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Abstract

The survival of organisms in randomly fluctuating environments not only depends on their
ability to grow in different conditions but also on the time needed to adapt to each new habitat.
Recent works had shown that, like many other physiological quantities, the adaptation time
fluctuates in a stochastic manner across single cells and that the underlying distribution
can dramatically change across genotypes. To understand how natural selection may have
acted on the distribution of single-cell lags we develop a mathematical theory of how the
single-cell lag distribution determines the reproductive success at the population level. We
show that lags at the population level are exponentially dominated by the shortest lags at
the individual cell level. Consequently, analogous to the selection shadow theory of aging,
there is virtually no selection against subsets of cells with very long lags, suggesting that
persister-like phenotypes may very generally be expected to occur in microbial population.
In addition, we show that the relationship between single-cell and population lags depends
on the typical population size and that, while noisy single-cell lag distributions might be
beneficial, they are only effective at large population sizes. This result suggests that, while
large populations can employ bet-hedging strategies to deal with unexpected environmental
changes, small populations will require regulated sense-and-response strategies in order to
ensure short population lags. Experimental validation of these results can be done trough
dedicated microfluidic devices combined with time lapse microscopy images. Unfortunately,
these methods often lack the direct observation of important gene expression variables as
the mRNA or the ribosome levels. We developed a dedicated biophysical model of gene
expression which, together with a specific Bayesian inference scheme, allows to predict the
dynamics of these latent variables. We first tested this method on time series data of single
cell growth. The results show that cells growing in different media have similar cell-cycle
and longer scales dynamics.
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Chapter 1

Introduction

Living systems are complex machines which build and regulate themselves with high preci-
sion. Indeed, they are able to grow and multiply, process nutrients and communicate among
themselves efficiently. In order to describe the mechanisms behind and build reliable quanti-
tative models, many studies have been conducted on bacteria, which are among the simplest
living systems: they are unicellular organisms which lack membrane-bound organelles such
as nucleus or mitochondria. Bacteria form one of the three domains of life, the two others
being archaea and eukaryotes. This classification is based on the sequencing of a piece of
ribosomal RNA known as 16S RNA. Bacterial size spans a large spectrum going from the
10−2 [µm3] to 108 [µm3] whereas the genome size is in the order of a few million base pairs
(Mb) and typically contains a few thousands of coding genes1. Let’s now briefly discuss
some aspects of bacterial growth and regulation which will be useful for the understanding
of the thesis. The reader should have in mind that this introduction does not cover all the
aspects of growth and regulation in bacteria as its goal is to provide the reader with a basic
understanding of the most important concepts.

1.1 The Bacterial growth

One of the most striking properties of bacteria colonies is the speed at which they grow. E.
coli for example can divide with a rate of one division every 15 minutes [44] giving rise
to millions of off-springs in just a few hours. This implies that, due to resource limitation,
bacterial growth can not be constantly exponential. Indeed, an E. coli cell of 10−12 [g]
dividing every 15 minutes will generate 6×1045 [g] of biomass in 2 days which is more than
the mass of the Earth! Other phases are part of the bacterial growth and, in ideal experimental

1Rule of thumb for the bacterial genome is 1 protein-coding gene per Kb
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Fig. 1.1 The solid line represents a typical bacterial growth curve in batch conditions where
the four phases are colored with a different shade of gray tonality.

conditions, bacterial growth is characterized by four phases, i.e. the lag, the exponential, the
stationary and the death phase, as shown in figure 1.1 and discussed in detail below.

Exponential phase This phase is characterized by an exponential growth of the bacterial
colony, due to cell division. Indeed, let’s consider the case of binary fission, as for E.coli,
where we assume every cell to divide every τd minutes. After t minutes the number of cells
generated from this single bacteria will be

n(t) = 2
t

τd = ert (1.1)

which makes clear why this is called the exponential phase. The quantity r = log2
τd

is called the
colony growth rate and is often used when working with the natural logarithm. Note that the
doubling time τd ranges from minutes to hours for E. coli and depends on several factors like
the strain, the type of nutrient, the temperature and other environmental conditions. Bacterial
growth may be more complicated than simple binary fission. For example C. crescentus
divides into two morphologically different daughter cells, one motile and the other adherent
and B. subtilis divides in a process of sporulation, but we will however ignore these particular
cases in the following discussion.
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Stationary phase and death phase As said, exponential growth can not continue indef-
initely due to the limitation of resources. As a colony starts to run out of resources, the
growth rate r decreases until growth eventually stops. The colony enter the stationary phase
as depicted in figure 1.1. This phase is considered an active phase in the sense that cells are
not dead: if inoculated into fresh media growth resumes [29]. However, if a colony spends
too much time in an exhausted media, cells start to lyse leading to a decrease in the colony
size (death phase).

Lag phase When a colony is inoculated into fresh media, growth is usually not resumed
immediately. The time needed from inoculation to full speed growth is called the population
(or bulk) lag time. This time delay is in part due to the lack of the correct cellular machineries
needed to metabolize the nutrients [36]. More detail about this particular phase will be given
in the next chapter.

1.2 Mechanisms of gene regulation

In order to grow, replicate, move or simply respond to external stimuli, cells have to build
and maintain several micro and macro molecules like peptides, proteins, ribosomes, etc. The
synthesis of such molecules very often involves the expression of some or several genes, and
we will, in the following paragraphs, explain the mechanisms behind gene expression and
gene regulation.

Gene expression First, remember that a gene is defined as a sequence of DNA that encodes
a functional molecular product (e.g. proteins). The process to read out the molecular
product from the gene is called gene expression and is done in two separate steps known as
transcription and translation (figure 1.2). Transcription is the process of copying a section
of the DNA into mRNA while translation allows the synthesis of proteins from the genetic
information contained in the mRNA. Transcription starts by unwinding the DNA double
helix into two single strands. This is done through the DNA helicase enzyme which breaks
the hydrogen bonds between the strands. Once the DNA is unwound, one of the two strands
is used as a template by the RNA polymerase enzyme (RNAP) which synthesizes RNA
following the template. In order to synthesize RNA starting from the DNA template, the
RNAP needs first to bind to the DNA. Unfortunately, RNAP can not directly bind to the
DNA but it first has to bind to a sigma factor protein2 and the complex formed is then able

2In E. coli 7 different sigma factor proteins exists allowing the regulation of different sets of genes. The
most common sigma factor found in E. coli is σ70.
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Fig. 1.2 (a) The double helix DNA (b) Transcription: the DNA is unwound, the complex
RNAP-σ factor (blue) binds to the template and travel along it synthesizing the mRNA
(yellow) (c) Translation: proteins (red) are synthesized from the released mRNA (yellow)
trough ribosomes (green).

to "recognize" and bind to the DNA template. The region on the DNA where the RNAP
binds is called the promoter region and is usually few nucleotides prior the transcription start
site. Once bound, the RNAP travels along the DNA strand and synthesizes the nucleotide
sequence into the so-called messenger RNA (mRNA). Transcription ends when the RNAP
recognizes a specific termination sequence on the template, it detaches itself from the DNA
strand and releases the mRNA.

As already mentioned, translation is the process to synthesize proteins from mRNA. Large
macromolecular complexes called ribosomes bind to the released mRNA to start protein
synthesize. Once bound, the ribosome travels along the mRNA (elongation phase) reading its
genetic code and forming the corresponding amino acid chain. Finally, the ribosome unbinds
from the mRNA upon recognition of a specific termination sequence.
This description of transcription and translation is both simplistic and idealistic. In real
biological systems, these processes can be way more complex. For example it is known that
supercoiled DNA may stops transcription [35], RNAP has difficulties to overcome DNA
damages or tightly bound proteins [49] or that RNAP forms "traffic jams" on the DNA and
has consequences in transcription [27][28]. However, in order to keep this introduction
simple, we will not discuss any of these details.
Depending on the external conditions or its life stage, a cell may need certain molecular
products instead of others. Gene regulation is, therefore, a really important process in the
cell life since it controls the levels of proteins within the cell. We will show how proteins
levels are regulated through one of the most well understood gene regulatory system, namely
the lac operon in E. coli.

Gene regulation Gene regulation includes all the mechanisms that cells use in order to
increase or decrease the levels of specific gene products. This can be achieved either by
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Fig. 1.3 (a) The lac operon is made of three genes lacZ, lacY, lacA, which molecular products
are needed to metabolize lactose. Prior to the operon we find the promoter region (red
crossed box), the binding site for the activator protein (blue crossed box) and the binding
site for the repressor protein (yellow crossed box). The constitutively expressed lacI gene
is also present in the E.coli chromosome and its molecular product is the repressor protein
(yellow star).(b) Low lactose and high glucose. When there is no lactose, the repressor
protein (yellow star) binds to DNA preventing the operon transcription. (c) High lactose and
high glucose. When lactose molecules are presents, they bind to the repressor proteins and
the complex lactose-repressor is unable to bind to DNA. This leaves the operon free to be
transcribed. However, since the activator protein (blue star) levels and the glucose levels are
inversely proportional, very few activators are present in the cell making transcription only
moderate. (d) Low lactose and low glucose. Low glucose levels means high activator levels
but the operon is repressed due to the absence of lactose. (e) High lactose and low glucose.
The operon is not repressed, and the high amount of activator proteins makes expression
strong.
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regulating the amount of mRNA produced (transcription regulation), by regulating the amount
of protein produced from the mRNA (translation regulation) or by controlling the levels
of active proteins once the proteins are already formed (post-translation regulation). For
transcription regulation, one of the most famous examples is the one of the lac operon in
E. coli which discovery in 1961 was worth the Nobel prize to Francois Jacob and Jacques
Monod [17]. Monod and Jacob observed that E.coli growing in a mixture of glucose and
lactose do not metabolize the two sugars simultaneously but they rather consume them
sequentially [41]. This observation is at the base of the theory on the lac operon regulation
which we will now briefly summarize.
The lac operon (figure (1.3a)) consists of three genes lacZ, lacY, lacA, which molecular
products are needed to metabolize lactose. The operon is "controlled" by two transcription
factor proteins3 which presence will increase or decrease the expression of the operon. These
two proteins are of opposite nature. One is a repressor protein which, once bounds to the
DNA, prevents the transcription of the operon; whereas the other is an activator protein which,
once bound to the DNA, increases the transcription of the operon. Note that the repressor
protein (named LacI) is the molecular product of the lacI gene contained in the E.coli
chromosome. The lacI gene is continuously expressed4 which means that no transcription
factor proteins regulate its transcription activity.

When no lactose is present, the LacI repressor protein binds near the promoter region,
preventing the RNAP to initiate transcription (figure (1.3b)). However, if lactose is present,
the LacI repressor protein binds to the lactose molecule and the complex lactose-LacI is
unable to bind to DNA. In this condition there is nothing that prevents the RNAP to initiate
transcription therefore the operon is expressed (figure (1.3c)). This explain how E. coli can
turn "on/off" the lac operon depending on the lactose presence but it does not explain why
the two sugars are metabolized sequentially. In order to fully explain Jacob and Monod
observation, we also have to consider that the operon responds to the presence of glucose by
increasing/decreasing the transcription rate. Indeed, it has been discovered that the amount
of activator proteins is inversely proportional to the levels of glucose [37]. Therefore, when
the glucose levels are low, the amount of activator proteins is high thus, if the operon is not
repressed, transcription activity is high (figure (1.3e)). However, if the glucose levels are
high, the amount of activator proteins is low making the operon expression moderate even if
it is not repressed (1.3c)). Obviously, in both scenario of low/high glucose levels, there is no
expression of the lac operon if lactose is not present (1.3b,d).
The deterministic model of gene regulation presented so far clearly does not take into account

3Transcription factors are proteins which control the transcription of DNA by binding to specific DNA
sequences.

4A gene which is continuously expressed is called constitutive.
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the stochastic nature of the underlying phenomena. Transcription initiation, binding/unbind-
ing of transcription factors and many other processes, happen with a certain probability but
with no certainty. This means that even in unfavorable conditions like high glucose and low
lactose the operon may be expressed giving rise at what we call "noise in gene expression"
which is the topic of the next section.

1.3 Noise in gene expression

Due to the stochastic nature of gene expression, cells sharing the same DNA and living in
similar conditions do not necessarily express the same genes at the same levels (figure 1.4).
Gene expression noise is defined to be the cell to cell variation on the protein levels associated
with a gene. It is usually quantified as the coefficient of variation (standard deviation
divided by the mean) of the protein levels distribution. It has been experimentally [10] and
theoretically [52] shown that two independent noise source (the intrinsic and extrinsic noise)
contribute to the final observed variability in the protein levels. The first, the intrinsic noise,
is due to the stochastic nature of the protein production and degradation. Indeed, even in
the ideal case where gene expression takes place in the exactly same conditions, due to the
stochastic nature of the process (e.g. binding/unbinding of RNAP and ribosomes, etc.), the
final amount of protein molecules produced is not deterministic. The intrinsic noise term is
modeled trough a Poisson process. Indeed, if p(n, t) is the probability to have n proteins at
time t and

p(n+1, t +∆t|n, t) = k∆t +O(∆t2) (1.2)

p(n−1, t +∆t|n, t) = γ∆t +O(∆t2) (1.3)

are the probability to produce/degrade one protein during the time interval ∆t, the master
equation governing this process reads

p(n, t +∆t) =p(n, t)(1− k∆t −nγ∆t)

+ p(n−1, t)k∆t + p(n+1, t)(n+1)γ∆t +O(∆t2)
(1.4)

The steady state solution of this equation is the Poisson distribution

p(n) =
⟨n⟩ne−⟨n⟩

n!
(1.5)
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Fig. 1.4 Isogenic strains of E.coli incorporating the distinguishable cyan and yellow alleles
of green fluorescent protein in the chromosome. In each strain, the two reporter genes were
controlled by identical promoters. (A) In strain RP22, with promoters repressed by the
wild-type lacI gene, red and green indicate significant amounts of noise. (B) RP22 grown in
the presence of lac inducer, 2 mM IPTG. Both fluorescent proteins are expressed at higher
levels and the cells exhibit less noise. Figures taken from [10].

with ⟨n⟩ = k
γ

the expected number of proteins. Experimental evidence [54] shows that
this model well explains the noise pattern observed for low expressed genes (< 10 protein
molecules per cell ) but it is not capable to explain the noise observed for highly expressed
genes. This suggests that an additional noise source, the extrinsic noise, takes part in the gene
expression. With the term extrinsic noise we denote all sources of noise which are global
to a single cell but vary from one cell to the other. Concentrations, states and locations of
molecules such as regulatory proteins and polymerases, variations in the levels or activity
of these molecules cause fluctuations in the expression of the gene which are global to the
single cell but vary from cell to cell. This will affect one cell differently from another and
add an extra layer of noise on top of the intrinsic noise.

It is important to observe that transcription noise, i.e. the cell to cell variability on
transcript levels, is encoded into the promoter sequence [16],[45] and therefore is under
natural selection. Whereas some studies argue that natural selection acts to minimize
expression noise [3],[45], others show that gene expression noise can be a beneficial trait
[5],[30],[60]. Our work, presented in the following chapter, will provide an additional
example of the expression noise effects on evolution.
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1.4 Outline of the thesis

Some studies had shown that different genes present different levels of expression noise and
this difference is, to some extend, encoded into the promoter sequence [45][16]. This implies
that transcriptional noise is an evolvable trait subject to natural selection. With this, we mean
that mutations5 of the promoter sequence may lead to changes in the promoter noise levels
and this might affect the organism chances to survive (fitness). For a long time, noise in
gene expression had been seen as an undesirable but unavoidable trait of gene expression. It
was thought that for every condition, there exists an optimal expression level and deviations
from it are detrimental to the organism’s fitness. In this interpretation, natural selection acts
to select promoters with a low noise level [45][5]. Theoretical [30][10][9] and experimen-
tal [6][48] evidences however show that expression noise generates phenotypic diversity
among isogenic cells and Kussel et al. [30] demonstrated that, for bacterial colonies living
in fluctuating environments, phenotypic diversity (bet-hedging) is a particularly effective
survival strategy. Moreover, it has been shown [60] that, in some circumstances, evolution
must have acted in order to increase the noise levels of certain promoters. Part of the work
presented in this thesis is based on the simple observation [22] that E.coli undergoing carbon
source switching, resume growth with a large growth lag variability (noise). Indeed, when
inoculated from glucose to lactose, the 27% of E.coli cells start growing within the first
45 [min] whereas the 5% do not resume growth during the entire experiment duration of
240 [min]. Although a recent study shows the mechanisms behind this observation [20], we
here present a general mathematical theory on why noisy growth lag distribution are expected
in clonal populations.

In Chapter 2, we indeed show that in bacterial colonies the first bacteria resuming growth
generates exponentially more offspring and so contribute more to the final fitness. This
observation let us hypothesize that natural selection is strong for the first growth resuming
bacteria but weak for others. With this we mean that mutations affecting the first growth
resuming bacteria are strongly selected/counter-selected whereas mutations affecting the
late resuming growth bacteria are weakly selected/counter-selected. This mechanism al-
lows detrimental mutations affecting late regrowing cells to accumulate and explains the
observed heterogeneity in the growth lag distribution. Therefore, the noise in the growth
lag distribution is not only a beneficial trait as some studies proposed [12][43] but it is an
unavoidable trait in bacterial populations. In addition, we show that this result depends on the
typical population size and, while lag distributions with a large variance are expected in large

5DNA mutations can be beneficial, deleterious or neutral depending if they increase/decrease or unalter the
organism fitness.
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populations, this is not true for small colonies. This suggests that, while large populations
can employ bet-hedging strategies to deal with unexpected environmental changes, small
populations will require regulated sense-and-response strategies.

In chapter 3: Tracking cell growth and gene expression at the single cell level is now pos-
sible through microfluidic devices combined with time lapse microscopy [22][59]. However,
even if dedicated software are able to precisely estimate the cell size and the amount of target
proteins [22], these measurements are not free from measurements errors. In this chapter we
develop a dedicated biophysical model for cell growth and gene expression which, combined
with a regression technique known as kriging, not only allows us to reduce the measurement
errors but also to disentangle promoter specific fluctuations from other noise sources. We
then apply this technique to the case of cell growth time series data (chapter 4) and reveal
some new features of the cell growth dynamic.

Chapters 2 and 4 are presented as individual stand-alone publications.
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Abstract

The survival of organisms in randomly fluctuating environments not only depends on their
ability to grow in different conditions but also on the time needed to adapt to each new habitat.
Recent works had shown that, like many other physiological quantities, the adaptation time
fluctuates in a stochastic manner across single cells and that the underlying distribution
can dramatically change across genotypes. To understand how natural selection may have
acted on the distribution of single-cell lags we develop a mathematical theory of how the
single-cell lag distribution determines the reproductive success at the population level. We
show that lags at the population level are exponentially dominated by the shortest lags at
the individual cell level. Consequently, analogous to the selection shadow theory of aging,
there is virtually no selection against subsets of cells with very long lags, suggesting that
persister-like phenotypes may very generally be expected to occur in microbial population.
In addition, we show that the relationship between single-cell and population lags depends
on the typical population size and that, while heterogeneous single-cell lag distributions can
be beneficial, they are only effective at large population sizes. This result suggests that, while
large populations can employ bet-hedging strategies to deal with unexpected environmental
changes, small populations will require regulated sense-and-response strategies in order to
ensure short population lags.

2.1 Introduction

Bacterial colonies are composed of phenotypically different individuals that compete with
each other giving rise to potentially complex dynamics (figure 2.1a). Predicting these
collective dynamics base on the knowledge of the single-cell dynamics remains challenging.
Since the bacterial colony growth underlies the organism fitness, a mathematical description
of the colony dynamic based on the single cells dynamic is important to understand the
genotype fitness. Hashimoto et al. [14] showed that growth noise causes clonal populations
of E.coli to double faster than the mean doubling time of their constituent single cells and
so growth noise is a way to increase cell proliferation. This work instead, focuses on the
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consequences of the lag noise on the genotype fitness. Although Sean et al.[51] showed that,
under favorable conditions, E.coli strains with short lags have an evolutionary advantage;
wild type E. Coli has been shown to have a non negligible lag noise [20][32][50][46]. It has
been suggested that lag noise [12][43] is a bet-hedging strategy where, through phenotype
randomization, the bacterial colony is prepared for different kinds of conditions. Indeed,
keeping a fraction of the colony in a non growing state, may make cells more resilient to
stresses like heat shock or antibiotics [1][21] thus increasing the survival chances.
In this paper we show, theoretically, why a high lag noise should in general be expected
in isogenic bacterial populations even without advocating bet-hedging. Indeed, due to the
exponential growth of bacterial populations, the first regrowing cells largely determine the
bacterial growth curve therefore the single cell lag time distribution (or just lag distribution)
tail has a low impact on the genotype fitness. In analogy with the theory of senescence
[39],[58], noisy lag distributions should be expected since selection strongly acts on the first
regrowing cells but is weak on the lag distribution tail. Through a theoretical model and
computer simulations, we investigate the consequences of the lag noise on the genotype
fitness. We show the lag distribution and the bulk lag time T strongly depend on the inoculum
size (the number of bacteria presents when the new environment first comes), and we discover
that lag noise is expected only when the inoculum size is large. This suggests that, while
large populations can employ bet-hedging strategies to deal with unexpected environments,
small populations will require regulated sense-and-response strategies in order to optimize
the genotype fitness.

2.2 Why noisy lag distribution are expected in large popu-
lations

We first revisit [2],[31] the relation between the single cell lag distribution (LD) and the
population lag (or bulk lag) and then focus on the consequences of the lag distribution noise
on bacteria proliferation.

Let’s consider a single cell inoculated into fresh media at time t0 = 0. If we wait long
enough this cell will generate a bacterial growth curve similar to the one in figure 2.1a.
Therefore, for this specific cell i, the population size at any time t in the exponential phase
(t > τ̃i)

Ni(t) = er̃(t−τ̃i) (2.1)

where τ̃i is the lag time and r̃ the growth rate of the bacterial growth curve generated by the
cell i. If we inoculate N0 cells at t0 instead of just one, and assume they all grow with the
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Fig. 2.1 (a) The simple case of bacterial growth in batch conditions. The solid line represents a
typical bacterial growth curve where each phase (lag ,exponential, stationary and death phase)
is colored with a different shade of gray tonality. The right dotted line: r(t −T )− logN0
describes growth in the exponential phase whereas the left dotted line represents an ideal
population without the lag phase (T ), but with the same growth rate (r). Both of these lines
have a slope r equal to the population growth rate and their time translation T represents
the lag time. The quantity N0 = N(t = 0) represents the number of inoculated bacteria at
time t = 0. (b) The black line represents the continuous uniform lag time distribution (LD)
as described in equation (2.7) with τ0 = 1 and ∆ = 10. This distribution has been divided
in four areas, from cells with a very short lag time (blue) to the one with a very long one
(yellow), and we noted their relative size (%) compared to the total area. (c) In black the total
population growth N(t) given the LD depicted in (a). The colored bacterial curves represent
the bacterial growth curves N⋆(t) coming from the four different regimes depicted in (a). On
the right we noted the c f i.e. the relative contributions to the total population coming from
these regimes.
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same population growth rate r̃, then the population size at time t is given by

N(t) =
N0

∑
i=0

Ni(t) =
N0

∑
i=0

er̃(t−τ̃i) (2.2)

or, by re-scaling all the time variables by r̃−1 i.e. working in growth time units

N(t) =
N0

∑
i=0

e(t−τi) (2.3)

The single cells lag times τi can be experimentally determined through methods like the one
proposed by Kaiser et al. [22]. The relation between the lag time distribution p(τ) and the
bulk lag (T ) has already been shown by Baranyi [2] and we here simply revisit it. Note that
p(τ)dτ represents the probability that a bacteria will generate a population growth curve
with lag time τ . The equation describing the bacterial growth curve in the exponential phase
is known since more than fifty years [42] and reads (t > T )

N(t) = N0er(t−T ) (2.4)

where r is the bulk growth rate, T the bulk lag time and N0 the inoculum size.
First, for ease, we work out the relation between the bulk lag time and the lag time distri-

bution in the limit N0 → ∞. Note that, if not explicitly mentioned, the results are presented in
growth time units through the entire article.

In the limit N0 → ∞ the sum in (2.3) can be approximate by its expected value

N(t) = et
N0

∑
i=0

e−τi ≈ N0et 〈e−τ
〉

(2.5)

and, using (2.4) , the relation between the bulk lag and the lag distribution reads

T∞ =− log
〈
e−τ
〉

(2.6)

where T∞ is the bulk lag time for the case N0 → ∞ and ⟨e−τ⟩ =
∫

dτe−τ p(τ). This shows
that the expected lag time is not simply the expected value of the lag distribution ⟨τ⟩ but the
log transform of its exponentially weighted average. To examine the consequences of this
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result, let’s consider, as an example, a uniform lag distribution p(τ) defined as

p(τ) =

{
∆−1 if τ ∈ [τ0,τ0 +∆]

0 otherwise
(2.7)

as depicted in figure 2.1b. In this case, the expected single-cell lag time

⟨τ⟩= τ0 +
∆

2
(2.8)

and the population lag time (2.6)

T∞ =− log
(

e−τ0

∆

(
1− e−∆

))
≈

∆≫1
τ0 + log∆ (2.9)

can be easily computed. We realize that, apart from the offset τ0, the population lag T∞ is
exponentially shorter than the expected single cell lag ⟨τ⟩. This is due to the fact that growth
in bacterial populations is exponential, so the descendants of the first regrowing cells will
soon dominate the entire bacterial growth. To better show this concept, let N⋆(t) be the
number of cells in the exponential phase coming from bacteria with lag τ ∈ [τ⋆,τ⋆+∆⋆]

(colored areas and lines in figures 2.1b,c) and N(t) be the total population size at time t. Then
the fraction

c f =
N⋆(t)
N(t)

=
1− e−∆⋆

1− e−∆
e−(τ⋆−τ0) (2.10)

represents the contribution to the final population given by cells resuming growth within
[τ⋆,τ⋆+∆⋆]. As shown in figure 2.1c the contributions to the final population given by the
first regrowing cells (blue) equal to 63% even if they just represents the 10% of the initial
population (figure 2.1b). On the contrary the last regrowing cells (yellow), which represent
the 40% of the initial inoculum, contributes the 0.3% to the final colony. This example makes
clear that a bacteria with a short lag will generate exponentially more descendant than a
bacteria with a long lag. This observation makes us conjecture that noisy lag distribution
should, in general terms, be expected in bacterial populations since selection is strong only
for the first regrowing bacteria. Indeed, we consider a mutation which can increase/decrease
the heterogeneity of the lag distribution by an amount δ > 0 without changing its mean ⟨τ⟩.
The two mutant lag distribution are for example given by

p±(τ) =

{
1

∆±2δ
if τ ∈ [τ0 ∓δ ,τ0 +∆±δ ]

0 otherwise
(2.11)
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where + indicates an increase in lag noise and − a decrease in lag noise. In the case where
this mutation increases the lag noise (p+(τ)), the mutation has a beneficial effect on the head
of the lag distribution, since it allows cells to start growing a bit earlier (τ0 −δ ), but has a
deleterious one on the tail of the LD since it also let cells to start growing later (τ0+∆+δ ). In
the case in which this mutation decreases the LD heterogeneity p−(τ), the picture is exactly
the opposite. With this in mind, let’s compute the ratio between the mutants populations
sizes N±(t) and the wild type N(t), to compare the number of descendants generated by the
mutants and the wild type cells

N±(t)
N(t)

= e±δ 1− e−∆±δ

1− e−∆

∆

∆±2δ
≈

δ ≪ 1
∆ ≫ 1

1±δ (2.12)

This shows that the more noisy lag distribution will generate more descendants than the wild
type version N+(t)

N(t) > 1, hence this mutation has an high chance to be fixed into the population.
On the contrary the less noisy lag distribution will generate less descendant than the wild
type N−(t)

N(t) < 1, and therefore is less likely to be fixed into the population. This shows that
beneficial/deleterious mutations acting on the head of the lag distribution are strongly selected
independently on the effects they have on the tail of the LD. This hypothesis, similar to the
antagonistic pleiotropy hypothesis [39],[58], explains why deleterious mutations appearing
on the LD tail may accumulate therefore why long tailed lag distributions are expected in the
wild.

All these arguments are general and independent of the specific single cell lag distribution
p(τ). However, all these results have been computed in the limit N0 → ∞. When the
population size N0 is small, the bulk lag time T is on average longer than T∞. Indeed, in the
extreme case N0 = 1, the expected population lag time

⟨T ⟩N0=1 =
〈
− log

[
exp−τ

]〉
= ⟨τ⟩ (2.13)

is given by the expected single cell lag time ⟨τ⟩ which is exponentially longer than T∞. Let’s
work out, in the following sections, the impact and the consequences of a finite inoculum N0.

2.3 The bulk lag time distribution p(T )

Single cell divisions, lags and lysis are stochastic processes [22][14] which collective result
determines the duration of the observed bulk lag time (T ). Therefore, the bulk lag time is
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Fig. 2.2 (a) The population lag distribution p(TN0) (2.17)) with parameters µ = 0.5, σ2

N0
=

2.25×10−2. The red line represents the mode T ⋆
N0

and the green line represents the mean
⟨TN0⟩ of this distribution. The vertical black line is the value T∞ =− log µ i.e. the population
lag time in the case N0 → ∞. (b) The difference between ⟨TN0⟩ and T ⋆

N0
as a function of N0

and σ2

µ2 . This quantity represents the expected population lag time delay a finite population
has, compared to the infinitely large population scenario. (c) Different LD p(τ) assumed to
be Gamma distributed with different shape and rate parameters (α and β ). (d) The coefficient
of variation

(
σ2

µ2

)
of the f distribution as function of the parameters α,β of the underling

LD (2.28). The four dots represent the values of σ2

µ2 for the 4 distributions depicted in panel

(c). Even if not proven, it seems clear that long tailed LD correspond to high σ2

µ2 .
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also a stochastic variable and we are here interested in determining its probability distribution
p(T ). In order to find this let us write the bacterial size at time t in the exponential phase as

N(t) = N0et f with f =
1

N0

N0

∑
i=0

e−τi (2.14)

where the random variable f ∈ [0,1] represents the fraction of the population size one would
get compared to the situation without lag. The central limit theorem allows us to approximate
its distribution

p( f ) ∝ e
N0( f−µ)2

σ2 with µ =
〈
e−τ
〉

and σ
2 = Var

[
e−τ
]

(2.15)

Equation (2.4) defines the population lag time variable

TN0 =− log f (2.16)

where TN0 is the bulk lag time for inoculum of size N0. Using (2.15) we find its distribution1

p(TN0) ∝ e−TN0 e−
N0

2σ2

(
e
−TN0−µ

)2

(2.17)

sometime called the exp-normal distribution ExpNorm
(

µ, σ2

N0

)
, represented in figure 2.2a.

For the case N0 → ∞, this distribution converges to the Dirac delta function (black dotted
line in figure 2.2a)

p(TN0) =
N0→∞

δ (T∞ + log µ) (2.18)

where obviously the mean and the mode correspond to the same value

T∞ =− log µ (2.19)

in agreement with what we developed in the previous section.
For finite N0, the distribution is positively skewed as shown in figure 2.2a and we can easily
compute its mode (red dotted line)

T ⋆
N0

=− log

[
µ

2

(
1+

√
1+

4σ2

µ2N0

)]
=− log µ − σ2

µ2N0
+O

(
1

N2
0

)
(2.20)

1The complete distribution is given in equation (S.3)
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and mean (green dotted line)

⟨TN0⟩=− log µ +
σ2

2N0µ2 +O

(
1

N2
0

)
(2.21)

As we will see in the next section, the fact that small inoculums N0 give rise to skewed
and noisy distribution compared to the case N0 → ∞, has various consequences in bacterial
proliferation. Indeed, if N0 is finite than (figure 2.2a)

p(TN0 < T∞) ̸= 0 (2.22)

i.e. there is a non negligible probability that small populations will have a very short
population lag time TN0 compared to T∞. If this is the case, then the number of descendent
coming from the small populations will be exceptionally large due to this advantage. These
events have been called "jackpot" events [13] due to their rare but high impact effect. However,
if N0 is finite, then the lag distribution p(TN0) is a long tailed distribution (figure 2.2a) and
this has two major consequences. The first is that

p(TN0 > T∞) ̸= 0 (2.23)

therefore there is a non negligible chance that small populations have a growth disadvantage.
The second, and more important, is due to the Jensen inequality [18] which guarantees that

⟨TN0⟩ ≥ T∞ (2.24)

In order to quantify the impact of N0 on the p(TN0) distribution, we define the time delay due
to finite N0 as the difference between the population lag mean at finite and infinite inoculums

⟨TN0⟩−T∞ =
σ2

2N0µ2 (2.25)

which is depicted in figure 2.2b as a function of N0 and of the coefficient of variation σ2

µ2 .

This quantity is proportional to σ2

µ2 and inversely proportional to N0.
It’s important to remember that σ

µ
is the coefficient of variation of p( f ) and not of p(τ). The

following example will clarify the difference between the two. Consider the single cell lag
distribution to be gamma distributed

p(τ) = Gamma(α,β )
def
=

β α

Γ(α)
τ

α−1e−βτ with α,β > 0 (2.26)
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represented in figure 2.2c with different values of shape parameter α and rate parameter β .
A detailed analysis of this example is out of the scope of this work, but we want the reader to
be aware of the difference between the Cv of p( f ) i.e.

(
σ2

µ2

)
and the coefficient of variation

of the single cell lag distribution Cvτ . For example, we note that the coefficient of variation
of a generic gamma distribution

Cv2
τ =

α

β 2(
α

β

)2 = α
−1 (2.27)

is independent on the β parameter. This means that, except the yellow distribution in figure
2.2c which has a smaller Cvτ , the others all have the same one. However, in figure 2.2d we
depicted the coefficient of variation of the p( f ) distribution

σ2

µ2 =

(
(β +1)2

β (β +2)

)α

−1 (2.28)

which strongly depends on β . Therefore, in the case of a gamma lag time distribution
p(τ), σ2

µ2 is inversely proportional to Cvτ and to β . With this in mind, we can now study the
potential consequences on evolution all these observations might have.

2.4 The log genotype fraction depends on the initial popu-
lation size

Modern experimental techniques allow to label single cells with unique DNA barcodes, and
such techniques are said to be able to infer adaptative mutations even at very low frequencies
[4],[23],[33]. We will show that these measurements might suffer, due to the N0 dependence
of lag time T , a fictitious evolutionary advantage favoring the more abundant genotype. To
show this, we assume a wild type bacteria got a neutral mutation and we are interested in
assessing the mutant fitness. Clearly, since the two genotypes are indistinguishable from
an evolutionary point of view, their fixation probability must be the same. However, in
DNA barcodes like experiments, we do not have access to the fixation probability. The only
quantity we can measure is the number of wild type and mutants bacteria within the colony.
Therefore, their relative fraction in the log space after a growth phase reads

log
(

Nmut
0

Nwt
0

)
→ log

(
Nmut

0
Nwt

0

)
−
(

TNmut
0

−TNwt
0

)
(2.29)
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with Nwt/mut
0 and TNwt/mut

0
the initial population size and the population lag of the wild type

and the mutant. The additional term

s def
=
(

TNmut
0

−TNwt
0

)
(2.30)

is positive if the wild type genotype after a growth phase expanded more than the mutant,
and negative if the mutant genotype expanded more than the wild type. We aim to show that,
even if the two populations are indistinguishable from an evolutionary point of view, the
more abundant genotype has a systematically larger s which is due to the log transformation.
Recalling that the population lag variables T are exp-normal distributed

TN0wt/mut ∼ ExpNorm
(

µ,
σ2

Nwt/mut
0

)
(2.31)

and assuming, without the loss of generality, the wild type is more abundant Nwt
0 → ∞

p
(
T wt)∼ δ

(
T wt + log µ

)
(2.32)

we can easily find the distribution of s

p(s) = ExpNorm
(

1,
σ2

µ2Nmut
0

)
(2.33)

where the mean and the variance of this distribution equal to

⟨s⟩= σ2

2µ2Nmut
0

, Var[s] =
σ2

µ2Nmut
0

= 2⟨s⟩ (2.34)

This shows that the extra-term s takes values

s = ⟨s⟩±
√

2⟨s⟩ (2.35)

The case
lim

Nmut
0 →∞

⟨s⟩= 0

predicts no systematic deviations favoring one or the other genotype as it is expected to be.
However, the case ⟨s⟩> 0 predicts the more abundant genotype (here the wild type) to have
a systematically larger relative fraction compared to the mutant. Therefore, looking at the s
dynamics, one might confer to the more abundant genotype a larger fitness even-tough the
two genotypes are indistinguishable. As it has already been observed by Hallatscheck [13] in



24 The benefits of a noisy lag distribution in bacterial populations

Fig. 2.3 A feast and famine experiment where two genotypes (red and blue) goes through
different phases of growth (colored areas) and starvation (white areas). We call a cycle a
phase of growth and starvation with a specific growing media. The duration of a cycle equals
Gi +Di where Gi is the duration of the growing phase and Di is the duration of the starvation
phase. The area of the black circle represents the total population size, and the relative
fraction between the two genotypes at the begin and at the end of the duration of a growing
media reflects the fitness of them in the specific media.

a similar scenario, the neutrality of this process is guarantee by the rare jackpots events of
the less abundant genotype. In fact, even if ⟨s⟩ seems to be insensitive to these events, the
entire dynamic is not and the neutrality of the process guarantee.

2.5 The optimal surviving strategy in fluctuating environ-
ments may depend of the colony size

Previously we showed that, in the case of large initial populations N0 → ∞, selection pressure
on the tail of the single cell lag time distribution p(τ) is weak, and so noisy lag distributions
should be expected. Nevertheless, when looking at the bulk lag time distribution p(T ), we
observed its dependence on the population size (2.17), and especially the fact that ⟨T ⟩N0

≥ T∞.
In this section we will show that, in the case of small N0, the selection pressure on the tail
of the lag distribution p(τ) is non negligible anymore and so long tailed LD should not be
expected. To do this, we first have to define a mathematical framework where such quantities
come out naturally. We consider a scenario where two different genotypes compete in a feast
and famine experiment present in figure 2.3.

The feast and famine experiment In figure 2.3, the different colors represent different
growing media i.e. conditions where both genotypes (blue and red) can grow. The time a
growing media will last is noted Gi and is only constrained to be long enough to allow both
genotype populations to reach the exponential phase. After a period of growth, we initiate a
famine period, of duration Di, where the population loses bacteria through death or dilution
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resulting in a shrinkage of the population size. A period of growth and dilution is called a
cycle. Fore ease, we neglect the rise of any mutation, except neutral mutation, during the
entire experiment duration.
After one cycle of growth and dilution, a genotype in the population will have grown/shrink
by a factor

er(Gi−T )−µDi (2.36)

where r,T,µ are the growth rate, population lag time and decay rate specific to this cycle and
genotype, whereas Gi, Di are the duration of the growing media and famine phase for the ith

iteration. Among r,T,µ we consider only the population lag T as a stochastic variable and,
after K concatenations of the same cycle type, the population will have grown/shrink by

K

∏
i=1

er(Gi−Ti)−µDi = eKer(⟨G⟩−⟨T ⟩)−µ⟨D⟩ (2.37)

The growth-adaptation trade-off Now that we mathematically described the feast and
famine experiment, let’s consider two genotypes growing in this fluctuating environment. It
has been shown that the genotype with the largest geometric mean

r (⟨G⟩−⟨T ⟩)−µ ⟨D⟩ (2.38)

is the one with more chances to survive [24],[34]. Clearly, the optimal solution would be
to adapt as fast as possible to the new environment ⟨T ⟩ → 0 and to grow as fast as possible
r → ∞ inside it. However, since fast growth and fast adaptation has an important energetic
cost, no biological system can satisfy both requirements simultaneously and the correct
trade-off between them is the key for the organism survival success. Depending on the
condition, it may be better for a genotype to optimize either its growth rate r or its expected
lag time ⟨T ⟩ and we are here interested to study the trade-off between growth and adaptation.
Consider two genotypes (1 and 2) with the same death rate µ but with different population
lags ⟨T1⟩ and ⟨T2⟩ and growth rates r1 and r2

r1 = r+δr ⟨T1⟩= ⟨T ⟩ (2.39)

r2 = r ⟨T2⟩= ⟨T ⟩−δT (2.40)

with δr > 0 and δT > 0. Genotype 2 will generate more descendants if

r2 (⟨G⟩−⟨T2⟩)−µ ⟨D⟩> r1 (⟨G⟩−⟨T1⟩)−µ ⟨D⟩ (2.41)

⇒ δr (⟨G⟩−⟨T ⟩)< rδT (2.42)
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This means that genotype 2 will out-compete genotype 1 only if the extra number of divi-
sions of genotype 2 cells (rδT ) is larger that the extra number of divisions of genotype 1
cells (δr (⟨G⟩−⟨T ⟩)). A generalization of this simple example to multiple environmental
conditions is straightforward but will not be detailed in this work. It’s worth noting that the
expected lag time ⟨T ⟩, thus the trade-off (2.42), depends on the size of the population at the
begin of the cycle N0.

2.5.1 The growth-adaptation trade-off depends on the lag noise and on
the population size.

In order to study how (2.42) depends on the population size we simulate a feast and famine
experiment (supplementary). For ease, we assume the total number of bacteria at the begin of
every iteration to be fix and equals to Ntot

0 . We also assume the two competing genotypes (red
and blue) face always the same growth media and they differ only by their lag distribution
p(τ) defined in figure 2.4a. At the begin of the first cycle, the total population is of Ntot

0

bacteria out of which Nred
0 are red cells and Ntot

0 −Nred
0 are blue cells. The lag advantage after

the first iteration is
δT =

〈
T blue

〉
−
〈

T red
〉

(2.43)

and in figure 2.4b we plot the theoretically predicted δT (S.12) as a function of the total
population Ntot

0 and as function of the fraction of red genotypes at the begin of the first cycle
ρ = Nred

0 /Ntot
0 . The region where δT > 0 corresponds to the region where the red genotype

has a shorter mean bulk lag and therefore a larger geometric mean (or higher fitness) ac-
cording to (2.42) and vice versa in the region where δT < 0. The black line represents the
condition δT = 0. Figure 2.4b can easily be interpreted as follow: when Ntot

0 is large the red
genotype tends to generate more descendants since there will probably be some red bacteria
with a short lag (green area in figure 2.4a) which allows it to out-compete the blue genotype
in terms of number of descendants. This is exactly the argument we made in the first section
where we showed that, for large colonies, the selection acts only on the head of the lag
distribution. However, for small values of Ntot

0 , the blue genotype has a larger geometric
mean (figure 2.4b). This comes from the fact that, for small Ntot

0 , the chances that short lag
red bacteria are present decrease with Ntot

0 and the tail of the red genotype lag distribution i.e.
the long lag cells (blue area in figure 2.4a) has now a deleterious impact on the number of
descendants generated.

These considerations are certainly valid if the number of red cell Nred
0 would remain the

same at the beginning of every cycle. However, after the first growth and famine cycle, the
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Fig. 2.4 (a) The gamma lag distributions for the two competing genotype red and blue
with their respective α,β parameters. The green area represents what we call the short lag
cells whereas the blue area represents what we call the long lag cells. (b) The expected
lag advantage δT (equation (2.43)) over the first iteration as a function of the total initial
population Ntot

0 and the initial fraction of red genotype cells ρ . In black the condition δT = 0.
The red area corresponds to the condition where the red genotype has a larger geometric
mean (2.42) and vice versa for the blue area. (c) The fixation probability for the red genotype
in a feast and famine experiment as a function of the initial population size Ntot

0 and the
initial fraction of red cells at the first iteration. In black the same condition δT = 0 as in panel
(b). The red region is the region where the fixation probability of the red genotype > 0.5
whereas the blue region corresponds to a fixation probability of the red genotype < 0.5. (d)
The fixation probability of the red genotype as function of the initial red cells fraction ρ for
different population sizes Ntot

0 . The difference between the fixation probability and the black
dotted line (genetic drift) gives the advantage (positive) or disadvantage (negative) fixation
strength of the red genotype over the blue one. This shows for example that for large Ntot

0
and small ρ the red genotype has an high selective advantage.
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number of red bacteria at the begin of the second cycle is fluctuating since it depends on
the growth during the previous iteration and on the impact of the famine period. It is not
obvious to theoretically predict the dynamics over the entire feast and famine experiment
rely for this on the simulation. In figure 2.4c we show the result of the simulation for the
fixation probability of the red genotype depending on the total colony size Ntot

0 and on the
fraction of red cells at the begin of the first cycle ρ . In black we draw the same theoretically
computed condition δT = 0 as we did in figure 2.4b. Figure 2.4c shows that the dynamic is
well described by equation (2.43) due to the similarity between panel (b) and (c) in figure
2.4. Therefore, noisy single cells lag time distributions (the red genotype), or bet-hedging
strategies, should be expected for large Ntot

0 as long as a fraction of the population is well
adapted for the new coming environment i.e. short lags cells exists. In the opposite, for
small Ntot

0 , regulated sense and responses strategies (the low lag noise blue genotype) will be
preferred due to the absence of long lags bacteria.

In order to quantify the strength of this effect we compare the fixation probability of this
phenomena with pure genetic drift. Pure genetic drift would predict [25] that, if no selection
is acting, the fixation probability of the red genotype equal its initial fraction ρ . In figure
2.4d we show the fixation probability of the red genotype as function of its initial fraction ρ

and for different initial populations sizes Ntot
0 . The dashed black line represents the genetic

drift and the distance from this line quantify the strength i.e. "advantage/disadvantage" one
strategy has. By construction the two strategies performs equally well for Ntot

0 = 3× 104.
However, for Ntot

0 > 3×104 the red genotype has more chance to be fixed than simple genetic
drift and vice versa for Ntot

0 < 3×104 as expected. As said, the difference between the actual
fixation probability and the genetic drift is a measure of the "strength" of selection. When
it is positive the red genotype would be preferred over the blue one and vice versa when it
is negative. We observe for example that for large Ntot

0 and small ρ the advantage the red
genotype has is the strongest.

2.6 Discussion

Wild type E.coli resume growth stochastically when exposed to new conditions [22][1]. This
phenotype may confer to the organism an evolutionary advantage [1][21] and [12] suggested
that E.coli implement a bet-hedging strategy where, through phenotype randomization,
different cells are adapted to different kinds of environments. However, we have shown that,
due to the exponential growth of bacterial populations, the time a specific cell needs to exit
the lag has an exponential impact on its number of descendants. This observation let us
hypothesize that selection is strong on the head of the lag distribution and weak on the tail
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i.e. mutations acting on the head of the lag distribution are strongly selected whereas the
one acting on the tail contribute less to the mutant fixation probability and so not strongly
selected. This translate into the fact that deleterious mutations acting on the tail of the lag
distribution are expected to accumulate and so long tailed lag distribution should not be rare
to be observed. Therefore, in our interpretation, long tailed lag distribution is not a phenotype
which bacteria are actively maintaining but rather an unavoidable trait. We then showed the
bulk lag time to also be a stochastic quantity and studied the non trivial relationship between
the bulk lag time distribution and the single cell lag time distribution. In particular, we studied
the impact of the single cell lag distribution shape and the inoculum size on the expected
bulk lag time. We showed that the expected bulk lag time is longer when the initial colony
size is small and this effects is stronger when the single cell lag distribution is long tailed. To
understand the consequences of this observation on bacteria evolution, we simulated bacterial
colonies living in fluctuating environments. As predicted by our theory we showed that noisy
lag distributions are effective for large populations as far as a subset of bacteria can adapt
fast to the new environment but are inefficient in small populations. This suggests that, while
large populations can employ bet-hedging strategies to deal with unexpected environmental
changes, small populations will require regulated sense-and-response strategies in order to
maximise their survival chances. Last, we studied the potential problems which may arise
when we define the log genotype fraction as a measure of fitness. This fitness measure is
often used in evolutionary experiments and we show that, due to the colony size dependence
of the population lag, one may overestimate the fitness of the more abundant genotype even
in cases where no selection is acting. This fictitious selection force is an example of a more
general theory developed by [13].
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2.7 SUPPLEMENTARY

2.7.1 The moments of the lag distribution

The variable f ∈ [0,1] is assumed to be Gaussian distributed

p( f ) = Norm e
( f−µ)2

2σ̃2 where µ =
〈
e−τ
〉
, σ̃

2 =
Var [e−τ ]

N0
(S.1)

and the normalization term Norm equal to

Norm =

√
2

√
2πσ̃2

(
erf
(

1−µ√
2
√

σ̃2

)
+ erf

(
µ√

2
√

σ̃2

)) (S.2)

The population lag variable T =− log f is therefore distributed as

p(T ) = Norm e−T e−
(e−T −µ)2

2σ̃2 (S.3)

and the moments of this distribution read

⟨T α⟩= Norm× (−1)α

∫ 1−µ

−µ

(
log µ + log(1+

x
µ
)

)α

e−
x2

2σ̃2 dx (S.4)

To compute this integral we have to realize that the Gaussian term centered in zero and
with standard deviation σ̃ smaller, by construction to the mean i.e σ̃ < µ , is dominating
the integration range. This allow us to expand the logarithm and to extend the range of
integration to (−∞,∞)

⟨T α⟩ ≈ 1√
2πσ̃2

(−1)α

∫
∞

−∞

(
log µ +

x
µ
− x2

2µ2

)α

e−
x2

2σ̃2 dx

=
1√

2πσ̃2
(−1)α

∫
∞

−∞

(
logα

µ +α
x
µ

logα−1
µ −α

x2

2µ2 logα−1
µ

+
α(α −1)

2
x2

µ2 logα−2
µ

)
e−

x2

2σ̃2 dx

= (−1)α

(
δα≥1 logα

µ −δα≥1α
σ̃2

2µ2 logα−1
µ+

δα≥2
α(α −1)

2
σ̃2

µ2 logα−2
µ

)
+O

(
σ̃3

µ3

)
(S.5)
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where

δi≥ j =

{
1 if i ≥ j
0 otherwise

(S.6)

Particularly interesting for us are the mean

⟨T ⟩=− log µ +
σ̃2

2µ2 +O

(
σ̃3

µ3

)
(S.7)

and the variance

Var[T ] =
σ̃2

µ2 +O

(
σ̃3

µ3

)
(S.8)

2.7.2 Feast and famine experiment

To simulate a feast and famine experiment (figure 2.3) we assume the two competing
genotypes (red and blue) face always the same cycle type and they differ only by their lag
distribution p(τ) defined in figure 2.4a. The two lag distribution p(τred) and p(τblue) were
chosen such that δT = ⟨T blue⟩−⟨T red⟩= 0 for Ntot

0 = 3×104,ρ = 0.5 i.e. there is not lag
advantage for Ntot

0 = 3×104,ρ = 0.5.
At the begin of the first cycle, the total population is of Ntot

0 bacteria with a fraction ρ of red
cells and 1−ρ of blue cells. Therefore, we randomly sampled Ntot

0 ρ from the "red" p(τr)

distribution and Ntot
0 (1−ρ) from the "blue" lag distribution p(τb). Then we compute the

new fraction (ρ ′) of red bacteria at the end of the growth cycle

ρ
′ =

∑
ρNtot

0
i=0 e−τr

i

∑
ρNtot

0
i=0 e−τr

i +∑
(1−ρ)Ntot

0
i=0 e−τb

i

(S.9)

The famine cycle has been simulated by considering binomial sampling. This means that at
the begin of the next iteration we sample Ntot

0 cells with probability ρ ′ to be red and 1−ρ ′ to
be blue. We iterate this procedure of growth and famine until one of the two genotype get
extinct. By repeating this simulation several times with different Ntot

0 we can compute the
probability for a genotype to get extinct depending on Ntot

0 .
Note that we can also theoretically compute ρ ′ after the first iteration

ρ → ρ
′ =

ρ

ρ +(1−ρ)eT red−T blue (S.10)
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where the bulk lag random variables T red/blue have the distribution (2.17) with parameters

µ =

(
β

β +1

)α

and σ
2 =

(
β

β +2

)α

−µ
2 (S.11)

Clearly we can also easily compute the expected lag advantage over the first cycle

δT def
=
〈

T blue
〉
−
〈

T red
〉

(S.12)

since 〈
T red

〉
=− log

(
0.3

0.3+1

)2

+
1

2Ntot
0 ρ

((
(0.3+1)2

0.3(0.3+2)

)2

−1

)
(S.13)

and

〈
T blue

〉
=− log

(
1.25

1.25+1

)5

+
1

2Ntot
0 (1−ρ)

((
(1.25+1)2

1.25(1.25+2)

)5

−1

)
(S.14)



Chapter 3

A Bayesian model to infer the gene
expression dynamics.

3.1 Introduction

One of the first method developed to measure cell growth and gene expression at the single
cell level consisted in the use of agarose patches, on which cell grow and form microcolonies,
combined with quantitative fluorescence time-lapse microscopy [61]. Whereas the cell size
was directly visible through microscope images, gene expression was monitored through
genetically encoded fluorescent proteins, such as the green fluorescent protein (GFP), which
intensity reflects the activity of the promoter studied. Two main problems arose when
using such methods. One is that the size of the microcolony grows so quickly that soon
most of the colony is out of the microscope field view. The other is that microcolonies
growing on agarose patches form multi-layers which make the monitoring of the single
cells impossible. Microfluidic devices solved these problems by flushing away the cell
progeny and so drastically increasing the observation time. Among the various microfluidic
approaches [56][55] we focus on the so-called Mother Machine [56], a device designed to
study long-term growth in E.coli. As shown in figure 3.1(a) mother machine has several
small channels, closed in one side, where bacteria are trapped. Nutrients and other products
can diffuse in and out of these channels through the part connected to the main tube in which
the medium constantly flows. The growth channels are approximately 20[µm] long with a
cross section of ∼ 1[µm]× [1µm]. Because of that, E.coli are stacked one over the other
leaving one cell trapped at the bottom of the channel (bottom cell). During the time course,
cells divide and push their progeny up until they leave the growth channel. While almost
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all the cells can only be observed for a relatively short time before they leave the growth
channel, the bottom cell can be monitored during the entire experiment duration.

As an example [22], in figure 3.1b we show a time series of microscope images of a
single growth-channel where E.coli, that carries a translational lacZ-GFP fusion at the native
locus, are exposed to alternate carbon sources (glucose/lactose). To analyse these images, i.e.
to automatically segment and track cells and division events, and to quantify the cell size and
levels of fluorescence; Kaiser et al. developed the MoMa software [22]. In figure 3.1c we
show, as an example, some of the MoMa predicted cell volume and fluorescence levels of
the previously mentioned experiment. For more details about this experiment, we refer to
[22]. Even-tough the MoMa software precisely measures the cells sizes and the levels of the
fluorescent proteins, these measurements are not free from measurement noise. In the next
sections we will propose two different strategies, both based on kriging, to reduce the effects
of measurement noise. First, we will introduce what kriging, or Gaussian process, regression
is and how it is used on the MoMa time series data. Then we will introduce a biophysical
model which, combined with the kriging technique, allows us to predict the dynamic of some
important latent variables1 and disentangle promoter specific fluctuations from other noise
sources.

3.2 Gaussian Processes Regression in general

Gaussian process regression, or kriging, is a regression model widely used in machine
learning. We here present the main concepts behind this method and we refer to the vast
literature [7][19] for more details.

3.2.1 Gaussian distribution and Gaussian identities

Before explaining what Gaussian processes are and how regression with these models is
done, let’s remind some basic concepts and relations on Gaussian distributions.

Definition The n−dimensional random vector

x⃗ = [x1, . . . ,xn]
T (3.1)

1Latent variables are variables that are not directly observed but are rather inferred (through a mathematical
model) from observed variables.
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Fig. 3.1 (a) On the left a schematic representation of the mother machine design. Bacteria
(gray ellipse) are growing one over the other in the four dead-end growth channels. The media
(green) constantly flows in the main tube (green arrow) and diffuses inside the channels. On
the right a real phase-contrast microscope image of three mother machine growth channels
with E.coli inside. (b) A time series of microscope images of a single growth-channel where
E.coli strain, that carries a translational lacZ-GFP fusion at the native locus, are exposed to
alternate carbon source (glucose/lactose) (figure from [22]). (c) Single cells growth and gene
expression dynamics for the experiment described in (b). The data are obtained using the
MoMa software [22] where the cell size (black, log scale) and the LacZ-GFP expression
(green, linear scale) are shown as a function of time. Dashed vertical lines show the lineage
of cell division and connects mother cells with their respective daughter cells (figure from
[22]). (d) A schematic example of cell division inside the mother machine. Two growth
channels with their respective off-springs are represented. We define cell lineage the division
history of a particular cell (green).
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is said to be Gaussian distributed with mean

µ⃗ = [⟨x1⟩, . . . ,⟨xn⟩]T (3.2)

and covariance matrix C

Ci j =
〈
(xi − µ⃗i)

(
x j − µ⃗ j

)〉
∀i, j = 1, . . . ,n (3.3)

if
x⃗ ∼ 1√

(2π)n detC
e−

1
2 (⃗x−µ⃗)C−1(⃗x−µ⃗) (3.4)

We note this distribution N (⃗x |⃗µ,C) .
Let’s now list some useful results on Gaussian distributions, others can be found in [7].

Multiplication The multiplication of two Gaussian distributions results in another Gaussian
distribution

N (⃗x|⃗a,A)N
(⃗

x|⃗b,B
)

∝ N (⃗x|⃗c,C) (3.5)

where

c⃗ =CA−1⃗a+CB−1⃗b (3.6)

C =
(
A−1 +B−1)−1

(3.7)

Convolution Let x⃗, y⃗ be two generic n−dimensional Gaussian distributed random vectors
where x⃗ ∼N (⃗x|⃗a,A) and y⃗− x⃗ ∼N (⃗y− x⃗|⃗b,B). Then the convolution of them simply reads∫

d⃗xN (⃗x|⃗a,A)N (⃗y− x⃗|⃗b,B) = N (⃗y|⃗a+ b⃗,A+B) (3.8)

Propagation Let x⃗, y⃗ be two generic n−dimensional Gaussian distributed random vectors
where y⃗ ∼ N (⃗y|⃗b,B) and x⃗ ∼ N (⃗x|Fy⃗+ a⃗,A). Then the propagation reads∫

d⃗yN (⃗x|Fy⃗+ a⃗,A)N (⃗y|⃗b,B) = N
(⃗

x|F⃗b+ a⃗,A+FBFT
)

(3.9)

Marginal Consider the 2n−dimensional Gaussian distributed random vector[
x⃗
y⃗

]
∼ N

([
x⃗
y⃗

]∣∣∣∣∣
[

a⃗
b⃗

]
,

[
A E

ET B

])
(3.10)
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In order to obtain the marginal distribution for the variable x⃗ starting from the join distribution
(3.10) we simply integrate over y⃗ and obtain

x⃗ ∼ N (⃗x|⃗a,A) (3.11)

Conditional From the joint distribution (3.10) it is also easy to obtain the conditional
distribution of x⃗ given y⃗

x⃗|⃗y ∼ N
(⃗

x
∣∣∣⃗a+EB−1

(⃗
y− b⃗

)
,A−EB−1ET

)
(3.12)

In all the above equations A,B,F,E are n×n matrices and a⃗,⃗b are n−dimensional vectors.

3.2.2 Gaussian process regression

Gaussian process regression, or kriging, is a method of interpolation for which the interpolated
values are modeled by a Gaussian process. Imagine a quantity x(t) ∈ R that varies over time
t to which we do not know its functional form. In general a regression problem has the
objective to learn the function x(t) given a finite series of measurements of this quantity D =

{x(t1),x(t2), ...,x(tn)}. This is an ill-defined problem since there are infinitely many functions
that take the same values at (t1, t2, . . . , tn) but differs elsewhere. To overcome this problem,
we have to make some additional assumptions and for the Gaussian processes regression
method we assume {x(t) : t ∈ R} to be a stochastic2 Gaussian process. A stochastic process
{x(t) : t ∈ R} is said to be Gaussian if and only if any sub-collections {x(t1) . . . ,x(tn)} is
Gaussian distributed. Equivalently, the stochastic process {x(t) : t ∈ R} with mean function

µ(t) = ⟨x(t)⟩ (3.13)

and covariance function

k(t,s) =
〈(

x(t)−⟨x(t)⟩
)(

x(s)−⟨x(s)⟩
)〉

(3.14)

is Gaussian, only if any n−dimensional vector X⃗ = [x(t1),x(t2), ...,x(tn)]
T follows

X⃗ ∼ N

X⃗

∣∣∣∣∣∣∣
 µ(t1)

...
µ(tn)

 ,

 k(t1, t1) . . . k(t1, tn)
... . . . ...

k(tn, t1) . . . k(tn, tn)


 (3.15)

2We can think a stochastic process to be represented by numerical values of some system randomly changing
over time.
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As we will see in the next paragraphs, once we choose a suitable mean function µ(·) and a
suitable covariance function k(·, ·), the regression problem becomes tractable.
As an example of valid covariance function we present the squared exponential kernel

k(ti, t j|Θ) = αe−
(ti−t j)

2

2γ (3.16)

and the rational quadratic kernel

k(ti, t j|Θ) = α

(
1+

(ti − t j)
2

2γ2β

)−β

(3.17)

Many others are listed in [7]. Note that these functions usually depends on some parameters
(α,β ,γ, . . .) (hyperparameters) which we grouped under a unique symbol Θ. One of the
hardest tasks in using the Gaussian regression method is actually the choice of a "good" mean
and a "good" covariance function to describe the data but once this is done the regression is
tractable and consists in two main steps i.e. maximise the marginal likelihood and find the
posterior.

Maximise the marginal likelihood In this paragraph we will work out the marginal likeli-
hood for the Gaussian process regression problem. Let X⃗ = [x(t1), . . . ,x(tn)]

T be the vector
collecting all the measurements of the quantity x at time (t1, . . . , tn) and let µ(·|Θ) and
k(·, ·|Θ) be the mean and covariance function we chose to describe this process. Then, if
we assume {x(t) : t ∈ R} to be a Gaussian process, the likelihood of the observed data is
given by (3.15) which depends on the hyperparameters Θ. We use the maximum likelihood
estimator (MLE) in order to estimate the hyperparameters Θ of (3.15). This means that we
consider Θ⋆ to be the optimal parameter set only if it maximise the likelihood i.e. if the
gradient is zero (3.15)

∂ p
(

X⃗ |Θ
)

∂Θ j

∣∣∣∣∣∣
Θ⋆

= 0 (3.18)

and the Hessian matrix H, where

H ji =
∂ 2 p

(
X⃗ |Θ

)
∂Θ j∂Θi

∣∣∣∣∣∣
Θ⋆

(3.19)

must be negative definite.
In this way we find the optimal hyperparameter set Θ⋆ in the case of noiseless observations.
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However, real world measurements usually contain measurement errors. For additive and
non correlated Gaussian measurement errors, the observed values y(t j) of the quantity x(t j)

at time t j can be written as
y(t j) = x(t j)+ ε(t j) (3.20)

where the measurement error ε is assumed to be Gaussian distributed with mean zero and
covariance ⟨ε(ti)ε(t j)⟩= σiσ jδi j = σ2

i δi j. The marginal likelihood3 P(⃗Y |Θ) of the observed
values Y⃗ = [y(t1), . . . ,y(tn)]

T can easily be computed if we assume again {x(t) : t ∈ R} to
follow a Gaussian process

P(⃗Y |Θ) =
∫

d⃗x P(⃗Y |X⃗ ,Θ)P(X⃗ |Θ) (3.21)

which gives (3.8)
Y⃗ |Θ ∼ N

(⃗
Y |⃗µ,K +D

)
(3.22)

where the components4 µ j = µ(t j), K(ti, t j) = k(ti, t j) and Di j = σ2
i δi j. Again, we consider

the optimal hyper-parameters Θ⋆ as the one which optimize the marginal likelihood (3.22).
Note that knowing the marginal likelihood (3.22) also allows us to compare different mod-
els i.e. to compare different mean functions µ(·) and covariance functions k(·, ·), among
themselves. Indeed, the "best" model will be the one with the highest marginal likelihood.

Predictions The main goal of the kriging, and of any regression in general, is to predict the
value of the quantity x(t⋆) at some generic time t⋆ having observed {x(t1), . . . ,x(tn)}. More
precisely, let’s imagine we would like to predict the values of the quantity x at times t⋆1 , . . . , t

⋆
m

i.e. the vector X⃗⋆ = [x(t⋆1), . . . ,x(t
⋆
m)]

T , knowing the noisy observations Y⃗ = [y(t1), . . . ,y(tn)]
T

of the quantity x at time (t1, . . . , tn). As we will see, since the stochastic process is assumed to
be Gaussian, we only need to find the mean and covariance function of the join distribution

of
[⃗
Y , X⃗⋆

]T
in order to do this. First note that

⟨x(t⋆j )⟩= µ(t⋆j ) and ⟨y(t j)⟩= µ(t j) (3.23)

Cov
[
y(ti),x(t⋆j )

]
= Cov

[
x(ti),x(t⋆j )

]
= k(ti, t⋆j ) (3.24)

Cov
[
y(ti),y(t j)

]
= k(ti, t j)+σ

2
i δi j (3.25)

3The measurment errors σ j and the hyper-parameters of the mean and covariance function are all contained
in the symbol Θ.

4We drop the explicit dependence on Θ to keep a more readable notation.
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therefore the join distribution reads[
Y⃗
X⃗⋆

]∣∣∣Θ ∼ N

([
Y⃗
X⃗⋆

]∣∣∣∣∣
[

µ⃗

µ⃗⋆

]
,

[
K +D K⋆

K⋆T K⋆,⋆

])
(3.26)

where µ⃗⋆
i = µ(t⋆i ), K⋆

i, j = k(ti, t⋆j ), K⋆⋆
i, j = k(t⋆i , t

⋆
j ) and Di j = σ2

j δi j. Using the rules for
conditioning Gaussians distribution (3.12) we obtain

X⃗⋆|⃗Y ,Θ ∼ N (m⃗,C) (3.27)

with

m⃗ = µ⃗
⋆+K⋆T (K +D)−1 (⃗y− µ⃗)

C = K⋆⋆−K⋆T (K +D)−1 K⋆
(3.28)

this means that we are able to predict the quantity x at times (t⋆1 , . . . , t
⋆
m) knowing the noisy

observations Y⃗ and the hyperparameters Θ⋆ (estimated through MLE). Now that we described
how kriging works in general, let us apply it to the MoMa time series data.

3.2.3 Gaussian processes for single cell time series

The software we develop to treat MoMa time series data can be downloaded at https:
//github.com/fioriathos/gaussian_smoothing.git. The rest of this section will describe the
main concepts of this algorithm and give an example of use (figure 3.2).
Let Y⃗ K =

[
yk(tk

0), . . . ,y
k(tk

n)
]T be the fluorescent protein level, or the log cell size, estimated

by MoMa for the cell k from its birth (tk
0) to its division (tk

n). We use the notation yk(tk
j )

to indicate the jth observation of the noisy quantity x for bacteria k after its division. Let
N be the total number of different cells growing in similar conditions during the entire
experiment5 duration i.e. we consider the data-set D =

{⃗
Y 1, . . . ,Y⃗ N

}
. In order to use the

Gaussian process regression method explained above we need to choose a suitable mean and
covariance function. As suggested by [7], instead of giving an explicit form of the mean
function of the process we consider

zk(tk
j ) = yk(tk

j )− ȳ(t j) where ȳ(t j) =
N

∑
i=1

yi(t i
j)

N
(3.29)

5If the environment switches we have to consider cells growing in different media belonging to different
data-set.

https://github.com/fioriathos/gaussian_smoothing.git
https://github.com/fioriathos/gaussian_smoothing.git
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to have mean zero. For the covariance function we assume

〈
zk(tk

j ),z
l(t l

i )
〉
= αe−

(tkj−tli )
2

2γ δlk (3.30)

which assumes an exponential decaying correlation (3.16) within a cell cycle and indepen-
dence among observations of different cell cycles. Since we consider independence among
the cells we can speed up the computations of the log likelihood by making use of the fact
that

logP
(

Z⃗1, . . . , Z⃗n|Θ
)
=

N

∑
i=1

logP
(

Z⃗i|Θ
)

(3.31)

where Z⃗k =
[
zk(tk

0), . . . ,z
k(tk

n)
]T is the rescaled vector (3.29) and P

(
Z⃗i|Θ

)
is the likelihood

(3.22) with zero mean and covariance given by equation (3.30) with Θ = {α,γ}. The optimal
parameter set Θ⋆ is the MLE of (3.31) and it is compute through the quasi-Newton BFGS
algorithm developed in [11]. The gradient of (3.31) has been analytically computed in order
to increase the speed of convergence of the BFGS algorithm. The line search algorithm starts
from an initial random guess of Θ and updates it until it finds the value Θ⋆ which maximise
the likelihood function. This method may converge for local optimum as well and in order to
avoid it we repeat the line search from different initial conditions Θ and select the best one
(Θ⋆) to be the one with largest likelihood. This should ensure that Θ⋆ is actually a global
optimum. Once the best hyperparameters Θ⋆ are known, it is easy to do predictions of the
quantity x at any time point using equation (3.27). Being able to predict the noiseless quantity
x at any time point is particularly useful for computing time derivatives x′. If, for example,
we would like to know the time derivative x′(t) at time t of x, we would consider the mean
x̄(t) as the "best prediction" of x at time t. Using the central difference method we find

x′(t) =
x̄
(
t + ∆

2

)
− x̄
(
t − ∆

2

)
∆

(3.32)

where ∆ > 0 is a small time step.

3.3 A biophysical model for the Gaussian process regres-
sion

In the previous section we showed how the Gaussian process regression brings new light into
the analysis of time lapse microscopy data. However, the previous formulation lacks some
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Fig. 3.2 E.Coli strain CGSC#6300 with a Yellow fluorescent protein under the control of a
synthetic promoter in conditioned media. (a) The raw fluorescent amplitude (red) for one
E.Coli cell from birth to division. The mean (black) and standard deviation (blue) of the
predicted fluorescent amplitude distribution. (b) The discrete time derivative (3.32) with
∆ = 1 [min]. Preliminary data from Théo Gervais.

important aspects of the modeling of the underlying biophysical model which can lead to
serious problems. One of them is the strong assumption of independence between bacteria
(3.31) which is clearly unrealistic for binary division. In binary division the "mother cell"
divides into two copies and it is hard to believe that the independence assumption holds true
for bacteria just few division apart. Moreover, assuming a squared exponential covariance
function is simply a way to assume for very smooth regression functions and does not come
from any biological model of gene expression or cell growth. This makes very hard to
interpret the underlying biology in a meaningful way. Having a realistic model of cell growth
and gene expression not only will allow us to better interpret the underlying biology but will
also allow us to investigate latent variables, like the mRNA number or the cell growth rate,
which are not directly measured in our experiments. For all these reasons we developed a
method which combines the Gaussian processes regression with a biophysical model of cell
growth and gene expression, to treat the previously mentioned time lapse microscopy data.
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3.3.1 The biophysical model

The precise description of all the biochemical reactions involved in the biomass production
and gene expression at the single cell level is clearly out of the scope of this section. We here
present a simple stochastic model of cell size growth and gene expression which, combined
to the previously presented Gaussian process regression method, allows us to better analyze
the MoMa data-set i.e. time series data of cell size and fluorescence levels of the target
promoter. The key point of this model is to assume the single cell growth rate and the gene
expression rate to follow a stationary Gauss–Markov process known as Ornstein-Uhlenbeck
process.

Cell size Cell volume growth is the result of many biophysical reactions inside the cell
wall and, as shown by [53], bacterial volume growth can reasonably be well described by an
exponential function. However, due to the stochastic nature of the biophysical reactions, the
cell size deviations from the perfect exponential reflect the stochastic nature of the underlying
process. Our goal is to go beyond the assumption of perfect exponential growth and to
develop a model which takes into consideration fluctuations of the cell size within a cell
cycle. To do this we make use of the Ornstein-Uhlenbeck process, one of the simplest
stochastic process which describes random fluctuations of a stochastic variable λ around
a fixed value λ̄ . The Ornstein–Uhlenbeck process λt = λ (t) is a stationary Gauss–Markov
process defined by the following stochastic differential equation

dλt

dt
=−γλ (λt − λ̄ )+σλ η1(t) (3.33)

or in the integral form

λt = λ̄
(
1− e−γλ t)+λ0e−γλ t +σλ

∫ t

0
eγλ (τ−t)

η1(τ) (3.34)

where γλ > 0, σλ > 0, λ̄ are parameters and η1(t) denotes a Wiener process (Brownian
motion). An intuitive way to understand this process is to consider the equation of motion(

dλt
dt

)
of a particle transported by a river. Clearly the average speed of this particle is close

to the speed of the river (λ̄ ) in which the particle is transported. However, it may happen
that this particle flows a bit faster or a bit slower than the river, depending on the obstacles it
encounters or the particle-particle collisions it does. These random events are model through
a Brownian motion η1(t) with strength σλ . Note that the speed difference between the
particle and the river can not last forever due to viscous force −γλ (λt − λ̄ ). The viscous
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force ensures the process to drift forward its mean value λ̄ with a characteristic time 1
γλ

.

Let’s now consider the cell size over time (s(t)) to follow an exponential function

s(t) = s0 exp
[
λ̄ t
]

(3.35)

where s0 is the cell size at the begin of the cell cycle and λ̄ the exponential growth rate. Our
model assumes that, instead of having a fixed exponential growth rate λ̄ along the entire cell
cycle, we consider it to randomly fluctuate as described in (3.33). Therefore, if no division
event occurs between t0 and t, the log cell size xt = logs(t) is simply the time integral from
birth, at t0, to t of the growth rate

xt = x0 +
∫ t

t0
λτdτ (3.36)

where x0 = logs(t0). Three parameters γλ , λ̄ and σλ together with (3.33) and (3.36) allow
us to describe the cell size dynamic.

Gene expression Another quantity measured by the MoMa software is the amount of
fluorescent proteins produced from the targeting promoter. As we know, gene expression
involves many noisy processes, stochastic binding/unbinding of ribosomes and RNAP, burst
in transcription, cell to cell variations in ribosomes/RNAP and nutrients, etc. All these
introduce noise in the observed proteins copy numbers and a precise model which takes
into account all these noise sources is out of our scope. However, we will think the noise
affecting the protein copy numbers to belong to two different classes and model them as two
independent Ornstein-Uhlenbeck processes. The first class is the one non-specific to the
target protein and affecting all gene products equally. An example of non-specific noise is
the fluctuation in the ribosomes levels which we expect to affect all the transcripts almost
equally. The other class of noise is the one specific to the gene of interest and not affecting
the other gene products. Transcription burst for example can be considered as a specific noise
term. Since the cell volume scales roughly linear with the protein content [40] we use it as a
proxy of the "non-specific" fluctuations and we model the specific fluctuations qt = q(t) as
an independent Ornstein-Uhlenbeck process

dqt

dt
=−γq(qt − q̄)+σqη2(t) (3.37)
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where again γq, q̄,σq are parameters and η2(t2) denotes a Wiener process. The equation
governing the fluorescent protein numbers gt = g(t) at time t reads

dg
dt

= stqt −βgt (3.38)

where β is the term taking into account protein decay and photobleaching. Note that we can
interpret (3.38) as follow. Let mt be the number of transcript of the target gene at time t, Rt

be the number of free ribosomes within the cell at time t and α the translation rate. Then
translation can be described through the differential equation

dg
dt

= αRtmt −βgt (3.39)

If we consider that ribosomes also scale with the cell volume i.e. Rt ∝ st then qt is proportional
to the mRNA levels. In addition to having a biological interpretation, equation (3.38) allows
us to disentangle promoter specific fluctuations from other noise sources.
Equations (3.33), (3.36), (3.37) and (3.38) fully describe the cell size and genetic expression
dynamic over the time course and, in the following sections, we will show that these equations,
together with the previously presented kriging method, allow us to do precise estimations of
them.

3.3.2 The mean and covariance function given by the model

Gaussian processes are defined through suitable means and covariance functions. In this
section we will compute the mean and covariance function given by the biophysical model
described above. First define the four dimensional cell state vector at time t as

z⃗t =


xt

gt

λt

qt

 (3.40)

i.e. the first component represents the log cell size xt at time t , the second represents the
fluorescent protein levels gt at time t and the third and forth represents the cell growth rate λt

and protein production per unit volume (qt) at time t. We must now find the 4 dimensional
mean vector function ⟨⃗zt⟩ and the 4×4 covariance matrix function ⟨⃗zt ,⃗zs⟩ for time t,s > 0
given by this process. The rest of this section is dedicated to these computations but before
entering the details of such computations let us give some usefult trick when dealing with
Gaussian integrals.
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Wick theorem with source term

Let x⃗, µ⃗ and J⃗ be generic n dimensional vectors and C be a generic n× n symmetric and
positive define matrix. The Wick theorem with a source term [57], largely used in physics,
allows us to compute

ZJ⃗
def
=
∫

d⃗x e−
1
2 (⃗x−µ⃗)TC−1(⃗x−µ⃗)+J⃗T (⃗x−µ⃗) =

√
(2π)n

detC
e

1
2 J⃗TCJ⃗+J⃗T µ⃗ (3.41)

and in particular to compute the expected values of the form

⟨eJki xki xk1 ...xkn⟩=
1
Z0

∂

∂Jk1

...
∂

∂Jkn

ZJ⃗

∣∣∣∣
Jk j=0 , j ̸=i

(3.42)

Let’s now give two examples of the use of the Wick theorem. The first is very simple and
we go through all the steps

⟨x0⟩=
1
Z0

∫
x0e−

1
2 (⃗x−µ⃗)TC−1(⃗x−µ⃗)dnx =

1
Z0

∂

∂J0

∫
e−

1
2 (⃗x−µ⃗)TC−1(⃗x−µ⃗)+J⃗⃗xdnx

∣∣∣∣
J⃗=0

=
∂

∂J0
e

1
2 JTCJ+Jµ⃗

∣∣∣∣
J⃗=0

= µ⃗0

(3.43)

Let’s now compute a less trivial expected value, for example

〈
x0x1ex0+3x1

〉
=

1
Z0

∂

∂J0

∂

∂J1
ZJ⃗

∣∣∣∣
J0=1,J1=3,Js=0 for s ̸=0,1

= µ⃗1(⃗µ0 +3C01 +C00)+C01 (⃗µ0 +9C11 +C00 +1)

+3C11(⃗µ0 +C00)+3C2
01

(3.44)

where µ⃗i is the i-th component of the µ⃗ vector and Ci j the i j component of the C matrix.

Special Gaussian integrals

In the next section we will be dealing with different kinds of uncompleted Gaussian inte-
grals and we here define them in order to have a more readable notation afterwards. For



3.3 A biophysical model for the Gaussian process regression 47

a,b,c, t0, t ∈ R we define

Z (a,b,c, t, t0)
def
=
∫ t

t0
eaτ2+bτ+cdτ (3.45)

O(a,b,c, t, t0)
def
=
∫ t

t0
τeaτ2+bτ+cdτ (3.46)

T (a,b,c, t, t0)
def
=
∫ t

t0
τ

2eaτ2+bτ+cdτ (3.47)

F (a,b,c, t, t0)
def
=
∫ t

t0
τ

3eaτ2+bτ+cdτ (3.48)

Note that it exists a well known analytical solution of these integrals.

Mean function of the Gaussian process

First, we will compute the mean function

⟨⃗zt⟩=


⟨xt⟩
⟨gt⟩
⟨λt⟩
⟨qt⟩

 (3.49)

of the cell state vector at time t in the case where there is no cell division between (t0, t).
Note that all these computations are done in the following order. First, we compute the mean
function of the cell state vector ⟨⃗zt |⃗z0⟩ constrained to the initial condition z⃗0 and then use the
general identity

⟨⃗zt⟩=
∫

d⃗z0 ⟨⃗zt |⃗z0⟩ p (⃗z0) (3.50)

The cell state vector z⃗0 at time t0 = 0 is assumed to be Gaussian distributed with

mean µ⃗
0 =


x̄0

ḡ0

λ̄0

q̄0

 and covariance C0 =


C0

xx C0
gx C0

λx C0
qx

C0
gx C0

gg C0
λg C0

qg

C0
λx C0

λg C0
λλ

C0
qλ

C0
gq C0

qg C0
λq C0

qq

 (3.51)
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As an example, let us compute the expected growth rate ⟨λt⟩ at time t. Solving the
equation (3.34) we find the constrained mean

⟨λt |⃗z0⟩= λ̄
(
1− e−γλ t)+λ0e−γλ t +σλ

∫ t

0
dτeγλ (τ−t) ⟨η1(τ)⟩︸ ︷︷ ︸

=0

= λ0e−γλ t + λ̄
[
1− e−γλ t] (3.52)

therefore, using (3.50) and the Wick theorem , the unconstrained version reads

⟨λt⟩=
∫

d⃗z0 ⟨λt |⃗z0⟩ p (⃗z0) = λ̄0e−γλ t + λ̄
[
1− e−γλ t] (3.53)

In a similar way we find
⟨qt⟩= q̄0e−γqt + q̄

[
1− e−γqt] (3.54)

The expected log cell size at time t constrained to the initial conditions reads

⟨xt |⃗z0⟩= x0 +
∫ t

0
⟨λτ |⃗z0⟩dτ

= x0 +λ0

[
1− e−γλ t

γλ

]
+ λ̄

[
e−γλ t − (1− γλ t)

γλ

] (3.55)

and again using (3.50) and the Wick theorem we can find the unconstrained expected log
cell size at time t

⟨xt⟩= x̄0 + λ̄0

[
1− e−γλ t

γλ

]
+ λ̄

[
e−γλ t − (1− γλ t)

γλ

]
(3.56)

For the protein level the general solution of the differential equation (3.38) reads

gt = e−β tg0 + e−β t
∫ t

0
dτeβτex(τ)q(τ) (3.57)

and, in order to have analytical solutions for the expected protein levels ⟨gt⟩ at time t, we
have to linearise the non linear term ex(τ) inside the integrand. To do this, we consider no
fluctuations of the log size growth between t0 = 0 and τ i.e. x(τ) = x0 +λ0τ and so

gt ≈ e−β tg0 + e−β t
∫ t

0
dτeβτex0+λ0τq(τ) (3.58)

This approximation together with the fact that we consider fluctuations in q to be independent
from fluctuations in x or λ allows us to solve the unconstrained expected protein level at time
t. In-fact, by first integrating over z⃗0 and then over τ we find
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⟨gt⟩=
∫

d⃗z0P(⃗z0)

(
e−β tg0 + e−β t

∫ t

0
dτeβτex0+λ0τ

(
q0e−γqτ + q̄

[
1− e−γqτ

]))
= ḡ0e−β t +(q̄0 +C0

xq − q̄)
∫ t

0
e

C0
λλ
2 τ2+(β+λ̄0+C0

xλ
−γq)τ−β t+x̄0+

C0
xx
2 dτ

+C0
λq

∫ t

0
τ e

C0
λλ
2 τ2+(β+λ̄0+C0

xλ
−γq)τ−β t+x̄0+

C0
xx
2 dτ

+ q̄
∫ t

0
e

C0
λλ
2 τ2+(β+λ̄0+C0

xλ
)τ−β t+x̄0+

C0
xx
2 dτ

= ḡ0e−β t +(q̄0 +C0
xq − q̄)Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)

+C0
λqO

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)

+ q̄Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

, t,0

)

(3.59)

The covariance function

In a similar way we can compute the 4×4 covariance matrix function6

⟨⃗zt ,⃗zt⟩=


Var [xt ] Cov [xt ,gt ] Cov [xt ,λt ] Cov [xt ,qt ]

Cov [gt ,xt ] Var [gt ] Cov [gt ,λt ] Cov [gt ,qt ]

Cov [xt ,λt ] Cov [gt ,λt ] Var [λt ] Cov [λt ,qt ]

Cov [xt ,qt ] Cov [gt ,qt ] Cov [λt ,qt ] Var [qt ]

 (3.60)

in the case where the cell does not divide between (t0, t). Note that, again, all these computa-
tions are done in the following order. First, we compute ⟨⃗zt ,⃗zt |⃗z0⟩i j i.e. the i, j component
of the covariance matrix at time t constrained to the initial condition z⃗0. Then we use the
general identity

⟨⃗zt ,⃗zt⟩i j =
∫

d⃗z0 p (⃗z0)
(
⟨⃗zt ,⃗zt |⃗z0⟩i j +(⟨⃗zt |⃗z0⟩i −⟨⃗zt⟩i)(⟨⃗zt |⃗z0⟩ j −⟨⃗zt⟩ j)

)
(3.61)

6We could also compute ⟨⃗zt ,⃗zs⟩ in a similar way but equations become less readable and anyway we will
not make use of them.
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Again we consider (3.51) the initial cell state vector z⃗0 to be Gaussian distributed with
mean µ⃗0 and covariance C0 . As an example we can easily compute

Cov [λt ,λs|⃗z0] = σ
2
λ

∫ t

0

∫ s

0
dτdτ

′eγ(τ+τ ′−t−s) 〈
η1(τ)η1(τ

′)
〉︸ ︷︷ ︸

=δ (τ−τ ′)

=
σ2

λ

2γλ

(
e−γλ |t−s|− e−γλ (t+s)

) (3.62)

and so

var[λt |z0] =
σ2

λ

2γλ

(
1− e−2γλ t) , (3.63)

Then using (3.61) and the Wick theorem, we calculate the unconstrained covariance

Var[λt ] =
∫

dz0P(z0)
[
var[λt |z0]+

(
λ0 − λ̄0

)2
e−2γλ t

]
=

σ2
λ

2γλ

(
1− e−2γλ t)+C0

λλ
e−2γλ t

(3.64)

Another easy case to show is the computation of Var[xt]. First, we compute the constrained
variance

var[x(t)|⃗z0] =
∫∫ t

0
Cov [λτ ,λτ ′]dτdτ

′

=
σ2

λ

2γ3
λ

(
2γλ t −3+4e−γλ t − e−2γλ t) (3.65)

and once again with (3.61) and the Wick theorem, we find the unconstrained version

var[xt ] =
∫

d⃗z0P(⃗z0)

[
var[xt |⃗z0]+ (λ0 − λ̄0)

2
(

1− e−γλ t

γλ

)2

+2(x0 − x̄0)(λ0 − λ̄0)
(1− e−γλ t)

γλ

+(x0 − x̄0)
2
]

=
σ2

λ

2γ3
λ

(
2γλ t −3+4e−γλ t − e−2γλ t)

+C0
λλ

(
1− e−γλ t

γλ

)2

+2C0
xλ

(1− e−γλ t)

γλ

+C0
xx

(3.66)
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In a similar way we obtain

Var[qt ] =
σ2

q

2γq

(
1− e−2γqt)+C0

qqe−2γqt (3.67)

Cov(λt ,qt) =C0
λqe−(γλ+γq)t (3.68)

Cov(λt ,xt) =
σ2

λ

2γ2
λ

(
1− e−γλ t)2

+C0
λλ

e−γλ t
(

1− e−γλ t

γλ

)
+C0

xλ
e−γλ t (3.69)

Cov(xt ,qt) =C0
λq

(
1− e−γλ t

γλ

)
e−γqt +C0

xqe−γqt (3.70)

All the terms involving gt are less straightforward to compute manually but we imple-
mented a Mathematica® procedure to help computing them. The technique is always the
same. First, find the covariance function using (3.61) together with the approximation (3.58)
for the protein level. Remember that we always consider fluctuations in q to be independent
from fluctuations in x and λ . Then integrate over z⃗0 using the Wick theorem and last integrate
over time. For example using (3.61) and (3.58) we find

Cov(gt ,λt) =
∫

P(⃗z0)⟨gt |⃗z0⟩⟨λt |⃗z0⟩ d⃗z0 −⟨gt⟩⟨λt⟩=
∫

P(⃗z0)

×
(

e−β tg0 + e−β t
∫ t

0
eβτ+x0+λ0τ

(
q0e−γqτ + q̄

[
1− e−γqτ

])
dτ

)
×
(
λ0e−γλ t + λ̄

[
1− e−γλ t]) d⃗z0 −⟨gt⟩⟨λt⟩

(3.71)

The means ⟨gt⟩ ,⟨λt⟩ have been computed in the previous section. We are only left to solve
the integrals which is done by first integrating over z⃗0 using the Wick theorem and then
integrating over τ . The solution reads
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Cov(gt ,λt) = (λ̄0C0
λq + q̄0C0

λλ
+C0

λλ
C0

xq −C0
λλ

q̄+C0
λqC0

xλ
−C0

λqλ̄ )O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

− γλ t, t,0

)

+(λ̄0q̄0 + λ̄0C0
xq − λ̄0q̄+ q̄0C0

xλ
− q̄0λ̄ +C0

λq +C0
xλ

C0
xq −C0

xλ
q̄−C0

xqλ̄ + λ̄ q̄)Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−bt + x̄0 +

C0
xx
2

− γλ t, t,0

)

+(q̄0λ̄ +C0
xqλ̄ − λ̄ q̄)Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)
+C0

λλ
C0

λqT

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

− γλ t, t,0

)

+C0
λqλ̄O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)
+(λ̄0q̄+C0

xλ
q̄− λ̄ q̄)Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

− γλ t, t,0

)

+C0
λλ

q̄O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

− γλ t, t,0

)
+ λ̄ q̄Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

, t,0

)
+ ḡ0λ̄0e−(t(β+γλ ))− ḡ0λ̄e−(t(β+γλ ))+ ḡ0λ̄e−bt +C0

gλ
e−(t(β+γλ ))−⟨gt⟩⟨λt⟩

(3.72)

The other components are computed in a similar way and we here only give the final
results for completeness.

Cov(xt ,gt) =

(
λ̄0C0

λq

γλ

+
q̄0C0

λλ

γλ

+ q̄0C0
xλ

+ x̄0C0
λq +

C0
λλ

C0
xq

γλ

−
C0

λλ
q̄

γλ

+
C0

λqC0
xλ

γλ

+C0
λqC0

xx −
C0

λqλ̄

γλ

+C0
λqλ̄ t +C0

xλ
C0

xq −C0
xλ

q̄

)

O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)
+

(
−

λ̄0C0
λq

γλ

−
q̄0C0

λλ

γλ

−
C0

λλ
C0

xq

γλ

+
C0

λλ
q̄

γλ

−
C0

λqC0
xλ

γλ

+
C0

λqλ̄

γλ

)

×O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

− γλ t, t,0

)
+Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)
×

(
λ̄0q̄0

γλ

+
λ̄0C0

xq

γλ

− λ̄0q̄
γλ

+ q̄0x̄0 +
q̄0C0

xλ

γλ

+ q̄0C0
xx −

q̄0λ̄

γλ

+ q̄0λ̄ t + x̄0C0
xq − x̄0q̄+

C0
λq

γλ

+
C0

xλ
C0

xq

γλ

−
C0

xλ
q̄

γλ

+C0
xqC0

xx −
C0

xqλ̄

γλ

+C0
xqλ̄ t +C0

xq −C0
xxq̄+

λ̄ q̄
γλ

− λ̄ q̄t

)

+

(
− λ̄0q̄0

γλ

−
λ̄0C0

xq

γλ

+
λ̄0q̄
γλ

−
q̄0C0

xλ

γλ

+
q̄0λ̄

γλ

−
C0

λq

γλ

−
C0

xλ
C0

xq

γλ

+
C0

xλ
q̄

γλ

+
C0

xqλ̄

γλ

− λ̄ q̄
γλ

)
Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

− γλ t, t,0

)

− ḡ0λ̄

γλ

(
e−β t + e−(t(β+γλ ))+ γλ te−β t

)
+

(
C0

λλ
C0

λq

γλ

+C0
λqC0

xλ

)
T

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)

−
C0

λλ
C0

λqT

(
C0

λλ

2 ,β + λ̄0 +C0
xλ

− γq,−β t + x̄0 +
C0

xx
2 − γλ t, t,0

)
γλ

+

(
λ̄0q̄
γλ

+ x̄0q̄+
C0

xλ
q̄

γλ

+C0
xxq̄− λ̄ q̄

γλ

+ λ̄ q̄t

)

Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

, t,0

)
+

(
− λ̄0q̄

γλ

−
C0

xλ
q̄

γλ

+
λ̄ q̄
γλ

)
Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

− γλ t, t,0

)

+

(
C0

λλ
q̄

γλ

+C0
xλ

q̄

)
O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

, t,0

)
−

C0
λλ

q̄O

(
C0

λλ

2 ,β + λ̄0 +C0
xλ
,−β t + x̄0 +

C0
xx
2 − γλ t, t,0

)
γλ

+
ḡ0λ̄0e−β t

γλ

− ḡ0λ̄0e−(t(β+γλ ))

γλ

+ ḡ0x̄0e−β t +
C0

gλ
e−β t

γλ

−
C0

gλ
e−(t(β+γλ ))

γλ

+C0
gxe−β t −⟨gt⟩⟨xt⟩

(3.73)
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Cov(qt ,gt) =

(
q̄2

0 +2q̄0C0
xq −2q̄0q̄+C0

qq +C02
xq −2C0

xqq̄−
σ2

q

2γq
+ q̄2

)
Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

− γqt, t,0

)

+(2q̄0C0
λq +2C0

λqC0
xq −2C0

λqq̄)O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

− γqt, t,0

)
+
(
q̄0q̄+C0

xqq̄− q̄2)
×Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

− γqt, t,0

)
+
(
q̄0q̄+C0

xqq̄− q̄2)Z (
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)

+C02
λqT

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

− γqt, t,0

)
+C0

λqq̄O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

− γqt, t,0

)

+C0
λqq̄O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq,−β t + x̄0 +

C0
xx
2

, t,0

)
+

σ2
q Z

(
C0

λλ

2 ,β + λ̄0 +C0
xλ

+ γq,−β t + x̄0 +
C0

xx
2 − γqt, t,0

)
2γq

+ q̄2Z

(
C0

λλ

2
,β + λ̄0 +C0

xλ
,−β t + x̄0 +

C0
xx
2

, t,0

)
+ ḡ0q̄0e−(t(β+γq))− ḡ0q̄e−(t(β+γq))+ ḡ0q̄e−β t +C0

gqe−(t(β+γq))−⟨qt⟩⟨gt⟩

(3.74)
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Var(gt) = F

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t), t,0

)
C02

λq −F

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t),2t, t

)
C02

λq

−
2q̄O

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ
,2x̄0 +2C0

xx − (2β + γq)t,2t, t
)

C0
λq

γq
+

2q̄O

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ

− γq,2x̄0 +2C0
xx −2β t + γqt,2t, t

)
C0

λq

γq

+2C0
gλ

T

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq, x̄0 +

C0
xx
2

−2β t, t,0

)
C0

λq +
(
ḡ2

0 +C0
gg
)

e−2β t +2C0
gλ

q̄O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
, x̄0 +

C0
xx
2

−2β t, t,0

)

+

q̄(2C0
λq + γqq̄)O

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ
,2(x̄0 +C0

xx −β t), t,0
)

γq
+2(q̄0C0

gλ
+C0

xqC0
gλ

− q̄C0
gλ

+ ḡ0C0
λq +C0

λqC0
xg)

×O

(
C0

λλ

2
,β + λ̄0 +C0

xλ
− γq, x̄0 +

C0
xx
2

−2β t, t,0

)
+

1
γq

(
γqq̄2

0 +4C0
xqγqq̄0 −2γqq̄q̄0 + γqq̄2 +4C02

xq γq +C0
qqγq −2C0

λqq̄−4C0
xqγqq̄

)
×O

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t), t,0

)
− q̄2O

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
,2(x̄0 +C0

xx −β t),2t, t

)

−
σ2

q O

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ

− γq,2x̄0 +2C0
xx −2β t, t,0

)
2γq

+

σ2
q O

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ

− γq,2x̄0 +2C0
xx −2β t,2t, t

)
2γq

+
(
−q̄2

0 −4C0
xqq̄0 +2q̄q̄0 +4C0

λqtq̄0 −4C02
xq − q̄2 −C0

qq +4C0
xqq̄+8C0

λqC0
xqt −4C0

λqq̄t
)

O

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t),2t, t

)

+(2q̄0C0
λq +4C0

xqC0
λq −2q̄C0

λq)T

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t), t,0

)
+
(

2tC02
λq −2q̄0C0

λq −4C0
xqC0

λq +2q̄C0
λq

)
×T

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t),2t, t

)
+(2ḡ0q̄+2C0

xgq̄)Z

(
C0
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2
,β + λ̄0 +C0

xλ
, x̄0 +

C0
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2

−2β t, t,0

)

+

(
−2q̄2

γq
+

2q̄0q̄
γq

+
4C0

xqq̄
γq

)
Z

(
C0
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2
,β + λ̄0 +2C0

xλ
,2(x̄0 +C0

xx −β t), t

)

+(2ḡ0q̄0 +2C0
xgq̄0 +2C0

gq +2ḡ0C0
xq +2C0

xgC0
xq −2ḡ0q̄−2C0

xgq̄)Z

(
C0
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2
,β + λ̄0 +C0

xλ
− γq, x̄0 +

C0
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2

−2β t, t,0

)

+

(
2q̄2

γq
− 2q̄0q̄

γq
−

4C0
xqq̄

γq

)
Z

(
C0
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2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t), t,0

)

+

σ2
q Z

(
C0
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2 ,β + λ̄0 +2C0
xλ
,2x̄0 +2C0

xx −2β t, t,0
)

2γ2
q

+

σ2
q Z

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ
,2x̄0 +2C0

xx −2β t,2t, t
)

2γ2
q

+2q̄2tZ

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
,2(x̄0 +C0

xx −β t),2t, t

)
+

(
2q̄2

γq
− 2q̄0q̄

γq
−

4C0
xqq̄

γq

)
Z

(
C0

λλ

2
,β + λ̄0 +2C0

xλ
,2x̄0 +2C0

xx − (2β + γq)t,2t, t

)

−
σ2

q Z

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ

− γq,2x̄0 +2C0
xx −2β t, t,0

)
2γ2

q
−

σ2
q tZ

(
C0

λλ

2 ,β + λ̄0 +2C0
xλ

− γq,2x̄0 +2C0
xx −2β t,2t, t

)
γq

+
(
2tq̄2

0 +8C0
xqtq̄0 −4q̄tq̄0 +8C02

xq t +2q̄2t +2C0
qqt −8C0

xqq̄t
)
Z

(
C0
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2
,β + λ̄0 +2C0

xλ
− γq,2(x̄0 +C0

xx −β t),2t, t

)

+

(
−2q̄2

γq
+

2q̄0q̄
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+
4C0

xqq̄
γq
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Z

(
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2
,β + λ̄0 +2C0

xλ
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)

−
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q Z
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q
−⟨gt⟩2

(3.75)
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The components of the mean and covariance matrix function computed until now consider
no cell division between t0 an t. We now have to take into account the case of cell division in
order to have a meaningful description of our data-set.

Cell division

Right now we computed the unconstrained mean and covariance function of the cell state
vector z⃗t if there is no cell division between time t0 = 0 and time t. But what if the cell
divides within this time lapse? This simple question may be harder than one may think. At
cell division bacteria have to form the so called Z ring i.e. the septum which will allows
cytokinesis. This process involves the recruitment of several proteins [38] and probably
during this phase the cell physiology is different compared to the rest of the cell cycle. This
has a potential impact on the cell growth rate or on the expression of the target protein. Even
though all these questions are interesting and relevant we will not model these complicate
dynamics at cell division and we only assume that, after division, the two daughter cells will
have half the volume and half the number of proteins than their mother. That is, if the cell
divide "precisely" at time t, then we assume

p
(

xdaughter
t

∣∣∣xmother
t

)
= N

(
xdaughter

t

∣∣∣xmother
t − log2,σ2

dx

)
p
(

gdaughter
t

∣∣∣gmother
t

)
= N

(
gdaughter

t

∣∣∣ gmother
t

2
,σ2

dg

) (3.76)

where the superscript "mother" stands for the case just before division and "daughter" just
after division. The fact that cell division is not perfect is modeled through the two parameters
σdx,σdg. In matrix form, we can rewrite these two equations as

p
(⃗

zdaughter
t

∣∣∣⃗zmother
t

)
= N

(⃗
zdaughter
t

∣∣∣Fzmother
t + f⃗ ,Dd

)
(3.77)

with

Dd = diag
[
σ

2
dx,σ

2
dg,0,0

]
F = diag

[
1,

1
2
,1,1

]
f⃗ = [− log2,0,0,0]T (3.78)

Note that we have no precise information on when the cell exactly divide between time t0 and
time t and a more sophisticated models should take this into consideration. However, here
we assume cell division always takes place exactly and instantaneously at the observation
time t. Therefore, if we want to compute the cell state vector distribution p

(⃗
zdaughter
t

)
at

time t knowing that the cell divide between t0 and t, we first compute the cell state vector at
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time t as if no division happened p
(⃗
zmother
t

)
, and then consider division to happen exactly at

t (3.77).
Using equation (3.9), it is easy to solve

p
(⃗

zdaughter
t

)
=
∫

p
(⃗

zdaughter
t

∣∣∣⃗zmother
t

)
p
(⃗

zmother
t

)
d⃗zmother

t

= N
(⃗

zdaughter
t

∣∣∣F 〈⃗zmother
t

〉
+ f⃗ ,Dd +F

〈⃗
zmother
t ,⃗zmother

t

〉
FT
) (3.79)

where, obviously, the mean and covariance matrix of the "mother" cell are given by the
previously compute equations (3.49) and (3.60). We now have all the ingredients to apply
the previously discussed kiring method.

3.3.3 Gaussian process regression

Once the mean and covariance functions are given, we can apply the Gaussian process
regression method previously developed. As we will see, this will allow us to predict the cell
state vector z⃗(t) at time t given the measurements of the cell size and protein levels along the
entire experiment. Let us denote Z⃗J⃗ the cell state vector at time t j and assume it follows a
Gaussian process z⃗0

...
z⃗n

∼ N


 z⃗0

...
z⃗n


∣∣∣∣∣∣∣
 ⟨⃗z0⟩

...
⟨⃗zn⟩

 ,
 ⟨⃗z0,⃗z0⟩ . . . ⟨⃗z0,⃗zn⟩

... . . . ...
⟨⃗zn,⃗z0⟩ . . . ⟨⃗zn,⃗zn⟩


 (3.80)

where ⟨⃗zi⟩ and ⟨⃗zi, Z⃗J⃗⟩ are the mean and covariance matrix functions previously computed.
Ideally, we would use (3.22) and (3.27) in order to compute the likelihood and predict the cell
state vector z⃗(t) at any time t. Unfortunately, we can not use (3.22) and (3.27) directly since
the previously developed Gaussian process regression method did not take into consideration
the presence of latent variables7. In this section we discuss how the likelihood (3.22) and the
posterior distribution (3.27) are computed in this situation. For simplicity we first consider
an unique observation8 D =

{
(xm

0 ,g
m
0 )
}

of the cell size xm
0 and protein level gm

0 at time t0.
The generalisation in the case of multiple observations is then straightforward. Let’s consider
the initial state vector

7Latent variables are variables to which we do not have direct observations and in our case are λt and qt .
8We use the superscript m to denote observations/measured quantities.
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z⃗0 =


x0

g0

λ0

q0

=


[⃗z0]0
[⃗z0]1
[⃗z0]2
[⃗z0]3

∼ N
(⃗

z0

∣∣∣ ⟨⃗z0⟩ , ⟨⃗z0,⃗z0⟩
)

(3.81)

to be Gaussian distributed with mean ⟨⃗z0⟩ and covariance matrix

⟨⃗z0,⃗z0⟩=


Var [x0] Cov [x0,g0] Cov [x0,λ0] Cov [x0,q0]

Cov [g0,x0] Var [g0] Cov [g0,λ0] Cov [g0,q0]

Cov [x0,λ0] Cov [g0,λ0] Var [λ0] Cov [λ0,q0]

Cov [x0,q0] Cov [g0,q0] Cov [λ0,q0] Var [q0]


:=

(
K0 K1

KT
1 K2

) (3.82)

Likelihood In order to compute the likelihood we first have to model the measurement
noise. We consider the measurement errors in the cell size and in the protein levels to be
Gaussian distributed [

xm
0

gm
0

]
∼ N

([
xm

0

gm
0

]∣∣∣∣∣
[
[⃗z0]0
[⃗z0]1

]
,D

)
(3.83)

where

D =

(
σ2

x 0
0 σ2

g

)
(3.84)

The likelihood then simply reads

p

([
xm

0

gm
0

]∣∣∣∣∣Θ
)

=
∫

d⃗z0N

([
xm

0

gm
0

]∣∣∣∣∣
[
[⃗z0]0
[⃗z0]1

]
,D

)
×N (⃗z0| ⟨⃗z0⟩ , ⟨⃗z0,⃗z0⟩)

(3.85)

where Θ =
{

λ̄ ,γλ ,σ
2
λ
, q̄,γq,σ

2
q ,σ

2
x ,σ

2
g ,σ

2
dx,σ

2
dg

}
are the hyperparameters of the model.

Note that, to keep a more readable notation, we sometimes omit to explicit write Θ in the
distributions. In order to solve the integral (3.85) we first have to integrate over [⃗z0]2 and
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[⃗z0]3. Using the property (3.11) of Gaussian distributions this is straightforward and gives

p

([
xm

0

gm
0

]∣∣∣∣∣Θ
)

=
∫

d [⃗z0]1 d [⃗z0]0 N

([
xm

0

gm
0

]∣∣∣∣∣
[
[⃗z0]0
[⃗z0]1

]
,D

)

×N

([
[⃗z0]0
[⃗z0]1

]∣∣∣∣∣
[
⟨⃗z0⟩0

⟨⃗z0⟩1

]
,K0

) (3.86)

This integral is straightforward to solve once we realize it has the same shape as the integral
we computed in (3.22)

p

([
xm

0

gm
0

]∣∣∣∣∣Θ
)

= N

([
xm

0

gm
0

]∣∣∣∣∣
[
⟨⃗z0⟩0

⟨⃗z0⟩1

]
,K0 +D

)
(3.87)

which gives the likelihood of the measurement (xm
0 ,g

m
0 ) given the hyperparameters Θ.

Predictions Similar as when we derived (3.27), we would like to predict z⃗t⋆ at time t⋆

given the noisy observation (xm
0 ,g

m
0 ). First note that the vector

[
xm

0 ,g
m
0 ,⃗zt⋆

]T is distributed as xm
0

gm
0

z⃗t⋆

∼ N


 xm

0

gm
0

z⃗t⋆


∣∣∣∣∣∣∣
 ⟨⃗z0⟩0

⟨⃗z0⟩1

⟨⃗zt⋆⟩

 ,[ K0 +D K̃
K̃T ⟨⃗zt⋆ ,⃗zt⋆⟩

] (3.88)

where K̃ is the 2×4 matrix defined as

K̃ =

[
⟨x0,xt⋆⟩ ⟨x0,gt⋆⟩ ⟨x0,λt⋆⟩ ⟨x0,qt⋆⟩
⟨g0,xt⋆⟩ ⟨g0,gt⋆⟩ ⟨g0,λt⋆⟩ ⟨g0,qt⋆⟩

]
(3.89)

Using the property (3.12) of Gaussian distributions we immediately find

z⃗t⋆

∣∣∣∣∣
[

xm
0

gm
0

]
∼ N (m⃗,C) (3.90)

with

m⃗ = ⟨⃗zt⋆⟩+ K̃T (K0 +D)−1

[
xm

0 −⟨⃗z0⟩0

gm
0 −⟨⃗z0⟩1

]
C = ⟨⃗zt⋆ ,⃗zt⋆⟩− K̃T (K0 +D)−1 K̃

(3.91)

Generalize to multiple observations The generalization (3.87) and (3.90) to the case
of multiple observations is straightforward. The only thing we have to pay attention is
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to stack the vectors in a good way in order to keep computations simple. Consider D ={
(xm

0 ,g
m
0 ), . . . ,(x

m
n ,g

m
n )
}

then the likelihood reads

p





xm
0
...

xm
n

gm
0
...

gm
n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Θ


= N





xm
0
...

xm
n

gm
0
...

gm
n



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



⟨⃗z0⟩0
...

⟨⃗zn⟩0

⟨⃗z0⟩1
...

⟨⃗zn⟩1


,K0 +D


(3.92)

where

D = Diag

σ
2
x , . . . ,σ

2
x︸ ︷︷ ︸

n

,σ2
g . . . ,σ

2
g︸ ︷︷ ︸

n

 (3.93)

and

[K0]i j =


Cov[xi,x j] if i, j < n
Cov[xi,g j] if i < n, j ≥ n
Cov[gi,x j] if i ≥ n, j < n
Cov[gi,g j] if i ≥ n, j ≥ n

(3.94)

whereas for the prediction of z⃗⋆t given D the generalized form of (3.90) reads

z⃗t⋆

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



xm
0
...

xm
n

gm
0
...

gm
n


∼ N (m⃗,C) (3.95)

with

m⃗ = ⟨⃗zt⋆⟩+ K̃T (K0 +D)−1



xm
0 −⟨⃗z0⟩0

...
xm

n −⟨⃗zn⟩0

gm
0 −⟨⃗z0⟩1

...
gm

n −⟨⃗zn⟩1


C = ⟨⃗zt⋆ ,⃗zt⋆⟩− K̃T (K0 +D)−1 K̃

(3.96)
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where D and K0 are give by (3.93) and (3.94) whereas the K̃ matrix equal to

[
K̃
]

j =

{ [〈
x j,xt⋆

〉 〈
x j,gt⋆

〉 〈
x j,λt⋆

〉 〈
x j,qt⋆

〉]
if j < n[〈

g j,xt⋆
〉 〈

g j,gt⋆
〉 〈

g j,λt⋆
〉 〈

g j,qt⋆
〉]

if j ≥ n
(3.97)

for the jth line. We now have all the ingredients to predict9 z⃗t at any time t, by first finding the
MLE Θ⋆ and then using (3.95). Note that this involves the non trivial computation of ⟨⃗zt ,⃗zs⟩
for any time t,s > t0 and the computationally expensive inversion of 2n×2n dimensional
matrix. In order to avoid this we use the markovian property of this process.

The markovian property and the likelihood computation In the previous paragraphs,
we theoretically showed how to apply the Gaussian process regression method together with
our biophysical model to the MoMa time series data. However, computing the full covariance
matrix function is not trivial and, as said, Gaussian regression involves the computationally
expensive matrix inversion. For these reasons, we developed a recursive way to treat the
MoMa time series data based on the markovian property of the process. This means that if
(⃗z0 ,⃗z1, . . . ,⃗zn) is a series of cell state vectors at times (t1, . . . , tn) over a cell lineage (figure
3.1d) then the markovian property gives

p (⃗zn+1|⃗zn ,⃗zn−1, . . . ,⃗z0) = p (⃗zn+1 |⃗zn) (3.98)

i.e. the probability to be in the cell state z⃗n+1 at time tn+1 only depends on the cell state z⃗n at
time tn. This allows to apply the Gaussian process regression machinery in a more simple
way. Let D =

{
(xm

n ,g
m
n ), . . . ,(x

m
0 ,g

m
0 )
}

be a series of measurements of the log cell size and
fluorescent protein molecules over one cell lineage and let’s assume we know the initial cell
state distribution

p (⃗z0) = N (⃗z0| ⟨⃗z0⟩ , ⟨⃗z0,⃗z0⟩) (3.99)

The likelihood of the first observation is given by (3.87)

p

([
xm

0

gm
0

]∣∣∣∣∣Θ
)

= N

([
xm

0

gm
0

]∣∣∣∣∣
[
⟨⃗z0⟩0

⟨⃗z0⟩1

]
,

[
⟨⃗z0,⃗z0⟩00 +σ2

x ⟨⃗z0 ,⃗z0⟩01

⟨⃗z0,⃗z0⟩10 ⟨⃗z0 ,⃗z0⟩11 +σ2
g

])
(3.100)

9In a similar way we can compute quantities like p(⃗zt ,⃗zs|D).
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whereas the posterior over the initial cell state is given by (3.90)

p

(⃗
z0

∣∣∣∣∣
[

xm
0

gm
0

]
,Θ

)
= N (⃗z0| m⃗,C) (3.101)

where

m⃗ = ⟨⃗z0⟩+ K̃T

([
⟨⃗z0,⃗z0⟩00 +σ2

x ⟨⃗z0 ,⃗z0⟩01

⟨⃗z0,⃗z0⟩10 ⟨⃗z0 ,⃗z0⟩11 +σ2
g

])−1[
xm

0 −⟨⃗z0⟩0

gm
0 −⟨⃗z0⟩1

]

C = ⟨⃗z0,⃗z0⟩− K̃T

([
⟨⃗z0 ,⃗z0⟩00 +σ2

x ⟨⃗z0,⃗z0⟩01

⟨⃗z0 ,⃗z0⟩10 ⟨⃗z0,⃗z0⟩11 +σ2
g

])−1

K̃

K̃ =

[
⟨⃗z0,⃗z0⟩00 ⟨⃗z0 ,⃗z0⟩01 ⟨⃗z0,⃗z0⟩02 ⟨⃗z0,⃗z0⟩03

⟨⃗z0,⃗z0⟩10 ⟨⃗z0 ,⃗z0⟩11 ⟨⃗z0,⃗z0⟩12 ⟨⃗z0,⃗z0⟩13

] (3.102)

In order to compute the conditional prior distribution for the next cell state vector

p

(⃗
z1

∣∣∣∣∣
[

xm
0

gm
0

]
,Θ

)
= N

(⃗
z1

∣∣∣ ⟨⃗z1⟩ , ⟨⃗z1,⃗z1⟩
)

(3.103)

we have to compute the conditional mean

⟨⃗z1⟩=
∫

d⃗z0 p

(⃗
z0

∣∣∣[ xm
0

gm
0

]
,Θ

)
⟨⃗z1 |⃗z0⟩ (3.104)

and the conditional covariance matrix

⟨⃗z1,⃗z1⟩i j =
∫

d⃗z0 p

(⃗
z0

∣∣∣[ xm
0

gm
0

]
,Θ

)(
⟨⃗z1 ,⃗z1|⃗z0⟩i j +(⟨⃗z1 |⃗z0⟩i −⟨⃗z1⟩i)(⟨⃗z1 |⃗z0⟩ j −⟨⃗z1⟩ j)

)
(3.105)

which is exactly what we developed in section 3.3.2. So we know how to obtain the prior
distribution (3.103). We are in a similar situation as in (3.99) and we can use equation (3.100)
to compute the likelihood

p

([
xm

1

gm
1

]∣∣∣∣∣
[

xm
0

gm
0

]
,Θ

)
(3.106)
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and (3.101) for the posterior

p

(⃗
z1

∣∣∣∣∣
[

xm
1

gm
1

]
,

[
xm

0

gm
0

]
,Θ

)
(3.107)

of the next observation
(
xm

1 ,g
m
1
)
. It is obvious that we can iterate this procedure over the

entire cell lineage data-set leaving us with a series of conditional likelihoods

p

([
xm

j

gm
j

]∣∣∣∣∣
[

xm
j−1

gm
j−1

]
, . . . ,

[
xm

0

gm
0

]
,Θ

)
(3.108)

and posteriors

p

(
Z⃗J⃗

∣∣∣∣∣
[

xm
j

gm
j

]
, . . . ,

[
xm

0

gm
0

]
,Θ

)
(3.109)

In order to find the total likelihood over one cell lineage we use the general relation

log p (D |Θ) =
n

∑
j=1

log p

([
xm

j

gm
j

]∣∣∣∣∣
[

xm
j−1

gm
j−1

]
, . . . ,

[
xm

0

gm
0

]
,Θ

)
+ log p

([
xm

0

gm
0

]∣∣∣Θ)
(3.110)

To find the optimal parameter set Θ⋆ we sum all the log likelihoods coming from all the cell
lineages presents in the experiment. Then we search for the MLE Θ⋆ by maximizing the
total likelihood. Once Θ⋆ is known, predictions of the cell state vectors Z⃗J⃗ are done using
and algorithm similar to the backward-forward algorithm as described below.

Backward-forward algorithm In the previous paragraph we showed how to compute the
total likelihood of a MoMa data-set and how to estimate the optimal parameter set Θ⋆. Once
this is known, we would like to predict the posterior distribution

P(⃗ZJ⃗ |D ,Θ⋆ ) (3.111)

where D is one of the cell lineage where the cell state vector Z⃗J⃗ is present. To do this we
make use of the backward-forward algorithm and an additional observation. First, let’s write

D = {(xm
n ,g

m
n ), . . . ,(x

m
0 ,g

m
0 )}

as
D = D j ∪D j+1

where
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D j =
{
(xm

j ,g
m
j ), . . . ,(x

m
0 ,g

m
0 )
}

(3.112)

D j+1 =
{
(xm

n ,g
m
n ), . . . ,(x

m
j+1,g

m
j+1)

}
(3.113)

i.e. we time separate the data before and after t j. The backward-forward algorithm allow us
to write

P(⃗ZJ⃗ |D ) =
P(⃗ZJ⃗

∣∣D j )P(D j+1
∣∣∣⃗ZJ⃗ )

P(D)
(3.114)

and by making use of some basic probability rules, we can write

P(⃗ZJ⃗ |D ) ∝
P(⃗ZJ⃗

∣∣D j )P(⃗ZJ⃗

∣∣D j+1 )

P(⃗ZJ⃗)
(3.115)

If we consider the prior distribution P(⃗ZJ⃗) to be uniform, we are only left to find P(⃗ZJ⃗

∣∣D j )

and P(⃗ZJ⃗

∣∣D j+1 ) and use the Gaussian multiplication property (3.5). Note that the first
term has been computed in the previous paragraph (3.109), so we are only missing to find
P(⃗ZJ⃗

∣∣D j+1 ). To do this let us consider the time backward process

dλ̃t

dt
=−γλ (λ̃t + λ̄ )+σλ η1(t) (3.116)

dx̃t

dt
= λ̃t (3.117)

dq̃t

dt
=−γq(q̃t + q̄)+σqη2(t) (3.118)

dg̃t

dt
= ex̃t q̃t +β g̃t (3.119)

i.e. we consider that, if we go backward in time, we will see the cell volume shrinking with a
negative rate −λ̄ and similar for the protein production rate −q̄ and bleaching rate −β . This
said, we can now easily compute the time backward cell state vector

w⃗t =


λ̃t

x̃t

q̃t

g̃t

 (3.120)
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distribution. Indeed, if we consider the initial cell state distribution

p(w⃗n) = N (w⃗n| ⟨w⃗n⟩ ,⟨w⃗n, w⃗n⟩) (3.121)

we can use the exact same procedure we used to compute (3.109) to find

p

(
w⃗ j

∣∣∣∣∣
[

xm
j+1

gm
j+1

]
, . . . ,

[
xm

n

gm
n

])
(3.122)

keeping in mind to change the parameters λ̄

q̄
β

→

 −λ̄

−q̄
−β

 (3.123)

and to consider cell division in time backward i.e. to consider the division matrices (3.78) to
become

Dd = diag
[
σ

2
dx,σ

2
dg,0,0

]
F = diag [1,2,1,1] f⃗ = [+ log2,0,0,0]T (3.124)

Once the Gaussian distribution

p
(
w⃗ j
∣∣D j+1) = N

[
w⃗ j
∣∣⃗c̃,C̃] (3.125)

is known, we find the backward distribution

p
(

Z⃗J⃗

∣∣D j+1) = N
[⃗
ZJ⃗ |⃗c,C

]
(3.126)

by simply changing

c⃗λ = −⃗c̃λ , c⃗q = −⃗c̃q, Cλx =Cxλ =−C̃xλ

Cλg =Cgλ =−C̃gλ , Cqx =Cxq =−C̃xq

Cgq =Cqg =−C̃gq, c⃗ j = ⃗̃c j and Ci j = C̃i j for the rest

The entire procedure described above to compute the likelihood, maximize it and find the
posteriors had been written in Python and published on
https://github.com/fioriathos/biophysical_gaussian_process_regression.git. In the next chap-
ter we will see an application of this procedure on real data.
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4.1 Introduction

A clear understanding of the stochasticity in the cellular growth is central for the under-
standing of phenomena like phenotypic diversity and cell size homeostasis. Metabolism
and growth rate are often considered constant for a given condition [8][15] due to the large
number of metabolic reactions, which average, should reduce fluctuations to undetectable
levels. However, time-lapse microscopy data show that the fluctuations of the instantaneous
growth rate of single cells can not be considered constant even within a cell cycle [26][47].
In order to quantify these deviations, we combined a biophysical stochastic model of cell
growth with a dedicated Bayesian regression method. With the high resolution provided by
our method we can investigate the dynamic of the growth rate during the cell cycle.

4.2 Model

It has been shown that, at a first approximation, the size of a single E.coli, grows almost
exponentially [22][26] during the cell cycle. However, due to the stochastic nature of the
cell elongation, the cell size fluctuates within a cell cycle and the deviations from the perfect
exponential growth are not only due to measurement errors. Some heuristic attempts [26][47]
have been done to infer the cell size dynamic with sub-cell cycle resolution but, to our
knowledge, none of them is justified through a biophysical model. Moreover, due to the
non negligible measurement errors, most of these methods give non reliable results. Here
we propose a Bayesian model, based on a simple Langevin equation, which allows us to
decouple measurement noise from biological fluctuations. Through this model we can then
obtain reliable estimation of the growth parameters within the cell cycle.
A simple stochastic model which describes random fluctuations of a stochastic variable
λt = λ (t) around a fixed value λ̄ is the Ornstein-Uhlenbeck process

dλt

dt
=−1

τ
(λt − λ̄ )+η(t) (4.1)

where ⟨η(t2),η(t1)⟩ = σδ (t2 − t1) is the stochastic part representing the Gaussian white
noise of strength σ , whereas the drift term 1

τ
(λt − λ̄ ) ensures the process to drift forward its

mean value λ̄ with a characteristic time τ . The Ornstein-Uhlenbeck process is a stationary
Gauss–Markov random process with mean λ̄ and noise to mean ratio (coefficien of variation)

Cv [λ ] =
√

τ

2
σ

λ̄
(4.2)
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Instead of considering the cell size of one E.coli cell over time s(t) as a simple exponential
function

s(t) = st0 exp
[
λ̄ t
]

(4.3)

where st0 is the cell size at the begin of the cell cycle and λ̄ the exponential growth rate, our
model assumes the growth rate λt to follow an Ornstein-Uhlenbeck process. If no division
event occurs between t0 and t, the log cell size xt = logst is then simply the time integral
from birth (t0) to t of the growth rate

xt = x0 +
∫ t

t0
λτdτ (4.4)

where x0 = logs0. Let us define the two dimensional cell state vector z⃗t at time t as

z⃗t =

(
xt

λt

)
(4.5)

i.e. the vector which components are the log cell size and growth rate at time t. Then, the
Gaussian nature of equations (4.1) and (4.4) allow to easily compute the cell state vector
probability distribution at any time in future t > t0

p(⃗zt |⃗zt0,Θ) = N (⃗a+ F⃗zt0,C) (4.6)

where Θ =
(
λ ,τ,σ2) and a⃗,F,C are defined in equations S.2,S.3.

We assume that, through time lapse microscopy, we are able to measure the log cell size of a
cell from its birth xm(t0) to its division xm(td). We will now show how, through (4.6), we can
predict the instantaneous growth rate and cell size constrained to these measurements. For
simplicity we consider the data-set consists of measurements of the log cell size during the
cell cycle of one mother cell and one of its daughter cells only

D = {(xm
i , ti) |xm

i is the measured log size of one cell at time ti, i = 0, . . . ,d,d +1, . . . ,n}
(4.7)

where td is the time at which the only division event happen. Generalizing this to more
division events is then straightforward.
The method we will present in the next paragraphs consists of three main steps. First it
computes the necessary probability distributions at the initial conditions z⃗0. Then updates
these distributions for the next observation time (t1). Finally it generalize the procedure
through the entire data-set with a recursive relation.
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Initial conditions We here compute the likelihood of the first observation (xm
0 ) and the

posterior of the initial cell state vector z⃗0 given this observation.
The initial state vector is assumed to be Gaussian distributed

p(⃗z0) = N (⃗s,S) (4.8)

with given mean s⃗ and covariance matrix S. The measurement1 error in the log cell size is
considered to be Gaussian distributed with mean zero and variance σ2

ε

p(xm
j |x j) = N

(
x j,σ

2
ε

)
(4.9)

The likelihood of the first measurement xm
0 reads

p(xm
0 |Θ̃) =

∫
p(xm

0 |⃗z0) p(⃗z0)d⃗z0 = N
(
s0,S00 +σ

2
ε

)
(4.10)

with Θ̃= {Θ,σ2
ε } and s0, S00 the components of the mean and covariance matrix. To compute

the posterior probability distribution of the vector z⃗0 given the observation xm
0 we use the

Bayes theorem and we find

p
(⃗
z0|xm

0 ,Θ̃
)
=

p(xm
0 |⃗z0)p(⃗z0)

p(xm
0 )

∝ N (⃗b,B) (4.11)

where the mean and covariance matrices (⃗b,B) are defined in (S.13).

Update equation In the previous paragraph we saw how, starting from the prior distribution
(4.8), we were able to find the likelihood (4.11) and the posterior distribution (4.10) if we
considered Gaussian measurement errors (4.9). Finding the prior distribution at the next time
point i.e.

p
(⃗
z1|xm

0 ,Θ̃
)

(4.12)

allows the procedure to be iterated.
Two possible scenarios can happen between the two observations at time t0 and t1 i.e.

either the cell only grows, or the cell grows and divide.
If there is no division event between time t0 and t1 then through equation (4.6) we can easily
find the prior distribution at time t1

p
(⃗
z1|xm

0 ,Θ̃
)
=
∫

p (⃗z1 |⃗z0,Θ) p
(⃗
z0|xm

0 ,Θ̃
)

d⃗z0 = N
(⃗
s′,S′

)
(4.13)

1The superscript m stands for "measured quantity".
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where (⃗s′,S′) are the mean and covariance matrix defined in (S.6).
If the cell divide in this time lapse then the prior distribution of the cell state vector of the
daughter cell

(⃗
zdaugther

1

)
reads

p
(⃗

zdaugther
1 |xm

0 ,Θ̃
)
=
∫

d⃗zmother
0 zmother

1 p
(⃗

zdaugther
1 |⃗zmother

1

)
×

p
(⃗

zmother
1 |⃗zmother

0

)
p
(⃗

zmother
0 |xm

0 ,Θ̃
)

= N
(⃗
s′′,S′′

) (4.14)

where we consider the division event to split the cells into two identical parts

p
(⃗

zdaugther
1 |⃗zmother

1

)
= N

(
zmother

1 − log2,σ2
d

)
(4.15)

The full shape of the mean s⃗′′ and covariance matrices S′′ and more details about the
assumptions made are given in the supplementary material (S.9).

Recursive relation and total likelihood Equation (4.13) or (4.14) predict the prior distri-
bution of the cell state vector at the next time point z⃗1 given the masurement xm

0

p
(⃗
z1|xm

0 ,Θ̃
)
= N (⃗s,S) (4.16)

where s⃗ and S are the mean and covariance matrix given in (4.13) or (4.14) depending if the
cell divides or not.
The likelihood of the next measurement xm

1 is computed in the same way as in (4.10), and
reads

p
(
xm

1 |xm
0 ,Θ̃

)
= N

(
s0,S00 +σ

2
ε

)
(4.17)

Similar the posterior is computed in the same way as in (4.11), and reads

p
(⃗
z1|xm

1 ,x
m
0 ,Θ̃

)
∝ N

(⃗
b,B
)

(4.18)

It is clear that the procedure can be iterated over the entire data-set D to find

p
(
xm

i+1|xm
j , . . . ,x

m
0 ,Θ̃

)
and p

(⃗
z j|xm

j , . . . ,x
m
0 ,Θ̃

)
(4.19)

Summary In the previous paragraphs we show how to compute

p
(
xm

0 |Θ̃
)
, p

(
xm

i+1|xm
j , . . . ,x

m
0 ,Θ̃

)
and p

(⃗
z j|xm

j , . . . ,x
m
0 ,Θ̃

)
(4.20)
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We can easily compute the total likelihood using the basic probability rule

p(D) =
n−1

∏
i=0

p
(
xm

i+1|xm
i , . . . ,x

m
0 ,Θ̃

)
p
(
xm

0 |Θ̃
)

(4.21)

We consider the best parameter set Θ̃⋆ as the one maximising the total likelihood (4.21).
Therefore, once Θ̃⋆ is found, predictions of the cell state vector z⃗ j are given by

p
(⃗
z j|xm

j , . . . ,x
m
0 ,Θ̃⋆

)
(4.22)

A generalization of this procedure to the case where D contains more division events is
clearly straightforward. Note that if D contains two cells which do not share a known
common ancestor, we consider the two cell genealogies as independent. This imply that the
respective log likelihood contributions simply sums.

4.3 Results

All the following results and images can be generated using the ipython notebook in
https://github.com/fioriathos/dynamic_of_bacterial_growth.git. The public available data
[59] are obtained using an integrated microfluidics and time-lapse microscopy approach to
quantitatively characterize growth and division in parallel across many lineages of single E.
coli cells, both in slow and fast growth conditions. The different conditions are M9 minimal
media supplemented with glycerol, glucose or glucose and eight amino acids (rich media),
resulting in doubling times of 89, 53 and 41 min. These measurements allowed us to quantify
each single cell cycle by a number of variables such as the growth rate, the sizes at birth
and at division and the time between birth and division. As done in [59], we assume the
cell radius is constant and use the cell length as a proxy for the cell volume. Since we can
follow cells over multiple generations, we can also measure quantities that span multiple
division cycles such as the long term auto correlation function. Some basic statistics are
given in figure S.1 where the growth rate has been computed by assuming perfect exponential
cell volume growth together with the least square method. In the next paragraphs we show
how the previously developed model applies to these data-sets and focus on new results this
method can bring.

Inference For the three different data-sets we compute the total log-likelihood using (4.21)
and infer the parameter set Θ̃⋆ which maximise it. The inferred parameters are shown in
table 4.1 and we refer to section 4.5.5 for more details.

https://github.com/fioriathos/dynamic_of_bacterial_growth.git
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Media λ̄ [min−1] τ [min] σε

⟨x⟩ [%] Cv[λ ][%]

glucose 1.246×10−2 ±9×10−5 82±4 3.61±0.02 24±1
glycerol 7.30×10−3 ±3×10−5 105±4 2.91±0.02 22± 1

rich media 1.386×10−2 ±5×10−5 50±5 3.10±0.03 20±4
Table 4.1 The maximum likelihood parameters inferred for the three different media. Note
that the measurement error is re-scaled with the mean log cell size ⟨x⟩ and the fluctuation in
growth rate σ are expressed through the more meaningful quantity Cv[λ ].

Predictions Once the optimal parameter set Θ̃⋆ is found, it is easy to compute the posterior
distribution of the cell state vector z⃗ j at any time point t j (4.22). An example is given in
figure 4.1 where a random cell and its daughter, growing in glycerol, are tracked from birth
to division (orange points). The predicted log cell size and growth rate are computed through
(4.22) and we represent in blue the mean and standard of this distribution. Clearly we here
represent only two cells but we apply this on all the cells presents in the data-sets.

Cell cycle dynamic We can now compute quantities with a resolution which was not
possible to obtain before. As an example, we compute the growth rate auto-correlation
function with a resolution of a few minutes (figure 4.2). Not only this function scales
with the doubling time, as already shown [26], but correlations are not decaying perfectly
exponentially (black curve). Indeed, within the first cell cycle, the correlation drops faster
than the exponential function and the trend seems to be inversely proportional to the growth
rate. Another interesting observation is the dynamic of the growth rate during the cell cycle.
In all conditions the growth rate is at the minimum (≈ 4% less than average growth rate)
between the 30% and the 40% of the cell cycle, and reaches its maximum at the end of the
cell cycle. Note that a similar growth rate dynamic pattern been observed [47] in B.subtilis.

4.4 Discussion

Metabolic and growth rates fluctuations have been often neglected in studies of bacterial
growth. Even tough some more recent studies [22][26] have considered fluctuations of these
quantities with a cell cycle resolution, none has never presented a justified method enabling
to quantify these fluctuations with sub cell cycle time scale. To account for this, we presented
a simple stochastic model for describing instantaneous cell growth. This model not only
is capable to theoretically predict quantities like the growth rate correlation time (τ) or the
instantaneous growth rate fluctuation (Cv[λ ]) but, if combined with the Gaussian process
regression method, it allows us to precisely estimate the instantaneous cell size and growth
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Fig. 4.1 (left) The log cell size of a random E.Coli cell, before and after division (red),
growing in M9 minimal media supplemented with glycerol. The predicted log cell length
distribution is given by (4.22) with Θ̃⋆ given in table 4.1. The plot represents the mean
(black) and standard deviation (blue) of the distribution. (right) The respective predicted
growth rate distribution mean (black) and standard deviation (blue).

Fig. 4.2 Growth rate autocorrelation function computed with growth rates predicted by (4.22).
The black line represent the exponential function e−2.52×t .
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Fig. 4.3 Growth rate binned depending on the fraction of the cell cycle. The bin mean and
standard error of the growth rate, divided by the total mean growth rate, in every condition
is plotted. In all conditions the growth rate has the same dynamic. First, it decreases until
reaching its minimum (≈ 4% less between [30%,40%] of the cell cycle) then starts to increase
again.
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rate. We show how these predictions bring new light in the study of the metabolic and growth
rate dynamics and, as an example, we focus in computing the growth rate autocorrelation
function and the dynamic of the growth rate over the cell cycle. The first shows that the
growth rate correlation does not follow a perfect exponentially decaying function. Indeed,
over the first cell cycle, the growth rate correlation first decays very fast and then reaches
a plateau. This phenomena seems to be proportional to the doubling time. The second
shows that the growth rate dynamic has a specific pattern over the cell cycle. For the three
conditions, the growth rate is decreasing in the first 40% of the cell cycle and then increases
again. Clearly, in this study we focus on the method and the potential application we can do
with it more than on the final results. More conditions and more data should be collected in
order to confirm the observed autocorrelation function and growth rate dynamics.
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4.5 Supplementary Material

4.5.1 Prior distribution

First of all let’s work out the shape of the matrices a,F and C used in equation (4.8). Notice
that the Langevin equation (4.1) and its time integral generate Gaussian distributions, so it is
sufficient to compute the mean and covariance function in order to find

p
(⃗
z j+k |⃗z j

)
(S.1)

For notation simplicity we will consider z j = z0 i.e. the cell state vector at time t0 = 0 and
z j+k = zdt i.e. the cell state vector at time t j+k = dt. From the properties of the Wiener
processes it is easy to find the expectation value of z⃗dt conditioned on z⃗0

⟨λdt |λ0⟩= λ0e−γdt + e−γdt
∫ dt

0
dτe−γτ

λ̄

= λ0e−γdt + λ̄

[
1− e−γdt

]
⟨xdt |λ0,x0⟩= x0 +

∫ dt

0
⟨λτ |λ0⟩dτ = x0 +λ0

[
1− e−γdt

γ

]
+ λ̄

[
e−γdt − (1− γdt)

γ

]
and so

⟨⃗zdt |⃗z0⟩=

(
⟨xdt |λ0,x0⟩
⟨λdt |λ0⟩

)
=

(
λ̄
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γ

]
λ̄
[
1− e−γdt]

)
︸ ︷︷ ︸

a⃗

+

(
1 1−e−γdt

γ

0 e−γdt

)
︸ ︷︷ ︸

F

z⃗0 (S.2)

Similarly we can find the covariance matrix

C =

 σ2

2γ3

[
2γdt −3+4e−γdt − e−2γdt] σ2

2γ2

[
1− e−γdt]2

σ2

2γ2

[
1− e−γdt]2 σ2

2γ

[
1− e−2γdt]

 (S.3)

Now consider the cell state distribution at time t j to be Gaussian with mean vector b⃗ and
covariance matrix B

p
(⃗
z j
)
=

1√
(2π)2Det [B]

exp
[
−1

2

(⃗
z j − b⃗

)
B−1

(⃗
z j − b⃗

)]
= N

(⃗
b,B
)

(S.4)
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If no division event happens between time t j and time t j+k, the prior distribution at time t j+k

reads
p(⃗z j+k) =

∫
d⃗z j p

(⃗
z j+k |⃗z j

)
p
(⃗
z j
)
= N

(⃗
s′,S′

)
(S.5)

where
s⃗′ = a⃗+ F⃗b and S′ =C+FBFT (S.6)

However, if a division event occurs between time t j and time t j+k then we have to consider the
cell to get split into two almost identical parts within this time period. Let’s name "mother"
the cell before the division event occurs and "daughter" one of the two half after division.
Consider the cell division distribution to be Gaussian, centered at half the size of the mother
and with an asymmetry factor of σd which represents how much asymmetrically the cells
divide

p
(

xdaughter
j+k |xmother

j+k

)
=

1√
2πσ2

d

e
−
(

xdaughter
i+k −xmother

i+k +log2
)2

2σ2
d (S.7)

Clearly we do not know exactly when the division happened between t j and t j+k and if
division affects the growth rate in a systematic way. To make it simple we considered that
the cell grows as if no division had happened until t j+k (S.5), and then we assume division
happens exactly at the observed time t j+k. With these assumptions we can easily find the
prior distribution after division

p(⃗zdaughter
j+k ) =

∫
d⃗zmother

j+k p
(⃗

zdaughter
j+k |⃗zmother

j+k

)
p
(⃗

zmother
j+k

)
= N

(⃗
s′′,S′′

)
(S.8)

where

s⃗′′ = s⃗′−

(
log2

0

)
and S′′ = S′+

(
σ2

d 0
0 0

)
(S.9)

4.5.2 Posterior distribution

Let’s consider the prior distribution on the cell state vector z⃗k at time tk to be Gaussian
distributed with mean s⃗ and covariance matrix S

p (⃗zk) = N (⃗s,S) (S.10)

Then if we assume the measured log size xm
k at time tk to be Gaussian distributed with error

σε

p(xm
k |xk) = N

(
xk,σ

2
ε

)
(S.11)
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the posterior probability distribution reads

p(⃗zk|xm
k ) =

p(xm
k |⃗zk)p(⃗zk)

p(xm
k )

∝ N
(⃗

b,B
)

(S.12)

where
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01
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Clearly, s j is the jth component of the vector s⃗ and Si j the ith line and jth column of the
matrix S.

4.5.3 Computing basic statistics

We consider cells from birth t0 to division td to grow exponentially

s(t) = st0eλ t , t ∈ [t0, td] (S.14)

and, given the measured cell volumes, we use the least square method to infer st0 and λ .
The autocorrelation function is computed as follow. For every cell i find its growth rate λi

and the growth rate of the two respective daughter cells λ i
1 and λ i

2 (λ l
k is the daughter cell k

from the mother cell l). Then build the 2×n dimensional matrix

Λ =


λ1 λ 1

1

λ1 λ 1
2

...
...

λn−2 λ
n−2
1

λn−2 λ
n−2
2

 (S.15)

and the pearson correlation is computed as

ρ =
Cov [[Λ]0 [Λ]1]√

Var [[Λ]0]Var [[Λ]1]
(S.16)

where [Λ] j is the jth column of Λ. Similar we do for the grand daughter. These are used to
compute the statistics in figure S.1.
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Fig. S.1 E.Coli growing in M9 minimal media supplemented with glycerol, glucose and
glucose plus 8 amino acids (rich media) . (left) The distribution’s time from birth to division
for E.coli growin in these three conditions. (middle) The log cell size distribution in the three
conditions.(right) The single cell growth rate λ is computed using the least square method
together with the assumption that cells grow exponentially

(
∝ eλ t

)
. We report the coefficient

of variation (standard deviation divided by mean) of the growth rate distribution for the three
conditions (≈ 0.19 in all conditions). Moreover, we plot the pearson correlation coefficient
between the growth rate of the mother cells with their daughter cells (1 generation) and of
the mother cells with their grand daughter cells (2 generations). The growth rate correlate
≈ 0.5 after one division and drop to ≈ 0.2 after two divisions.
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4.5.4 Cell growth dynamic simulation

Let’s show how to generate the cell growth dynamics, to mimic the mother machine data,
once we know the parameter set

Θ̃ = {λ̄ ,τ,σ ,σd,σε}

First remember that if we only wish to simulate the standard Brownian motion η(t) at one
fixed value t, then we only need to generate a unit normal Z ∼N (0,1) and set η(t) = σ

√
tZ.

For the Ornstein-Uhlenbeck process we use the discrete version of (4.1)

λt+∆t = λt −
1
τ
(λt − λ̄ )∆t +σ∆t

3
2 Z

in order to generate the growth rate dynamics. Once the series of growth rates (λ0,λ∆t , . . . ,λn∆t)

is generated, we need to find cell size dynamics. Remember the log cell size is defined to be
the time integral of the growth rate

xk∆t = x0 +
k

∑
i=1

λi∆t

but cell division and measurement errors must be considered in order to mimic mother
machine data. Measurement errors are easy to simulate since we just consider

xm
j ∼ N

(
x j,σε

)
The cell division is implemented trough the adder model [53] i.e. every time the quantity

∑
k
i=1 λi∆t reach the threshold value ∆V , we consider the cell to divide. This means that, if the

threshold is reached after k steps, the cell divides in half and the daughter cell will start with
a volume

xdaughter
0 ∼ N (xk∆t − log2,σd)

We continue this procedure to form an entire genealogy which should simulate the data
observed in the mother machine.

4.5.5 Inference with correlated measurement error

For the three different data-set we compute the total log-likelihood using (4.21) and infer
the parameter set Θ̃⋆ which maximise it (the maximum likelihood estimator (MLE)). As we
will see, due to the correlation in measurement noise, we can not apply the inference method
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Fig. S.2 The MLE Θ̃⋆ in the three different conditions using the data-set DK given in (S.19).
The case K = 1 is the case where nothing has been applied to the data. Measurement errors
are the absolute values of the diagonal elements of the log-likelihood inverse Hessian matrix.
(Top left) The mean growth rate λ̄ for the three conditions for different DK .(Bottom left)The
relative error σε

⟨x⟩ for the three conditions for different DK . (Bottom right) The coefficient
of variation (4.2) for the three conditions for different DK . Errors are in this case computed
with the propagation error formula.
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Fig. S.3 In red the basic statistics on the real data already shown in figure S.1. In blue
the same statistics computed on synthetic data (section 4.5.4) generated using the inferred
parameters given in figure S.2 with K = 1. Every line represents a condition. Whereas the
division times of the simulations and biological data mostly agree, this is not true for the
growth rate autocorrelation function.
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Fig. S.4 In red the basic statistics on the real data already shown in figure S.1. In blue
the same statistics computed on synthetic data (section 4.5.4) generated using the inferred
parameters given in figure S.2 with K = 9 for glycerol, K = 4,5 for glucose and rich media
respectively. Every line represents a condition. The division times and the growth rate
autorcorrelation functions of the simulations and biological data mostly agree and so we
assume the inferred parameters Θ̃ are now reliable to describe cell growth.
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directly but we have to uncorrelate the measurement noise first.
Let start by finding the MLE of the data-set D directly i.e. compute (4.21) exactly as
described in the method section. The inferred parameters corresponds to the case K = 1
in figure S.2. For example, in glucose, the inferred mean growth rate λ̄ = 1.169×10−2 ±
7 × 10−5[min−1], the correlation time τ = 5.8 ± 0.5[min], the measurement error σε

⟨x⟩ =

2.24%±0.01% and the fluctuations in growth rate (4.2) Cv[λ ] = 43%±5%. As usual, the
error bars are the absolute values of the diagonal elements of the inverse Hessian matrix of
the log-likelihood function

∂ 2 p
(
D
∣∣Θ̃)

∂ 2Θ̃i

∣∣∣∣∣
Θ̃⋆

(S.17)

In order to test whether these parameters well describe the cell growth dynamics, we run a
computer simulation (section 4.5.4) which mimic cell growth and division. If the simulated
traces generated with the inferred parameters Θ̃⋆ consistently describe cell growth and divi-
sion we should obtain similar statistics as the one we compute on the biological data. In figure
S.3 we compare the division time distributions and the growth rate auto-correlation function
for the original data (red) and the simulated data (blue). The most striking observation is
the disagreement in the auto-correlation function. Indeed, in the biological data we have a
correlation higher than .5 after one generation which is clearly not observed in the simulated
traces. This is due to the relatively short correlation time τ inferred, which is several fold
smaller than the division time, and makes correlations longer than a cell cycle vanishing. We
think the algorithm infers short time scales correlations τ due to the naive assumption of
uncorrelated Gaussian noise. Indeed, when looking to the time lapse microscopy images, we
realise that cells wiggle inside the channels making the measurement noise correlated. We
think that the inferred time scale τ is the time scale of the correlation in the measurement
noise and in order to test this hypothesis we apply the following technique. Consider to split
the original data-set

D = ({(xm
0 , t0),(x

m
1 , t1)...,(x

m
N , tN)}) (S.18)

into K different data-sets i.e. for j = 0,1, ..,K

D j =
{
(xm

j , t j),(xm
j+K, t j+K),(xm

j+2K, t j+2K)...,(xm
N−K+ j, tN−K+ j)

}
(S.19)

and consider these K data-sets as independent. If the measurement noise is not correlated,
the optimal parameter set Θ̃⋆ would be the same regardless of K. We apply this procedure
on our data with K = 1, . . . ,5 for glucose and rich media and K = 1, . . . ,9 for glycerol. All
the inferred parameters converge, within error bars, suggesting that the measurement noise
is not correlated anymore. We again test these parameters trough the previously described
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simulation (section 4.5.4) and summarize the statistics in figure S.4. The statistics of the
simulations and the real data matches almost perfectly the biological statistics suggesting
that the inferred parameters well describes the cell growth in these conditions.



Chapter 5

Conclusion

In the first chapter we theoretically demonstrated that due to the exponential growth of
bacterial populations, the time a specific cell needs to exit the lag has an exponential impact
on its number of descendants. This imply that the contributions to the final population given
by the fast adapting cells is exponentially larger than the one given by slow adapting cells.
This observation let us hypothesize that selection is strong on the head of the single cell lag
time distribution and weak on the tail. Meaning that a mutations acting on fast adapting cells
(the head of the LD) have an high impact on the reproductive success of the colony and thus
are strongly selected. On the contrary, mutations acting on slow adapting cells ( the tail of
the LD) have a low impact on the final colony implying a weak selection pressure. Thus,
we expect deleterious mutations acting on the tail of the LD to accumulated. According
to this observation and in addition to any potential advantage a long tailed LD might have,
we showed that heterogeneous LD should be observed in wild E. Coli just due to the weak
selection pressure on the tail. Another important observation we did in this study is to
realize that the non trivial relationship between the population lag time and the single cell
lag time distribution depends on the initial size of the colony. Indeed, we showed that the
expected population lag time is longer when the initial colony size is small and this effects
is stronger when the LD is heterogeneous. In order to understand the consequences of this
observation we simulated bacterial colonies living in fluctuating environments. As predicted
by our theory we showed that heterogeneous LD are effective for large populations as far
as a subset of bacteria can adapt fast to the new environment but are inefficient in small
populations. This suggests that, while large populations can employ bet-hedging strategies to
deal with unexpected environmental changes, small populations will require regulated sense-
and-response strategies in order to ensure a short population lag. Last, we also studied the
potential problems which may arise when we define the log genotype fraction as a measure of
fitness. This fitness measure is often used in evolutionary experiments and we show that, due
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to the colony size dependence of the population lag, one may overestimate the fitness of the
more abundant genotype even in cases where no selection is acting. This fictitious selection
force is an example of a more general theory developed by [13]. In the second part of the
thesis we focus our attention on the analysis of the MoMa [22] time series data for cell size and
gene expression. We first presented a general Bayesian method used to treat gene expression
data and provided the necessary informations in order to understand the package developed in
https://github.com/fioriathos/gaussian_smoothing.git. However, this model lacks a biological
interpretation of the underlying variables. We therefore developed a biophysical model of
cell growth and gene expression based on the simple Ornstein-Uhlenbeck stochastic process.
We then showed how to combined the biophysical model of growth and gene expression
with the Gaussian regression process method. In the last chapter we apply this method on
time series data of cell growth https://github.com/fioriathos/dynamic_of_bacterial_growth.git.
We showed that bacteria growing in different conditions have similar dynamics. Among
others we showed the growth rate correlates with a time scale proportional to itself and loses
correlation faster than exponentially over the first cell cycle. Due to the high resolution of
the latent variables provided by this method, new studies of the single cells dynamics with a
sub cell cycle resolution are now possible.
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