
Level-set percolation of the Gaussian free field on

regular graphs III: giant component on expanders
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LEVEL-SET PERCOLATION OF THE GAUSSIAN FREE FIELD ON

REGULAR GRAPHS III: GIANT COMPONENT ON EXPANDERS

JIŘÍ ČERNÝ

Abstract. We consider the zero-average Gaussian free field on a certain class of finite
d-regular graphs for fixed d ≥ 3. This class includes d-regular expanders of large girth
and typical realisations of random d-regular graphs. We show that the level set of
the zero-average Gaussian free field above level h has a giant component in the whole
supercritical phase, that is for all h < h⋆, with probability tending to one as the size of
the graphs tends to infinity. In addition, we show that this component is unique. This
significantly improves the result of [AČ20b], where it was shown that a linear fraction
of vertices is in mesoscopic components if h < h⋆.

1. Introduction

In this paper we continue investigations of the level-set percolation of the zero-average
Gaussian free field on a certain class of finite d-regular random graphs. These investi-
gations were initiated in [AČ20b], after preparatory steps conducted in [AČ20a]. It was
shown there that the model exhibits a percolation phase transition at a critical level h⋆ in
the following sense: With probability tending to one as the size N of the graphs tends to
infinity, whenever h > h⋆, the level set of the zero-average Gaussian free field above level
h does not contain any connected component of size larger than Ch logN , and, on the
contrary, whenever h < h⋆, a linear fraction of the vertices is contained in ‘mesoscopic’
connected components of the level set above level h, that is in components having a size
of at least a small fractional power of N . The critical level h⋆ agrees with the percolation
threshold of the level set percolation of the usual Gaussian free field on a d-regular tree
which was identified in [Szn16].

In the subcritical phase, h > h⋆, this description of the behaviour of the level set
is satisfactory. On the other hand, in the supercritical phase, h < h⋆, it leaves open
the question whether the mesoscopic components form a giant component, that is a
component of size of order N , cf. [AČ20b, Remark 5.7].

This is a natural question since for other probabilistic models on essentially the same
class of graphs the emergence of the unique giant component has been shown in the
corresponding supercritical phases. The first example is the Bernoulli bond percolation
on d-regular expanders of large girth considered in [ABS04] (for more recent results, see
[KLS20]). A second example is the percolation of the vacant set left by the simple random
walk on the same class of graphs as considered here and in [AČ20b], see [ČTW11]. In
particular the latter result gives a strong indication that a giant component should emerge
also in the supercritical phase of the level-set percolation, as the two models share many
common features, like similar decay of correlations.

We answer this question affirmatively. To state our results we first recall the setting
of [AČ20b]. We fix d ≥ 3 and assume that (Gn)n≥1 is a sequence of graphs satisfying the
following conditions.

Assumption 1.1. There exist α ∈ (0, 1), β > 0, and an increasing sequence of positive
integers (Nn)n≥1 with limn→∞Nn = ∞ such that for all n ≥ 1:
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(a) Gn = (Vn, En) is a simple connected graph with Nn vertices which is d-regular
(that is all its vertices have degree d).

(b) For all x ∈ Vn there is at most one cycle in the ball of radius ⌊α logd−1(Nn)⌋
around x.

(c) The spectral gap of Gn, denoted by λGn , satisfies λGn ≥ β.

We refer to [AČ20b] for a more detailed discussion of these assumptions, but recall
that they are satisfied for two important classes of graphs: (a) random d-regular graphs,
(b) d-regular expanders of large girth.

On Gn we consider the zero-average Gaussian free field ΨGn = (ΨGn(x) : x ∈ Vn) which
is a centred Gaussian process on Vn whose law is determined by its covariance function

E[ΨGn(x)ΨGn(y)] = GGn(x, y) for all x, y ∈ Vn, (1.1)

where GGn(·, ·) is the zero-average Green function on Gn (see (2.3), (2.5) for its definition).
The zero-average Gaussian free field is a natural version of the Gaussian free field for

finite graphs. However, due to the zero-average property, namely
∑

x∈Vn

ΨGn(x) = 0, a.s., (1.2)

it comes with some peculiarities like the lack of an FKG-inequality and of the domain
Markov property, cf. [AČ20b, Section 2.2].

We analyse the properties of the level sets of ΨGn above level h ∈ R, that is of

E≥h(ΨGn) := {x ∈ Vn : ΨGn(x) ≥ h}. (1.3)

In particular, we are interested in the sizes of its largest and second largest connected
components CGn,h

max and CGn,h
sec .

For our investigations it is important that the field ΨGn is locally well approximated
by the Gaussian free field ϕTd

= (ϕTd
(x) : x ∈ Td) on the infinite rooted d-regular tree

Td (see the paragraph containing (2.6) for the definition). For now, we only define its
percolation function

η(h) := P
(
|Ch

o | = ∞
)
, (1.4)

where Ch
o is the connected component of the set E≥h(ϕTd

) := {x ∈ Td : ϕTd
(x) ≥ h}

containing the root o ∈ Td, and we set

h⋆ := inf
{
h ∈ R : η(h) = 0

}
, (1.5)

to be its critical value. From [Szn16] it is known that h⋆ is positive and finite.
We can now state our main result.

Theorem 1.2. If h < h⋆, then for every sequence of graphs (Gn)n≥1 satisfying Assump-
tion 1.1 and every δ > 0

lim
n→∞

P
( |CGn,h

max |
Nn

∈ (η(h)− δ, η(h) + δ) and
∣∣CGn,h

sec

∣∣ ≤ δNn

)
= 1. (1.6)

Theorem 1.2 confirms the emergence of the giant component in the supercritical phase
of the model, gives its typical size, and provides its uniqueness.

Similarly as in [ABS04, ČTW11, KLS20], we use a sprinkling technique to show that
the mesoscopic components (that we know to exist due to [AČ20b, Theorem 5.1]) in-
deed form a giant component. Making the sprinkling work in the settings of dependent
percolation is however rather challenging, as was already observed in [ČTW11], in the
context of the vacant set left by a random walk. In the context of Gaussian free field,
sprinkling was previously used in [DR15], to show the existence of an infinite connected
component of the supercritical level set on Zd when d → ∞. The diverging dimension
is important for the arguments therein, since the correlations of the field decay with the
dimension (as d−1 for the neighbouring vertices). Several sprinkling steps are also used
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in the recent groundbreaking paper [DGRS20], which proves the sharpness of the phase
transition for the level set of the Gaussian free field on Zd, d ≥ 3. Note also that the
results of [DGRS20] can be combined with [Abä19] to show the existence of the giant
component for the supercritical level set of the zero-average Gaussian free field on a large
discrete torus (cf. [DGRS20, Section 1.2]).

Very recently, a result similar to Theorem 1.2 was proved by G. Conchon-Kerjan
in [Con21]. Namely, assuming that Gn is a uniformly random d-regular graph with n
vertices, he shows that under the annealed probability measure Pann (that is taking into
account the randomness of the graph and the field),

lim
n→∞

Pann

(
|CGn,h

max |/n ∈ (η(h)− δ, η(h) + δ) and c−1 log n ≤ |CGn,h
sec | ≤ c log n

)
= 1, (1.7)

and further gives a rather detailed description of the geometry of CGn,h
max . Note that

the estimate on |CGn,h
sec | in (1.7) is essentially optimal, and better than in (1.6). The

arguments of [Con21] are completely different from the ones used in this paper and rely
strongly on the assumption that Gn is a random regular graph, and thus can be revealed
progressively using the usual pairing construction. As discussed above, this assumption
is stronger than our Assumption 1.1.

Let us now comment on the proof of Theorem 1.2. To explain its main ideas, it is
useful to discuss the sprinkling construction for the Bernoulli percolation from [ABS04]
first. This construction relies on the fact that a percolation configuration (ωp(x))x∈Vn ∈
{0, 1}Vn at level p can be obtained as the maximum of two independent Bernoulli con-
figurations ωp1 and ωp2 with the levels p1, p2 satisfying 1− p = (1− p1)(1− p2). For the
techniques of [ABS04] to work, it is very important that (a) ωp2 is independent of ωp1 ,
(b) ωp2 is a Bernoulli percolation, that is the random variables (ωp2(x))x∈Vn are indepen-
dent, and (c) that the maximum function is monotonous, in particular {x : ωp(x) = 1} ⊃
{x : ωp1(x) = 1}. While (c) is important for the sprinkling not to destroy the mesoscopic
components of ωp1 , (a) and (b) play a key role in estimating the probability of a certain
bad event which needs to be much smaller than e−cNn/mn , with mn denoting the mini-
mal size of mesoscopic components (cf. proof of Proposition 3.1 in [ABS04]). In [ABS04],
the proof of this estimate is just a simple large deviation argument for i.i.d. Bernoulli
random variables. Unfortunately, a corresponding estimate is mostly simply not true in
the setting of correlated Gaussian fields.

Before describing our approach, let us very quickly mention two natural ideas how
to adapt the sprinkling construction of [ABS04] to the zero-average Gaussian free field
which, unfortunately, cannot easily be converted into a rigorous proof, mostly due to
the lack of independence. The first one is to use the existence of many mesoscopic
components at a level h′ ∈ (h, h⋆) and prove that by lowering the level from h′ to h
those components merge. This preserves the monotonicity, that is the point (c) from
the last paragraph, but completely destroys the independence (a) and (b), making the
above mentioned estimate on the bad event essentially impossible to prove. The second
one is to write ΨGn as a linear combination

√
1− t2Ψ′

Gn
+ tΨ′′

Gn
(with a small t) of its

independent copies Ψ′
Gn
,Ψ′′

Gn
. Here, the monotonicity (c) is lost (but probably could be

salvaged by some technical work), (a) is preserved, but the correlations of Ψ′′
Gn

make the
estimate on the bad event fail again. Remark also that the zero average property (1.2)
excludes writing ΨGn as a sum X + Y of two non-trivial independent fields X, Y such
that Y ≥ 0, or as max(X,Y ) for X, Y independent; both of these decompositions would
be desirable for the monotonicity (c).

In this paper we thus develop a new decomposition of the zero-average Gaussian free
field which provides enough independence to be useful in a sprinkling argument and
which is of independent interest, see Section 3. It is inspired by a similar decomposition
of the (usual) Gaussian free field on Zd from [DGRS20]. Using this decomposition we
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will write ΨGn as a sum of two independent components ΨGn = Ψ1
Gn

+Ψ2
Gn

, where

Ψ2
Gn
(x) := tn

(
Z0(x)−N−1

∑

y∈Vn

Z0(y)
)
, x ∈ Vn, (1.8)

for some family (Z0(x))x∈Vn of i.i.d. Gaussian random variables. Since the field Ψ2
Gn

is
essentially an i.i.d. field, up to the zero-average property, this writing preserves (a) and
(b) from the above discussion, but gives up on the monotonicity (c). We will deal with the
non-monotonicity issue by taking tn small and by restricting the connected components
of the level set to certain subgraphs of Gn where Z0 is not too small. These arguments
are relatively straightforward and are given in Sections 8, 9.

The decomposition, however, introduces a new problem: the field Ψ1
Gn

is not longer a
zero-average Gaussian free field and we thus do not know that it has many mesoscopic
components in the whole supercritical phase h < h⋆. To show this we will use a perturba-
tive argument. More precisely, we use the fact that Ψ1

Gn
= ΨGn−Ψ2

Gn
(with ΨGn and Ψ2

Gn

dependent!) and that ΨGn has many mesoscopic components at any level h′ ∈ (h, h⋆),
by [AČ20b, Theorem 5.1]. We then show that, typically, these components are robust to
certain perturbations and are thus not destroyed by subtracting Ψ2

Gn
. The construction

of robust components is based on multi-type branching process arguments developed in
[AČ20b]. Its details are given in Sections 5–7.

Acknowledgements. The author wish to thank P.-F. Rodriguez for useful discussions.

2. Preliminaries

In this section we introduce the notation and recall few useful facts that we use through-
out the paper. For an arbitrary locally-finite, simple, non-oriented graph G we denote
by V (G) and E(G) the sets of its vertices and edges. For x, y ∈ V (G), we write x ∼ y
when (x, y) ∈ E(G), dG(·, ·) denotes their graph distance, and degG(x) the degree of x
in G. For any U ⊂ V (G), |U | stands for its cardinality, and ∂GU := {y ∈ V (G) \ U :
∃x ∈ U s.t. x ∼ y} denotes its (outer vertex) boundary. For any r ≥ 0 and x ∈ V (G)
we define the ball and sphere of radius r around x to be BG(x, r) := {y ∈ V (G) :
dG(x, y) ≤ r} and SG(x, r) := {y ∈ V (G) : dG(x, y) = r}.

We write P̄G
x for the canonical law on V (G)N of the lazy simple random walk X =

(Xk)k≥0 on G starting at x ∈ V (G), and ĒG
x for the corresponding expectation. Under

P̄G
x , the transition probabilities of X are given by

P̄G
x (Xk+1 = z | Xk = y) =

{
1
2 , if z = y,

1
2 degG(x) , if (z, y) ∈ E(G).

(2.1)

If G is a finite connected graph, we denote the unique invariant distribution of X by

πG(x) :=
degG(x)

2|E(G)| . (2.2)

The zero-average Green function ḠG of X and its density are given by

ḠG(x, y) :=
∑

k≥0

(P̄G
x (Xk = y)− πG(y)), x, y ∈ V (G),

ḡG(x, y) := (degG(y))
−1ḠG(x, y).

(2.3)

It is easy to check from the reversibility of the random walk that ḡG(x, y) is a sym-
metric function. Zero-average Gaussian free field on G is a centred Gaussian process
(ΨG(x))x∈V (G) whose law is determined by its covariance function

E(ΨG(x)ΨG(y)) = C0ḡG(x, y) for all x, y ∈ V (G). (2.4)
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The constant C0 only influences the scaling of the field and is introduced for convenience.
If G is d-regular, as in Assumption 1.1(a), it customary to take C0 = d/2. With this
choice,

ḡG(x, y) =
1
2ḠG(x, y) = GG(x, y), (2.5)

where GG(·, ·) is the zero-average Green function of the usual continuous-time random
walk on G (the factor 1

2 disappears due to the laziness), and thus the covariance from
(2.4) agrees with the one used in [AČ20b], cf. (2.17) therein.

For any field f on G we denote by E≥h(f) := {x ∈ V (G) : f(x) ≥ h} its level set
above the level h ∈ R.

We use Td to denote the d-regular infinite tree with root o. For every x ∈ V (Td)
we denote by desc(x) the set of its direct descendants, and for x ∈ V (Td) \ {o} we use
anc(x) to denote the direct ancestor of x in Td. The Gaussian free field on Td is a centred
Gaussian process (ϕTd

(x))x∈V (Td) whose distribution is determined by

E(ϕTd
(x)ϕTd

(y)) = gTd
(x, y) for all x, y ∈ V (Td), (2.6)

where gTd
is the Green function of the (usual discrete-time) simple random walk on Td.

As mentioned earlier, we consider for fixed d ≥ 3 the d-regular graphs (Gn)n≥1 satis-
fying Assumption 1.1, and we abbreviate Vn = V (Gn), En = E(Gn). For r ≥ 0, we say
that a vertex x ∈ Vn is r-treelike, if there is no cycle in BGn(x, r). If x is r-treelike, then
we fix a graph isomorphism ρx,r : BGn(x, r) → BTd

(o, r) such that ρx,r(x) = o.
We recall from [AČ20b, Proposition 2.2] that there is ε ∈ (0, 1) such that for every

n ≥ 1 and x, y ∈ Vn,
ḡGn(x, y) ≤ C(d− 1)−dGn (x,y) +N−ε

n . (2.7)

Finally, Assumption 1.1(a,c) imply (by Cheeger’s inequality, for the argument see
e.g. [ČTW11, (2.11)]) the uniform isoperimetric inequality for the sequence Gn:

There is β′ > 0 such that |∂GnA|
|A| ≥ β′ for all n ≥ 1 and A ⊂ Vn with |A| ≤ |Vn|/2. (2.8)

We use c, c′, C, . . . to denote positive constants with values changing from place to
place and which only depend on the degree d and the constants α and β from Assump-
tion 1.1.

3. Decomposition of the field

The goal of this section is to construct a decomposition of the zero-average Gaussian
free field into independent components. We believe that this decomposition is of inde-
pendent interest. It is the main ingredient of our sprinkling construction, as described in
the introduction, but also will be used in Section 4 to construct a new coupling of ΨGn

and ϕTd
. The construction of this decomposition is inspired by a similar decomposition

for the usual Gaussian free field on Zd from [DGRS20], see Lemma 3.1 therein. However,
the zero-average property introduces certain complications making the decomposition
less straightforward.

For sake of generality, we consider an arbitrary finite, simple, non-oriented, connected
graph G = (V (G), E(G)) in this section. That is we do not require that Assumption 1.1
holds.

Recall the definition of ΨG from (2.4). To introduce its decomposition we need more
notation. We write G̃ for the graph obtained from G by adding an additional vertex to
the middle of every edge of G, formally G̃ = (V (G̃), E(G̃)) with

V (G̃) := V (G) ∪ E(G), (3.1)

E(G̃) := {(x, e) : x ∈ V (G), e ∈ E(G), e ∋ x}. (3.2)
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Observe that G̃ is a bipartite graph. For x̃ ∈ V (G̃), let

π̃G(x) := degG̃(x̃) =

{
degG(x), if x̃ ∈ V (G),

2, if x̃ ∈ E(G).
(3.3)

Let Q̃G(x̃, ỹ) = 1(x̃,ỹ)∈E(G̃)/π̃G(x̃), x̃, ỹ ∈ V (G̃), be the transition matrix of the usual sim-

ple random walk on G̃. Q̃G acts on the space ℓ2(π̃G) by Q̃Gf(x̃) =
∑

ỹ∈V (G̃) Q̃G(x̃, ỹ)f(ỹ).

Due to the reversibility, Q̃G is a self-adjoint operator on ℓ2(π̃G). Since G̃ is connected and
bipartite, Q̃G has simple eigenvalues 1 and −1 with respective eigenfunctions 1 and w,
where w(x̃) = 1 if x̃ ∈ V (G) and w(x̃) = −1 if x̃ ∈ E(G). Denoting by ‖·‖π̃G

the
ℓ2(π̃G)-norm and by 〈·, ·〉π̃G

the corresponding scalar product, we have

‖1‖2π̃G
= ‖w‖2π̃G

=
∑

x̃∈V (G̃)

π̃G(x) = 4|E(G)|, 〈1, w〉π̃G
= 0. (3.4)

Let ΠG be the orthogonal projection (in ℓ2(π̃G)) on span(1, w). Then Π2
G = ΠG and ΠG

is self-adjoint in ℓ2(π̃G). Moreover, since 1 and w are eigenvectors of Q̃G, the operators
ΠG and Q̃G commute, and thus, for every k ∈ N, the operators Q̃k

GΠG = ΠGQ̃
k
G and

(Id−ΠG)Q̃
k
G are self-adjoint as well (here Id stands for the identity operator).

Let (Zk(x̃))k∈N,x̃∈V (G̃) be independent centred Gaussian random variables with

VarZk(x̃) = C0/π̃G(x̃), (3.5)

defined on a probability space (Ω,A, P ). Finally, for x ∈ V (G), set

ξkG(x) :=
∑

ỹ∈V (G̃)

((Id−ΠG)Q̃
k
G)(x, ỹ)Zk(ỹ)

(not.)
=

(
(Id−ΠG)Q̃

k
GZk

)
(x), (3.6)

Ψ̃G(x) :=
∑

k∈N

ξkG(x). (3.7)

We now show that (3.7) provides the desired decomposition of ΨG.

Proposition 3.1. The series on the right-hand side of (3.7) converges in L2(P ) and P -

a.s., and the law of Ψ̃G agrees with the law of ΨG, that is Ψ̃G is a zero-average Gaussian
free field on G.

Proof. We start by computing the covariances of the fields ξkG. Using the independence
of Zk(x̃)’s, the self-adjointness of (Id−ΠG)Q̃

k
G and the fact that ΠG and Q̃G commute,

for every x, y ∈ V (G),

Cov(ξkG(x), ξ
k
G(y)) =

∑

z̃∈V (G̃)

((Id−ΠG)Q̃
k
G)(x, z̃)((Id−ΠG)Q̃

k
G)(y, z̃)

C0

π̃G(z̃)

=
C0

π̃G(y)

∑

z̃∈V (G̃)

((Id−ΠG)Q̃
k
G)(x, z̃)((Id−ΠG)Q̃

k
G)(z̃, y)

=
C0

π̃G(y)
((Id−ΠG)Q̃

2k
G )(x, y).

(3.8)

To compute the terms involving ΠG, let (vi)i=1,...,|V (G̃)| be an orthonormal basis of ℓ2(π̃G)

composed by the eigenvectors of Q̃G such that v1 = 1/‖1‖π̃G
and v2 = w/‖w‖π̃G

, and let
(λi)i=1,...,|V (G̃)| be the corresponding eigenvalues. Observe ΠGvi = 0 for i ≥ 3 and that



GIANT COMPONENT FOR LEVEL-SET PERCOLATION OF THE GFF ON EXPANDERS 7

Q̃2k
G (f) =

∑|V (G̃)|
i=1 〈vi, f〉π̃G

λ2ki vi. Hence, for x, y ∈ V (G),

(ΠGQ̃
2k
G )(x, y) =

1

π̃G(x)
〈1x, (ΠGQ̃

2k
G )1y〉π̃G

=
1

π̃G(x)

|V (G̃)|∑

i=1

〈
1x, 〈vi,1y〉π̃G

λ2ki ΠGvi
〉
π̃G

= 〈1y, v1〉π̃G
v1(x) + 〈1y, v2〉π̃G

v2(x)

=
π̃G(y)

‖1‖2π̃G

+
π̃G(y)

‖w‖2π̃G

(3.4)
=

2π̃G(y)

4|E(G)|
(2.2)
= πG(y).

(3.9)

Hence, by (3.8), (3.9) and (3.3),

Cov(ξkG(x), ξ
k
G(y)) =

C0

degG(y)
(Q̃2k

G (x, y)− πG(y)), x, y ∈ V (G), k ∈ N. (3.10)

The matrix Q̃2k
G restricted to V (G) agrees with the k-step transition matrix of the lazy

random walk on G. In particular, due to standard convergence results for Markov chains,
|Q2k

G (x, y) − πG(y)| ≤ Ce−ck for all x, y ∈ V (G), and thus also |Cov(ξkG(x), ξkG(y))| ≤
Ce−ck. This implies that the series in (3.7) converges in L2(P ). The a.s. convergence is
then standard, e.g. using Kolmogorov’s maximal inequality. Finally, (3.10) implies that

Cov
(
Ψ̃G(x), Ψ̃G(y)

)
=

∑

k∈N

Cov
(
ξkG(x), ξ

k
G(y)

)

=
C0

degG(y)

∑

k∈N

(
P̄x(Xk = y)− πG(y)

)
,

(3.11)

which agrees with the covariance of ΨG from (2.4). Since Ψ̃G is obviously a centred
Gaussian field, this completes the proof. �

4. Coupling with a tree

We now come back to our original setting of Assumption 1.1 and construct, in Propo-
sition 4.1 below, a coupling between the zero-average Gaussian free field ΨGn and the
Gaussian free field ϕTd

. A similar coupling is provided by Theorem 3.1 of [AČ20b].
However, our Proposition 4.1 has several advantages: First, it has a much simpler proof
which is based on the decomposition from Section 3. Second, in its proof we also couple
the underlying Z-fields (cf. Remark 4.2 below) which will be important later. And third,
in contrast to [AČ20b], we use two independent fields ϕTd

, ϕ′
Td

in its statement; this will
simplify the application of the coupling in the second moment computation in the proof
of Proposition 7.1 below.

For the statement recall from Section 2 that ρx,r denotes a fixed isomorphism of
BGn(x, r) and BTd

(o, r), if x ∈ Vn is r-treelike.

Proposition 4.1. There are c, C ∈ (0,∞) such that for all n, r ∈ N, and for all x, x′ ∈ Vn

which are 2r-treelike and satisfy BGn(x, 2r)∩BGn(x
′, 2r) = ∅ there exists a coupling Q

x,x′

n

of ΨGn and two independent Gaussian free fields ϕTd
, ϕ′

Td
such that for all ε > 0

Qx,x′

n

[
max

{
max

y∈BGn (x,r)

∣∣ΨGn(y)− ϕTd
(ρx,2r(y))

∣∣, max
BGn (x

′,r)

∣∣ΨGn(y)− ϕ′
Td
(ρx′,2r(y))

∣∣
}
> ε

]

≤ Cd(d− 1)r
(
exp

(
− ε2ecr

18

)
+ exp

(
− ε2Nn

9(r + 1)

))
.

(4.1)

Proof. We use the decomposition of ΨGn from Section 3 and a corresponding decomposi-
tion of ϕTd

. Using the notation of Section 3, let Ṽn := V (G̃n), and let Z = (Zk(x̃))k∈N,x∈Ṽn
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be a collection of independent Gaussian random variables on some probability space
(Ω,A,Qx,x′

n ) with variances (cf. (3.5), (3.3), we take C0 = d/2 as explained below (2.4))

VarZk(x̃) =

{
1
2 , if x̃ ∈ Vn,
d
4 , if x̃ ∈ En.

(4.2)

Set ξkGn
(x) :=

(
(Id−ΠGn)Q̃

k
Gn
Zk

)
(x) and

ΨGn(x) :=
∑

k≥0

ξkGn
(x) =

∑

k≥0

(
(Id−ΠGn)Q̃

k
Gn
Zk

)
(x). (4.3)

By Proposition 3.1, ΨGn has the law of zero-average Gaussian free field.
We now introduce a similar decomposition for ϕTd

, similarly to [DGRS20, Lemma 3.1].
Let T̃d be a graph obtained from Td by adding a vertex to the middle of every edge, and
let Z = (Zk(x̃))k∈N,x̃∈V (T̃d)

be a collection of independent Gaussian random variables on

the same probability space (Ω,A,Qx,x′

n ) such that (cf. (4.2))

Var Zk(x̃) =

{
1
2 , if x̃ ∈ V (Td),
d
4 , if x̃ ∈ V (T̃d) \ V (Td).

(4.4)

Denoting Q̃ the transition matrix of the usual simple random walk on T̃d, we set ζk(x) :=
(Q̃kZk)(x) and

ϕTd
(x) :=

∑

k≥0

ζk(x) =
∑

k≥0

(Q̃kZk)(x). (4.5)

Then ϕTd
is a Gaussian free field on Td. This can be shown by a straightforward adap-

tation of the proof for the Gaussian free field on Zd from [DGRS20] (or by adapting the
proof of Proposition 3.1, leaving out the projection ΠG). By introducing an independent
copy Z′ = (Z′k(x))k∈N,x∈V (T̃d)

of Z, we further define the field ϕ′
Td

by a formula analogous
to (4.5), with Z′ instead of Z.

Let ρ̃x,2r : BG̃n
(x, 4r) → B

T̃d
(o, 4r) be the natural extension of the isomorphism ρx,2r

to the balls in graphs G̃n and T̃d. (Note that the ball BG̃n
(x, 4r) is related to BGn(x, 2r),

since in G̃n there are additional vertices in the middle of every edge of Gn.) We now
require that under Qx,x′

n the underlying fields Z, Z, and Z′ satisfy the following equalities
while otherwise being independent:

Zk(ρ̃x,2r(ỹ)) = Zk(ỹ) for every k ≤ 2r, ỹ ∈ BG̃n
(x, 4r),

Z
′
k(ρ̃x′,2r(ỹ)) = Zk(ỹ) for every k ≤ 2r, ỹ ∈ BG̃n

(x′, 4r).
(4.6)

Observe that this can be done without changing the distribution of Z, Z and Z′, in
particular the assumption BGn(x, 2r)∩BGn(x

′, 2r) = ∅ is necessary for the independence
of Z and Z′. The assumption that x is 2r-treelike implies that the law of the image by ρ̃x,2r
of the random walk on G̃n started in ỹ ∈ BG̃n

(x, 2r) and stopped on exiting BG̃n
(x, 4r)

agrees with the law of the random walk on T̃d started in ρ̃x,2r(ỹ) and stopped on exiting
B

T̃d
(o, 4r), and that this random walk makes at least 2r steps before being stopped. As

consequence the corresponding transition probabilities agree in the sense of

Q̃k
Gn
(ỹ, ỹ′) = Q̃

k(ρ̃x,2r(ỹ), ρ̃x,2r(ỹ
′)) for all ỹ ∈ BG̃n

(x, 2r), ỹ′ ∈ BG̃n
(x, 4r), k ≤ 2r. (4.7)

From (4.3) and (4.5)–(4.7) it follows that for every y ∈ BGn(x, r)

ΨGn(y)− ϕTd
(ρx,2r(y)) =

∑

k>2r

ξkGn
(y) +

∑

0≤k≤2r

(ΠGnQ̃
k
Gn
Zk)(y)−

∑

k>2r

ζk(ρx,2r(y)), (4.8)

and a similar equality holds when x is replaced by x′ and ζk by ζ ′k := Q̃kZ′k.
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We now estimate the three sums on the right-hand side of (4.8). For the last one, we
claim that there is a constant c > 0 such that for every ε > 0, k0 ≥ 1, and y ∈ V (Td),

P
(∣∣∣

∑

k>k0

ζk(y)
∣∣∣ ≥ ε

3

)
≤ 2 exp

(
− ε2eck0

18

)
. (4.9)

Indeed, observe that ζk(y), k ≥ 0, are independent Gaussian random variables with
Var ζk(y) = Q̃2k(y, y)/2 (which can be proved by a similar computation as in (3.8),
recalling C0 = d/2). Therefore,

Var
( ∑

k>k0

ζk(y)
)
=

1

2

∑

k>k0

Q̃
2k(y, y) ≤ e−ck0 , (4.10)

where we used the fact that the lazy random walk (Xk)k≥0 on Td satisfies Q̃2k(y, y) ≤ e−ck,
which can easily be proved by observing that dTd

(o, Xn) is a random walk on N with a
drift pointing away from 0. Claim (4.9) then follows by the usual Gaussian tail estimates.

We proceed similarly for the first sum in (4.8). Using (3.10) and the standard estimate
on the convergence to stationarity for finite Markov chains (see e.g. [LPW09, (12.11),
p.155]),

Var ξkGn
(x)

(3.10)
=

1

2

(
Q̃2k

Gn
(x, x)− 1

Nn

)
≤ e−λGnk, (4.11)

where λGn ≥ β is the spectral gap appearing in Assumption 1.1(c) (due to the laziness,
there is no 2 in the exponent). Therefore, for every ε > 0, k0 ≥ 1, and y ∈ Vn,

P
(∣∣∣

∑

k>k0

ξkGn
(y)

∣∣∣ ≥ ε

3

)
≤ 2 exp

(
− ε2eβk0

18

)
. (4.12)

Finally, for the second sum in (4.8), we claim that for every ε > 0, k0 ≥ 1 and y ∈ Vn,

P
(∣∣∣

∑

0≤k≤k0

∑

z̃∈Ṽn

(ΠGnQ̃
k
Gn
)(y, z̃)Zk(z̃)

∣∣∣ ≥ ε

3

)
≤ 2 exp

(
− ε2Nn

9(k0 + 1)

)
. (4.13)

Indeed, by the same computation as in (3.8)–(3.9),

Var
( ∑

0≤k≤k0

∑

z̃∈Ṽn

(ΠGnQ̃
k
Gn
)(y, z̃)Zk(z̃)

)
= 1

2(k0 + 1)πGn(y) =
k0+1
2Nn

, (4.14)

this follows by the same reasoning as above.
Claim (4.1) then follows from (4.8), (4.9), (4.12), and (4.13) using the triangle inequal-

ity, a union bound, and the fact that |BTd
(o, r)| = |BGn(x, r)| = d(d−1)r−2

d−2 ≤ d(d− 1)r, if
x is 2r-treelike. �

Remark 4.2. Later, it will play the key role that the coupling Q
x,x′

n also couples the
underlying Z-fields. In particular, we will use that Q

x,x′

n -a.s.

Z0(y) = Z0(ρx,2r(y)), y ∈ BGn(x, 2r), Z0(y) = Z
′
0(ρx′,2r(y)), y ∈ BGn(x

′, 2r). (4.15)

which follows directly from (4.6).

5. Robust components of the GFF on the tree

In what follows, we assume that ΨGn , ϕTd
, and the underlying fields Z, Z are con-

structed on some probability space (Ω,A, P ) and (4.3), (4.5) hold. As explained in the
introduction (cf. (1.8)), in the sprinkling construction we will write ΨGn as a sum of two
independent fields Ψ1

Gn
and Ψ2

Gn
. To this end, let t ∈ (0, 1) be a parameter which will
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later depend on n, and write Z0 =
√
1− t2Z1

0 + tZ2
0 , where Zi

0 = (Zi
0(x) : x ∈ Ṽn),

i ∈ {1, 2}, are two independent copies of Z0. Similarly as above (4.3), we define

ξ0,iGn
(x) := (Id−ΠGn)Z

i
0(x) = Zi

0(x)−
1

Nn

∑

y∈Vn

Zi
0(y), x ∈ Vn, i ∈ {1, 2}, (5.1)

and set,

Ψ1
Gn
(x) :=

√
1− t2ξ0,1Gn

(x) +
∑

k≥1

ξkGn
(x) and Ψ2

Gn
(x) := tξ0,2Gn

(x). (5.2)

Then ΨGn = Ψ1
Gn

+Ψ2
Gn

, and Ψ1
Gn

, Ψ2
Gn

are independent.
Further, we introduce two independent copies Z10, Z

2
0 of Z0 so that Z0 =

√
1− t2Z10+tZ

2
0,

and define (cf. (4.5))

ϕ1
Td
(x) :=

√
1− t2Z10(x) +

∑

k≥1

ζk(x) and ϕ2
Td
(x) := tZ20(x). (5.3)

Then ϕTd
= ϕ1

Td
+ ϕ2

Td
and the summands are independent.

The goal of the next three sections is to show that the supercritical level sets of
ϕ1
Td

, and as consequence also of Ψ1
Gn

, have large connected components. Unfortunately,
we cannot apply the results of [AČ20a, AČ20b] directly, because Ψ1

Gn
and ϕ1

Td
are no

longer Gaussian free fields. In this section, we thus show that for any h < h⋆ the level
set E≥h(ϕTd

) of the unmodified field ϕTd
has infinite components which are robust to

certain perturbations. In the next section, we use this result to show that the level set
E≥h(ϕ1

Td
) percolates if h < h⋆ and t is small enough. Finally, in Section 7, we transfer

these result to the field Ψ1
Gn

, using the coupling from Section 4.
For the sprinkling construction of Section 9, we need to consider two types of pertur-

bations of E≥h(ϕTd
). The first one comes from the field ϕ2

Td
, as already explained,

and the second one from an independent Bernoulli percolation. For the latter, let
ι = (ι(x))x∈V (Td) be i.i.d. Bernoulli random variables with P (ι(x) = 1) = p which
are independent of Z and thus of ϕTd

. The robustness against the perturbation by ϕ2
Td

involves certain averaging property for ϕTd
and is driven by a parameter γ ∈ [−∞, 0].

Formally, for x ∈ V (Td) (recalling that desc(x) is the set of direct descendants of x
in Td), let K(h, p, γ) be the set of robust vertices in E≥h(ϕTd

) defined by

K(h, p, γ) :=
{
x ∈ Vn : ϕTd

(x) ≥ h, ι(x) = 1, and
∑

y∈desc(x)

ϕTd
(y) ≥ γ

}
, (5.4)

and let Ch,p,γ
o be the connected component of K(h, p, γ) containing the root o. Note that

if p = 1 and γ = −∞, then Ch,p,γ
o agrees with the connected component Ch

o of the level
set E≥h(ϕTd

) containing the root o. We set

η(h, p, γ) := P (|Ch,p,γ
o | = ∞), (5.5)

S := {(h, p, γ) ∈ R× [0, 1]× [−∞, 0] : η(h, p, γ) > 0}. (5.6)

The main result of this section is the following proposition which shows that, in the
supercritical regime, Ch,p,γ

o has similar properties as Ch
o , cf. [AČ20a, Theorems 5.1, 5.3]

or [AČ20b, (2.14), (2.16)].

Proposition 5.1. (a) If (h, p, γ) ∈ S and h′ < h, p′ > p, γ′ < γ, then (h′, p′, γ′) ∈ S.
Moreover, for every h < h⋆ there is p < 1 and γ > −∞ such that (h, p, γ) ∈ S.

(b) For every (h, p, γ) in the interior S0 of S there is λp,γh > 1 such that

lim
k→∞

P
(
|Ch,p,γ

o ∩ STd
(o, k)| ≥ (λp,γh )k/k2

)
= η(h, p, γ) > 0. (5.7)

(c) The functions (h, p, γ) 7→ λp,γh and (h, p, γ) 7→ η(h, p, γ) are continuous on S0.
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Remark 5.2. We expect that S is open, that is S0 = S. Proving this would require to
study the critical behaviour of Ch,p,γ

o which goes beyond the scope of this paper.

Proof of Proposition 4.1. The proof uses branching process techniques and is a modifica-
tion of the arguments given in Sections 3–5 of [AČ20a] and in Section 3 of [Szn16]. Here,
we only explain how these arguments should be adapted to our setting and leave out the
parts that are relatively standard in the context of the (multi-type) branching processes.

We first recall the recursive construction of ϕTd
from [AČ20a, Section 2.1]. Define

random variables

Yo := ϕTd
(o) and Yx := ϕTd

(x)− 1

d− 1
ϕTd

(anc(x)) for x ∈ V (Td) \ {o}. (5.8)

Then, by the domain Markov property of ϕTd
, see [AČ20a, (2.6),(2.7)], (Yx)x∈V (Td) are

independent random variables such that Yo ∼ N (0, d−1
d−2) and Yx ∼ N (0, d

d−1) for x 6= o.
The definition (5.8) can be written as ϕTd

(o) = Yo and

ϕTd
(x) =

1

d− 1
ϕTd

(anc(x)) + Yx for x ∈ V (Td) \ {o}. (5.9)

The field ϕTd
is thus determined by Yx’s, by applying (5.9) recursively. This also implies

that ϕTd
can be viewed as a multi-type branching process. Indeed, we can view every

x ∈ STd
(o, k) as an individual in the k-th generation of the branching process with

an attached type ϕTd
(x) ∈ R. (5.9) can be then rephrased as: every individual x has

d − 1 children (d children if x = o) whose types, conditionally on ϕTd
(x), are chosen

independently according to the distribution N ( 1
d−1ϕTd

(x), d
d−1). This point of view can

easily be adapted to Ch
o , namely by considering the same multi-type branching process

but instantly killing all individuals whose type does not exceed h. Relying on this point
of view, [AČ20a] investigates the properties of Ch

o using branching process techniques.
We now modify this construction to apply to Ch,p,γ

o . In addition to instantly killing the
individuals whose type does not exceed h, we also kill individuals x for which ι(x) = 0,
and we kill all direct descendants of x if

∑
y∈desc(x) ϕTd

(y) < γ. Then the surviving

individuals form a component C̄h,p,γ
o which is slightly larger than Ch,p,γ

o . More precisely,
since we only kill the direct descendants of non-robust vertices, and not those vertices
themselves,

C̄h,p,γ
o = Ch,p,γ

o ∪
{
x ∈ ∂Td

Ch,p,γ
o : ϕTd

(x) ≥ h, ι(x) = 1,
∑

y∈desc(x)

ϕTd
(y)

(!)
< γ

}
. (5.10)

As consequence, |C̄h,p,γ
o | = ∞ iff |Ch,p,γ

o | = ∞, and |C̄h,p,γ
o ∩ STd

(o, k)| ≥ a implies that
|Ch,p,γ

o ∩ STd
(o, k − 1)| ≥ a/(d− 1). Hence, it is sufficient to show claims (b,c) for C̄h,p,γ

o

instead of Ch,p,γ
o (with an additional constant (d − 1)). The advantage of the former is

that it can be interpreted as a multi-type branching process.
The key role in the investigations of [AČ20a] plays certain operator introduced in

[Szn16] in order to give a spectral characterisation of the critical value h⋆. This operator
is defined as follows, cf. [AČ20a, Section 2.2]: Let ν be the centred Gaussian measure of
variance d−1

d−2 . For h ∈ R, set

(Lhf)(a) := (d−1)1[h,∞)(a)E
Y
[
f( a

d−1+Y )1[h,∞)(
a

d−1+Y )
]
, f ∈ L2(ν), a ∈ R, (5.11)

where Y ∼ N (0, d
d−1) and EY is the expectation with respect to Y . The operator Lh is

the ‘mean value’ operator corresponding to Ch
o when it is viewed as a multi-type branching

process, more precisely, for any x 6= o and a ≥ h,

(Lhf)(a) = E
[ ∑

y∈Ch
o
∩desc(x)

f(ϕTd
(y))

∣∣∣ϕTd
(x) = a, x ∈ Ch

o

]
. (5.12)
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Denoting λh the largest eigenvalue of Lh, the critical point h⋆ is given as the unique
solution of the equation λh = 1, see [Szn16, Proposition 3.3]

For C̄h,p,γ
o , the corresponding operator has a similar, slightly more complicated, form:

For f ∈ L2(ν) and a ∈ R (and for x 6= o, a ≥ h in the formula on the right-hand side of
the first line, which is only included to motivate the definition),

(Lp,γ
h f)(a) = E

[ ∑

x∈C̄h,p,γ
o ∩desc(x)

f(ϕTd
(y))

∣∣∣∣ϕTd
(x) = a, x ∈ C̄h,p,γ

o

]

:= p1[h,∞)(a)E
Y

[
1[γ,∞)

( d−1∑

i=1

( a
d−1 + Yi)

) d−1∑

i=1

f( a
d−1 + Yi)1[h,∞)(

a
d−1 + Yi)

]
,

= p(d− 1)1[h,∞)(a)E
Y

[
1[γ,∞)

( d−1∑

i=1

( a
d−1 + Yi)

)
f( a

d−1 + Y1)1[h,∞)(
a

d−1 + Y1)

]
,

(5.13)

where (Yi)i=1,...,d−1 are i.i.d. N (0, d
d−1) and EY is the corresponding expectation. Note

that Lh = L1,−∞
h .

Contrary to Lh, the operator Lp,γ
h is not self-adjoint in L2(ν). We thus need an

additional argument to show that (cf. [Szn16, Proposition 3.1]):

The value λp,γh := ‖Lp,γ
h ‖L2(ν) = sup{〈g, Lp,γ

h g〉L2(ν) : ‖g‖L2(ν) = 1}
is a simple eigenvalue of Lp,γ

h . Moreover, there is a unique, non-
negative eigenfunction χp,γ

h ∈ L2(ν) of Lp,γ
h corresponding to λp,γh with

‖χp,γ
h ‖L2(ν) = 1.

(5.14)

To show this, observe first that from (5.11), (5.13) it follows that there exist functions
Kh,K

p,γ
h : [h,∞)2 → (0,∞) such that, for a ≥ h (which is the relevant range since

Lhf(a) = Lp,γ
h f(a) = 0 for a < h),

(Lhf)(a) =

∫

[h,∞)
Kh(a, y)f(y)ν(dy), (Lp,γ

h f)(a) =

∫

[h,∞)
Kp,γ

h (a, y)f(y)ν(dy). (5.15)

Moreover, Kp,γ
h ≤ Kh for all admissible values of h, p, and γ. Since Lh is a Hilbert-

Schmidt operator on L2(ν) (see [Szn16, (3.16)]), it follows that Lp,γ
h is a Hilbert-Schmidt

and thus compact operator on L2(ν) as well. By Riesz-Schauder theorem (see e.g. [RS80,
Theorem 6.15]), every λ 6= 0 in the spectrum σ(Lp,γ

h ) of Lp,γ
h is an eigenvalue of Lp,γ

h and
0 is the only possible limit point of σ(Lp,γ

h ). Since λp,γh = ‖Lp,γ
h ‖L2(ν) = sup{|λ| : λ ∈

σ(Lp,γ
h )}, it follows that there is λ ∈ C with |λ| = λp,γh such that Lp,γ

h χ = λχ for some
(possibly complex valued) χ ∈ L2(ν) with ‖χ‖L2(ν) = 1.

To prove (5.14), it remains to verify that λ > 0 and χ ≥ 0. If χ is not of the form
χ = βg for some β ∈ C and a real-valued non-negative function g, then ‖|χ|‖L2(ν) = 1

and 〈|χ|, Lp,γ
h |χ|〉L2(ν) > λp,γh which leads to contradiction with the definition of λp,γh in

(5.14). Hence, χ = βg. Since the multiplication by scalars preserves eigenfunctions,
we can assume that β = 1, that is χ = g is non-negative as required. The equality
Lp,γ
h χ = λχ then implies that λ > 0 as well, completing the proof of (5.14).
The continuity of λp,hh can be shown by the same arguments as in the proof of [Szn16,

(3.20)]. Moreover, from (5.13), (5.14) it follows that λp,γh is strictly decreasing in h and
γ, and strictly increasing in p.

The rest of the proof of Proposition 5.1 follows the lines of [AČ20a] with mostly obvious
modifications, frequently relying on the fact that Lp,γ

h is “smaller” than Lh (in the sense
explained under (5.15)). In particular, recalling from (5.6) that S denotes the set of
supercritical parameters, it holds that that S ⊃ {(h, p, γ) : λp,γh > 1}, and that (b) holds
for every (h, p, γ) ∈ S0. The continuity of η in the claim (c) can be proved using the
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same arguments as in Section 5.1 of [AČ20a]. The first part of claim (a) follows by
monotonicity. Finally, by (5.11), (5.13), using the definition of λp,γh from (5.14), using
the continuity of λp,γh

lim
γ→−∞

λp,γh = p lim
γ→−∞

λ1,γh = pλh. (5.16)

Hence if h < h⋆ and thus λh > 1, then there exist p ∈ (0, 1) and γ ∈ R with λp,γh > 1,
proving the second part of (a). �

6. Percolation for the pruned field on the tree

We now consider the pruned field ϕ1
Td

defined in (5.3) (recall that ϕ1
Td

implicitly
depends on the sprinkling strength t) and show that for h < h⋆ and t small enough its
level set E≥h(ϕ1

Td
) percolates.

Let Ch,p
o (t) be the connected component of {x ∈ V (Td) : ϕTd

(x) ≥ h, ϕ1
Td
(x) ≥ h,

ι(x) = 1} containing o, and abbreviate η(h, p) := η(h, p,−∞).

Proposition 6.1. For every δ ∈ (0, 1), and h < h⋆, p ∈ [0, 1] such that (h, p,−∞) ∈ S0,

lim
k→∞
t→0

P
(
|Ch,p

o (t) ∩ STd
(o, k)| ≥

(
p(1− δ)λh

)k)
= η(h, p). (6.1)

(In the limit we allow k → ∞ and then t→ 0, or t→ 0, k → ∞ together.)

Proof. Since Ch,p
o (t) ⊂ Ch,p,−∞

o , the left-hand side of (6.1) is bounded from above by
limk→∞ P (|Ch,p,−∞

o ∩ STd
(o, k)| ≥ 1) = P (|Ch,p,−∞

o | = ∞) = η(h, p), by (5.5), yielding
the upper bound in (6.1).

For the lower bound, fix h′ ∈ (h, h⋆) and γ > −∞ such that (h′, p, γ) ∈ S0 and thus
η(h′, p, γ) > 0, which is possible by the assumptions. By Proposition 5.1(b),

lim
k→∞

P
(
|Ch′,p,γ

o ∩ STd
(o, k)| ≥ (λp,γh′ )

k/k2
)
= η(h′, p, γ). (6.2)

We now show that when t > 0 is small, then subtracting ϕ2
Td

“does not destroy Ch′,p,γ
o

too much”. To this end, recall from (5.3) that ϕ2
Td

is an i.i.d. field. However, it is not
independent of ϕTd

, so we need to compute its conditional distribution given ϕTd
.

Lemma 6.2. Conditionally on ϕTd
, ϕ2

Td
is a Gaussian field determined by

E
(
ϕ2
Td
(x) | σ(ϕTd

)
)
= t2

2

(
ϕTd

(x)− 1
d

∑

z∼x

ϕTd
(z)

)
, (6.3)

E
(
ϕ2
Td
(x)ϕ2

Td
(y) | σ(ϕTd

)
)
= t2

2 δx,y − t4

4

(
δx,y − 1

d1x∼y

)
. (6.4)

Proof. By (2.6), (4.4), and (5.3), the fields ϕ2
Td

and ϕTd
are centred jointly Gaussian

fields satisfying E(ϕ2
Td
(x)ϕ2

Td
(y)) = E(ϕ2

Td
(x)ϕTd

(y)) = t2δx,y/2 and E(ϕTd
(x)ϕTd

(y)) =

gTd
(x, y) for every x, y ∈ V (Td). Denoting Q the transition matrix of the usual random

walk on Td, we observe that that for every x, y ∈ V (Td)

Cov
(
ϕ2
Td
(x)− t2

2 ((Id−Q)ϕTd
)(x), ϕTd

(y)
)

= t2

2

(
δx,y −

∑

z∈V (Td)

(Id−Q)(x, z) Cov
(
ϕTd

(z), ϕTd
(y)

))

(2.6)
= t2

2

(
δx,y −

∑

z∈V (Td)

(Id−Q)(x, z)gTd
(z, y)

)
= 0,

(6.5)



GIANT COMPONENT FOR LEVEL-SET PERCOLATION OF THE GFF ON EXPANDERS 14

where in the last equality we used the well-known identity (Id−Q)gTd
= Id for the Green

function. It follows that the field ψ := ϕ2
Td

− t2

2 (Id − Q)ϕTd
is independent of σ(ϕTd

).
Hence,

E
(
ϕ2
Td

| σ(ϕTd
)
)
= E

(
ψ + t2

2 (Id−Q)ϕTd
| σ(ϕTd

)
)
= t2

2 (Id−Q)ϕTd
, (6.6)

from which (6.3) follows.
The conditional covariance of ϕ2

Td
agrees with the covariance of ψ (see e.g. [LG16,

Corollary 1.10]), which is

E(ψ(x)ψ(y)) = E(ϕ2
Td
(x)ϕ2

Td
(y))− t2

2

∑

z∈V (Td)

(Id−Q)(y, z)E(ϕ2
Td
(x)ϕTd

(z))

− t2

2

∑

z∈V (Td)

(Id−Q)(x, z)E(ϕ2
Td
(y)ϕTd

(z))

+ t4

4

∑

z,z′∈V (Td)

(Id−Q)(x, z)(Id−Q)(y, z′)E(ϕTd
(z)ϕTd

(z′)).

(6.7)

(6.4) then follows by substituting the values of the expectations and by applying once
more the above identity for the Green function. �

We continue with the proof of Proposition 6.1. If x ∈ Ch′,p,γ
o \ {o}, then ϕTd

(x) ≥ h′

and ϕTd
(anc(x)) ≥ h′. Therefore, by the robustness condition (5.4), for x ∈ Ch′,p,γ

o \ {o},
E
(
ϕ1
Td
(x) | σ(ϕTd

)
)
= E

(
ϕTd

(x)− ϕ2
Td
(x) | σ(ϕTd

)
)

(6.3)
= ϕTd

(x)− t2

2

(
ϕTd

(x)− 1
d

∑

z∼x

ϕTd
(z)

)

= (1− t2

2 )ϕTd
(x) + t2

2dϕTd
(anc(x)) + t2

2d

∑

z∈desc(x)

ϕTd
(z)

(5.4)

≥ h′ + t2( γ
2d − 1

2 + h′

2d).

(6.8)

By (6.4), Var
(
ϕ1
Td
(x) | σ(ϕTd

)
)
≤ ct2. For t small, h′ + t( γ

2d − 1
2 − h′

2d) > h and thus

lim
t↓0

P
(
ϕ1
Td
(x) ≥ h | σ(ϕTd

)
)
= 1, uniformly for x ∈ Ch′,p,γ

o \ {o}. (6.9)

A similar computation implies that (6.9) holds for x = o as well. In addition, by
(6.4), conditionally on ϕTd

, the random variables ϕ1
Td
(x), ϕ1

Td
(y) are independent if

dTd
(x, y) ≥ 2. By the domination argument of [LSS97], the family (1[h,∞)(ϕ

1
Td
(x)) :

x ∈ Ch′,p,γ
o ) dominates (conditionally on ϕTd

) an independent Bernoulli percolation on
Ch′,p,γ

o with parameter g(t) and g(t) ↑ 1 as t ↓ 0. As consequence, Ch,p
0 (t) dominates

Ch′,pg(t),γ
0 , and thus by Proposition 5.1(b),

lim inf
k→∞

P
(
|Ch,p

o (t) ∩ STd
(o, k)| ≥ (λ

pg(t),γ
h′ )k/k2

)
≥ η(h′, pg(t), γ). (6.10)

By (5.16) and Proposition 5.1(c), if h′ > h is close to h and t, γ are small enough, then
λ
pg(t),γ
h′ ≥ p(1 − δ

2)λh, and since h′ > h and γ > −∞ are arbitrary, the lower bound for
(6.1) follows using the continuity of η from Proposition 5.1(c). �

7. Many mesoscopic components for the pruned field on finite graphs

As a corollary of Proposition 6.1 and the coupling stated in Proposition 4.1, we now
prove the existence of many mesoscopic components for the level set of the field Ψ1

Gn
.
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To state this result precisely, we need to introduce an additional notation. Let Z̄2
0 =

(Z̄2
0 (x), x ∈ Vn) be a copy of Z2

0 which is independent of Z, Z1
0 and Z2

0 , and set (cf. (5.2))

Ψ̄2
Gn
(x) := t

(
Z̄2
0 (x)−

1

Nn

∑

y∈Gn

Z̄2
0 (y)

)
. (7.1)

The field Ψ̄2
Gn

has the same law as Ψ2
Gn

and thus Ψ̄Gn
:= Ψ1

Gn
+ Ψ̄2

Gn
has the same law

as ΨGn , that is it is a zero-average Gaussian free field on Gn. For p > 1/2 we define
L = L(p) < 0 by

P (Z̄2
0 (x) ≥ L) = p. (7.2)

We set
V̄n := {x ∈ Vn : Z̄2

0 (x) ≥ L}, (7.3)
and use Ḡn to denote the subgraph of Gn induced by V̄n. Finally, for x ∈ V̄n, let Ch

x(t)
be the connected component component of the set E≥h(Ψ1

Gn
) ∩ E≥h(ΨGn) in Ḡn.

To understand the reason for this notation, note that eventually, in Section 9, we will
use Ψ̄Gn , and not ΨGn , to show that the supercritical level set has a giant component.
In particular, we will use the field Ψ̄2

Gn
for the sprinkling. At the sites where this field is

very small, it can potentially destroy the connected components of the level set. To avoid
this, we will restrict to Ḡn in our sprinkling construction. It is also useful to compare the
definition of Ch

x(t) with the definition of Ch,p
o (t) in Section 6, in particular note that the

role of the percolation ι is taken by the subgraph Ḡn.

Proposition 7.1. Let h < h⋆ and let p be such that (h, p,−∞) ∈ S0. Then there exists
ch ∈ (0, 1) such that for any δ > 0 and any sequence tn ↓ 0,

lim
n→∞

P
( ∑

x∈Vn

1{|Ch
x (tn)|≥N

ch
n } ≥ (1− δ)η(h, p)Nn

)
= 1. (7.4)

Proof. The proof follows the steps of Section 5 of [AČ20b] and is an application of the
second moment method. Some simplifications, compared to [AČ20b], are due to the fact
that our Proposition 4.1 uses two independent copies of ϕTd

, so we do not need to use
the decoupling inequalities for ϕTd

as in [AČ20b].
Let rn = c1 logNn with c1 > 0, and set

Wn := {x ∈ Vn : x is 2rn-treelike},
W̃n :=

{
(x, x′) ∈Wn ×Wn : BGn(x, 2rn) ∩BGn(x

′, 2rn) = ∅
}
.

(7.5)

By [AČ20b, (5.6), (5.7)], it is possible to fix c1 is small, such that, for some some c > 0
and for all n large enough,

|Wn| ≥ Nn(1−N−c
n ) and |W̃n| ≥ N2

n(1−N−c
n ). (7.6)

Let C̃h
x(tn) ⊂ Ch

x(tn) be the connected component of Ch
x(tn)∩B(x, 2rn) containing x. Fix

h′ ∈ (h, h⋆) so that (h′, p,−∞) ∈ S0, which is possible since S0 is open. Set ε = (h′−h)/2,
ch = pc1λh′/2, and define events

AGn,h
x :=

{
|C̃h

x(tn) ∩ SGn(x, rn)| ≥ N ch
n

}
, for x ∈ Gn,

ATd,h
o :=

{
|Ch,p

o (tn) ∩ STd
(o, rn)| ≥ N ch

n

}
.

(7.7)

We now show
lim
n→∞

P
( ∑

x∈Wn

1
AGn,h

x
≥ (1− δ)η(h, p)Nn

)
= 1, (7.8)

from which (7.4) directly follows.
To show (7.8), for every pair x, x′ ∈ W̃n, we use the coupling Q

x,x′

n from Proposition 4.1
(with r = rn) to couple ΨGn with two independent copies of ϕTd

, ϕ′
Td

of the Gaussian
free field on Td. By Remark 4.2, this coupling also couples the underlying fields Z0,
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Z0 and Z′0 as in (4.15). In addition, we write Z0 =
√

1− t2nZ
1
0 + tnZ

2
0 and assume that

Z2
0 (y) = Z20(ρx,2rn(y)) for every y ∈ BGn(x, 2rn), where Z10, Z

2
0 are independent copies of

Z0. We also use analogous statements for Z′, Z′20 in the ball BGn(x
′, 2rn). We also couple

the site percolation ι (introduced in the paragraph above (5.4)) and its independent copy
ι′ with the field Z̄2

0 so that

ι(ρx,2rn(y)) = 1[L,∞)(Z̄
2
0 (y)), y ∈ BGn(x, 2rn),

ι′(ρx′,2rn(y)) = 1[L,∞)(Z̄
2
0 (y)), y ∈ BGn(x

′, 2rn),
(7.9)

which is always possible due to the choice (7.2) of L and sinceBGn(x, 2rn) andBGn(x
′, 2rn)

are disjoint. Note that (7.9) implies ρx,2rn(V̄n∩B(x, 2rn)) = {y ∈ BTd
(o, 2rn) : ι(y) = 1}.

When all these coupling equalities hold and when the coupling Q
x,x′

n succeeds, that is
the complement of the event on the left-hand side of (4.1) occurs, then it follows from
the definitions of the components C̃h

x(tn) and Ch,p
o (tn) that ATd,h−ε

o ⊃ AGn,h
x ⊃ ATd,h+ε

o ,
and similarly for x′, replacing ATd,h±ε

o by their independent copies defined in terms of
the field ϕ′

Td
. Hence, for x ∈Wn,

P (AGn,h
x ) ≥ P (ATd,h+ε

o )− e(n), (7.10)

where e(n) is the probability that the coupling fails. By Proposition 4.1, e(n) is bounded
by right-hand side of (4.1) with r = rn, in particular 0 ≤ e(n) ≤ cN−k

n for any k ∈ N.
Applying (7.10) and Proposition 6.1 (with h + ε < h′ instead of h) we obtain that

for every x ∈ Wn, lim infn→∞ P (AGn,h
x ) ≥ η(h + ε, p). As consequence, since ε > 0 is

arbitrary, using (7.6) and the continuity of η from Proposition 5.1(c),

lim inf
n→∞

1

Nn
E
( ∑

x∈Wn

1
AGn,h

x

)
≥ η(h, p). (7.11)

We now compute the variance of the sum in the last display. Expanding it, and then
using the coupling Q

x,x′

n again,

Var
( ∑

x∈Wn

1
AGn,h

x

)
=

∑

x,x′∈Wn

(
P
(
AGn,h

x ∩AGn,h
x′

)
− P (AGn,h

x )P (AGn,h
x′ )

)
.

≤ |(Wn ×Wn) \ W̃n|+
∑

(x,x′)∈W̃n

(
P (ATd,h−ε

o )2 − P (ATd,h+ε
o )2

)
+ e(n).

(7.12)

Taking n→ ∞, applying (7.6) and Proposition 6.1 several times, we obtain

lim sup
n→∞

1

N2
n

Var
( ∑

x∈Wn

1
AGn,h

x

)
≤ η(h− ε, p)2 − η(h+ ε)2. (7.13)

The statement follows by letting h′ ↓ h, that is ε ↓ 0, using the continuity of η. �

We finish this section by a simple lemma which gives a lower bound on the number of
vertices that are contained in small components of the (non-pruned) field ΨGn . This lower
bound will be used to show the upper bound on |CGn,h

max | in the proof of Theorem 1.2. In its
statement we use CGn,h

x to denote connected component of E≥h(ΨGn) containing x ∈ Vn.

Lemma 7.2. Let Hn := {x ∈ Vn : CGn,h
x ⊂ BGn(x, rn/2)} with rn = c1 logNn as in the

last proof. Then for every h < h⋆ and δ > 0

lim
n→∞

P (|Hn| > (1− η(h)− δ)Nn) = 1. (7.14)

Proof. The proof is very similar to the previous one. Due to (7.6) it is sufficient to prove
the claim for |Hn ∩Wn| instead of |Hn|. For x ∈Wn define the events AGn,h

x := {CGn,h
x ⊂

BGn(x, rn/2)}, ATd,h
o := {Ch

o ⊂ BTd
(o, rn/2)}. Using Proposition 4.1, we can couple those
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events so that ATd,h−ε
o ⊂ AGn,h

x ⊂ ATd,h+ε
o . By (1.4), limn→∞ P (ATd,h

x ) = 1−η(h). Using
the same first and second moment method arguments as in the previous proof, the lemma
easily follows. �

8. Expansion properties of reduced graphs

Before going to the final sprinkling step, we need a little lemma that show that partic-
ular subgraphs of Gn still have good expanding properties. To this end recall from (7.3)
the definition of the subgraph Ḡn. For K ∈ R, let

V̂n = {x ∈ Vn : Z̄2
0 (x) ≥ L,Ψ1

Gn
(x) ≥ K} ⊂ V̄n, (8.1)

and let Ĝn be the subgraph of Gn induced by V̂n. The additional condition Ψ1
Gn
(x) ≥ K

will later ensure that, in the sprinkling step, the sites in V̂n have a reasonable chance
to be in the level set E≥h(Ψ̄Gn) of the field Ψ̄Gn (defined under (7.1)). We will always
assume that K ≤ h, so that the mesoscopic connected components Ch

x(tn) (in Ḡn as
considered in Proposition 7.1) are also connected components in Ĝn.

We now show that Ĝn has good expansion properties, at least when we only consider its
large subsets. Recall from (2.8) that β′ is the lower bound on the isoperimetric constants
of Gn.

Lemma 8.1. For every δ > 0, there exist K0 = K0(δ) and L0 = L0(δ) such that for
every K < K0 and L < L0

P
(

inf
A⊂V(Ĝn):δNn≤|A|≤Nn/2

|∂Ĝn
A|

|A| ≥ β′

2

)
≥ 1−N−ε (8.2)

with ε > 0 independent of δ.

Proof. We show that for K,L sufficiently negative, B1(n) = {x ∈ Vn : Z̄2
0 (x) < L} and

B2(n) = {x ∈ Vn : Ψ1
Gn
(x) < K} satisfy

P
(
|B1(n)|+ |B2(n)| ≤ β′δNn/2

)
≥ 1−N−ε. (8.3)

The claim of the lemma then follows from (2.8). Indeed, on the event in (8.3), for A as
in (8.2),

|∂Ĝn
A| ≥ |∂GnA| − (|B1(n)|+ |B2(n)|) ≥ β′|A| − β′δNn/2 ≥ β′|A|/2. (8.4)

To prove (8.3), observe first that |B1(n)| is a binomial random variable with parame-
ters Nn and p = P (Z̄2

0 (x) < L). Hence, by taking L0 depending on δ sufficiently small,
we obtain by the standard large deviation estimates that P (|B1(n)| ≥ β′δNn/4) ≤ e−cNn

for all L < L0.
For B2(n), we use the second moment method again. Observe first that by (5.2),

Cov(Ψ1
Gn
(x),Ψ1

Gn
(y)) = Cov(ΨGn(x),ΨGn(y))− Cov(Ψ2

Gn
(x),Ψ2

Gn
(y))

(2.4)
= GGn(x, y)− t2nCov(ξ

2
0(x), ξ

2
0(y))

(3.10)
= GGn(x, y)− t2n

2 (δx,y +
1
Nn

).
(8.5)

In particular, using the estimate (2.7) on GGn , since tn → 0, σ2x := Var(Ψ1
Gn
(x)) =

GGn(x, x) +O(t2n) ∈ (c, c′) for some 0 < c < c′ <∞, and if x 6= y, for some ε ∈ (0, 1),

Cov(Ψ1
Gn
(x),Ψ1

Gn
(y)) ≤ C(d− 1)−dGn (x,y) +N−ε

n . (8.6)

As consequence, we can fix K0 small enough so that

E(|B2(n)|) =
∑

x∈Vn

P (Ψ1
Gn
(x) < K) ≤

∑

x∈Vn

e−K2/(2c) ≤ β′δNn/8 (8.7)
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for every K ≤ K0. By the normal comparison lemma, see e.g. [LLR83, Theorem 4.2.1],
for x 6= y ∈ Vn, we then obtain

P (Ψ1
Gn
(x) ≤ K,Ψ1

Gn
(y) ≤ K)− P (Ψ1

Gn
(x) ≤ K)P (Ψ1

Gn
(y) ≤ K)

≤ C(Cov(Ψ1
Gn
(x)/σx,Ψ

1
Gn
(y)/σy) ∨ 0) ≤ C(Cov(Ψ1

Gn
(x),Ψ1

Gn
(y)) ∨ 0).

(8.8)

As consequence, using also that the fact that diameter of Gn is smaller than C logNn

and that |SGn(x, r)| ≤ d(d− 1)r−1, we obtain

Var(|B2(n)|)
=

∑

x,y∈Vn

P (Ψ1
Gn
(x) ≤ K,Ψ1

Gn
(y) ≤ K)− P (Ψ1

Gn
(x) ≤ K)P (Ψ1

Gn
(y) ≤ K)

≤ Nn + C
∑

x∈Vn

C logn∑

r=1

∑

y∈Vn:dGn (x,y)=r

(Cov(Ψ1
Gn
(x),Ψ1

Gn
(y)) ∨ 0)

(8.6)

≤ Nn + C
∑

x∈Vn

C logn∑

r=1

∑

y∈Vn:dGn (x,y)=r

((d− 1)−r +N−ε
n ) ≤ N2−ε

n .

(8.9)

By Chebyshev inequality, using (8.7), (8.9), P (|B2(n)| ≥ β′δNn/4) ≤ N−ε
n .

Combining the conclusions of the last two paragraphs then implies (8.3) and completes
the proof. �

9. Sprinkling / Proof of Theorem 1.2

With all preparations of the previous sections, the sprinkling construction is relatively
straightforward and follows the steps of [ABS04].

We start by showing that the field Ψ̄Gn defined under (7.1) contains a giant component
of size at least η(h)(1 − δ)Nn, with probability tending to one as n → ∞. Since Ψ̄Gn is
a zero-average Gaussian free field on Gn, this will imply the lower bound on |CGn,h

max | for
Theorem 1.2.

For h < h⋆ and δ ∈ (0, 1/8) as in the statement of Theorem 1.2, we fix an arbitrary
h′ ∈ (h, h⋆) and set ε := h′ − h. We further fix K, L small and p close to 1 so that L, p
are linked by (7.2) and

K = h ∧K0(δη(h
′)/2),

(h′, p,−∞) ∈ S0,

L < L0(δη(h
′)/2),

η(h′, p) > η(h′)/2,
(9.1)

where K0(δη(h
′)/2), L0(δη(h

′)/2) are as in Lemma 8.1, and the last inequality in (9.1)
can be satisfied by Proposition 5.1(c). We let tn → 0 slowly so that

P (Z̄2
0 (x) ≥ t−1

n (h+ 1−K)) ≥ N
−ch′β

′δη(h′,p)/8
n , (9.2)

where ch′ is as in Proposition 7.1, and β′ as in Lemma 8.1.
Due to Lemma 8.1, using also (9.1), we know that:

For A1
n :=

{
inf

A⊂V (Ĝn):δη(h′)Nn
2

<|A|<Nn
2

|∂Ĝn
A|

|A| ≥ β′

2

}
we have P (A1

n) ≥ 1−N−c
n . (9.3)

By Gaussian tail estimates, the zero-averaging term in the definition (7.1) of Ψ̄2
Gn

is
negligible with high probability:

For A2
n :=

{∣∣∣N−1
n

∑

y∈Vn

Z̄2
0 (y)

∣∣∣ ≤ ε
}

we have P (A2
n) ≥ 1− e−cNn . (9.4)
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Introducingmn := N
ch′
n to denote the minimal size of mesoscopic components and writing

ak = (1− kδ)η(h′, p) for k ∈ {1, 2}, Proposition 7.1 implies that:

For A3
n :=

{ ∑

x∈Vn

1{|Ch
x (tn)|≥mn} ≥ a1Nn

}
we have lim

n→∞
P (A3

n) = 1, (9.5)

that is E≥h′

(Ψ1
Gn
)∩V̂n has many mesoscopic components, with high probability. Finally,

since Ψ1
Gn

is independent of Z̄2
0 and the graph Ĝn depends on Z̄2

0 only via 1[L,∞)(Z̄
2
0 (x)),

it follows that:

Conditionally on σ(Ψ1
Gn
, Ĝn), the random variables (Z̄2

0 (x))x∈V̂n
are i.i.d. dis-

tributed as N (0, 1/2) random variable conditioned on being larger than L.
(9.6)

In particular, since L < 0,

pn := P (Z̄0(x) ≥ t−1
n (h+ tnε−K) | σ(Ψ1

Gn
, Ĝn), {x ∈ V̂n})

(9.2)

≥ N
−ch′β

′δη(h′,p)/8
n . (9.7)

Assume now that An := A1
n ∩ A2

n ∩ A3
n occurs. On A3

n, we can fix a set of at most
a1Nn/mn mesoscopic components of E≥h′

(Ψ1
Gn
)∩V̂n that together contain at least a1Nn

vertices. Any x in those components satisfies Z̄2
0 (x) ≥ L (by definition of Ĝn) and thus

(on A2
n),

Ψ̄Gn(x) = Ψ1
Gn
(x) + tn

(
Z̄2
0 (x)−N−1

n

∑

y∈Vn

Z̄2
0 (y)

)
≥ h′ + tn(L− ε) ≥ h (9.8)

for all n large enough. It follows that these fixed mesoscopic components are contained in
E≥h(Ψ̄Gn). If E≥h(Ψ̄Gn) has no component of size at least a2Nn, then one can split these
fixed components into two groups A, B, each having at least δη(h′, p)Nn vertices, which
are not connected within E≥h(Ψ̄Gn). There are at most 2a1Nn/mn ways to split the fixed
mesoscopic components into two groups. By (9.1), δη(h′, p)Nn > δη(h′)Nn/2. Therefore,
on A1

n, we can use Menger’s theorem to show that there are at least β′δNnη(h
′, p)/2

pairwise vertex-disjoint paths from A to B in Ĝn. Since Ĝn has at most Nn vertices,
at last half of those paths are of length at most 4/β′δη(h′, p) each. For every x ∈ V̂n,
Ψ1

Gn
(x) ≥ K. Therefore, if Z̄2

0 (x) ≥ t−1
n (h+ tnε−K) and A2

n occurs, then

Ψ̄Gn(x) = Ψ1
Gn
(x) + tn

(
Z̄2
0 (x)−

1

Nn

∑

x∈Vn

Z̄2
0 (x)

)
≥ h. (9.9)

Hence for the groups A and B being disconnected in Ĝn ∩ E≥h(Ψ̄Gn), there must be at
least one vertex with Z̄2

0 (x) < t−1
n (h + tnε − K) on every of these paths. Due to (9.6)

and (9.7), this has probability at most

(1− p4/β
′δη(h′,p)

n )β
′δNnη(h′,p)/4 ≤ exp(−c(δ, h′, p)N1−ch′/2

n ). (9.10)

It follows that the probability that An occurs and there is no connected component of
E≥h(Ψ̄Gn) of size at least a2Nn (that is there is some partition of the fixed mesoscopic
components into groups A and B as above that are disconnected form each other in
E≥h(Ψ̄Gn)) is at most

2a1Nn/mn exp(−c(δ, h′, p)N1−ch′/2
n ) ≤ exp{−c′N1−ch′/2

n }, (9.11)

which converges to 0 as n→ ∞.
Together with (9.3)–(9.5), this implies that with probability tending to one with n,

E≥h(Ψ̄Gn) has a connected component of size at least a2Nn = (1−2δ)η(h′, p)Nn. Taking
h′ close to h, p close to 1, using the continuity of η(h, p) from Proposition 5.1(c), and
recalling that Ψ̄Gn has the same distribution as ΨGn then proves the lower bound on
|CGn,h

max | for our main result (1.6) of Theorem 1.2.
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The upper bounds on |CGn,h
max | and |CGn,h

sec | in (1.6) then follow easily from Lemma 7.2
and the lower bound on |CGn,h

max |. This completes the proof of Theorem 1.2.

Remark 9.1. We conclude this paper with a short discussion of the assumptions of The-
orem 1.2. Assumption 1.1(a) is clearly necessary in all our considerations (besides Sec-
tion 3).

Assumption 1.1(c), that is the assumption on the spectral gap, is only used to imply
the uniform isoperimetric inequality (2.8), and also in (4.11). For our results to be true,
we only need (2.8) to hold for macroscopic sets (cf. proof of Lemma 8.1). Also, the
argument around (4.11) can be easily adapted if λGn → 0 sufficiently slowly.

Assumption 1.1(b) is only used very implicitly in this paper, namely to ensure that a
majority of vertices of Gn are rn-treelike with rn = c1 logNn, cf. (7.6) which is proved
in [AČ20b, (5.6)] using [ČTW11, Lemma 6.1]. In Sections 7–9 of this paper, we even do
not need that rn grows so quickly. rn = C log logNn for C sufficiently large would be
sufficient for our purposes. Hence Assumption 1.1(b) can be replaced by: For some C
sufficiently large,

|{x ∈ Vn : x is (C log logNn)-treelike}| ≥ Nn(1− o(1)). (9.12)

For the existence of the giant component (not necessary of size (1− δ)η(h)Nn), the factor
(1− o(1)) in the last inequality could even be replaced by a c ∈ (0, 1).
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