
 

 

The miR-17~92 cluster regulates  

adult neural stem cell behavior 
 

 

Inauguraldissertation 

 
zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

Von 

 

 

Fabrizio Favaloro 
aus Italien 

2021 

 

 

 
Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel 

edoc.unibas.ch 



 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag 

von 

 

 

Prof. Dr. Fiona Doetsch 

 

Prof. Dr. Peter Scheiffele 

 

 

 

 

 

 

 

 

 

Basel, den 18. Februar 2020 

 

 

 

 

 

 

Prof. Dr. Martin Spiess 

Dekan 

 

  



 

 
 

Abstract 

 

The miR-17~92 cluster regulates adult neural stem cell behavior 

 

Fabrizio Favaloro 

 

 

In the adult mammalian brain, the ventricular-subventricular zone (V-SVZ) generates neurons 

and glia throughout life. In this germinal niche, neural stem cells (NSCs) coexist in quiescent 

and activated states. However, the molecular mechanisms underlying this transition remain 

elusive. miRNAs have been implicated in stem cell self-renewal and differentiation, but their 

role in adult NSC activation is unknown. By performing miRNA profiling of FACS-purified 

quiescent and activated adult V-SVZ NSCs, we identified the miR-17~92 cluster as highly 

upregulated in activated stem cells in comparison to their quiescent counterparts. Conditional 

deletion of miR-17~92 in FACS-purified adult NSCs reduced NSC proliferation in vitro. In 

vivo, miR-17~92 deletion in NSCs decreased NSC activation, proliferation, and neurogenesis. 

Unexpectedly, it also led to increased oligodendrogenesis in the V-SVZ, corpus callosum and 

septum, due to an expansion of OLIG2+ transit-amplifying cells (TACs). Finally, bioinformatic 

analysis of predicted miR-17~92 targets upregulated in qNSCs versus aNSCs identified S1pr1 

and Pdgfrb  as promising potential miR-17~92 targets for stem cell activation. In addition, 

pathway analysis unveiled a gene category related to oligodendrogenesis among the gene 

categories enriched for miR-17~92 targets. We validated Pdgfrα, a key regulator of 

oligodendrocyte generation, as a miR-17~92 target by luciferase assay and in vivo analysis. 

Together, these data uncover multiple functions of the miR-17~92 cluster in adult NSC 

activation and proliferation, and in the regulation of the balance between neurogenesis and 

oligodendrogenesis from TACs. 
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Abbreviations 
 
4OHT: hydroxytamoxifen 

aNSC: activated neural stem cell 

BrdU: 5-bromo-2'-deoxyuridine 

CC: corpus callosum 

CDS: coding sequence  

cKO: conditional knock-out 

CSF: cerebrospinal fluid 

Dpi: days post injection 

ECM: extracellular matrix  

ELCS: envelope-limited chromatin sheets 

FACS: Fluorescence Activated Cell Sorting 

GN: granule neuron  

IHC: immunohistochemistry 

LR: label-retaining 

LVCP: lateral ventricle choroid plexus  

miR or miRNA: microRNA 

MVB: multivesicular bodies 

NB: neuroblast 

NE: neuroepithelial cells  

NSC: neural stem cell 

OB: olfactory bulb 

OL: oligodendrocyte 

OPC: oligodendrocyte progenitor cell 

OPP: O-propargyl-puromycin 

PGN: periglomerular neuron 

POMC: proopiomelanocortin 

qNSC: quiescent neural stem cell 

qPCR: quantitative PCR 

RGC: radial glia cell 

RMS: rostral migratory stream 

SC: stem cell 

 

 

SG: stress granules 

SGZ: subgranular zone 

TAC: transit-amplifying cell 

TF: transcription factor 

TGN: trans-Golgi network  

Tmx: tamoxifen 

Tom: Tomato 

UTR: untranslated region 

V-SVZ: ventricular-subventricular zone 
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Chapter 1: Introduction 

 

1. ADULT NEURAL STEM CELLS 

Stem cells (SCs) are a special population of undifferentiated cells that are able to self-

renew, that is to make identical copies of themselves over time, and to generate several distinct 

cell types with characteristic morphologies and specialized functions. Most adult organs retain 

stem cells from embryonic development. Their primary function is the maintenance of tissue 

homeostasis by replacing cells that are lost owing to tissue turnover or injury. In most adult 

tissues, adult stem cells reside within specialized microenvironments, referred to as ‘niches’, 

that provide support and a continuous source of external cues to both SCs and their progeny. 

Frequently, SCs give rise to intermediate precursors or progenitors, that undergo several rounds 

of divisions before differentiating into mature tissue cell types (reviewed in Goodell et al., 

2015). 

 

1.1 Brief history of the identification of adult neural stem cells 

For a long time the adult brain was considered fixed and incapable of regeneration as 

no mitosis was convincingly shown in neurons. It was widely assumed that the adult brain only 

contained progenitors to generate glial cells. The first indication of adult neurogenesis was 

provided in the 1960s by Joseph Altman who showed the integration of newly-generated cells 

labeled by radioactive thymidine in the hippocampus, olfactory bulb and cortex of the adult rat 

brain (Altman and Das, 1965). A decade later, Michael Kaplan demonstrated that these adult-

generated cells were neurons by reproducing Altman’s experiments coupling the 

autoradiographic technique to electron microscopy. Newly-generated neurons are able to 

functionally integrate into neuronal circuits as shown by studies in songbirds led by the 

laboratory of Fernando Nottebohm (Paton and Nottebohm, 1984). Despite the increasing 

number of reports describing the existence of adult neurogenesis in several species including 

fish, reptiles, birds and rodents (reviewed in Grandel et al., 2013 and Augusto-Oliveira et al., 

2019), the precise source of adult-born neurons remained long unknown. In the 1990s, 

Reynolds and Weiss showed that stem cells could be isolated from the adult mammalian brain 

and cultured as free-floating clusters named neurospheres (Reynolds and Weiss, 1992). 

However, it was only a few years later that adult neural stem cells in the ventricular-

subventricular zone (V-SVZ) and subgranular zone (SGZ) were surprisingly found to be radial 

cells displaying astroglial properties (Doetsch et al., 1999a; Seri et al., 2001). 
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1.2 Adult V-SVZ neural stem cells and their lineages 

In the adult mouse brain, the ventricular-subventricular zone (V-SVZ), lining the lateral 

ventricles, is the largest germinal niche where neural stem cells (NSCs) lie. The V-SVZ consists 

of a thin layer of dividing cells at the interface between the ventricular surface, composed of 

multiciliated ependymal cells, and the striatum. In the V-SVZ, NSCs, also called B1 cells, 

display radial-like morphology reminiscent of embryonic radial glia cells (RGCs) and exhibit 

hallmark ultrastructural and molecular features of astrocytes, including expression of Glial 

Fibrillary Acidic Protein (GFAP), Glutamate Aspartate Transporter (GLAST), and Brain Lipid-

Binding Protein (BLBP). Morphologically, B1 cells span throughout the V-SVZ thickness, 

contacting the cerebrospinal fluid (CSF) at the center of pinwheel structures made by 

ependymal cells via a small apical process containing a primary cilium, and extending a long 

basal process ending on a planar vascular plexus at the interface with the striatum (Chaker et 

al., 2016) (Figure 1.1).  
 

 
 

Figure 1.1. [On the left] Schema of mouse brain coronal section showing the lateral V-SVZ in light blue. The 

blow-up image shows the cytoarchitecture of the V-SVZ niche composed of ependymal cells (beige, brown and 

peach), B1 cells (blue), transit amplifying cells (green), neuroblasts (red) and blood vessels (orange), among other 

cell types. [On the right] Radial stem cell (Prominin-mCherry reporter, red) sending a long basal process 

terminating on blood vessels (laminin, blue). Images adapted from Mirzadeh et al., Cell Stem Cell (2008) and 

Codega et al., Neuron (2014). 

 

Adult NSCs enter quiescence (qNSCs) in mid and late embryogenesis and are actively 

maintained in a dormant state until they become activated postnatally (Fuentealba et al., 2015; 

Furutachi et al., 2015; Yuzwa et al., 2017). Like a subpopulation of RGCs, qNSCs display a 
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unique nuclear compartment containing envelope-limited chromatin sheets (ELCS), which are 

invaginations of the nuclear envelope enriched in heterochromatin domains related to 

quiescence (Cebrián-Silla et al., 2017). Upon activation, NSCs upregulate epidermal growth 

factor receptor (EGFR) and Nestin (Doetsch et al., 2002; Pastrana et al, 2009; Codega et al. 

2014) and enter cell cycle. Activated NSCs (aNSCs) divide once before giving rise to transit-

amplyfing cells (TACs, also knowns as C cells) (Ponti et al., 2013). Recently, Obernier et al. 

demonstrated that the majority of GFAP+ V-SVZ NSCs divide symmetrically, with about 20% 

of NSCs undergoing symmetric self-renewing divisions to give rise to two stem cells and ~80% 

symmetric differentiative consuming divisions to generate TACs (Obernier et al., 2018). TACs, 

in turn, undergo three to four rounds of symmetric divisions to expand the progenitor pool 

before giving rise to their progeny (Costa et al., 2011; Ponti et al., 2013). TACs do not express 

Gfap and are frequently identified by the expression of Egfr, Ascl1 (Achaete-Scute Family 

BHLH Transcription Factor 1, also known as Mash1) and Dlx2 (Distal-Less Homeobox 2). 

Together with dividing NSCs, TACs are tightly apposed to SVZ blood vessels and contact the 

vasculature at sites that lack astrocyte endfeet and pericyte coverage, a modification of the 

blood-brain barrier unique to the SVZ (Tavazoie et al., 2008). TACs predominantly give rise to 

young neurons called neuroblasts (NBs, also known as A cells). NBs retain Dlx2 expression 

and exhibit a migratory phenotype. Doublecortin (DCX) (Gleeson et al., 1999; Nacher et al., 

2001; Garcia et al., 2004), CD24 (Calaora et al., 1996), PSA-NCAM (Polysialylated-neural cell 

adhesion molecule) and TuJ1 (also called Beta-III tubulin, Doetsch et al., 1997) are among the 

markers these cells express. In young adult mice, B1 cells produce ∼10,000 neuroblasts every 

day (Lois et al., 1996). These neuroblasts travel several millimeters towards the olfactory bulb 

(OB), moving along one another in a particular form of tangential migration known as chain 

migration. Networks of neuroblast chains, ensheathed by the processes of GFAP+ cells (Lois et 

al., 1996; Wichterle et al., 1997) then converge rostrally, forming the rostral migratory stream 

(RMS) at the anterior V-SVZ (Doetsch and Alvarez-Buylla, 1996). Once they reach the OB, 

individual NBs leave the chains and migrate radially to reach different layers of the OB. The 

vast majority of adult-born neurons differentiate into granule neurons (GNs) (~94%), while the 

remainder become periglomerular neurons (PGNs) (~4%) or astrocytes (<2%) (reviewed in 

Lledo and Valley, 2016). However, only a subset of newly generated neurons integrates into 

already established olfactory circuits and survives (reviewed in Malvaut and Saghatelyan, 

2016). Adult-born OB neurons are largely GABAergic and immunopositive for the neuronal 

nuclear antigen NeuN (Mullen et al., 1992). A small subpopulation of glutamatergic 

juxtaglomerular OB neurons is also contributed by adult V-SVZ NSCs (Brill et al., 2009). The 
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normal function of these newly formed interneurons is eventually to modulate the activity of 

mitral and tufted cells, thereby optimizing perceptual learning and olfactory memory (Lazarini 

and Lledo, 2011). 

Importantly, B1 cells not only give rise to OB neurons but also generate a small number 

of glial cells, including GFAP+ astrocytes destined for the corpus callosum (CC) and RMS, and 

OLIG2+ (Oligodendrocyte Transcription Factor 2), PSA-NCAM+ and PDGFRa+ (Platelet 

Derived Growth Factor Receptor Alpha) oligodendrocyte progenitor cells (OPCs) that migrate 

into the CC, striatum and fimbria fornix to differentiate into immature CSPG4+ (Chondroitin 

Sulfate Proteoglycan 4, also known as NG2) cells that continue to divide locally or mature into 

myelinating cells (Sohn et al. 2015; Menn et al. 2006) (Figure 1.2). However, the precise 

gliogenic lineage in the V-SVZ has not yet been fully characterized. 

Adult neurogenesis occurs in most mammals, including humans. Indeed, GFAP+ NSCs 

are also described in the adult human V-SVZ. However, the lack of intermediate progenitors 

and migrating cells in this region suggests that the majority of these cells are largely quiescent 

(Sanai et al., 2004; Sanai et al., 2011; Van Den Berge et al., 2010). Moreover, retrospective 

determination of cell birth in the adult human brain through carbon dating showed that adult-

born neurons are added to the striatum but not to OB, establishing that there is no significant 

postnatal turnover in the adult human OB (reviewed in Bergmann et al., 2015). 

 

 
 
Figure 1.2. Schema depicting V-SVZ lineages and common markers used to identify distinct cell types. Whereas 

neuroblasts are known to arise from TACs, the precise V-SVZ lineage generating glial cells is still unclear.  
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1.3 Quiescent and Activated NSCs coexist in the adult V-SVZ niche 

Like stem cells in other adult tissues, NSCs in the V-SVZ exist in both quiescent and 

activated states and can be purified from their in vivo niche via Fluorescence Activated Cell 

Sorting (FACS). Indeed, despite their shared astrocytic nature, qNSCs can be separated from 

aNSCs and other brain astrocytes based on the expression of EGFR and CD133 (Prominin), 

respectively (Codega et al., 2014). Several strategies combining different markers or transgenic 

mice to prospectively identify quiescent stem cells have been proposed, including 

hGFAP::GFP, CD133, GLAST, Hes5::GFP or LeX (Codega et al., 2014; Khatri et al., 2014; 

Mich et al., 2014; Giachino et al., 2014; Daynac et al., 2013; Daynac et al., 2016). Although 

the exact extent of overlap of these qNSC populations is unclear, they do exhibit common 

functional properties. Indeed, unlike their activated counterparts, in vivo qNSCs lack expression 

of proliferation markers, are label-retaining, survive antimitotic drug treatment like Ara-C 

infusion and are able to regenerate the lineage after depletion of actively dividing stem cells 

and TACs (Codega et al., 2014; Mich et al., 2014; Giachino et al., 2014; Daynac et al., 2013). 

Moreover, qNSCs do not express Nestin (Codega et al., 2014) and only rarely form 

neurospheres or give rise to adherent colonies as a consequence of their slowly dividing nature 

(Codega et al., 2014; Mich et al., 2014; Daynac et al., 2013).  

Transcriptionally, qNSCs are enriched in genes associated with cell-cell adhesion, 

extracellular-matrix-response as well as signaling receptors, transmembrane transporters and 

ion channels, suggesting that they actively maintain the quiescent state in response to signals 

from the microenvironment. By contrast, aNSCs are highly enriched in the gene categories of 

cell cycle and DNA repair (Codega et al., 2014). An increasing number of single cell analyses 

of V-SVZ cells has confirmed the existence of populations of qNSCs and aNSCs (Llorens-

Bobadilla et al., 2015; Dulken et al., 2017; Basak et al., 2017; Leeman et al., 2018, Mizrak et 

al., 2019). Despite differences in the choice of markers to FACS-purify V-SVZ cells and in the 

RNA sequencing protocols, these studies unveil a continuum of single cell profiles spanning 

from quiescence to activation, proliferation and differentiation. In addition to the 

aforementioned gene categories, qNSCs and aNSCs were also found to differ in their energy 

metabolism and protein synthesis rate. Indeed, as NSCs transition from quiescence to 

activation, they switch from glycolysis to oxidative phosphorylation and upregulate genes for 

protein synthesis and ribosomal biogenesis such as Rpl32 (Ribosomal Protein L32) (Llorens-

Bobadilla et al., 2015). Importantly, the increased levels of protein synthesis occurring upon 

activation of qNSCs has been functionally validated by incorporation of O-propargyl-

puromycin (OPP) into nascent proteins in primary sorted V-SVZ cells (Llorens-Bobadilla et 
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al., 2015; Baser et al., 2019). Pseudotime analyses revealed that the expression of some 

transcription factors associated with neuronal differentiation, like Dlx1 and Dlx2, already 

begins in some mitotic aNSCs suggesting that some neuronal programs might be initiated early 

in the lineage to prime NSCs for differentiation (Basak et al., 2018). However, unlike cell cycle-

related genes, which exhibit a robust coregulation along the pseudotime and are able to clearly 

separate dividing and non-dividing cell types, changes in differentiation markers occur at 

different intermediate points, which argue against a single molecular switch of differentiation 

(Basak et al., 2018). Interestingly, intermediate states or subpopulations of qNSCs and aNSCs 

along the NSC-to-neuron differentiation axis were also identified (Llorens-Bobadilla et al., 

2015; Dulken et al., 2017). For instance, qNSCs were found in deep dormant (q1) and primed 

(q2) states, with primed qNSCs displaying slightly higher ribosomal activity and lower glial 

marker expression than dormant stem cells, but still lacking cell cycle markers (Figure 1.3). 

Interestingly, primed qNSCs were shown to increase their proportion in response to ischemic 

brain injury (Llorens-Bobadilla et al., 2015). Single cell analyses also identified distinct 

subpopulations of aNSCs [two aNSCs (Llorens-Bobadilla et al., 2015) and three aNSCs 

(Dulken et al., 2017)] that, along the NSC-to-neuron differentiation trajectory, progressively 

down-regulate glial-associated genes and up-regulate mitosis-related genes as well as early 

markers of neurogenesis. 
 

 
 

Figure 1.3. Molecular changes upon stem cell activation. Top: Schema of quiescent (left), primed-quiescent 

(middle), and activated (right) adult V-SVZ NSCs, located between the ependymal cell layer (E) lining the lateral 



Chapter 1  Introduction 

 7 

ventricle (LV), and the vascular plexus (BV). Summary of transcriptome data of purified qNSCs and aNSCs at the 

population and single cell level. EGFR, epidermal growth factor receptor; GPCR, G-protein coupled receptor; 

NSC, neural stem cell. From Chaker et al., WIREs Developmental Biology (2016). 

 

Recently, the differential preference of qNSCs and aNSCs for protein metabolism has 

functionally been investigated. Indeed, whereas aNSCs showed a high proteasome activity, 

qNSCs accumulated protein aggregates within large lysosomes over time. Interestingly, by 

enhancing lysosomal activity, qNSCs were shown to ameliorate protein aggregate clearance 

and to increase their ability to activate. Thus, the decline in NSC activation occurring during 

aging appears to be related, in part, to a progressively more impaired lysosome activity (Leeman 

et al., 2018).  

 

1.4 Adult V-SVZ NSCs exhibit extensive heterogeneity at multiple levels 

The V-SVZ extends along the lateral ventricles which are delimited by the lateral wall, 

adjacent to the striatum, the septal wall, adjacent to the septum and the roof, underlying the 

corpus callosum (Figure 1.4). Recent work has increasingly shown that NSCs in the adult V-

SVZ are not a homogeneous population but rather exhibit heterogeneity at multiple levels. In 

this section, I will focus on the heterogeneity that NSCs display with respect to their 

developmental origin, morphology, regional position and response to environmental cues. 

 

 
 

Figure 1.4. Schematic representation of the lateral ventricle walls. Septal wall in green, lateral wall in orange, roof 

in purple and corpus callosum in white. Ctx: cortex, cc: corpus callosum, LV: lateral ventricle, Sp: septum, Str: 

striatum. 
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1.4.1 Developmental origin of adult neural stem cells 

During embryonic development, neuroepithelial cells (NE), which are the first stem 

cells appearing in the brain, give rise to radial glial cells (RGCs). Although a linear NSC lineage 

spanning from NE to RGC to B1 cell astrocyte had been suggested, it remained long unclear 

whether B1 cells were the end product of such lineage or if they diverged from other RGCs 

during development. By lineage tracing of individual embryonic progenitors, B1 cells were 

recently shown to arise from RGC subpopulations that diverged from other RGCs as early as 

E11.5 (embryonic day 11.5) and entered quiescence during mid-embryonic development 

(between E13.5 and 15.5) (Fuentealba et al., 2015; Furutachi et al., 2015). These pre-B1 cells 

upregulated the negative cell cycle regulator p57kip2 (Cdkn1c, Cyclin Dependent Kinase 

Inhibitor 1C) and remained largely quiescent until they became activated postnatally (Furutachi 

et al., 2015). More recently, another study based on single cell transcriptional profiling of only 

cortical forebrain cells identified a subpopulation of GFAP-expressing RGCs acquiring the 

transcriptomic signature of quiescent B1 cells during late embryogenesis (around E17.5) 

(Yuzwa et al., 2017). Although it remains unclear whether the RGC subsets identified by these 

two works are distinct subpopulations, these studies suggest that a first layer of V-SVZ 

heterogeneity might already be present at the developmental time at which NSCs are generated.   

 

1.4.2 Morphology: not all radial NSCs are the same 

Adult V-SVZ NSCs are a special subset of radial astrocytes extending a small apical 

process to contact the ventricular surface and sending a long basal process frequently ending 

on blood vessels. Although NSCs share a radial shape, they can be found in different 

morphologies that allow them to enter in contact with distinct components of the V-SVZ niche. 

Indeed, radial NSCs with a process either perpendicular or parallel to the ventricle have been 

described to exist in V-SVZ and to be differentially distributed along the dorso-ventral aspect 

of the V-SVZ as well as across the lateral and septal walls (Shen et al., 2008; Delgado et al., 

bioRxiv 2019). However, whether cells with distinct radial morphologies are functionally 

different is still unknown.   

 

1.4.3 The adult V-SVZ is a mosaic of regionally distinct neural stem cells  

It is widely recognized that the adult V-SVZ is highly regionalized, being composed of 

a mosaic of NSCs located in spatially segregated domains characterized by the expression of 

specific transcription factors (TFs). Such domains, including microdomains, have been shown 

to arise from discrete germinal regions in the developing forebrain appearing as early as E11.5 
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before NSCs are set aside (Fuentealba et al., 2015). Indeed, Cre-loxP fate mapping approaches 

using the Cre recombinase under the promoter of regionally expressed TFs have revealed that 

the pallium, lateral/medial ganglionic eminences and septum of the embryo give rise to the 

dorsal, lateral and medial walls of the adult V-SVZ, respectively (Young et al., 2007; Fiorelli 

et al., 2015).  

 

 
 

Figure 1.5. Regional organization of V–SVZ NSCs. Oblique view of the adult mouse brain (bottom) with 

colorized lateral ventricles to indicate the regional organization of this major neurogenic niche. Cells born in 

different subregions of the adult V–SVZ migrate along the rostral migratory stream (RMS) into the olfactory bulb 

to give rise to unique types of interneurons. Abbreviations: CalB, calbindin; CalR, calretinin; TH, tyrosine 

hydroxylase; PGC, periglomerular cell; GC, granule cell; GL, glomerular layer; EPL, external plexiform layer; 

ML, mitral cell layer; IPL, internal plexiform layer; GRL, granular layer. From Lim and Alvarez-Buylla, Trends 

in Neurosciences (2014) 
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Some of such regionally expressed TFs in the embryo are maintained by postnatal and adult 

NSCs. For instance, pallial regulators (like Emx1, Pax6, Tbr1/2 and Neurog2) are confined to 

the dorsal-most regions of the V-SVZ, whereas subpallial markers (like Dlx1/2/5, Gsh1/2, 

Ascl1, Nkx2.1 and Nkx6.2) and the septal markers (like Zic1/3) are restricted more ventrally to 

the lateral and medial regions of the V-SVZ, respectively (reviewed in Azim et al., 2016). Thus, 

adult NSCs retain their positional information from embryonic development into adulthood 

likely in a TF code. 

Depending on their location along the anterior-posterior and dorsal-ventral axes of the 

lateral wall, as well as along the most anterior-ventral tip of the medial wall of the lateral 

ventricles, NSCs give rise to specific subtypes of morphologically and molecularly distinct 

granule neurons (GNs) and periglomerular neurons (PGNs). Indeed, NSCs in the dorsal V-SVZ 

of the lateral wall produce mostly superficial GNs and dopaminergic PGNs, whereas ventral 

NSCs generate deep GNs and calbindin (CalB+) PGNs. In contrast, calretinin (CalR+) GNs and 

CalR+ PGCs are derived from medial V-SVZ NSCs (Merkle et al., 2007). In addition to these 

abundant OB subtypes, NSCs located in very restricted subdomains of the anterior V–SVZ have 

been shown to generate small populations of novel OB interneuron subtypes, including Type 

1-4 neurons, that differentiate near the mitral cell layer (Merkle et al., 2014). Finally, some 

glutamatergic juxtaglomerular interneurons are also contributed by dorsal Tbr2 (also called 

Eomes)- and Neurog2-expressing progenitors (Brill et al., 2009). Thus, the adult V–SVZ is 

divided into subregions that are specialized for the production of distinct types of OB 

interneurons. Interestingly, this regional specification of NSCs is in large part cell-intrinsic as 

suggested by heterotopic grafting experiments. Indeed, transplanting ventral NSCs into the 

dorsal V-SVZ or vice versa is not sufficient to change the OB interneuron subtype they generate 

probably because of early established epigenetic barriers related to their physical location 

(Merkle et al., 2007) (Figure 1.5).  

Besides OB interneurons, adult V-SVZ NSCs also give rise to OLIG2+ and PDGFRa+ 

OPCs, that differentiate into oligodendrocytes (OLs) in different white matter regions, through 

Olig2-expressing TACs (Menn et al., 2006). Under normal conditions, the production of OLs 

in the SVZ is modest. However, injury paradigms including demyelinating lesions in the 

neighboring white matter can significantly increase the numbers of OLs generated by V-SVZ 

progenitors (Nait-Oumesmar et al., 1999; Picard-Riera et al., 2002; Menn et al, 2006; Samanta 

et al., 2015). Based on in vitro time-lapse imaging, it has been shown that the neurogenic and 

oligodendrogenic lineages are generated by distinct subsets of NSCs (Ortega et al., 2013). 

Although the precise identity of these NSC subpopulations in vivo remains unknown, several 



Chapter 1  Introduction 

 11 

studies have reported that V-SVZ-derived OLs mostly come from dorsal NSCs in a sonic 

hedgehog (SHH)- and WNT-dependent fashion, and settle in the corpus callosum in both the 

postnatal (Azim et al., 2014; Tong et al., 2015) and adult brain (Menn et al., 2006; Ortega et 

al., 2013). Thus, dorsal NSCs represent a distinct source of OLs from the parenchymal OPCs, 

which are found throughout the brain and generated during development. However, despite the 

different origin and distribution of parenchymal and SVZ-derived OPCs, with the latter 

restricted to the dorsal V-SVZ, these progenitors share expression of the same early 

oligodendrocyte lineage markers, including OLIG2, PDGFRa and NG2. In addition to SHH 

and WNT- pathways, infusion of EGF ligand at high doses was also shown to exhibit a pro-

oligodendrogenesis effect on V-SVZ NSCs both during early postnatal development and 

adulthood (Aguirre et al., 2005; Gonzalez-Perez et al., 2010). Similarly, selective activation of 

the PI3K/Akt signaling by intraventricular infusions of pharmacological active compounds 

resulted in the targeted activation of dorsal NSCs to generate oligodendrocytes in vivo (Azim 

et al., 2017). Interestingly, Delgado et al. recently identified a novel population of V-SVZ-

derived intraventricular OPCs bathed by the cerebrospinal fluid (CSF) and in contact with 

supraependymal axons from distant brain regions. Although their characterization has just 

begun, their strategic position within the ventricles suggests that signals in cerebrospinal fluid 

as well as from other brain areas might be dynamically sensed by these cells and modulate their 

behavior (Delgado et al., bioRxiv 2019).  

Finally, under normal conditions, adult NSCs also produce GFAP+ astrocytes destined 

for the CC and RMS (Sohn et al., 2015). However, the precise location of astrogenic NSCs is 

still unclear. Recently, the septal V-SVZ has been proposed to harbor astrogenic NSCs. Indeed, 

the release of NSCs from quiescence through deletion of Platelet-Derived Growth Factor 

Receptor beta (PDGFRb) was found to increase the number of a newly described cell type in 

the septal wall of the V-SVZ, named ‘gorditas’, characterized by a rounded, plump soma with 

short small GFAP+ processes, that give rise to astrocytes in the septum (Delgado et al., bioRxiv 

2019). 

 

1.4.4 Adult NSCs differentially sense and respond to distinct environmental cues 

NSCs are not isolated but reside within a specialized microenvironment, referred to as 

‘niche’, that regulates their behavior. In the V-SVZ, NSCs receive a wide range of extrinsic 

cues from several sources including cell-extracellular matrix (ECM) and cell–cell interactions 

as well as signaling molecules coming from immediate NSC neighbors, from the lateral 

ventricle choroid plexus (LVCP) which produces cerebrospinal fluid (CSF), from the 
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vasculature, and from local and distant neuronal innervation (reviewed in Obernier and 

Alvarez-Buylla, 2019). All these cues regionally pattern the V-SVZ niche and dynamically 

change in response to physiological states. Interestingly, it is emerging that depending on their 

morphology, location as well as receptor repertoire, NSCs can differentially sense and respond 

to such signals. For instance, hypothalamic proopiomelanocortin (POMC) neurons, which 

regulate feeding behavior, selectively modulate the proliferation of a specific subset of NSCs 

located in the anterior-ventral part of the V-SVZ (Paul et al., 2017). Thus, the heterogeneity 

existing in the V-SVZ is not only a function of the intrinsically-determined diversity of NSCs 

but also relies on a fine regulation exerted by niche-derived external cues.  

 

2. MICRORNAs (miRNAs): KEY SCULPTORS OF CELL TRANSCRIPTOMES 

miRNAs are a class of small non-coding RNA molecules, around 22 nucleotides in 

length, that play critical roles in regulating gene expression. Since their serendipitous discovery 

in nematodes over 20 years ago (Lee et al., 1993; Wightman et al., 1993), thousands of miRNA 

genes have been documented in nearly all eukaryotic organisms (Griffiths-Jones, 2004; 

Kozomara and Griffiths-Jones, 2014). miRNAs are essential for normal animal development 

and are implicated in a variety of biological processes including cell proliferation, 

differentiation, apoptosis, and immune responses (Tüfekci et al., 2014). Importantly, 

deregulation of miRNA function is associated with numerous diseases, particularly cancer (Lin 

et al., 2015; Bracken et al., 2016).  

miRNAs localize and function in multiple subcellular compartments such as the nucleus 

(Miao et al., 2016; Xiao et al., 2017), the rough endoplasmic reticulum (Barman et al., 2015), 

processing (P)-bodies (Nishi et al., 2015), stress granules (SG) (Detzer et al., 2011), the trans-

Golgi network (TGN), early/late endosomes (Bose et al., 2017), multivesicular bodies (MVB), 

lysosomes (Gibbings et al., 2009) and mitochondria (Barrey et al., 2011; Zhang et al., 2014). 

However, miRNAs can also be released into extracellular fluids either associated with proteins, 

especially AGO2 (Gallo et al., 2012; Turchinovic et al., 2011) or within vesicles such as 

exosomes, microvesicles, and apoptotic bodies (Iftikhar et al., 2016; Gallo et al., 2012). Thus, 

miRNAs can be delivered and modulate the activity of neighbor or distant target cells, 

displaying in this regard a hormone-like function.  

 

2.1 Biogenesis and mechanisms of action of miRNAs 

The biogenesis of the vast majority of miRNAs begins with the transcription, mediated 

by RNA polymerase II/III, of a long primary transcript, called ‘pri-miRNA’, able to fold back 
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into one or several stem-loop structures as in the case of miRNA clusters. Like protein-coding 

transcripts, the pri-miRNA is capped and polyadenylated. Along its biogenetic pathway, the 

pri-miRNA undergoes two sequential processing events. First, while in the nucleus, the pri-

miRNA is cropped into a short hairpin, known as ‘pre-miRNA’, by the microprocessor complex 

containing the RNAse III Drosha and the RNA binding protein DiGeorge Syndrome Critical 

Region 8 (DGCR8) among other factors. Second, once exported into the cytoplasm, mostly 

through Exportin 5, the pre-miRNA is cleaved by the RNase III Dicer that removes the terminal 

loop to generate the mature miRNA duplex.  
 

 
 

Figure 1.6. Canonical miRNA biogenesis pathway and mechanisms of mRNA silencing. From miRNA 

Maturation, C. Arenz, Humana Press (2014). 
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The duplex comprises a 5p strand, arising from the 5’ arm of the pre-miRNA hairpin, 

and a 3p strand. Although both molecules can be potentially loaded into Argonaute (AGO) 

proteins, the preference between 5p and 3p miRNA is given to the strand possessing the less 

stable paired 5’ end or an A or U as 5’-terminal nucleotide (Figure 1.6). In addition to the 

canonical pathway described above, alternative biogenesis routes independent of 

Drosha/DGCR8 or Dicer have been found for mirtrons and 7-methylguanine capped pre-

miRNA as well as shRNA pre-miRNA, respectively (reviewed in Gebert and MacRae, 2019).  

Regardless of the biogenesis pathway used, the function of the AGO loaded miRNA is to guide 

an effector riboprotein complex called ‘RISC’ (RNA-induced silencing complex) to the target 

transcripts, via full or partial sequence complementarity. For this reason, the RISC loaded 

miRNA is also called ‘guide miRNA’ in contrast to the discarded one defined ‘passenger 

miRNA’ (reviewed in Gebert and MacRae, 2019).  

In animals, miRNA targets are dictated by the seed sequence, a small region extending 

from nucleotide 2 to 8 at the 5’ end of the guide miRNA. In most cases, miRNAs interact with 

the 3’ untranslated region (3’UTR) of multiple target transcripts to induce mRNA degradation 

and translational repression. However, miRNA binding sites have also been detected in other 

mRNA regions including the 5’ UTR and coding sequence, as well as within promoter regions. 

Interestingly, while the targeting of mRNA transcript regions under normal conditions has 

silencing effects, the interaction of miRNAs with gene promoters can induce transcription 

(reviewed in O’Brien et al., 2018). 

 

2.2 miRNAs in adult V-SVZ NSCs and their progeny 

An increasing number of miRNAs have been found to regulate adult NSCs and their 

progeny in vivo and in culture. Indeed, miRNAs have been implicated in multiple steps of OB 

neurogenesis, from stem cell self-renewal and proliferation to fate specification and functional 

integration of new neurons. For instance, miR-137 and miR-184, which are expressed in the 

adult V-SVZ, sustained NSC proliferation and inhibited neuronal differentiation by repressing 

the NSC fate-regulator Numblike (Numbl) and the polycomb methyltransferase Ezh2, 

respectively (Szulwach et al., 2010; Liu et al., 2010). Similarly, the miR-106b-25 cluster 

promoted the proliferation of primary cultured NSCs isolated from the adult forebrain. 

However, it also enhanced neurogenesis in differentiation conditions (Brett et al., 2011). miR-

124, the most abundant miRNA in the adult brain, was found to promote the temporal 

progression of neurogenesis in the adult V-SVZ by repressing the expression of the 

transcription factor Sox9 in neuroblasts (Cheng et al., 2009). In a similar manner, the miRNAs 
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let-7b and miR-9, inhibited NSC proliferation and triggered neuronal differentiation by 

suppressing Tlx and the oncogenic chromatin regulator Hmga2 (Zhao et al., 2010; Zhao et al., 

2009). Moreover, since TLX protein can repress miR-9 expression, the negative feedback 

regulatory loop between mir-9 and TLX further controlled the balance between proliferation 

and differentiation during neurogenesis. In later stages of neurogenesis, miR-125b and miR-

132 regulated the maturation and synaptic integration of newly-generated neurons in OB in an 

opposite manner: miR-125b by slowing the kinetics of this process likely allowing appropriate 

synapse formation and miR-132 by enhancing the synaptic integration and survival of new 

neurons. However, the targets mediating these phenotypes are still unknown (Akerblom et al., 

2014; Pathania et al., 2012) (Figure 1.7). 

 
 

 
 

Figure 1.7. Summary of miRNA functional analyses during OB neurogenesis.  

 

miRNAs have been found to contribute to the regionalization and fate specification of V-SVZ 

NSCs. For example, the expression of Pax6, which determines the generation of dopaminergic 

OB interneurons from NSCs, is regionally restricted to the dorsal V-SVZ by miR-7a. Indeed, 

whereas Pax6 mRNA is widely expressed in this germinal niche, the expression of miR-7a in 

V-SVZ progenitors follows a ventro-dorsal decreasing gradient and thus limits the appearance 

of PAX6 protein to the only dorsal domain (De Chevigny et al., 2012). miRNAs can also be 

secreted in extracellular fluids to modulate the activity of distant target cells. One example is 

the choroid plexus-derived miR-204 which was recently shown to regulate the number and 

undifferentiated state of V-SVZ qNSCs by repressing the translation of neurogenic mRNAs 

(Lepko et al., 2019).  
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Finally, miRNAs were also reported to maintain the quiescent state of adult stem cells. 

This is the case of miR-9, described in the zebrafish brain, and miR-195, miR-489, miR-497 

and miR-708, found in the mouse skeletal muscle. Interestingly, whereas miR-195, miR-489 

and miR-497 maintained the quiescent state through the suppression of cell cycle regulators, 

both miR-9 and miR-708 controlled the balance between stem cell quiescence and activation 

by modulation components of the Notch signaling (Katz et al., 2016; Sato et al., 2014; Cheung 

et al., 2012; Baghdadi et al., 2018).  

 

3. THE miR-17~92 CLUSTER: MORE THAN A MERE ONCOGENE 

miR-17~92 is one of the best-characterized miRNA clusters. It encodes six distinct 

miRNAs (-17, -18a, -19a and b, -20a, and -92a), as well as their passenger strands, that can be 

grouped into four families based on seed sequence homology. In mammals, miR-17~92 has 

two paralogs, miR-106a~363 and miR-106b~25, that likely originated through a series of 

duplication and deletion events during early vertebrate evolution (Concepcion et al., 2012). 

Whereas miR-17~92 and miR-106b~25 display similar expression patterns and are particularly 

abundant in embryonic stem cells and during embryogenesis, miR-106a~363 is generally 

expressed at lower levels (Concepcion et al., 2012) (Figure 1.8). Functionally, miR-17~92 was 

originally identified as an oncogene due to its frequent amplification in hematopoietic 

malignancies where different members of the cluster contributed to its overall oncogenic 

activity by promoting proliferation and survival of cancer cells. Its tumorigenic role was further 

demonstrated in a variety of solid tumors including lung cancer, neuroblastoma and 

medulloblastoma (Concepcion et al., 2012). In contrast to its paralogs, whose single and 

compound deletions do not result in any obvious abnormalities, miR-17~92 plays important 

roles during normal development and homeostasis, and its ablation is embryonically lethal 

(Ventura et al., 2008). Indeed, miR-17~92 is essential for normal lung and heart development, 

B cell survival as well as for axial patterning control in vertebrates (Ventura et al., 2008; Han 

et al., 2015).  

In the developing forebrain, miR-17~92 maintains asymmetric neural stem division by 

restricting the expression pattern of Tis21 (Fei et al., 2014) and modulates RGC expansion and 

transition to intermediate progenitors through repression of Pten and Tbr2 as well as the cell-

cycle regulator p21 (Bian et al., 2013; Chen et al., 2014). In addition, miR-17-92 regulates the 

neurogenic-to-gliogenic transition by promoting neurogenesis and inhibiting the acquisition of 

gliogenic competence through the silencing of p38 (Naka-Kaneda et al., 2014). Similarly, miR-

17~92 induces neurogenesis at the expense of astrocytogenesis by targeting Bmpr2 (Mao et al., 
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2014). Moreover, miR-17~92 cluster is also needed for normal spinal cord motor neuron 

patterning (Chen et al., 2011) as well as for survival of limb-innervating motor neurons (Tung 

et al., 2015). miR-17~92 also promotes proliferation of embryonic primary cultured OPCs by 

targeting Akt signaling (Budde et al., 2010), but its expression is downregulated during 

differentiation in vitro (de Faria O Jr et al., 2012). 

In the adult brain, miR-17~92 controls hippocampal neurogenesis and, thus, affects 

mood and anxiety-related behavior (Jin et al., 2016) as well as spatial memory (Pan et al., 2019). 

Furthermore, miR-17~92 expression in adult V-SVZ neural progenitors elevates following 

experimental stroke to sustain their proliferation and survival (Liu et al., 2013). However, to 

date, the role of the miR-17~92 cluster in the adult V-SVZ under normal conditions has not yet 

been elucidated. Recently, in the context of brain metastasis, astrocytes were found to secrete 

exosomes containing the most oncogenic member of the miR-17~92 cluster, miR-19a. Uptake 

of miR-19a-containing exosomes by cancer cells led to the recruitment of IBA+ myeloid cells 

to further support cancer cell proliferation and survival (Zhang et al., 2015). Thus, miR-17~92 

can potentially act in both cell-autonomous and non-autonomous manners.  

In conclusion, the miR-17~92 cluster has been implicated in different cellular processes where 

it has pleiotropic functions in a cell type and context-dependent manner. 

 

 
 

Figure 1.8. Schematics of the miR-17~92 cluster and paralogs, miR-106a~363 and miR-106b~25. miRNAs 

sharing the same seed sequence are illustrated in the same color. 
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AIMS 

 

In the adult mammalian brain, the ventricular-subventricular zone (V-SVZ) generates 

neurons and glia throughout life. In this germinal niche, neural stem cells (NSCs) coexist in 

quiescent and activated states. However, the molecular mechanisms underlying this transition 

remain elusive. miRNAs are emerging as important regulators of global cell state and NSC 

functions, and have been implicated in stem cell self-renewal and differentiation. However, 

their role in adult NSC activation is unknown. 

By miRNA profiling of FACS-purified cells of the early V-SVZ lineage, the Doetsch 

group found the miR-17~92 cluster to be significantly upregulated in activated NSCs (aNSCs) 

and transit-amplifying cells (TACs) in comparison to quiescent NSCs (qNSCs). Previous work 

in the laboratory has shown that conditional ablation of miR-17~92 cluster in FACS-purified 

aNSCs in vitro reduced their neurosphere formation and their ability to be passaged suggesting 

a potential role of the cluster in stem cell proliferation and self-renewal. In addition, in a 1-

month-chase analysis after tamoxifen (Tmx) administration to a conditional knock-out (cKO) 

mouse model in which GFAP+ astrocytes can be recombined (GFAP-CreERT2; miR-

17~92fl/fl; R26R Tomato mice), loss of miR-17~92 was found to increase the proportion of 

GFAP+ astrocytes and decrease that of MCM2+ proliferating cells, as well as reduce the 

percentage of DCX+ neuroblasts (NBs) in the V-SVZ.  

Although these results support the evidence that miR-17~92 is important for adult V-SVZ 

neurogenesis, its role in the V-SVZ niche has not yet been fully characterized. Moreover, it 

remains unclear whether the miR-17~92 cluster regulates the cell fate of V-SVZ NSCs towards 

an oligodendroglial lineage. Therefore, the major aims of my PhD thesis will be: 

 

a) To elucidate the role of the cluster in adult neural stem cell activation, proliferation and 

fate specification; 

 
b) To identify miR-17~92 targets that could mediate its function. 

 

 

 

 

 

 

 



Chapter 2                                                     miR-17~92 Regulation of Adult Neural Stem Cells 

 19 

Chapter 2: miR-17~92 Regulation of Adult Neural Stem Cells 

Introduction 

In the V-SVZ, adult NSCs exist in both quiescent and activated states. Currently, little 

is understood about the molecular pathways that regulate the adult neural stem cell switch from 

a quiescent to an activated state. 

miRNAs (miRs) are small non-coding RNAs able to rapidly sculpt cell transcriptomes 

and modulate global cell state by targeting hundreds of mRNAs simultaneously at the post-

transcriptional level. microRNAs have been implicated in stem cell differentiation and self-

renewal, as well as stem cell quiescence (Brett et al., 2011; Zhao et al., 2009; Cheung et al., 

2013). To date, the role of miRNAs in regulating the transition from quiescence to activation 

in neural stem cells has not been explored.  

Previous work in the Doetsch laboratory identified, through miRNA expression 

profiling of FACS-purified V-SVZ cells, the miR-17~92 cluster as highly upregulated in 

activated stem cells in comparison to their quiescent counterparts. Preliminary data suggested 

that miR-17~92 is important for adult V-SVZ neurogenesis. However, its role in the V-SVZ 

niche has not yet been fully characterized. 

In this chapter, I validate the expression profiling of miR-17~92 by quantitative PCR 

(qPCR) and investigate the functional role of this cluster in the V-SVZ upon conditional 

deletion of miR-17~92 in vitro and in vivo, to test whether this miRNA cluster is necessary for 

activation, proliferation and fate specification of adult neural stem cells. I also perform pathway 

analysis of computationally predicted miRNA targets expressed in FACS-purified populations 

to identify potentially relevant targets of miR-17~92 in the early NSC lineage of the adult V-

SVZ. Altogether, these analyses reveal that miR-17~92 plays pleiotropic functions in the adult 

V-SVZ. 

 

Results 

qPCR validation of miR-17~92 expression profile in the adult SVZ NSC lineage 

Quiescent (qNSCs) and activated (aNSCs) neural stem cells as well as transit amplifying 

cells (TACs) can be directly FACS-purified from the adult V-SVZ niche by combining 

fluorescently complexed EGF-ligand and antibodies against CD24 and CD133 in hGFAP::GFP 

mice, in which astrocytes express GFP under the GFAP promoter (Codega et al., 2014) (Fig. 

2.1 A). To validate the finding from the expression profiling that miR-17~92 is enriched in 

aNSCs versus qNSCs, and to determine whether individual members of the miR-17~92 cluster 

were all expressed at the same level, I performed qPCR analysis of FACS-purified qNSCs, 
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aNSCs and TACs using probes for all mature forms of the different members of the cluster. 

This analysis revealed that all members of miR-17~92 were expressed at low levels in qNSCs 

and were significantly upregulated in aNSCs and TACs over qNSCs (Fig. 2.1 B and C).  

 

 
 

Figure 2.1 qPCR validation of miR-17~92 expression profiling in the early V-SVZ lineage 

(A) left: Schema of the whole mouse brain showing the LVs (dark color); middle: schema of coronal section 

displaying the V-SVZ (light blue); right: schema of V-SVZ early lineage and markers for FACS-purification. (B) 

Schematic representation of the miR-17~92 cluster. (C) Fold change expression to bulk SVZ of miR-17~92 

members in qNSCs, aNSCs and TACs (n = 3; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, *****p < 

0.00001, unpaired two-tailed Student’s t test; mean ± SEM). 

 

Depending on the strand of the pre-miRNA harpin from which they arise, mature miRNAs are 

distinguished as guide and star (also known as passenger) forms. Analysis of the relative 

abundance of miR-17~92 guide and star forms to the housekeeping miRNA miR-16-5p 

highlighted that the guide forms of miR-19b, miR-20a and miR-92a were the most abundantly 

expressed miRNAs of the cluster in the profiled populations (Fig. 2.2 A). While both guide and 

star form of miR-17 were expressed at similar levels, the expression of all other star forms of 
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the cluster were very low as compared to the guide forms (Fig. 2.2 B) and thus unlikely to play 

a pivotal role in the control of the gene regulatory network of adult V-SVZ stem cells. 

 

 
Figure 2.2 Relative abundance of miR-17~92 guide and star members in the early V-SVZ lineage 

Relative abundance of miR-17~92 guide (A) and star (B) members in qNSCs, aNSCs and TACs (n = 3; *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001, *****p < 0.00001, unpaired two-tailed Student’s t test; mean ± SEM). 

 

miR-17~92 deletion reduces adult NSC proliferation and colony formation in vitro 

To investigate the effect of miR-17~92 deletion on NSC proliferation and self-renewal, 

we performed in vitro assays using FACS-purified NSCs from adult CAGG-CreERT2+/-; miR-

17~92fl/fl or miR-17~92+/+; R26R Tomato eGFP mice in which, upon administration of 

hydroxytamoxifen (4OHT), a ubiquitously expressed CreERT2 recombinase induces deletion 

of the miR-17~92 cluster, as well as rearrangement of the reporter locus to switch from 

expression of the tdTomato to the eGFP reporter (Fig. 2.3A). In neurosphere assays, in which 

NSCs are cultured in non-adherent conditions, the ability of NSCs to form spheres is used as a 

readout of their proliferation and self-renewal capabilities. Previous work in the lab has shown 

that conditional deletion of miR-17~92 cluster in FACS-purified aNSCs in vitro reduced their 
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neurosphere formation and their ability to be passaged suggesting a potential role of the cluster 

in stem cell proliferation and self-renewal. 
 

 
 

Figure 2.3 Conditional deletion of miR-17~92 in vitro reduces neural stem cell proliferation  

(A) Schematic of miR-17~92 recombination strategy in vitro. (B) Schematic of experimental paradigm. (C) 

Representative fluorescent images of Cre+ aNSCs 13 days after plating. Cells treated with Vehicle (Ethanol) are 

on the left, cells treated with Tamoxifen on the right. Scale bar, 100 µm. (D) Quantification of total cells per well 

at the end of cell culture. Each data point represents an independent experiment (n = 3; **p < 0.01, two-sided 

Wilcoxon rank sum test followed by Fisher's exact test; mean ± SEM). 
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To be able to assess the effect of miR-17~92 deletion on stem cell proliferation at the 

single cell level, we utilized an adherent assay. FACS-purified aNSCs were plated as single 

cells per well, exposed to tamoxifen, vehicle (ethanol) or medium for 24 hours and subsequently 

grown for 12 days under adherent conditions with EGF (Fig. 2.3 B). At the end of the culture, 

cells were fixed and stained with DAPI to visualize cell nuclei. I then quantified the number of 

cells per well in each condition. Interestingly, while control cells underwent a massive 

expansion giving rise to very large clones, miR-17~92-deleted cells exhibited very modest 

proliferation and failed to generate large colonies (Fig. 2.3 C and D). Moreover, no significant 

difference was found in the number of wells containing less than ten cells or no cells (Fig. 2.3 

C and D). Together, these results show an important function of the cluster in the proliferation 

and colony formation of adult NSCs, and suggest that miR-17~92 is not important for their 

survival at short time points. 

 

Deletion of miR-17~92 in NSCs in vivo decreases stem cell proliferation and expands 

oligodendrogenic transit amplifying cells at short time points 

To investigate the role of miR-17~92 in V-SVZ stem cells in vivo I selectively deleted 

the miR-17~92 cluster in GFAP+ NSCs. To do this, I used adult miR-17~92 floxed (GFAP-

CreERT2+/+; miR-17~92fl/fl; R26R lslTomato+/+) or control (GFAP-CreERT2+/+; miR-17~92+/+; 

R26R lslTomato+/+) mice in which administration of tamoxifen (Tmx) induces miR-17~92 

deletion and initiates tdTomato reporter expression in GFAP+ cells (Fig. 2.5 A). To study the 

effect of the deletion of cluster at short time points, I performed immunohistochemistry (IHC) 

analysis for cells at different stages of the lineage in coronal brain sections of miR-17~92 

control and deleted mice after three pulses of tamoxifen followed by a one-day chase (1 dpi) 

(Fig. 2.4, Fig. 2.5 B).  
 

 
 

Figure 2.4 Summary of markers of the adult V-SVZ neural stem cell lineage 

(A) Schema of mouse brain coronal section showing brain regions relevant to this work. (B) Schematic of 

neurogenic and oligodendrogenic NSC lineages showing cell markers. Ctx: cortex, cc: corpus callosum, LV: 

lateral ventricle, Sp: septum, Str: striatum. 
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I then quantified Tomato+ (Tom+) cells along the entire dorsoventral extent of the V-SVZ, in 

the lateral and septal walls, of four different rostro-caudal levels. 

 

 
 

Figure 2.5 Deletion of miR-17~92 in NSCs in vivo reduces stem cell proliferation at short time points  

(A) Schematic of miR-17~92 recombination strategy in vivo. (B) Schematic of experimental paradigm. (C-F) 

Representative confocal images and related quantification. miR-17~92 deletion reduces the percentage of Tom+ 

GFAP+ MCM2+ dividing NSCs (C) and Tom+ GFAP+ EGFR+ KI67+ cycling aNSCs (D). Loss of miR-17~92 does 

not change the proportion of total TACs (E). (C-E) Scale bar, 5 µm. (n = 3; *p < 0.05, two-tailed unpaired Student’s 

t test; mean ± SEM). 

 

In the V-SVZ, qNSCs express the astrocytic marker GFAP and upregulate EGFR upon 

activation. aNSCs, in turn, give rise to TACs which retain EGFR expression but lose that of 
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GFAP. To discriminate qNSCs, aNSCs and TACs, I therefore immunostained with antibodies 

against the early lineage markers GFAP and EGFR, whereas to assess changes in stem cell 

proliferation I immunostained with antibodies against the intrinsic proliferation markers MCM2 

and KI67. 

 

 

Figure 2.6 Loss of miR-17~92 in NSCs in vivo increases OLIG2+ TACs and NG2+ OPCs at short time points 

(A, B, F) Representative confocal images showing OLIG2+ TACs and NG2+ OPCs in the intermediate (A, F) and 

dorsal (B) regions of the V-SVZ. (A-D) miR-17~92 deletion increases the percentage of Tom+ OLIG2+ EGFR+ 

and Tom+ OLIG2+ EGFR- cells. (C) Schema of the V-SVZ showing the location of the regions (dotted boxes) of 

images in A and B. (E) Deletion of miR-17~92 increases the proportion of oligodendrogenic TACs. (F-G) miR-

17~92 loss increases the percentage of Tom+ NG2+ EGFR- cells. Scale bar, 20 µm. (n = 3; *p < 0.05, **p<0.01, 

two-tailed unpaired Student’s t test; mean ± SEM). CC: corpus callosum, DLW: dorsolateral wedge, Sp: septum 

and Str: striatum. 
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At 1 dpi, deletion of the cluster reduced the proportion of dividing NSCs (GFAP+ 

MCM2+) and activated NSCs (GFAP+ EGFR+) over total Tomato+ (Tom) cells (Fig. 2.5 C and 

D). The decrease in aNSCs was due to a selective loss of cycling aNSCs suggesting that the 

miR-17~92 cluster plays a critical function in stem cell proliferation in vivo. 

No change was observed in the proportion of total Tom+ TACs (GFAP- EGFR+) (Fig. 2.5 E) or 

neuroblasts (NBs, DCX+, data not shown) at short time points after miR-17~92 deletion.  
 

 
Figure 2.7 Summary of cellular markers of the oligodendrocyte lineage. Image modified from Nishiyama et 

al., Nature Reviews Neuroscience (2009). 

 

Beside NBs, V-SVZ NSCs also generate a small number of oligodendrocytes (Chaker et al., 

2016). To assess a potential function of the miR-17~92 cluster in cell fate specification, I 

immunostained miR-17~92 control and deleted mice for the oligodendrocyte lineage marker 

OLIG2 (Fig. 2.7). Strikingly, miR-17~92 loss increased the percentage of Tom+ OLIG2+ cells, 

the majority of which co-expressed EGFR, over total Tom+ cells (Fig. 2.6 A-D).  

OLIG2+ cells were distributed throughout the V-SVZ niche but were especially enriched in the 

intermediate and dorsal regions which are emerging as the most oligodendrogenic aspects of 

the adult V-SVZ (Ortega et al., 2013; Delgado et al., bioRxiv 2019) (Fig. 2.6 C). Almost all 

Tom+ OLIG2+ EGFR+ were negative for GFAP. As such deletion of the cluster significantly 

shifted the pool of recombined TACs towards more oligodendrogenic progenitors and fewer 

neurogenic progenitors (Fig. 2.6 E). Interestingly, miR-17~92 loss also increased the 

percentage of V-SVZ Tom+ NG2+ cells, all of which were EGFR- (Fig. 2.6 F-G), which likely 

correspond to the Tom+ OLIG2+ EGFR- cells that were also increased following miR-17~92 

deletion (Fig. 2.6 D). Altogether, these data show an important function of the miR-17~92 

cluster in cell proliferation of adult NSCs and suggest a potential role in cell specification. 

 

miR-17~92 deletion in vivo reduces NSC activation and neurogenesis at long time points 

To study the effect of miR-17~92 deletion following a longer time period, miR-17~92 

control and floxed mice were injected with Tmx once a day for three consecutive days and 
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chased for thirty days (30 dpi). To identify possible label-retaining (LR) cells in the V-SVZ, 5-

bromo-2'-deoxyuridine (BrdU) was co-administered on the last two days of Tmx injections 

(Fig. 2.8 A). 

Within the Tom+ population, deletion of the cluster increased the proportion of Tom+ qNSCs 

(GFAP+ EGFR-) and reduced the percentage of Tom+ aNSCs (GFAP+ EGFR+) suggesting a 

defect in stem cell activation at long time points following miR-17~92 deletion (Fig. 2.8 B and 

C). Loss of the cluster also decreased the proportion of dividing aNSCs (based on KI67) 

indicating a reduced stem cell proliferation when miR-17~92 is deleted (Fig. 2.8 B and C). In 

support of this, IHC analysis of Tom+ BrdU-LRCs distribution in the V-SVZ revealed the 

appearance of LR-aNSCs (Tom+ BrdU+ GFAP+ EGFR+) only in mice that had lost miR-17~92 

expression (Fig. 2.8 D). Thus, deletion of the miR-17~92 cluster in NSCs not only decreases 

their proliferation but may also impair their activation. 

Unexpectedly, no change was found in the proportion of total Tom+ TACs at long time points 

after miR-17~92 deletion (data not shown). However, I still observed a significant increase in 

the percentage of Tom+ OLIG2+ cells, many of which co-expressed EGFR (data not shown), in 

the V-SVZ of mice that had lost miR-17~92 expression (Fig. 2.9 A and B) suggesting that 

oligodendrogenic TACs are still generated at the expense of neurogenic TACs at long time 

points. Indeed, miR-17~92 deletion reduced the proportion of DCX+ neuroblasts in the V-SVZ 

(Fig. 2.8 E and F).  

Although V-SVZ-derived neuroblasts largely give rise to OB GABAergic neurons (Mullen et 

al., 1992), a small subset of Tbr2-expressing progenitor cells located in the dorsal aspect of the 

V-SVZ has been shown to generate glutamatergic neurons (Brill et al., 2009). Since Tbr2 is a 

validated miR-17~92 functional target during neocortex development (Bian et al., 2013), I 

asked whether deletion of the cluster might affect the proportion and distribution of TBR2+ 

progenitors. Interestingly, miR-17~92 loss resulted in a higher proportion of TBR2-expressing 

cells within the Tom+ population (Fig. 2.8 E-G). As in their wild-type counterparts, these 

TBR2+ cells were only found in the dorsal V-SVZ suggesting that, independently of miR-17~92 

mediated silencing, Tbr2 expression is restricted to a subpopulation of dorsal V-SVZ cells 

unlike Pax6, whose dorsally confined protein expression is spatially limited by its targeting 

miRNA, miR-7a, and becomes extended to the entire V-SVZ upon miR-7a deletion (De 

Chevigny et al., 2012). It will be interesting to check the number of V-SVZ-derived 

glutamatergic and GABAergic neurons in the OB to confirm whether deletion of miR-17~92 

causes a shift in glutamatergic versus GABAergic neuronal production. 



Chapter 2                                                     miR-17~92 Regulation of Adult Neural Stem Cells 

 28 

Altogether, these results provide evidence for a role of miR-17~92 in stem cell activation and 

proliferation as well as neurogenesis. 
 

 
Figure 2.8 miR-17~92 deletion in NSCs in vivo reduces NSC activation and neurogenesis at long time points 

(A) Schematic of experimental paradigm. (B-C) miR-17~92 deletion increases the percentage over total Tom+ of 

qNSCs (GFAP+ EGFR- KI67-) and reduces that of total aNSCs (GFAP+ EGFR+) and non-dividing (KI67-) aNSCs. 

(D) Label retaining-aNSCs only appear following miR-17~92 deletion. (E-G) Loss of miR-17~92 decreases the 

proportion of DCX+ neuroblasts (E-F) and increases the percentage of TBR2+ cells (F-G).  (G) Blow-up of detail 

in image E. Scale bar, 10 µm (B and D) and 20 µm (E). (n = 3; *p < 0.05, **p<0.01, ***p<0.001, two-tailed 

unpaired Student’s t test; mean ± SEM). CC: corpus callosum and Str: striatum. 
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miR-17~92 ablation in vivo promotes oligodendrogenesis at long time points 

Under normal conditions, V-SVZ NSCs generate a small number of oligodendrocytes 

which are destined for the corpus callosum (Menn et al., 2006). Since deletion of the miR-

17~92 cluster at short time points increased the proportion of oligodendrogenic TACs (Fig. 2.6 

E), I investigated the generation of oligodendrocytes at long time points following miR-17~92 

loss.  

 
 

Figure 2.9 Deletion of miR-17~92 in NSCs in vivo promotes oligodendrogenesis at long time points 

(A, C, D) Representative confocal tile scan images showing Tom+ OLIG2+ cells in the V-SVZ (A), corpus callosum 

(C) and septum (D). (A-D) miR-17~92 deletion increases the percentage of Tom+ OLIG2+ (NG2+/-) cells in the 

V-SVZ (A), Tom+ OLIG2+ NG2- cells in the CC (C), but not in the Sp, and Tom+ OLIG2+ NG2+ cells in the Sp 

(D). (B) Quantification of cells illustrated in images A, C and D. Scale bar, 50 µm. (n = 3; *p < 0.05, **p<0.01, 

two-tailed unpaired Student’s t test; mean ± SEM). LV: lateral ventricle, Str: striatum, CC: corpus callosum, Ctx: 

cortex and Sp: septum. 
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Importantly, thirty days after Tmx administration, miR-17~92 loss increased the proportion of 

Tom+ OLIG2+ NG2- differentiated oligodendrocytes, but not Tom+ OLIG2+ NG2+ OPCs (data 

not shown), in the corpus callosum (CC) (Fig. 2.9 B and C). No change in differentiated Tom+ 

oligodendrocytes was found in the septum (Fig. 2.9 B). However, intriguingly, deletion of miR-

17~92 significantly increased the percentage of Tom+ OLIG2+ NG2+ OPCs in this brain region 

(Fig. 2.9 B and D) revealing that V-SVZ NSCs deleted for miR-17~92 contribute OPCs to this 

brain area. Altogether, these results highlight an important function of the miR-17~92 cluster 

in regulating oligodendrogenesis. 

 

Computational identification of biological pathways regulated by the miR-17~92 cluster 

 miRNAs are a class of small non-coding RNA molecules able to sculpt cell 

transcriptomes by targeting hundreds of mRNAs simultaneously, either repressing their 

translation or promoting their degradation (O’Brien et al., 2018). 

 
 
Figure 2.10 Pathway analysis of computationally predicted miR-17~92 targets expressed in V-SVZ NSCs 

Selected top-enriched pathway maps from Metacore analysis exhibiting a False Discovery Rate < 3x10-5. Data 

show pathway abundance as percentage of total categories containing miR-17~92 targets. 

 

To identify miR-17~92 targets that might be relevant for adult V-SVZ NSC functions, 

I performed bioinformatic analyses. First, I compiled a shortlist of miR-17~92 targets expressed 

in qNSCs, aNSCs and TACs from FACS-purified populations and multiple online available 

prediction algorithms (Targetscan, PicTar, microcosm, miRDB). I then carried out pathway 

analysis of the predicted targets using Metacore. In line with published works investigating the 
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function of the miR-17~92 cluster in several cellular and physiopathological contexts, the bulk 

of miR-17~92 targets were found in the gene categories related to ‘cancer’, ‘immune response’, 

‘development’ and ‘apoptosis and survival’ (Olive et al., 2013; Conception et al., 2012; Ventura 

et al., 2008; Han et al., 2015; Xu et al., 2015). In addition to these, miR-17~92 targets were also 

in pathways related to the categories of ‘cell adhesion’ and ‘lipid metabolism’, two gene 

categories enriched in quiescent stem cells across different compartments (Codega et al., 2014). 

Strikingly, pathway analysis also identified ‘OPC differentiation and myelination’ among gene 

categories enriched for miR-17~92 targets (Fig. 2.10).  

 

miR-17~92 targets in 'OPC differentiation and myelination' 
Akt1 Fzd1 Hn1 Nkx2-2 Qk Sp1 
Akt3 Fzd3 Id2 Notch1 Raf1 Tcf4 
Ascl1 Fzd4 Id4 Nrg1 Rbpj Tcf7l2 
Bad Fzd5 Jag1 Olig2 Rps6ka1 Ugt8a 

Chuk Fzd7 Mtf1 Pdgfra Rps6kb1 Ywhab 
Eif4ebp1 Gsk3b Myt1 Pik3ca Sox10 Yy1 

Fyn Hes1 Nfkbia Pik3r1 Sox21   
 

Table 2.1 miR-17~92 targets enriched in the gene category of ‘OPC differentiation and myelination’ 

 

The identification of a gene category related to oligodendrogenesis is exciting as it 

complements my functional data showing an increase in oligodendrogenesis following miR-

17~92 deletion at both short and long time points. Interestingly, among the miR-17~92 

predicted targets in this category there were two key regulators of oligodendrogenesis, Olig2 

and Pdgfra (Table 2.1). Olig2 is expressed in both parenchymal and V-SVZ OPCs and has 

been validated as a functional target of miR-17-3p during spinal cord progenitor patterning in 

embryogenesis (Cheng et al., 2011). Pdgfra is also highly expressed in OPCs and is, together 

with its ligand platelet-derived growth factor-A (PDGF-A), of critical importance for 

oligodendrocyte formation in the developing and adult mouse central nervous system (Barres 

et al., 1992; Nishiyama et al., 2009; Noble et al., 1988; Pringle et al., 1992, Đặng et al., 2019). 

However, so far no studies have addressed the relationship between Pdgfra and the miR-17~92 

cluster. I therefore focused on this miR-17~92 predicted target for further functional studies. 

 

Pdgfra is a functional miR-17~92 target in the V-SVZ 

Prediction algorithms of miRNA targets identified binding sites for all four seed 

families of the miR-17~92 cluster in the 3’UTR of the Pdgfra gene (Fig. 2.11). To validate 
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whether Pdgfra is a target of miR-17~92, I performed luciferase assays using constructs 

containing the 3’UTR of different genes together with a miRNA vector encoding the whole 

miR-17-92 cluster. 

 

 
 

Figure 2.11 The miR-17~92 cluster regulates Pdgfra  expression via its 3’UTR  

(Top) Schematic representation of the 3’UTR of the Pdgfra gene showing the binding sites for different members 

of the miR-17~92 cluster in distinct colors. (Bottom) Luciferase reporter assay validating Pdgfra as biochemical 

miR-17~92 target. Hoxa5: non-targeted negative control, Pten: validated positive control (Tun et al., 2015) (n=3, 

**p<0.01, two-tailed unpaired Student’s t test, mean ± SEM). 

 

Compared to the blank luciferase reporter lacking any 3’UTR, I observed a robust reduction in 

luciferase activity for luciferase reporters containing the 3’UTR of Pdgfra and the validated 

miR-17~92 target Pten (Tun et al., 2015) but not for the negative control Hoxa5 (Tun et al., 

2015), indicating that Pdgfra is a target of the miR-17~92 cluster. 

To define if Pdgfra is an in vivo target of the cluster, I performed IHC analysis of PDGFRa 

protein expression and distribution in early NSC lineage of miR-17~92 control and deleted 

mice at 1dpi by immunostaining for PDGFRa as well as for the lineage markers GFAP and 

EGFR (Fig 2.12). Under normal conditions PDGFRa is only expressed by extremely rare NSCs 

in the V-SVZ but not in TACs (Chojnacki et al., 2011). Therefore, if Pdgfra is a functional 

target of miR-17~92, deletion of the cluster is expected to expand PDGFRa expression along 
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the lineage leading to the appearance of EGFR co-positive cells. Indeed, IHC analysis revealed 

the presence of very rare Tom+ qNSCs expressing PDGFRa protein in both miR-17~92 control 

and deleted mice. However, no Tom+ aNSCs and TACs were found immunopositive for 

PDGFRa in control mice. In contrast, deletion of miR-17~92 led to appearance of Tom+ 

PDGFRa+ aNSCs but especially Tom+ PDGFRa+ TACs in the V-SVZ.  Thus, this result shows 

that Pdgfra is an in vivo functional target of the miR-17~92 cluster. 

 

 
 

Figure 2.12 Pdgfra is a functional target of the miR-17~92 cluster in vivo 

(A) Representative confocal images of Tom+ PDGFRa+ cells found in the V-SVZ of miR-17~92 deleted mice. (B) 

Quantification of Tom+ PDGFRa+ qNSCs, aNSCs and TACs at 1 dpi (n=3, n.s.: not significant, ****p<0.00001, 

two-tailed unpaired Student’s t test, mean ± SEM). 

 

Conclusions 

In this chapter, I have shown that all detectable members of the miR-17~92 cluster are 

expressed at low levels in qNSCs and are significantly upregulated in aNSCs and TACs in 

comparison to qNSCs. I have also shown that miR-17~92 guide and star forms are not equally 

expressed, with the guide forms of miR-19b, miR-20a and miR-92a being the most abundantly 

expressed miRNAs of the cluster in the profiled populations and the star forms of all the 

members of the cluster except miR-17 being extremely low and thus unlikely to play a key role 

in the control of the gene regulatory network of adult V-SVZ stem cells.  

 By quantifying an in vitro assay based on the plating of single FACS-purified aNSCs in 

adherent cultures, I have shown that conditional deletion of miR-17~92 reduced the 
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proliferation of adult neural stem cells but had no effect of their survival of short time points. 

Indeed, although a similar proportion of wells containing control and deleted NSCs was found, 

only miR-17~92 deleted NSCs exhibited a scarce proliferation and failed to give rise to large 

colonies.  

 After conditionally deleting miR-17~92 in adult NSCs in vivo, I have observed a smaller 

percentage of dividing NSCs (GFAP+ MCM2+) and cycling aNSCs (GFAP+ EGFR+ KI67+) at 

short time points confirming that the miR-17~92 cluster is essential for their proliferation. 

Interestingly, following a longer chase period from miR-17~92 deletion, the reduced percentage 

of aNSCs was coupled to an increase in the proportion of qNSCs indicating a role of the miR-

17~92 cluster in stem cell activation. As a consequence of the activation and proliferation 

defects due to miR-17~92 deletion, I was able to detect LR-aNSCs only in miR-17~92 deleted 

mice. At long time points, I have also shown that miR-17~92 loss significantly reduced 

neurogenesis. Interestingly, although overall neurogenesis was decreased in the V-SVZ, 

deletion of the cluster increased the proportion of TBR2-expressing cells located in the dorsal 

V-SVZ, which likely correspond to glutamatergic neuronal progenitors. 

 

 
 

Figure 2.9 Summary of the pleiotropic functions of the miR-17~92 cluster in the V-SVZ 

The miR-17~92 cluster is expressed at low levels in qNSCs and is upregulated upon activation. Deletion of miR-

17~92 in NSCs in vivo reduces NSC activation and proliferation, and promotes oligodendrogenesis at the expense 

of neurogenesis, despite possibly increasing glutamatergic neuronal production. 
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Excitingly, my work also shows a role of the miR-17~92 cluster in regulating 

oligodendrogenesis (Fig. 2.9). Following miR-17~92 deletion, I have found an increase in 

oligodendrogenesis in the V-SVZ, corpus callosum and septum, with more mature 

oligodendrocytes in the corpus callosum but not in the septum, and more OPCs in the septum 

but not in the corpus callosum. Importantly, this increased oligodendrogenesis was due to an 

expansion of oligodendrogenic TACs. 

Finally, by performing pathway analysis of computationally predicted miR-17~92 

targets expressed in FACS-purified NSC populations I have identified a gene category related 

to oligodendrogenesis. Among the targets enriched in this category, I have validated the 

Platelet-Derived Growth Factor Receptor a (PDGFRa), a regulator of oligodendrocyte 

generation, as miR-17~92 functional target by luciferase reporter assay and in vivo analysis of 

PDGFRa protein expression in miR-17~92 control and deleted mice. 

 

Materials and Methods 

FACS-purification strategy 

The V-SVZs from 3-4 month old mice were dissected from heterozygous hGFAP::GFP mice 

(Jackson Labs) or wildtype CD-1 mice (Charles River), digested with papain (Worthington, 

1,200 units per 5 mice, 10 min at 37°C) in PIPES solution [120 mM NaCl, 5 mM KCl, 50 mM 

PIPES (Sigma), 0.6% glucose, 1X Antibiotic/Antimycotic (Gibco), and phenol red (Sigma) in 

water, pH adjusted to 7.6] and mechanically dissociated to single cells after adding ovomucoid 

(Worthington, 0.7 mg per 5 mice) and DNAse (Worthington, 1,000 units per 5 mice). Cells 

were centrifuged for 10 min at 4°C without brake in 22% Percoll (Sigma) to remove myelin. 

Cell stainings were done in 3 steps: First, cells were incubated for 20 min with PE-conjugated 

rat anti-mCD24 (1:500; BD Pharmingen) and biotinylated rat anti-mCD133 (1:300, clone 

13A4, eBioscience). Cells were washed by centrifugation at 1300rpm for 5min. Next, cells were 

incubated for 10 min with Streptavidin PE-Cy7 (1:500; eBioscience), and washed by 

centrifugation. Finally, cells were incubated with A647-complexed EGF (1:300; Molecular 

Probes) for 15 min, and washed by centrifugation. All stainings and washes were carried out 

on ice in 1% BSA, 0.1% Glucose HBSS solution. To assess cell viability, 4’,6-diamidino-2-

phenylindole (DAPI; 1:1000; Sigma) was added to the cell suspension. All cell populations 

were isolated in a single sort using a Becton Dickinson FACS Aria II using 13 psi pressure and 

100-μm nozzle aperture and were collected in Neurosphere medium (NSM) [DMEM/F12 (Life 

Technologies) supplemented with 0.6% Glucose (Sigma), 1X Hepes (Life Technologies), 1X 

Insulin-Selenium-Transferrin (Life Technologies), N-2 (Life Technologies), and B-27 
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supplement (Life Technologies)]. Gates were set manually using single-color control samples 

and FMO controls. Data were analyzed with FlowJo 9.3 data analysis software and displayed 

using bi-exponential scaling. 

 

qPCR analysis of miRNA expression 

RNA from FACS-purified populations was extracted from a miR-rich fraction using the 

miRNeasy kit as described in Codega et al., 2014. miR-rich cDNA was then generated using 

the Exiqon miRCURY LNA Universal RT microRNA kit. qPCR for the guide and star forms 

of all six members of the miR-17~92 cluster was performed using Exiqon miRCURY LNA 

probes for the mature forms of the miRs, in accordance with the LNA probes. Data were 

normalized to miR-16-5p expression and analyzed by the 2-ΔΔCT method (Livak & Schmittgen, 

2001). 

 

Mice breeding and usage for miR-17~92 in vitro deletion experiments 

CAGG-CreERT2+/-; miR-17~92fl/fl mice were a generous gift from Jun-An Chen of the 

Wichterle lab. These were then bred to ROSA (ACTB-tdTomato,-EGFP+/+) mice to generate 

CAGG-CreERT2+/- or -/-; miR-17~92fl/fl; ROSA (ACTB-tdTomato,-EGFP+/+) mice. These 

mice express tdTomato before recombination, and eGFP afterwards, allowing tracking of 

recombination. 

 

Sort Strategy for in vitro assays  

CAGG-CreERT2+/- or -/-; miR-17~92fl/fl; ROSA (ACTB-tdTomato,-EGFP+/+) mice were 

processed for FACS as in Codega et al. and stained with CD24-FITC (1:1000; BD Pharmingen), 

EGF-Alexa647 (1:300; Molecular Probes), and biotinylated rat anti-mCD133 (1:300, clone 

13A4, eBioscience), which was followed by secondary staining with PE-Cy7-conjugated 

streptavidin (1:1000; eBioscience). 

 

Single cell adherent assay 

For single cell assays, one cell per well was manually plated into 96 well plates previously 

coated with Poly-D-Lysine (Sigma, 10 μg/ml) and Fibronectin (Sigma, 2 μg/ml). During the 

first 24 hours after plating, cells were treated with NSM + EGF, NSM + EGF + 250nM 4OHT, 

or NSM + EGF + vehicle (EtOH). At 24 hours, the entire media was replaced with NSM + EGF 

to prevent toxicity. Wells were fixed with 4% paraformaldehyde (PFA) in 0.1M phosphate 

buffer (PB) at 13 days post plating and stained with 4’,6-Diamidino-2-Phenylindole 
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Dihydrochloride (DAPI, Sigma). Finally, the number of cells per well was quantified to assess 

changes in activation, proliferation and survival of adult neural stem cells. Two-sided Wilcoxon 

rank sum test was used to look at overall changes in the distribution of the outcomes (given 

number of cells per well), followed by Fisher's exact test, to later identify which of the outcomes 

was responsible for the difference. 

 

Mice breeding and usage for miR-17~92 deletion in vivo 

miR-17~92fl/fl mice were a generous gift from the Jeker lab (University of Basel). miR-17~92 

fl/fl were crossed to GFAP-CreERT2+/+ mice and R26R lslTomato+/+ mice to generate 

GFAP-CreERT2+/+; miR-17~92+/+ or fl/fl; R26R lslTomato+/+ mice.  

 

Tamoxifen and BrdU injections 

Cre-mediated recombination in CreERT2 transgenic mice was induced by administration of 

Tamoxifen (Sigma) dissolved at 30 mg/ml in 90% corn oil, 10% ethanol (Sigma). Mice were 

intraperitoneally injected at the dose of 120 mg/Kg once per day for three consecutive days and 

sacrificed at one and thirty days ending tamoxifen injections. To identify possible label-

retaining (LR) cells in the V-SVZ, 5-bromo-2'-deoxyuridine (BrdU, 50 mg/kg, Sigma) was co-

administered every 12 hours on the last two days of Tmx injections. 

 

Tissue preparation for immunohistochemistry 

Mice were anesthetized by intraperitoneal injection of pentobarbital (Escornarkon) and were 

sacrificed by intracardial perfusion of 4% paraformaldehyde (PFA) in 0.1M phosphate buffer 

(PB). Brains were extracted from the skull and post-fixed overnight. Coronal sections were cut 

at 25μm using a vibratome (Leica VT1000S). 

 

Immunostaining 

Tissue sections were incubated in blocking solution (PBS with 10% donkey normal serum and 

0.03% Triton-X100 for antibodies against receptors or 0.3% Triton-X100 for all others) for 60 

minutes and then incubated in primary antibodies in blocking solution for 36 hours at 4°C. After 

washing, sections were incubated with secondary antibodies for 1 hour at room temperature. 

After washing, sections were counterstained with 4’,6-Diamidino-2-Phenylindole 

Dihydrochloride (DAPI, Sigma). Sections were mounted on slides with FluorSaveTM 

(Millipore Corporation).  
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Antibodies 

The following primary antibodies were used: anti-BrdU (rat, 1:400, abcam); anti-doublecortin, 

DCX (goat, 1:100, Santa Cruz); anti-DsRed (rabbit, 1:500, Clontech); anti-EGFR (goat,1:100, 

R&D); anti-EGFR (rabbit, 1:100, abcam); anti-GFAP (rat, 1:1000, Invitrogen); anti-Ki67 

(rabbit, 1:100, abcam); anti-MCM2 (rabbit,1:100, Cell signaling); anti-NG2 (rabbit, 1:100, 

Millipore); anti-OLIG2 (rabbit, 1:100, Millipore); anti-OLIG2 (goat, 1:150, R&D); goat anti-

PDGFRa (1:100, R&D); anti-TBR2 (rabbit, 1:1000, abcam). The following secondary 

antibodies were used: Alexa Fluor-conjugated (405, 1:250, abcam; 488, 647, 568, 1:600, 

Molecular probes), Cy3-conjugated (1:1000, Jackson ImmunoResearch). 

 

Brain section imaging and analysis 

Tile scan imaging of the entire dorsoventral extent of the V-SVZ at least four different rostro-

caudal levels (Bregmas: ~1mm, ~0.70mm, ~0.3mm and ~0mm) were taken on a Zeiss 880 

confocal microscope with a 1.5µm distance between focal planes. Images were opened in FIJI 

and all Tom+ cells were quantified using the Cell Counter plug-in. For each rostro-caudal level, 

cell percentages of different cell populations over total Tom+ cells were calculated. These cell 

percentages were averaged and the average value from control and deleted mice were then 

compared to identify statistically significant differences in cell populations using unpaired two-

tailed Student’s t-test. 

 

Bioinformatic analysis of miRNA-mRNA interactions in the early V-SVZ NSC lineage 

A list of genes expressed in early stages of the lineage was compiled from gene expression 

datasets of FACS-purified V-SVZ NSC populations (PDGFRβ+ CD133+, PDGFRβ+ EGFR+ 

and EGFR+) (Delgado et al., 2019). Computationally predicted targets for the guide and star 

forms of individual members of the miR-17~92 cluster (miR-17, 18a, 19a, 20a, 19b, 92a and 

miR-17*) were generated from the online platforms Targetscan, PicTar, microcosm and 

miRDB. The gene expression list and miR target list were then compared to find overlap. 

Finally, the resulting list of miR-17~92 targets was analzyed using MetaCore (Thompson 

Reuters, New York, NY) performing enrichment analysis by pathway maps. 

 

Luciferase reporter and miRNA expression constructs 

A 1’791 nucleotide fragment of the Pdgfra 3'UTR, encompassing all four binding sites for 

members of the miR-17~92 cluster, was amplified from mouse genomic DNA by PCR using 
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the forward primer 5’-GTCTGTGACTTTTAAGGATGC-3’ and reverse primer 5’- 

CCACACCACCATGTTGGGAAC-3’ (Microsynth) and cloned into psiCHECK™-2 vector 

from Promega at the XhoI/NotI restriction sites (In-Fusion HD cloning kit, Clontech 

Laboratories). Psi-CHECK-2-pten 3’UTR and psi-CHECK2-hoxa5 3’UTR were generously 

provided by Jun-An Chen. All constructs were sequenced (Microsynth). To generate miR-

17~92 expression construct, the entire miR-17~92 cluster sequence was amplified from the 

pKO-II-miR-17~92 vector (Addgene) by qPCR using the forward primer 5’- 

GCTGTAATTGATGTTTGTGAC -3’ and the reverse primer 5’- 

ATCCCGTTTTACACACCAACG -3’, and cloned into the pSR-GFP expression vector (Cheng 

et al., 2009) at the HindIII/XhoI restriction sites (In-Fusion HD cloning kit, Clontech 

Laboratories). 

 

Luciferase reporter assay 

HEK293 cells were plated at a density of 9x105 cells in poly-L-lysine pre-coated 48-well plates, 

expanded for 18h, and transfected with 62.5 ng luciferase reporter and 187.5 ng miRNA vector 

(1:3 ratio) using 0.5 μL of PLUS Reagent and 1 μL of Lipofectamine 3000 (Life Technology). 

Cells were incubated with lipofectamine-DNA complexes for 24h prior to change medium 

containing lipofectamine with fresh medium. Transfected HEK293 were grown for additional 

24 hours before performing luciferase assay. Finally, cells were lysed and processed for 

luciferase assays using the Dual-Luciferase Reporter Assay System (Promega). Luciferase 

activity was measured using the TECAN Spark Plate Reader. The ratio between renilla and 

firefly luciferase activities was calculated for all luciferase reporters. The data were then 

normalized to the respective miRNA empty vector conditions. All luciferase activity data are 

presented as means ± SEM of values from three experiments, each performed in duplicates.
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Chapter 3: Potential miR-17~92 targets for stem cell activation: S1pr1 and Pdgfrb 

miRNAs are a class of small non-coding RNA molecules able to sculpt cell 

transcriptomes by targeting hundreds of mRNAs simultaneously, either repressing their 

translation or promoting their degradation (O’Brien et al., 2018). Since the interaction of 

miRNAs with their target genes is dynamic and dependent on several factors, including the 

abundance and affinity of miRNAs and their target mRNA transcripts, miRNAs can exert 

distinct functions depending on the cell type, or cellular transcriptional profile, in which they 

are expressed (O’Brien et al., 2018).  

In Chapter 2, I have shown that the miR-17~92 cluster, whose expression is upregulated 

in aNSCs and TACs in comparison to qNSCs, regulates multiple aspects of NSC behavior 

including stem cell activation, proliferation, neurogenesis and oligodendrogenesis. In addition, 

I focused on miR-17~92 targets involved in oligodendrogenesis and I validated Pdgfra as miR-

17~92 functional target in vivo. 

In this chapter, I perform bioinformatic analysis of predicted miR-17~92 targets 

upregulated in qNSCs versus aNSCs, and identify the Sphingosine-1-phosphate Receptor 1 

(S1PR1) and the Platelet-Derived Growth Factor Receptor b (PDGFRb) as potential targets of 

the miR-17~92 cluster for neural stem cell activation.  

 

Results 

Bioinformatic analysis of miRNA-mRNA interactions in the early V-SVZ NSC lineage 

microRNAs repress the expression of target mRNA transcripts through a combination 

of translational repression and mRNA destabilization, with mRNA destabilization being the 

predominant mode of action of mammalian miRNAs, accounting for most (66% to 90%) of the 

miRNA-mediated silencing (Eichhorn et al., 2014). Since the mRNA destabilization 

mechanism results not only in the reduction of the final gene product, i.e. protein, but also in a 

measurable decrease in the amount of the targeted mRNA, I used gene expression datasets 

generated in the lab to focus on genes upregulated in qNSCs versus aNSCs in my search for 

potential miR-17~92 targets involved in stem cell activation. 

Specifically, to identify potential candidate genes regulated by the miR-17~92 cluster, 

I performed the following bioinformatic analysis. I first used different on-line available 

algorithms (Targetscan, PicTar, microcosm, miRDB, TarBase) to compile a list of all predicted 

mRNA targets of individual members of the cluster. I then analyzed the expression of these 

mRNAs against a list of genes upregulated at least 1.5-fold in qNSCs over aNSCs. Among the 

targets identified by this analysis, genes related to cell adhesion, like Ncam1, Vcam1 and 
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Tspan9, and lipid metabolism, such as Crot and Elovl5, as well as the G protein-coupled 

receptor S1pr1 appeared particularly interesting as these gene categories have been shown to 

be enriched in quiescent stem cells across different compartments (Codega et al., 2014) (Fig. 

3.1). Moreover, functional analysis showed that cell adhesion positively regulates stemness of 

embryonic and postnatal NSCs and that the cell adhesion molecule VCAM1 is a key regulator 

of NSC quiescence in the adult V-SVZ (Kokovay et al., 2012). In addition to the candidate 

targets above, Dkk3 (Dickkopf WNT Signaling Pathway Inhibitor 3) and Pdgfrb also drew my 

attention since the former has been reported to play tumor suppressor roles (Gondkar et al., 

2019) whereas the latter has been found to maintain the quiescent state of adult neural stem 

cells (Delgado et al., bioRxiv, 2019). As cell adhesion molecules and receptors are relatively 

easier to study than enzymes or soluble factors due to their localization at the cell surface, I 

focused on Ncam1, Vcam1, Tspan9, S1pr1 and Pdgfrb for subsequent analysis.  

 

 
 

Figure 3.1 Bioinformatic analysis identifies miR-17~92 targets upregulated in qNSCs versus aNSCs 

Expression pattern of selected miR-17~92 candidate targets (colored lines) along the early NSC lineage. Relative 

expression of target genes is estimated in FPKM. Black line represents the relative expression of the miR-17~92 

cluster across qNSCs, aNSCs and TACs defined using Taqman low density array (TLDA) data.  

 

The miR-17~92 cluster regulates the expression of S1pr1, Pdgfrb and Ncam1 

To assess whether the miR-17~92 cluster can suppress the expression of the 

aforementioned candidate genes, I performed luciferase assays overexpressing luciferase 

reporters containing fragments of the 3’UTR or CDS of Ncam1, Vcam1, Tspan9, S1pr1 or 

Pdgfrb together with a vector encoding the whole miR-17-92 cluster. Compared to the empty 
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luciferase reporter, I observed a robust reduction in luciferase activity for the luciferase reporter 

containing the 3’UTR of the validated miR-17~92 target Pten but not for the luciferase reporter 

containing the 3’UTR of Hoxa5, which is not a miR-17~92 target. Interestingly, I detected an 

equally marked decrease in luciferase activity for the S1pr1 luciferase reporter and to a lesser 

extent for the luciferase reporters bearing the proximal CDS sequences of Pdgfrb and Ncam1, 

but not for the other luciferase reporters. Thus, this result indicates that the miR-17~92 cluster 

represses the expression of S1pr1, Pdgfrb and Ncam1 (Fig. 3.2). 

 
Figure 3.2 miR-17~92 downregulates the expression of S1pr1, Pdgfrb and Ncam1 

Luciferase reporter assay validating S1pr1, Pdgfrb and Ncam1 as biochemical miR-17~92 targets. Empty: blank 

luciferase reporter, Hoxa5: non-targeted negative control, Pten: validated positive control (Tun et al., 2015). Dist.: 

distal gene sequence, prox.: proximal gene sequence. (n=3, *p<0.05, **p<0.01, ***p<0.001, two-tailed unpaired 

Student’s t test, mean ± SEM). 

 

Of these three potential miR-17~92 targets for stem cell activation, I focused on S1pr1 and 

Pdgfrb for in vivo analysis since the former has already been reported to be an in vivo functional 

miR-17~92 target in the immune (Xu et al., 2015) and cardiovascular systems (Guzzolino et 

al., 2018) and the latter has been found by our group to maintain the quiescent state of adult 

neural stem cell in vivo (Delgado et al., bioRxiv, 2019). Moreover, these two receptors have 

also been shown to interact with each other within a protein complex (reviewed in Delcourt et 

al., 2007). Lastly, the S1PR1 ligand, Sphingosine-1-phospate (S1P), was found by our group to 

reduce the activation of qNSCs (Codega et al., 2014). Thus, S1pr1 and Pdgfrb appear promising 

potential miR-17~92 targets for stem cell activation. 
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Characterization of S1PR1 expression and distribution in the V-SVZ 

To characterize which cells express S1PR1 protein in the V-SVZ, I performed 

immunohistochemistry analysis in CD1 and gfapGFP mice for markers of the SVZ lineage as 

well as niche cell types. S1PR1 was highly expressed in the V-SVZ (Fig. 3.3) but also in 

parenchymal cells. Based on gfapGFP and S100b staining, S1PR1 was predominantly found in 

astrocytes (Fig. 3.3 A and B). In addition, it was expressed in some CD13+ pericytes (Fig. 3.3 

C) and IBA1+ microglia (Fig. 3.3 D) in both the V-SVZ and parenchyma. 
 

 

 
 

Figure 3.3 S1PR1 is highly expressed in V-SVZ 

Representative confocal images (A-D) of S1PR1 expression and distribution in cell populations in the V-SVZ of 

gfapGFP and CD1 mice. (A) gfapGFP cells, (B) S100b ependymal cells and mature astrocytes, (C) CD13 

pericytes, (D) IBA1 microglia.  Scale bar, 25 µm. 
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In ependymal cells, labeled by S100b, S1PR1 was expressed at low levels and in the nucleus 

rather than at the cell surface (Fig. 3.3 B). 
 

 
 

Figure 3.4 Quantification of S1PR1-expressing cells in different cell types in the V-SVZ 

Representative confocal images (A-D) and quantification (A’-D’) of S1PR1 co-positive cells in the V-SVZ of 

gfapGFP mice. (A) GFAP cells, (B) MASH1 aNSCs and TACs, (C) EGFR aNSCs and TACs, (D) MCM2 dividing 

cells. Scale bar, 25 µm. 
 

 

I then looked in more details at which cells in the lineage expressed S1PR1. All GFAP+ cells 

(100% of GFAP+ cells, ~50% of S1PR1+ cells) (Fig. 3.4 A and A’) and almost all gfapGFP 

cells (~90% of gfapGFP, ~70% of S1PR1+ cells) were immunopositive for S1PR1 in the V-

SVZ. As revealed by immunostaining for EGFR and MASH1, which are expressed by both 
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aNSCs and TACs, S1PR1 was found in ~35% of MASH1+ or EGFR+ cells (~10% of S1PR1+ 

cells) (Fig. 3.4 B, B’, C and C’). The majority of S1PR1+ cells were not dividing. Indeed, S1PR1 

was found in only 6% of MCM2+ proliferating cells corresponding to ~6% of S1PR1+ cells 

(Fig. 3.4 D and D’). Finally, S1PR1was not expressed in DCX+ neuroblasts in the V-SVZ (Fig. 

3.6 A). 

 
 

Figure 3.5 S1PR1 expression in neural stem cell lineage in the V-SVZ 

(A-B) Stacked plots representing proportions of V-SVZ cell types within the S1PR1+ population (C) and the 

fractions of S1PR1 positive and negative cells within qNSCs, aNSCs and TACs (D). S1PR1 protein was not 

detected in neuroblasts. These analyses were carried out on gfapGFP brains. 

 

As MASH1 and EGFR are expressed by both aNSCs and TACs, to better dissect S1PR1 

expression in the early lineage I co-immunostained for S1PR1, GFAP and EGFR to 

discriminate qNSCs, aNSCs and TACs. IHC analysis revealed that most of the S1PR1+ cells 

(~60%) in the V-SVZ corresponded to qNSCs (Fig. 3.5 A) and that the proportion of S1PR1-

expressing cells progressively decreased as cells transitioned down the lineage (Fig. 3.5 B), 

with neuroblasts being immunonegative for S1PR1 protein. Therefore, within the adult V-SVZ 

lineage, S1PR1 is mainly expressed in NSCs which are largely quiescent and is down-regulated 

as cells progress down the lineage. 
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Figure 3.6 S1PR1 exhibits cell membrane and nuclear distribution across different cell types 

Representative confocal images (A-G) of S1PR1 expression and distribution in cell populations in the V-SVZ (A, 

B, C, E), RMS (G) and OB (D, F) of gfapGFP mice. Scale bar, 25 µm. 

 

Interestingly, a second burst of S1PR1 expression was detected in the RMS (Fig. 3.6 B) and 

OB (Fig 3.6 C and D) where both migrating neuroblasts and mature neurons exhibited nuclear 

S1PR1 protein rather than expression of this receptor at their cell surface as in the cell types 

described above. 
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S1PR1 and PDGFRb are co-expressed in quiescent neural stem cells 

Work in the Doetsch laboratory has shown that PDGFRβ is expressed in the adult V-

SVZ lineage in vivo. Indeed, by immunostaining with lineage markers, PDGFRβ protein was 

found to be highly expressed in radial quiescent NSCs and in some activated NSCs, whose 

EGFR expression anti-correlated with that of PDGFRβ, but not in transit amplifying cells or 

neuroblasts (Delgado et al., bioRxiv, 2019) (Fig 3.7 C). Moreover, PDGFRβ protein had 

different localization along the dorsoventral axis of the V-SVZ. PDGFRβ was distributed along 

the entire plasma membrane of NSCs in the dorsal V-SVZ (including the apical processes) but 

was only located in the apical processes of NSCs in the ventral V-SVZ (Fig. 3.7 A and B). 
 

 
 

 
 

 

Figure 3.7 PDGFRb expression and protein distribution in the V-SVZ neural stem cell lineage  

(A-B) Representative confocal images of PDGFRb distribution in the dorsal (A) and ventral (B) adult V-SVZ of 

CD1 mice. Images kindly provided by Ana Delgado. Scale bars: 20 μm. (C) Stacked plots representing proportions 

of PDGFRb positive and negative cells within qNSCs, aNSCs and TACs in gfapGFP mice. 

 

S1PR1 and PDGFRb can interact within a protein complex in airway smooth muscle 

cells (reviewed in Delcourt et al., 2007). I therefore performed co-immunostaining of S1PR1 

and PDGFRb and found that they overlapped in the V-SVZ. However, while all PDGFRb+ cells 

were co-labeled by S1PR1, some S1PR1+ cells, likely corresponding to TACs, were not 

immunopositive for PDGFRb. Thus, S1PR1 and PDGFRb are mostly co-expressed by 

quiescent NSCs and need to be downregulated for cells to progress down the lineage (Fig. 3.8).  
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Figure 3.8 S1PR1 and PDGFRb overlap in the adult V-SVZ  

Representative confocal images showing co-expression of S1PR1 and PDGFRb in the adult V-SVZ. Scale bars: 

20 μm. 
 

Finally, to define if S1pr1 and Pdgfrb are in vivo targets of the cluster, I performed 

immunohistochemistry analysis of S1PR1 and PDGFRb protein expression and distribution in 

the early neural stem cell lineage in miR-17~92 control and deleted mice by co-immunostaining 

for EGFR. 
 

 
Figure 3.9 Analysis of S1PR1 and PDGFRb distribution after deleting miR-17~92 in vivo 

(A-B) Representative confocal images of S1PR1 and PDGFRb protein distribution in the dorsal V-SVZ [red dotted 

box in V-SVZ schema in (C)] of miR-17~92 deleted mice. (D) miR-17~92 deletion reduces the proportion over 

total Tom of aNSCs. Scale bars: 20 μm. 



Chapter 3              Potential miR-17~92 targets for stem cell activation: S1pr1 and Pdgfrb 

 

 49 

If S1pr1 and Pdgfrb are functional targets of miR-17~92, deletion of the cluster is expected to 

expand the proportion of S1PR1+/EGFR+ cells and PDGFRb+/EGFR+ cells. However, the 

complex staining pattern of these two receptors, especially of PDGFRb, and the very limited 

number of aNSCs occurring after deleting miR-17~92 made the quantification of S1PR1+ and 

PDGFRb+ cells extremely difficult, thereby precluding their validation as miR-17~92 

functional target in vivo (Fig. 3.9).    

 

Conclusions 

In this chapter, I have performed bioinformatic analysis of predicted miR-17~92 targets 

upregulated in qNSCs versus aNSCs, and I have identified a set of target genes potentially 

regulated by miR-17~92 for neural stem cell activation. By luciferase reporter assay, I have 

shown that the expression of some of these genes, including S1pr1, Pdgfrb and Ncam1, is 

regulated by the miR-17~92 cluster. I have focused on S1pr1 and Pdgfrb for in vivo analysis 

since the former has already been reported an in vivo functional miR-17~92 target in the 

immune (Xu et al., 2014) and cardiovascular systems (Guzzolino et al., 2018) and the latter has 

been found by our group to maintain the quiescent state of adult neural stem cell in vivo 

(Delgado et al., bioRxiv, 2019). As S1PR1 and PDGFRb proteins are highly expressed by 

qNSCs and the proportion of S1PR1- and PDGFRb- expressing cells progressively decreases 

as cells transitioned down the lineage these receptors are attractive miR-17~92 targets in the 

regulation of stem cell activation. However, their validation as miR-17~92 functional target in 

vivo remains open.  

 

Materials and Methods 

Bioinformatic analysis of miRNA-mRNA interactions in the early V-SVZ NSC lineage 

A list of genes enriched at least 1.5- fold in qNSCs versus aNSCs was compiled from gene 

expression datasets of V-SVZ populations (Delgado et al, bioRxiv 2019). In parallel, 

computationally predicted targets for guide and star forms of individual members of the miR-

17~92 cluster (miR-17, 18a, 19a, 20a, 19b, 92a and miR-17*) were downloaded from online 

available platforms including Targetscan, PicTar, microcosm, miRDB and TarBase. The gene 

expression list and miR target list were then compared to find overlap. Finally, the resulting list 

of miR-17~92 targets expressed in the V-SVZ populations was manually screened to identify 

potential targets for stem cell activation.  
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Luciferase reporter and miRNA expression constructs 

Fragments of the CDS of Ncam1, Vcam1, Tspan9 and Pdgfrb , encompassing binding sites for 

members of the miR-17~92 cluster, were amplified by PCR from the cDNA derived from 

NIH3T3 cells. S1pr1 3’UTR was amplified by qPCR from the GeneCopoeia luciferase vector 

MmiT026983-MT01. PCR products were then cloned into psiCHECK™-2 vector from 

Promega at the XhoI/NotI restriction sites (In-Fusion HD cloning kit, Clontech Laboratories). 

Psi-CHECK-2-pten 3’UTR and psi-CHECK2-hoxa5 3’UTR were generously provided by Jun-

An Chen. All constructs were sequenced (Microsynth).  

To generate miR-17~92 expression construct, the entire miR-17~92 cluster sequence was 

amplified by qPCR from the pKO-II-miR-17~92 vector (Addgene) and cloned into the pSR-

GFP expression vector (Cheng et al., 2009) at the HindIII/XhoI restriction sites (In-Fusion HD 

cloning kit, Clontech Laboratories). 

Sequences of primers are as follows: Ncam1 proximal CDS: F: 5’- 

CAGTTTACAATGCTGCGAAC-3’ , R: 5’- CATTCACGATGCTCTGTCTG- 3’; Ncam1 

distal CDS: F: 5’- TGAAACCTGAGACGAGGTAC- 3’, R: 5’- 

CTGTACTTGACCAGATAGTG- 3’; Vcam1: F: 5’- ACAGCCTCTTTATGTCAACG -3’, R: 

5’- GGAGAGACTTGGATAATCAG -3’; Tspan9 : F: 5’- GTACGACGCCTGAGGCTGCG- 

3’, R: 5’- GGCATCTTTGGCAAGTCTGC- 3’; Pdgfrb  proximal CDS: F: 5’- 

GTCCGTGTTATGGCTCCTGG- 3’, R: 5’- CCTGGAGGCTGTAGACGTAG – 3’; Pdgfrb  

distal CDS: F: 5’- GGCAAGCTGGTCAAGATCTG -3’, R: 5’- 

GCTTGTGGCAGTGTAGCTGC- 3’; S1pr1: F: 5’-AAGCTGTTGATACTGAGGGAAGC-3’, 

R: 5’- CAGTTTATTAATGTTTAAAAGTTG -3’; miR-17~92: F: 5’- 

GCTGTAATTGATGTTTGTGAC -3’, R: 5’- ATCCCGTTTTACACACCAACG -3’. 

 

Luciferase reporter assay 

HEK293 cells were plated at a density of 9x105 cells in poly-L-lysine pre-coated 48-well plates, 

expanded for 18h, and transfected with 62.5 ng luciferase reporter and 187.5 ng miRNA vector 

(1:3 ratio) using 0.5 μL of PLUS Reagent and 1 μL of Lipofectamine 3000 (Life Technology). 

Cells were incubated with lipofectamine-DNA complexes for 24h prior to change medium 

containing lipofectamine with fresh medium. Transfected HEK293 were grown for additional 

24 hours before performing luciferase assay. Finally, cells were lysed and processed for 

luciferase assays using the Dual-Luciferase Reporter Assay System (Promega). Luciferase 

activity was measured using the TECAN Spark Plate Reader. The ratio between renilla and 

firefly luciferase activities was calculated for all luciferase reporters. The data were then 
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normalized to the respective miRNA empty vector conditions. All luciferase activity data are 

presented as means ± SEM of values from three experiments, each performed in duplicates.  

 

Analysis of S1PR1 and PDGFRb expression in vivo  

Adult CD1, gfap::GFP and GFAP-CreERT2+/+; miR-17~92+/+ or fl/fl; R26R lslTomato+/+ mice, 

aged 3-4 months, were used in this study. Cre-mediated recombination in CreERT2 transgenic 

mice was induced by administration of Tamoxifen (Sigma) dissolved at 30 mg/ml in 90% corn 

oil, 10% ethanol (Sigma). Specifically, mice were intraperitoneally injected at the dose of 120 

mg/Kg once per day for three consecutive days and sacrificed 24h after tamoxifen injections. 

All mice were intracardially perfused with 4% paraformaldehyde (PFA) in 0.1M phosphate 

buffer (PB). Brains were extracted from the skull and post-fixed overnight. Coronal sections 

were cut at 25μm using a vibratome (Leica VT1000S). These sections were then stained with 

the following primary antibodies: anti-CD13 (rat, 1:100, abcam); anti-DCX (goat, 1:100, Santa 

Cruz); anti-EGFR (goat,1:100, R&D); anti-GFAP (rat, 1:1000, Invitrogen); anti-GFAP 

(chicken, 1:600, Millipore); anti-GFP (goat, 1:500, Rockland); anti-GFP (rat, 1:500, Nacalai 

Tesque, Inc); anti-GLAST (guinea pig, 1:1000, Chemicon); anti-IBA1 (goat, 1:200, abcam); 

anti-MASH1 (mouse, 1:50, R&D); anti-MCM2 (rabbit, 1:100, Cell signaling); anti-NeuN 

(mouse, 1:100, Millipore); anti-PDGFRb (goat, 1:100, R&D); anti-S100b (mouse, 1:100, 

sigma) and anti-S1PR1 (rabbit, 1:50, Santa Cruz). Alexa Fluor-conjugated (488, 647, 1:600, 

Molecular probes) and Cy3-conjugated (1:1000, Jackson ImmunoResearch) were used as 

secondary antibodies. Sections were imaged on Zeiss 700 confocal microscope and quantified 

in FIJI using the Cell Counter plug-in.  
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Chapter 4: Discussion and future directions 

Over the course of this dissertation, I have shown that the proto-oncogenic miR-17~92 

cluster is highly upregulated in activated NSCs and TACs in comparison to quiescent NSCs, 

and that it plays important roles beyond the control of cell proliferation. Indeed, my work shows 

that miR-17~92 is involved in NSC activation, proliferation and neurogenesis. Moreover, it 

also regulates oligodendrogenesis and possibly glutamatergic neuronal production through the 

repression of Pdgfra and Tbr2 respectively, with Pdgfra being identified and validated as miR-

17~92 functional target for the first time in this dissertation.  

 

miR-17~92 expression in the V-SVZ NSC lineage 

The miR-17~92 cluster encodes six distinct miRNAs (miR-17, -18a, -19a and b, -20a, -

92a) that can be grouped into four families based on seed sequence homology (Concepcion et 

al., 2012). Here, I perfomed qPCR measurement of miR-17~92 members in FACS-purified 

populations of qNSCs, aNSCs and TACs. Interestingly, through analysis of the relative 

abundance of miR-17~92 guide and star members to the housekeeping miRNA miR-16-5p, I 

found that not all cluster members are equally expressed and that the guide forms of miR-19b, 

miR-20a and miR-92a are the most represented miRNAs of the cluster in the profiled 

populations. The observation that the expression levels of mature miRNAs do not necessarily 

correlate with those of their pri-miRNAs is not surprising and it has already been reported in 

other studies (Obernosterer et al., 2006; Wulczyn et al., 2007; Thomson et al., 2006). Indeed, 

since miRNA biogenesis occurs in a multiple step process, distinct members of the miR-17~92 

cluster can be individually and uniquely regulated beyond transcription (Concepcion et al., 

2012). Intriguingly, although the individual members of the cluster are expressed at different 

levels within a given cell type, they exhibit a comparable ratio across the profiled populations 

suggesting that the individual members of the miR-17~92 cluster are processed with similar 

efficiencies or that they display similar stabilities in the early neural stem lineage.  

Through an allelic series of genetically engineered mice harboring selective targeted 

deletions of individual members of the miR-17~92 cluster, recent work has shown the 

coexistence of functional cooperation and specialization among cluster members. Perinatal 

lethality, cardiac defects and lung hypoplasia only occurred when the whole miR-17~92 cluster 

was deleted, demonstrating a functional cooperation of all cluster members. In contrast, axial 

patterning defects, as well as the oncogenic activity of the cluster in Myc-driven tumors, were 

examples of functional specialization of miR-17 and miR-19, respectively (Han et al, 2015). In 

the future, it will be important to dissect whether specific members of the miR-17~92 cluster 
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are responsible for the different aspects of the phenotype I observed following miR-17~92 

deletion in adult V-SVZ NSCs. It will also be important to test the expression of miR-17~92 in 

V-SVZ-derived neuroblasts and OPCs. 

 

miR-17~92 underlies neural stem cell activation and proliferation 

Several miRNAs have been implicated in the maintenance of stem cell quiescence but 

so far no study has shown that miRNAs can underlie stem cell activation (Katz et al., 2016; 

Sato et al., 2014; Cheung et al., 2012; Baghdadi et al., 2018). By performing 

immunohistochemistry analysis at long time points (one month) after miR-17~92 conditional 

deletion, I have shown that endogenous miRNAs can be involved in stem cell activation in vivo. 

miR-17~92 deletion increased the proportion of qNSCs and reduced the percentage of aNSCs 

showing that ablation of the cluster in NSCs impaired their activation causing a shift, within 

the NSC pool, towards more quiescent NSCs and fewer aNSCs. The higher proportion of 

qNSCs in deleted mice also suggest that in addition to defects in stem cell activation, loss of 

the cluster could promote the return of NSCs to the quiescent state, a transition already observed 

in both V-SVZ and SGZ niches in vivo (Basak et al., 2018; Urban et al., 2016). This idea is 

further supported by the appearance of LR- aNSCs only in miR-17~92 deleted mice at long 

time points suggesting that aNSCs that initially entered cell cycle reverted back to a quiescent 

or ‘resting’ state without down-regulating EGFR expression. To date, no studies have so far 

addressed whether LR-NSCs retain expression of EGFR. Another hypothesis is that LR-aNSCs 

lacking miR-17~92 expression failed to divide. By conditionally deleting miR-17~92 in NSCs 

in vitro and in vivo, I have shown that the miR-17~92 cluster also plays a critical role in 

supporting the proliferation of adult neural stem cells. Compared to their wild type counterparts, 

miR-17~92 deleted NSCs in vitro exhibited a scarce proliferation and failed to give rise to large 

colonies while in vivo, miR-17~92 deletion at short time points resulted in a reduced percentage 

of dividing NSCs and cycling aNSCs. The pro-proliferation function of the cluster is in line 

with previous reports showing that miR-17~92 promotes cell proliferation and survival in the 

hematopoietic system as well as in cancers (Mavrakis et al., 2010; Mu et al., 2009; Olive et al., 

2009; Ventura et al., 2008). Although miR-17~92 also acted in a pro-survival manner in these 

contexts, I did not observe any defects in survival in miR-17~92 deleted NSCs in vitro. Thus, 

it is possible that miR-17~92 is not important for the survival of neural stem cells or that it plays 

a pro-survival function at longer time points or at later stages in the V-SVZ lineage, such as in 

newly generated neurons, as was shown during the development of limb innervating motor 

neurons (Tung et al., 2015).  
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One of the best characterized direct transcriptional activators of the miR-17~92 cluster 

is Myc (O'Donnell et al., 2005; de Pontual et al., 2011; Liu et al., 2013). Interestingly, Myc has 

been shown to control a gene regulatory network, including miR-22, that underlies the transition 

from quiescence to proliferation of primary human fibroblasts in vitro (Polioudakis et al., 2013). 

It would therefore be exciting to determine whether miR-22 is co-expressed, together with miR-

17~92, by activating qNSCs and if it might functionally cooperate with miR-17~92 to promote 

NSC activation and proliferation in the adult V-SVZ.  

Since quiescent NSCs exhibit a similar transcriptome to cortical astrocytes, it would be 

also exciting to determine whether miR-17~92 overexpression, either using a viral approach or 

by means of conditionally inducible mice, might induce astrocytes in non-neurogenic brain 

regions to become actively dividing and generate neuronal or glial progeny. 

Recently, in the context of brain metastasis, astrocytes were found to secrete exosomes 

enriched for miR-19a that, upon uptake by cancer cells, led to the recruitment of IBA+ myeloid 

cells to further support cancer cell proliferation and survival (Zhang et al., 2015). Although this 

work highlights a possible cell non-autonomous function for the miR-17~92 cluster, 

quantification of total V-SVZ qNSCs, aNSCs, TACs and NBs (both Tomato positive or 

negative) at 1dpi did not reveal changes in Tomato negative cells suggesting that miR-17~92 

acts in a cell-autonomous manner under normal conditions in adult NSCs. 

 

miR-17~92 regulates neurogenesis and oligodendrogenesis in vivo 

In the developing forebrain, miR-17~92 regulates the neurogenic-to-gliogenic transition 

by promoting neurogenesis and inhibiting astrocytogenesis through the silencing of p38 (Naka-

Kaneda et al., 2014) and Bmpr2 (Mao et al., 2014). Indeed, an increase in GFAP+ astrocytes 

concomitant with a reduction in TuJ1+ neurons was found in both studies after miR-17~92 

deletion in vitro. In the adult brain, I observed that V-SVZ neurogenesis was decreased one 

month following miR-17~92 deletion in vivo. A comparable drop in neurogenesis after deletion 

of miR-17~92 was also described in the adult hippocampus (Jin et al., 2016; Pan et al., 2019). 

However, these studies on hippocampal neurogenesis did not addressed how deletion of the 

cluster affected individual stages of the lineage. According to the data presented here the 

reduction in neurogenesis following miR-17~92 loss, at least in the V-SVZ, is likely due to a 

reduction in stem cell activation and divisions, as well as to a possible change in fate 

specification of NSCs. However, it is still unclear whether the decrease in adult neurogenesis 

observed following miR-17~92 deletion may in part also be due to neuroblast proliferation and 

survival.  
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miR-17~92 is expressed by OPCs during embryonic development (Budde et al., 2010). 

However, no studies have so far investigated whether miR-17~92 deletion in NSCs might affect 

oligodendrogenesis. Here, I have shown, for the first time, that deletion of the cluster in V-SVZ 

NSCs in vivo increased oligodendrogenesis in the V-SVZ, corpus callosum and septum. In line 

with previous work showing that SVZ-derived OLs are generated through TACs (Menn et al., 

2006), the increased oligodendrogenesis I found in miR-17~92 deleted mice was caused by an 

expansion of oligodendrogenic TACs. However, due to the concomitant reduction in aNSC 

proportion following miR-17~92 deletion, it remains unclear whether the increased 

oligodendrogenesis triggered by miR-17~92 loss is initiated in a subset of aNSCs or in TACs 

themselves. Interestingly, oligodendrogenic TACs were distributed throughout the V-SVZ 

niche but especially enriched in the intermediate and dorsal regions, which are emerging as the 

most oligodendrogenic aspects of the adult V-SVZ (Ortega et al., 2013; Delgado et al., bioRxiv 

2019). Since only approximately one third of the recombined TACs were affected by miR-

17~92 deletion, it might be that the cluster is not broadly expressed throughout the V-SVZ but 

rather displays a restricted expression in specific domains of the niche. This idea is further 

supported by the fact that most of the phenotype observed after miR-17~92 loss is more 

pronounced in the dorsal V-SVZ. In situ hybridization experiments will therefore be key to 

define the spatial expression of the miR-17~92 cluster members and determine whether 

individual mature miRNAs of the cluster might be differentially distributed along the V-SVZ. 

Moreover, it would be interesting to assess whether loss of cluster in NSCs can increase 

oligodendrogenesis in vitro in differentiation assays. Recently, Delgado et al. identified a novel 

population of intraventricular OPCs bathed by the cerebrospinal fluid (CSF) and in contact with 

supraependymal axons from distant brain regions (Delgado et al., bioRxiv, 2019). In the future, 

it will be important to assess whether miR-17~92 deletion in vivo also affects this cell 

population. Finally, it would be also interesting to assess changes in astrocytogenesis in vivo 

following miR-17~92 deletion. This could be done, for instance, by immunostaining for 

Glutamine Synthetase (GS) and Olig2 to quantify GS+ OLIG2- astrocytes in the septal wall of 

the V-SVZ and in the septum, which have recently been described to be the regions where 

astrocytes likely arise from and migrate to (Delgado et al., bioRxiv, 2019). 

 

miR-17~92 targets for neural stem cell activation and fate specification 

S1pr1 and Pdgfrb are potential targets of miR-17~92 for stem cell activation 

NSC quiescence is an actively maintained state (Codega et al., 2014). While a direct 

role for PDGFRb in neural stem cell quiescence has recently been shown (Delgado et al., 



Chapter 4          Discussion and future directions 

 

 56 

bioRxiv, 2019), treatment of FACS-purified NSCs with the S1PR1 physiological ligand, S1P, 

suggested a similar function for this latter receptor. Indeed, S1P was found to inhibit the 

activation of qNSCs indicating that S1PR1 might actively maintain the quiescent state of NSCs 

(Codega et al., 2014). During my thesis work, I have identified S1pr1 and Pdgfrb as potential 

genes regulated by miR-17~92 for stem cell activation. I have shown that both genes are 

downregulated by miR-17~92 in luciferase assays and that, in vivo, both receptors were co-

expressed by V-SVZ NSCs that were largely quiescent. Importantly, within the neurogenic 

lineage, I have shown that the proportion of S1PR1- and PDGFRb- expressing cells decreases 

as NSCs transition down the lineage. However, while PDGFRb expression was only retained 

by few aNSCs, S1PR1 expression was also found in some TACs. Together, these results suggest 

that both receptors are co-expressed in qNSCs and need to be downregulated for NSC to 

become activated and generate progeny. Unfortunately, the complex staining patterns of S1PR1 

and especially of PDGFRb, as well as the very limited number of aNSCs after miR-17~92 

deletion precluded their validation as miR-17~92 functional targets in vivo. In the future, one 

could test if they are functional targets by performing immunostaining analysis of S1PR1 and 

PDGFRb expression in FACS-sorted NSCs in vitro following transfection of miR-17~92 

AgomiRs or AntagomiRs or conditional genetic deletion. Furthermore, to more globally 

identify miR-17~92 targets in vivo, RNASeq and Mass Spec analyses using FACS-sorted cells 

from control and miR-17~92 deleted mice would provide a powerful approach to identify 

individual targets or pathways involved in a specific cellular transition at a large scale. 

 

The miR-17~92 target Tbr2 promotes glutamatergic neuronal production 

Expression of the transcription factor Tbr2 in radial glial cells (RGCs) during neocortex 

development is a critical step underlying the transition from RGCs into intermediate progenitors 

(IPs), one of the two types of progenitor cells, together with RGCs, for glutamatergic, 

pyramidal-projection neurons (Englund et al., 2005). The same Tbr2-mediated specification of 

glutamatergic neuronal progenitors also occurs, in the adult V-SVZ, in a small subset of 

dorsally located NSCs retaining the expression of this transcription factor (TF) (Brill et al., 

2009). However, adult-born glutamatergic neurons are destined for the olfactory bulb, and 

differentiate into cortical neurons only in the context of cerebral cortex lesion (Brill et al., 2009). 

Tbr2 has been validated as a miR-17~92 functional target in the developing neocortex where 

deletion of the cluster, through derepression of this TF, resulted in a premature transition of 

radial glial cells (RGCs) into intermediate progenitors (IPs). My results show that miR-17~92 

also regulates Tbr2 expression in the adult V-SVZ. miR-17~92 deletion in adult NSCs in vivo 
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increased the proportion of TBR2-expressing cells but did not expand their distribution in the 

V-SVZ suggesting that Tbr2 expression might only be initiated in dorsal V-SVZ cells unlike 

Pax6, whose dorsally restricted protein expression becomes extended to the whole dorsoventral 

extent of the V-SVZ upon deletion of its targeting miRNA miR-7a (De Chevigny et al., 2012). 

A next important step is to determine whether the increased proportion of TBR2-expressing 

cells in the V-SVZ results in an increase in glutamatergic neuronal production in the OB. This 

could be tested by quantifying changes in GABAergic and glutamatergic neurons in the OB of 

miR-17~92 control and deleted mice by immunostaining for GAD65 (or 67) and VGLUT2 

respectively. 

 

The oligodendrogenesis regulator Pdgfra is a functional target of miR-17~92 

Here, I have shown that one of the major phenotypes triggered by conditional deletion 

of miR-17~92 in NSCs in vivo is an increased oligodendrogenesis in the V-SVZ, corpus 

callosum and septum, due to an expansion of oligodendrogenic TACs. These functional data 

were complemented by the identification, through bioinformatic analysis, of an 

oligodendrocyte-related pathway among the gene categories enriched for miR-17~92 targets, 

and the validation of Pdgfra as miR-17~92 functional target by luciferase reporter assay and in 

vivo analysis. Pdgfra is, indeed, a key regulator of oligodendrocyte generation. In the brain, 

Pdgfra is highly expressed by parenchymal and V-SVZ OPCs and, together with its ligand 

PDGF-A, promotes oligodendrocyte formation by supporting OPC proliferation and survival, 

and preventing their premature differentiation (Menn et al., 2006; Barres et al., 1992; 

Nishiyama et al., 2009; Noble et al., 1988; Pringle et al., 1992). PDGF-A deletion resulted in 

ablation of PDGFRα+ cells and subsequent loss of oligodendrocytes and myelin, indicating that 

PDGFRα-expressing cells are the main source of oligodendrocytes throughout the brain 

(Fruttiger et al., 1999). In the future, to more robustly establish a functional link between miR-

17~92 and Pdgfra, one could perform immunostaining analysis of PDGFRa expression after 

conditionally deleting miR-17~92 in NSCs in vitro. Using a lentiviral approach, it will be also 

interesting to manipulate the expression of miR-17~92 or Pdgfra in cultured cells, and perform 

rescue experiments. 

 

Final conclusions 

One important question still open in the field is whether individual NSCs with tri- or bi-

lineage potential exist in the adult V-SVZ in vivo. Fate mapping has shown that V-SVZ NSCs 

can give rise to neurons, oligodendrocytes and astrocytes (reviewed in Chaker et al., 2016). 
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However, it is still unclear whether all NSCs in vivo are tri-potent or whether they are restricted 

to neuronal or glial lineages. In vitro, both multipotent and unipotent NSCs were detected after 

culturing single FACS-purified cells or time-lapse imaging of individual cells suggesting that 

NSCs with different potencies might coexist within the same niche (Codega et al., 2014; Ortega 

et al., 2013). One hypothesis could be that NSCs are progressively restricted in their lineage 

potential during development to become unipotent NSCs in the adult V-SVZ. Another 

hypothesis is that adult NSCs are intrinsically tri- or bi-potent and their multipotency is 

constitutively repressed by niche signals. Since the data presented here show a shift in the 

balance between neurogenesis and oligodendrogenesis following miR-17~92 deletion, it is 

tempting to speculate that the miR-17~92 cluster might be a critical regulator of NSC potency. 

Moreover, miR-17~92 might spatially segregate neurogenic and oligodendrogenic lineages 

according to a potential regional expression of the cluster itself. Indeed, as already mentioned 

above, most of the phenotype observed after deleting miR-17~92 was found to be more 

pronounced in specific domains of niche, including the intermediate and dorsal regions of the 

V-SVZ, suggesting that the expression of the miR-17~92 cluster might be spatially restricted. 

In addition to the heterogeneity of NSCs, TACs have also been shown to be 

heterogeneous with respect to their cell cycle dynamics and transcriptional signatures (Ponti et 

al., 2013; Azim et al., 2015). Interestingly, my work further provides important evidence of the 

cellular diversity within the TAC population. Indeed, my work suggests that at least three 

subpopulations of TACs might exist in the adult V-SVZ. These include oligodendrogenic and 

neurogenic TACs, with neurogenic progenitors further subdivided into GABAergic and 

glutamatergic progenitors. In the future, it will be interesting to dissect whether the 

heterogeneity of TACs is intrinsically inherited by the NSCs the arise from or if it stems from 

additional regulators coming into play once TACs are generated. 

Finally, the data in this dissertation uncover an additional layer of cell intrinsic 

regulation of adult NSC behavior highlighting novel functions of the miR-17~92 cluster in adult 

NSC activation and oligodendrogenesis. Importantly, my work provides the first evidence that 

miRNAs are involved in the transition from adult neural stem cell quiescence to activation. As 

such, exploring the gene regulatory network regulated by the miR-17~92 cluster could therefore 

provide insights into pathways that might prove pivotal to harness or fine-tuning adult neural 

stem cells for brain repair after injury, stroke, or onset of neurodegenerative disorder, either 

controlling neuronal production or oligodendrogenesis. Moreover, since overexpression of the 

miR-17~92 cluster is often associated with the onset of brain tumors, including neuroblastoma 
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and medulloblastoma (Concepcion et al., 2012), my work might also suggest which cells in the 

adult brain might give rise to tumor-initiating cells during neoplastic transformation. 
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