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Coordinated dynamics of individual components in active matter
are an essential aspect of life on all scales. Establishing a com-
prehensive, causal connection between intracellular, intercellular,
and macroscopic behaviors has remained a major challenge due
to limitations in data acquisition and analysis techniques suit-
able for multiscale dynamics. Here, we combine a high-through-
put adaptive microscopy approach with machine learning, to
identify key biological and physical mechanisms that determine
distinct microscopic and macroscopic collective behavior phases
which develop as Bacillus subtilis swarms expand over five orders
of magnitude in space. Our experiments, continuum modeling,
and particle-based simulations reveal that macroscopic swarm
expansion is primarily driven by cellular growth kinetics, whereas
the microscopic swarming motility phases are dominated by
physical cell–cell interactions. These results provide a unified
understanding of bacterial multiscale behavioral complexity in
swarms.

collective behavior | swarming | cell–cell interactions |
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Collective migration of flagellated cells across surfaces,
termed swarming, is a fundamental bacterial behavior that

facilitates range expansions and the exploration of nutrient
patches, with profound implications for disease transmission,
gene flow, and evolution (1–9). Due to its biomedical and ecolog-
ical importance, bacterial swarming has been widely investigated
in microbiology and biophysics as a model system for multicel-
lular self-organization, development, motility, and active matter
(10–27). Previous studies have revealed important physiolog-
ical and biophysical factors that control particular aspects of
the local swarming behavior, such as the differentiation into
distinct cell types (28–35) and the role of osmolarity gradi-
ents and surfactant production in maintaining thin liquid films
above the surface, through which the cells swim during swarming
(36–43). However, the causal connection between the micro-
scopic processes at the single-cell level and the macroscale
swarm dynamics has yet to be established. Due to technical
limitations, fast simultaneous data acquisition at microscopic and
macroscopic scales has not been possible. Therefore, a com-
plete characterization of the spatiotemporal swarming dynamics
across multiple length and time scales has remained an unsolved
challenge, fundamentally limiting the understanding of the links
between molecular, physiological, and physical mechanisms that
underlie collective bacterial migration. Here, we bridge the gap
between gene expression, microscale, and macroscale dynamics
by combining an adaptive high-speed microscopy technique with
unsupervised machine learning and computational modeling to
quantitatively identify the nonequilibrium dynamical phases of
bacterial swarming and their spatiotemporal evolution. We then
use this phase identification together with particle-based simula-
tions to infer that physical cell–cell interactions are sufficient for
describing the dynamics in all phases.

Results and Discussion
To track the swarming behavior of B. subtilis over five orders of
magnitude in space at the single-cell level, we developed an adap-
tive microscope that acquires high-speed movies at times and
locations determined by a live feedback between image feature
recognition and an automated movement of the scanning area
(Fig. 1A). This technique allows us to image a radially expanding
swarm at single-cell resolution in space and time (Fig. 1), acquir-
ing movies at a frame rate of 200 Hz over the 10-h duration of a
single experiment. Movies were recorded along one line through
the swarm (Fig. 1A), with the length of the line determined adap-
tively based on the swarm diameter (Materials and Methods).
From each movie, we extracted the time-dependent positions,
orientations, and velocities of all individual cells (Fig. 1B and
SI Appendix, Fig. S1). To compress, analyze, and visualize this
large amount of microscopic time-resolved data, we represent
each movie by a list of statistical observables, which include
single-cell parameters such as aspect ratio and motility, as well
as emergent parameters that characterize the formation of non-
motile clusters and moving rafts (Fig. 1 C and D). The full
list of 23 observables extracted at each space-time coordinate
is described in Materials and Methods and SI Appendix, Table
S4. The spatiotemporal evolution of these observables during
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Fig. 1. Adaptive microscopy reveals complete multiscale dynamics of bacterial swarm expansion. (A) Movies at single-cell resolution are acquired at different
locations in the swarm, starting from 1 cell to 100 cells, and follow swarm expansion until the agar plate is completely colonized. The number of movies
and locations where movies are acquired (indicated by colored squares) are determined adaptively, depending on the detected swarm size. B–D, Top show
qualitatively different bacterial behavioral dynamics observed at distinct space-time points, which are marked in E–H by corresponding magenta symbols.
B–D, Bottom demonstrate automated extraction of single-cell positions, orientations, and cell velocities (B) as well as collective behaviors, such as formation
of nonmotile clusters (C) and motile rafts (D), corresponding to groups of aligned cells that move in the same direction. Cells assigned to the same nonmotile
cluster or motile raft by the classification algorithms share the same color; cells labeled in white have not been identified as belonging to any motile raft or
nonmotile cluster. Magenta arrows in D indicate the average velocity of a raft. (Scale bars, 10 µm.) (E) Heatmap of the cell density, obtained by averaging
single-cell data as in B–D for each movie at each space-time coordinate. The lag phase, a period following inoculation during which the swarm does not
expand, as well as the expansion phase, is indicated. (F–H) Additional heatmaps for the cell speed, fraction of cells that are in nonmotile clusters in a given
field of view, and fraction of cells that are in motile rafts. A total of 23 statistical observables analogous to E–H were determined at each space-time position
(Materials and Methods and SI Appendix, Table S4).

swarming is visualized in heatmaps (Fig. 1 E–H and SI Appendix,
Figs. S2–S6), where the color of each pixel is assigned according
to an averaged statistical observable of a movie. In our online
interactive data explorer (http://drescherlab.org/data/swarm/),
the space-time heatmap coordinates are linked to the associated
microscopic movies within the swarm, to allow for a direct inspec-
tion of the connection between microscopic and macroscopic
dynamics.

Transition from Initial Lag Phase to Swarm Expansion. The swarm-
ing dynamics display striking macroscopic spatiotemporal pat-
terns (Fig. 1 E–H): A long initial lag phase in which the swarm
does not migrate outward for several hours (2) is followed by
an abrupt transition to an exponential expansion phase, eventu-
ally resulting in the complete coverage of the 9-cm agar plate
within 5 h (Fig. 1E). Previous investigations have shown that
the production of a peptide-based surfactant, termed surfactin,

is necessary, but not sufficient, for rapid swarm expansion of
B. subtilis (29, 44, 45). To test whether srfA (surfactin synthase)
expression coincides with the transition to the expansion phase,
we constructed a sfGFP-based srfA transcriptional reporter, cali-
brated by a constitutively expressed mKate2 signal (SI Appendix,
Fig. S7). By coupling our adaptive microscope control algorithms
to a confocal microscope, we were able to measure spatiotem-
poral dynamics of fluorescent reporters during swarm expan-
sion. Since the simultaneous acquisition of high-speed movies
was technically not possible, the mechanical observables were
recorded in a separate set of experiments that exhibited the same
highly reproducible expansion dynamics. Using the adaptive con-
focal approach, we tracked gene transcriptional activity in space
and time during all phases of swarm development (Fig. 2 A–C)
and found a strong increase in surfactin production just before
the expansion phase (Fig. 2A). Noting the 14-min maturation
time of sfGFP (46), srfA expression likely starts earlier, yet a
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Fig. 2. Spatiotemporal gene-expression and macroscopic swarm expansion dynamics. (A) Heatmap of the srfA promoter fused to a green fluorescent protein
(sfGFP), reporting transcriptional activity of surfactin production, normalized by constitutively expressed mKate2 fluorescence, in units of sfGFP levels per
mKate2 levels. (A, Inset) A surfactin front becomes visible in phase-contrast microscopy just before the swarm expansion begins. (B) Fluorescence signal for
the hag-promoter reporter, indicating that flagella production also increases (SI Appendix, Fig. S10) before expansion. (C) Control experiment in which sfGFP
and mKate2 levels are driven by the same constitutively expressed promoter, showing no space-time variation in signal. (D) Lag-phase duration depends
logarithmically on the initial seeding population size. (E) The average cellular doubling time per experiment correlates with the swarm area doubling time;
the red line corresponds to exact equality of both time scales. (F–H) The experimentally determined biomass density (F) agrees with the predictions of the
continuum model (G and H), indicating that growth pressure drives the exponential front expansion. The experiments in A–C and F displayed lag times of
5–5.5 h, yet the reporter results are shown only for times larger than −120 min, because at earlier times the fluorescent signals were too low to determine
a reliable ratio of GFP/mKate levels.

visible surfactin front appeared only directly before the expan-
sion phase (Fig. 2A, Inset). Interestingly, flagellin transcription
also strongly increased before the transition to the expansion
phase, as indicated by the hag reporter (Fig. 2B), hinting that
there might be an increase in flagellar density. This interpre-
tation was supported by direct visualization of the flagella on
cells, using electron microscopy (SI Appendix, Fig. S10), which
revealed that the number of flagella per cell increases during
the lag phase, consistent with findings of hyperflagellation as
an essential phenotype for swarming (32, 47). Surfactin produc-
tion is regulated by quorum sensing in B. subtilis (48), which is
in agreement with our observations of a strong increase in cell
density at the end of the lag phase (Fig. 1E) and that the dura-
tion of the lag phase is a logarithmic function of the seeding
density (Fig. 2D) for the range of initial cell densities investi-
gated in our study. However, it is important to note that the
lag-phase duration is determined not only by the cell density,
because a differentiation of the cells accompanied by the syn-
thesis of additional flagella is necessary, which poses a lower
limit to the minimal lag time (49, 50). Together with existing
evidence (2, 28, 29, 32) our findings indicate that cell-density–
dependent physiological changes, including surfactin and flagella
production, drive the transition to the expansion phase.

Macroscopic Swarm Expansion Driven by Population Growth. Al-
though the swarm expansion phase dominates the macroscopic
dynamics of swarming, there is no theory or mechanistic explana-
tion for the expansion rate. By performing swarming experiments
at different cellular growth rates, we found that despite the high
cell speeds and collective movement in the form of cellular rafts
inside parts of the swarm (Fig. 1 F and H), the swarm area dou-
bling time is approximately equal to the cellular doubling time
(Fig. 2E and SI Appendix, Fig. S8), consistent with the early
observation of a correlation between growth and swarm rates
(45). Our results show that while individual cell motility is nec-
essary for swarming, the average cell speed in a swarm is not
strongly correlated with the expansion rate (SI Appendix, Fig.
S9), and the speeds of individual cells (20–80 µm/s) are more

than an order of magnitude larger than the observed swarm front
speed (0.6–5.6 µm/s). Although surfactin production and flagel-
lar motility are necessary for swarming, our findings support the
hypothesis that the cell growth rate is a factor that quantitatively
determines the macroscopic swarm front expansion.

To test this hypothesis in more detail, we developed a 2D
mathematical continuum model for the bacterial biomass den-
sity ρ. The model accounts for local population growth, cell
motility, and global growth pressure through the spatiotemporal
equation

∂tρ=αρ+(D0 +DgNe(t))∇2ρ, [1]

where α represents the cellular biomass growth rate and the local
diffusivity D0 is due to the effect of swimming motility, which
are both parameters that can be estimated directly from our
data. The nonlocal Dg term describes an additional cell trans-
port caused by growth pressure, which is motivated as follows:
The presence of surfactant above a critical cell density facilitates
predominantly planar spreading on the agar surface, with cells
pushing each other apart when dividing, rather than forming a
vertical biofilm structure (4, 51–55). In the absence of surfactant,
the fluid enclosing the swarm would prefer to minimize its sur-
face area to reduce its surface energy at the liquid–air interface,
favoring a curved droplet shape realizing approximately a spheri-
cal cap with a height significantly larger than the cell diameter. By
contrast, consistent with earlier studies (1, 29, 56), our data show
that the bacterial swarming dynamics take place in a thin fluid
layer with the cells spreading across the agar surface forming a
radially expanding 2D monolayer. This expansion arises from the
combination of locomotion and biomass increase due to cell divi-
sions and growth. In hydrodynamic models that include a velocity
field in addition to the density field, the effect of population-
growth pressure has been modeled by postulating an equation of
state in which pressure increases exponentially with local density.
In our reduced model, we describe this effect through the effec-
tive mean-field growth flux −DgNe(t)∇ρ, where Ne denotes
the excess population size above a critical local density when
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Fig. 3. Machine learning the swarming phases from microscopic dynamics. (A) Raw data of one swarm expansion experiment, consisting of ∼1,500 space-
time points (columns) in a 23-dimensional observation space (rows). Additional replicates are shown in SI Appendix, Fig. S11. Color bar indicates relative
magnitudes scaled to [0,1]. In the case of strongly correlated observables with high normalized mutual information (marked by red brackets), only one of
them is included in the machine-learning analysis. (B) The values of the 14 remaining observables (rows) were binned into five categories as indicated by
the color bar, providing the input data for machine learning. (C) The 2D representation of the data in B, obtained with t-SNE; k-means clustering robustly
identifies five main dynamical phases during swarm expansion across independent experiments (n = 3; SI Appendix, Figs. S13–S16 and SI Text). Phases are
labeled with different colors. t-SNE coordinates highlighted as large circles for each phase correspond to experimental snapshots shown in D. (D) Typical
images for the phases (SI Appendix, Movie S1) identified in C: low-density single-cell phase (SC); high-density rafting phase (R) with a high percentage
of comoving cells; biofilm phase (B) characterized by long, unseparated cells; and coexistence phases that contain single cells and rafts (SC + R) or rafts
and biofilm precursors (R + BP). (E) For each phase, simulations were run with the cell shape, motility, and density extracted from the particular phase as
input parameters (SI Appendix, Movie S2 and SI Text). (Scale bars, 10 µm.) (F) Detailed quantitative comparisons between experiments (small circles), the
particular experimental states shown in D (large circles), and simulations (squares; error bars are SDs, n = 20) yield good quantitative agreement, except for
the B phase, confirming that physical effects determine the four motility-based swarming phases. (G) The emergence of the different phases in time and
space during swarm expansion. Colored circles correspond to space-time coordinates of images from D.
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this additional cell movement occurs (SI Appendix). Analogous
to an exponential equation state in hydrodynamic models, the
growth flux prevents the local cell density from increasing beyond
the physically permitted value of a single cell per cell area. The
model is complemented by an effective slip condition for the
front of the liquid-covered swarm (SI Appendix). Using fitted
values for Dg and the slip parameter, Eq. 1 yields good quali-
tative agreement with our data (Fig. 2 F–H). In particular, the
model reproduces the experimentally observed lag phase and
the exponential swarm front expansion quantitatively (Fig. 2H).
The effective growth pressure term is essential for obtaining an
exponential front expansion. Reduced models lacking the Dg

term or the D0 term do not fit the experimental data, highlight-
ing the importance of both growth kinetics and bacterial motility,
with the latter serving to homogenize biomass density during
swarm expansion.

Microscopic Swarming Dynamics and Space-Time Phase Diagram.
During the lag and expansion phase, the swarm shows remark-
able behavioral complexity at the microscopic level at different
points in space and time (Fig. 1 B–D). To identify and char-
acterize the microscopic motility behaviors during swarming,
and to understand the origins of the wide range of different
behaviors that occur at different space-time points, we summa-
rized the dynamics of statistical observables in heatmaps (Fig. 1
E–H). The strong spatiotemporal variation of each observable
indicates the presence of different regimes of bacterial dynami-
cal behaviors. However, some features of the motility behaviors
remain hidden when only one or few observables are taken into
account, and high-dimensional datasets with many observables
that vary in space and time are intrinsically difficult to visual-
ize (57). We therefore applied unsupervised machine learning
to identify the dynamical phases from the full set of statisti-
cal observables in space and time. To avoid a bias resulting
from double counting strongly correlated observables, we first
determined their pairwise normalized mutual information. Dis-
counting redundant observables reduced the total number of
observables from 23 to 14 (Fig. 3A and SI Appendix, Fig. S11
and SI Text). To denoise and normalize the data, each of the
remaining 14 observables was binned into five categories of equal
size (Fig. 3B and SI Appendix, Fig. S12). After this preprocess-
ing, we used t-stochastic neighborhood embedding (t-SNE) (58)
to obtain 2D and 3D representations, followed by the applica-
tion of k-means clustering to the t-SNE data (Fig. 3C and SI
Appendix, Movie S1). We found that the resulting division into
five clusters is robust under variations of target dimensionality
and distance metrics used for t-SNE (SI Appendix, Figs. S13–
S16 and SI Text). Across independent replicas of the swarming
experiment (SI Appendix, Figs. S13–S16), we consistently observe
three pure and two coexistence phases: a single-cell phase (SC)
characterized by low cell densities and little collective behavior,
a rafting phase (R) exhibiting high fractions of comoving cells,
and a biofilm phase (B) where cells are organized in nonmotile
structures reminiscent of liquid crystals (52); the coexistence
phases are the mixture of single-cell and rafting behavior (SC +
R), as well as the mixture of rafts and biofilm precursors
(R + BP), which differ qualitatively (Fig. 3D) and quantita-
tively (Fig. 3 E and F) from the pure phases (SI Appendix,
Movie S1). The phase classification also correlates with the spa-
tiotemporal dynamics of the hag and srfA reporters, which were
measured in independent experiments and did not contribute
to the phase identification (SI Appendix, Fig. S17). The biofilm
phase and the rafting phase are consistent with observations of
chaining cells in the center of the swarm and rafting cells near its
edge (29). Identifying factors that determine transitions between
phases and the fate of individual cells, rafts, and nonmotile clus-
ters during the swarming dynamics pose an important future
challenge.

Physical Cell–Cell Interactions Dominate During Swarming Phases.
The identification of the five phases of collective behavior in
swarms simplifies our high-dimensional single-cell dataset to the
point where we can now address the question of which cell–
cell interaction mechanisms govern the dynamics within each
phase and whether these phases can be explained in terms of
common physical principles. To test whether physical forces can
account for the dynamics within each behavioral phase and for
the differences between phases, we performed individual-based
active matter simulations, in which cells are modeled as ellipti-
cal particles moving in a 2D space with periodic boundaries. In
these simulations, cells interact through physical contact, which
is implemented by a repulsive interaction potential between cells,
and through hydrodynamic interactions (SI Appendix) (22, 53,
59–63). The variable parameters for each simulation are the
number of cells, their shape, and their motility, which are all
directly extracted from the experimental data for each phase.
The simulated dynamics are in good quantitative agreement with
the experimentally determined phases (Fig. 3F and SI Appendix,
Movie S2). Anticipated differences exist for the biofilm phase,
as the ellipsoid model does not account for highly elongated
and flexible cells, yet an extended model captures the qualitative
dynamics (SI Appendix). Our numerical investigations showed
that hydrodynamic interactions (SI Appendix, Figs. S18–S19) are
not a dominant effect, but that steric interactions and motility
suffice to explain the collective behavior among bacterial cells
in our data and account for differences in distinct dynamical
regimes (Fig. 3 D–F and SI Appendix, Fig. S20). A representa-
tion of the t-SNE phase diagram in terms of basic observables
(Fig. 3F) confirms that the machine-learning approach success-
fully identifies the distinct dynamical phases. Finally, mapping
the distinct phases back onto the space-time heatmap of swarm
expansion reveals the complete dynamical phase evolution of
bacterial swarming (Fig. 3G).

Conclusions
Building on an adaptive microscopy approach, the above results
connect gene-expression and microscopic single-cell motility
dynamics to macroscopic swarming dynamics, spanning five
orders of magnitude in space and six orders of magnitude in
time. Because cell proliferation and swarming are both far-from-
equilibrium biophysical processes, the absence of fundamental
conservation laws makes it difficult to identify and character-
ize qualitatively distinct dynamical phases with conventional
equilibrium–thermodynamic approaches. To overcome this con-
ceptual challenge, we combined experiments and particle-based
active matter modeling with machine learning to identify and
characterize the spatiotemporal evolution of three pure and two
coexistence phases during swarm development. This integrated
approach revealed that steric interactions and motility are suf-
ficient for explaining the observed dynamics within each phase,
which enables a unified conceptual understanding of the emer-
gent multiscale behavioral complexity in swarms in terms of basic
biophysical parameters. We expect that the combination of sim-
ilar adaptive microscopy techniques and data-learning methods
is a universal approach for bridging the gap in length and time
scales between intracellular biochemical processes, single-cell
dynamics, and tissue-scale morphogenesis and regeneration.

Materials and Methods
Data Availability. Data are available at the online interactive data explorer
tool created for this publication (drescherlab.org/data/swarm/).

Bacterial Strains and Media. Escherichia coli and B. subtilis strains for nor-
mal propagation were grown in Luria–Bertani (LB) liquid medium or on
1.5% LB agar plates. When appropriate, media were supplemented with
the following antibiotics: ampicillin (100 µg/mL), erythromycin (1 µg/mL
and 150 µg/mL for B. subtilis and E. coli, respectively), and spectinomycin
(100 µg/mL). For standard B. subtilis transformation, competent cells were
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prepared as described earlier (64). B. subtilis strains used in this study were
derived from B. subtilis strain NCIB3610 and are listed in SI Appendix, Table
S1. For genetic modifications in B. subtilis, we used a ∆comI derivative of
strain NCIB3610 (65).

Additional details of experiments and data analysis methods are de-
scribed in SI Appendix, SI Text.
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