[table.save$gene, "AUCPR.ratio.all"]
table.save$sst.AUCPR. ratio.maxBranch <- mé[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$sst.exp.fc.all <— m6[table.save$gene, "expfc.all"]
table.save$sst.exp.fc.best <- m6[table.save$gene, "expfc.maxBranch"]
table.save$tph.AUCPR.ratio.all <- m7[table.save$gene, "AUCPR.ratio.all"]
table.save$tph.AUCPR. ratio.maxBranch <- m7[table.save$gene, "AUCPR.ratio.maxBranch"]
table.save$tph.exp.fc.all <— m7[table.save$gene, "expfc.all"]
table.save$tph.exp.fc.best <- m7[table.save$gene, "expfc.maxBranch"]
write.csv(table.save, quote = F, file = paste@(base.path, "/heatmaps/hypo—gaba.csv'"))

Generate heatmap: all genes

# Make sure any values <0 in the spline curves get set to 0 so that the

# heatmap scale doesn't get messed up.

splines.gaba.hm$scaled.smooth[splines.gaba.hm$scaled.smooth < 0] <- @

# Determine where to place column separators (i.e. how many columns

# will each cell type occupy in the heatmap )

colsep <— cumsum(as.numeric(head(unlist(lapply(splines.gaba, function(x) ncol(x$scaled.smooth))),
-1)))

# Determine where to place row separators (i.e. how many common

# markers, and markers are specific to each cell type)
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rowsep <— cumsum(c(length(order.167), length(order.1), length(order.6)))

# Open a PDF and generate the heatmap pdf(paste@(base.path,

# '/heatmaps/hypo-gaba.pdf'), width=6, height=10)

gplots::heatmap.2(x = as.matrix(splines.gaba.hm$scaled.smooth[gene.order,
1), Rowv = F, Colv = F, dendrogram = "none", col = cols, trace = "none",
density.info = "none", key = F, cexCol = 0.8, cexRow = 1, margins = c(8,

8), lwid = c(0.3, 4), lhei = c(0.3, 4), labCol = NA, colsep = colsep,

rowsep = rowsep, sepwidth = c(0.05, 0.2))

title(main = "dlx+", line = -41, adj 0.45)

title(main = "sst+", line = -41, adj = 0.61)

title(main = "tph2+", line = -41, adj = 0.75)
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# dev.off()

Embryonic molecular profiles are not found in larval progenitors

We were looking to compare the molecular profiles of embryonic and post-embryonic progenitors.
In the retina, we found progenitors at larval stages whose molecular signatures were preserved
from embryonic stages (see Retina 3). Here, we find that, in the hypothalamus, progenitors at
larval stages are transcriptionally different from embryonic progenitors.

Identify populations to compare

We defined progenitor / precursor / neuron populations based on their location in the tree, cross-
referenced with the expression of markers of each of these types.

obj@group.ids$precursor.group <— NA

cells.sl1l3 <- intersect(cellsInCluster(obj, "segment", "13"), whichCells(obj,
"pseudotime", c(0.05, 1)))

cells.s3neurons <- intersect(cellsInCluster(obj, "segment", "3"), whichCells(obj,
"pseudotime", c(0.5, 1)))

cells.s3precursors <- intersect(cellsInCluster(obj, "segment", "3"), whichCells(obj,
"pseudotime", c(0.3, 0.5)))

obj@group.ids[cells.s13, "precursor.group"] <- "1_progenitors"

obj@group.ids[c(cells.s3precursors, cellsInCluster(obj, "segment", c("12",
"11", "10"))), "precursor.group"l <- "2_precursors"

obj@group.ids[c(cells.s3neurons, cellsInCluster(obj, "segment", c("9",
“1“, II4II, II8II, II6II, II7II, II2II' II5II)))' Ilprecursor.groupll] <— II3_neur0nS

# Colors for ggplot
stage.colors <- RColorBrewer::brewer.pal(12, "Paired")[c(10, 7, 1)]

# Plot tree to show where the groups are
plotTree(obj, "precursor.group", discrete.colors = stage.colors)

## Warning: Removed 175 rows containing missing values (geom_point).
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# Plot genes in each group
plotDot(obj, genes = c("rx3", "shha", 'nkx2.4b", "asclla", "scrt2", "scg2b",

"elavl3", "elavl4"), clustering = "precursor.group", scale.by = "area") +
theme_bw()
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Determine proportion of cells in each state

We then determined the proportion of cells from different stages that fell into each of these tran-
scriptional states.

# Combine stages to reduce number of plots
obj@group.ids$stage.collapsed <- plyr::mapvalues(x = obj@group.ids$stage,
from = c("01-12h", "02-14h", "@3-16h", "@4-18h", "@05-20h", "06-24h",
"@7-36h", "@8-2d", "@9-3d", "10-5d", '"11-8d", "12-15d"), to = c(rep("01-12h-24h",
6), rep("02-36h-3d", 3), rep("03-5d-15d", 3)))

# Count number of cells from each stage group in each precursor group
stage.group.count <- plyr::count(obj@group.ids, vars = c("stage.collapsed",
"precursor.group"))

# Remove cells that weren't part of a precursor group
stage.group.count <- stage.group.count[complete.cases(stage.group.count),

1

# Cast into a data frame and convert NA to @ (no cells of that type

# observed)
stage.group.df <- reshape2::dcast(stage.group.count, formula = stage.collapsed ~

precursor.group)

## Using freq as value column: use value.var to override.

stage.group.df[is.na(stage.group.df)] <- @
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# Normalize by the number of precursors from each stage group

stage.group.df[, 2:4] <- sweep(stage.group.df[, 2:4], 1, rowSums(stage.group.dfl[,

2:4])’ ||/||)

# Melt for ggplot
stage.group.df.melt <- reshape2::melt(stage.group.df, id.vars = "stage.collapsed")

# Plot proportions

ggplot(stage.group.df.melt, aes(x
fill = variable)) + geom_bar(stat
theme_bw() + scale_fill_manual(values = stage.colors) + theme(axis.title.x
axis.text.x = element_blank(), axis.ticks.x

variable, y = value, group = stage.collapsed,
"identity") + facet_wrap(~stage.collapsed) +

element_blank())

01-12h-24h

02-36h-3d

03-5d-15d

1.00 1

0.75 4

0.25 1

0.00 4
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