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Abstract

We present a novel approach which aims at high-performance uncertainty quantification

for cardiac electrophysiology simulations. Employing the monodomain equation to model the

transmembrane potential inside the cardiac cells, we evaluate the effect of spatially correlated

perturbations of the heart fibers on the statistics of the resulting quantities of interest.

Our methodology relies on a close integration of multilevel quadrature methods, parallel

iterative solvers and space-time finite element discretizations, allowing for a fully parallelized

framework in space, time and stochastics. Extensive numerical studies are presented to

evaluate convergence rates and to compare the performance of classical Monte Carlo methods

such as standard Monte Carlo (MC) and quasi-Monte Carlo (QMC), as well as multilevel

strategies, i.e. multilevel Monte Carlo (MLMC) and multilevel quasi-Monte Carlo (MLQMC)

on hierarchies of nested meshes. We especially also employ a recently suggested variant of

the multilevel approach for non-nested meshes to deal with a realistic heart geometry.
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1 Introduction

The heart is by all means one of the most complex and fascinating organs in the human body.

It harmoniously orchestrates the body activity through the vital supply of blood to all of its

components. This activity is achieved via its pumping function that is a result of a very complex

contraction and relaxation cycle occurring in the cardiac cells. The latter is itself controlled by

a non-trivial pattern of electrical activation.

A misregulation of the electrical activity of the heart can result in several diseases, having in

worst cases lethal consequences. Therefore, it is of major importance to model and understand

the heart activity, as this would allow for a better clinical diagnosis and treatment of patients.

The heart consists of fibers, compare Figure 1, that help propagate the electrical potential

inside the cardiac muscle. This process is originally initiated by a stimulus coming from the

sinoatrial node (SA) located on top of the left and right atria. From there, the signal spreads

all over the heart muscle in the form of a traveling wave front. The propagation also takes place

in the heart cells that have the ability to actively respond to the electrical stimulation through

voltage-gated ion channels.

Figure 1: Mathematical reconstruction of the fiber field surrounding a synthetic heart geometry.

A mathematical model for describing the potential inside the cardiac muscle therefore has to

provide a suitable ionic channel model in order to fully capture the phenomenological behaviour.

Combined with time–dependency, spatial diffusion and a forcing function modelling the initial

stimulus, one arrives at the monodomain equation, which has been derived in [24, 27]. It can be

written in the following form:
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∂u(x, t)

∂t
−∇ ·

(

G(x)∇u(x, t)
)

+ Iion
(

u(x, t)
)

= Iapp(x, t), for (x, t) ∈ D × (0, T ],

G(x)∇u(x, t) · n = 0, for (x, t) ∈ ∂D × (0, T ], (1)

u(x, 0) = 0, for x ∈ D.

Here, D ⊂ R
d is the domain representing the heart, u = u(x, t) is the electrical potential,

G : D → R
d×d is an anisotropic conductivity tensor modeling the fiber direction, T ∈ R

+ is the

end time, Iapp : D × [0, T ] → R is the forcing function for the stimulus created by the SA node,

and Iion : R → R is an ion channel model. The latter can be modeled in several ways accounting

for different levels of detail and complexity, see [23]. We rely here on the Fitz-Hugh Nagumo

model, see [8], for which we have:

Iion(u) = α(u− urest)(u− uth)(u− upeak), α > 0. (2)

The values urest, uth and upeak are characteristic potential values of the electrical activation

process. They respectively represent the resting potential urest (cell is unactivated), the threshold

potential uth (cell is triggered) and the peak value upeak (cell is activated).

As depicted in Figure 1, the fibers have a very complex but also well-organized structure,

exhibiting key features that can be identified in all healthy subjects, such as a helical distribution

with opposite orientations, from the endocardium to the epicardium. However, the exact fiber

dislocations can vary not only from patient to patient, but can also change over time within

the same patient due to pathologies, such as infarctions. Then, the fiber structure is perturbed

with the introduction of high variability areas in the presence of scars. To faithfully model

the conductivity tensors used in electrophysiology, accurate measurements of these fibers are

required. However, such measurements cannot be made available on a routine basis. Given that

a highly accurate model of fibers and thus the conductivities are generally unavailable except for

a few test subjects, it is of paramount importance to gauge the influence that uncertainties in

the conductivity tensor have on the simulated activation patterns. Modeling and simulating the

uncertainty in the fiber directions will be one of the major aspects of this article.

We apply state of the art methods in uncertainty quantification (UQ). This means that we

combine space-time GMRES with a block Jacobi preconditioner [5] for solving the monodomain

equation with multilevel quadrature methods for the UQ. In our practical implementation, we

use the multilevel (quasi-) Monte Carlo method, compare [1, 11, 14, 17, 20]. Therefore, additional

smoothness of the solution is required as already pointed out in [17]. This smoothness has been

verified in the stationary case for anistropic random diffusion problems in [15], for linear random

advection-diffusion-reaction problems in [21], and for semilinear random diffusion problems in
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[31]. Our numerical results in Section 5 show that the quasi-Monte Carlo method based on Halton

points is superior over the Monte Carlo method and that the multilevel versions are superior over

the single-level versions of these quadrature methods. Indeed, the highest efficiency is provided

by the multilevel quasi-Monte Carlo method.

The rest of this article is organized as follows. In Section 2, we present the random model

for the fibers of the heart muscle. Then, Section 3, is concerned with the space-time solver

for the monodomain equation. Quadrature methods to treat the randomness are outlined in

Section 4. Finally, in Section 5, numerical experiments are presented in order to validate the

present approach also in case of simulations for realistic heart geometries.

2 Preliminaries

2.1 Random fiber directions

Within this article, we will consider an uncertainty on the random fiber directions. To this end,

let (Ω,F ,P) denote a complete and separable probability space. Then, for a given Banach space

X and 1 ≤ p ≤ ∞, the space Lp(Ω;X ) denotes the Lebesgue-Bochner space, see [22], which

contains all equivalence classes of strongly measurable functions v : Ω → X with finite norm

‖v‖Lp :=















(
∫

Ω

‖v(ω)‖pX
)1/p

dP(ω), p < ∞,

ess supω∈Ω ‖v(ω)‖X , p = ∞.

In this context, a function v : Ω → X is said to be strongly measurable if there exists a sequence

of simple functions vn : Ω → X , such that for almost every ω ∈ Ω we have limn→∞ vn(ω) = v(ω).

Note that we also have the usual inclusion Lp(Ω;X ) ⊃ Lq(Ω;X ) provided that 1 ≤ p ≤ q ≤ ∞.

Given that
(

X , (·, ·)X
)

is a separable Hilbert space, the Bochner space L2(Ω;X ) is a separable

Hilbert space as well, where the inner product is defined as

(u, v)L2 :=

∫

Ω

(

u(ω), v(ω)
)

X
dP(ω).

In particular, this space is isometrically isomorphic to the tensor product space L2(Ω) ⊗ X , we

refer to [25] for the details.

Subsequently, we will always equip the space R
d with the Euclidean norm ‖·‖2 induced by

the canonical inner product 〈·, ·〉 and R
d×d with the norm ‖·‖F induced by the Frobenius inner

product 〈A,B〉F := tr(A⊺B). To account for the anisotropies generated by the cardiac fibers,

we consider a conductivity tensor as proposed and analyzed in [19], see also [15]. It is of the form

G(x, ω) := gI +
(

‖V (x, ω)‖2 − g
)V (x, ω)V ⊺(x, ω)

V ⊺(x, ω)V (x, ω)
, (3)
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where g > 0 is a given value and V ∈ L∞
(

Ω;L∞(D;Rd)
)

is a random vector field. Moreover,

we require that there exist some constants bmin ≤ 1 and bmax ≥ 1 such that bmin ≤ g ≤ bmax and

bmin ≤ ess infx∈D ‖V (x, ω)‖2 ≤ ess sup
x∈D ‖V (x, ω)‖2 ≤ bmax P-almost surely. (4)

The model (3) represents a medium that has homogeneous diffusion strength g perpendicular

to V and diffusion strength ‖V (x, ω)‖2 in the direction of V . The randomness of the specific

direction and length of V therefore quantifies the uncertainty of this notable direction and its

diffusion strength.

Lemma 2.1. A conductivity tensor of the form (3) is well-defined and indeed also satisfies a

uniform ellipticity condition, i.e.

bmin ≤ ess infx∈D ‖G(x, ω)‖2 ≤ ess sup
x∈D ‖G(x, ω)‖2 ≤ bmax P-almost surely. (5)

Proof. For almost every ω ∈ Ω and almost every x ∈ D, we have that G(x, ω) is well-defined,

because of

V ⊺(x, ω)V (x, ω) = ‖V (x, ω)‖22 ≥ b2min > 0,

and clearly symmetric. Furthermore, we can choose u2, . . . ,ud ∈ R
d that are perpendicular to

V (x, ω) and are linearly independent. Thus, for i = 2, . . . , d, it holds that

G(x, ω)ui = gui and G(x, ω)V (x, ω) = ‖V (x, ω)‖2V (x, ω).

Consequently, we obtain for almost every ω ∈ Ω and almost every x ∈ D that

λmin

(

G(x, ω)
)

= min{g, ‖V (x, ω)‖2} ≥ bmin,

λmax

(

G(x, ω)
)

= max{g, ‖V (x, ω)‖2} ≤ bmax.

This shows (5).

2.2 Karhunen-Loève expansion

To make random (vector) fields feasible for numerical computations, we separate the spatial

variable x and the stochastic parameter ω by computing the Karhunen-Loève expansion. To this

end, we require the expectation and the covariance of the underlying random field. For example,

in case of V , they are given by

E[V ](x) =

∫

Ω

V (x, ω) dP(ω)

and

Cov[V ](x,x′) =

∫

Ω

V 0(x, ω)V
⊺

0(x
′, ω) dP(ω),
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respectively, where

V 0(x, ω) := V (x, ω)− E[V ](x)

denotes the centered vector field.

Given the eigenpairs {λk,ψk}k of the Hilbert-Schmidt operator C defined by Cov[V ], that is

(Cu)(x) :=
∫

D

Cov[V ](x,x′)u(x′) dx′,

the Karhunen-Loève expansion of V reads

V (x, ω) = E[V ](x) +

∞
∑

k=1

√

λkψk(x)Yk(ω). (6)

Herein, the uncorrelated, normalised and centered random variables {Yk}k are obtained in ac-

cordance with

Yk(ω) :=
1√
λk

∫

D

V
⊺

0(x, ω)ψk(x) dx.

Note that as V ∈ L∞
(

Ω;L∞(D;Rd)
)

we particularly know that ψk ∈ L∞(D;Rd) and Yk ∈
L∞

(

Ω;R), see [19].

Now, by introducing σk :=
√
λk ‖Yk‖L∞(Ω;R) we can assume, without loss of generality, that

Yk ∈ [−1, 1] and thus may instead consider the vector field V in the parametrised form

V (x,ω) = E[V ](x) +

∞
∑

k=1

σkψk(x)ωk, (7)

where ω := [ωk]k∈N ∈ � := [−1, 1]N and ωk is the canonical random variable on the probability

space
(

[−1, 1],B([−1, 1]),PYk

)

. Consequently, we can also view G(x,ω) as being parametrised

by ω.

We now impose some common assumptions, which make the Karhunen-Loève expansion

computationally feasible.

Assumption 2.2. The random variables {Yk}k∈N are independent and uniformly distributed on

[−1, 1], which indeed implies that σk =
√
3λk and that PYk

coincides with the normalised Lebesgue

measure on [−1, 1]. Moreover, the sequence γ = {γk}k, given by

γk := ‖σkψk‖L∞(D;Rd),

is at least in ℓ1(N), where we have set ψ := E[V ] and σ0 := 1.

2.3 Discretization of the random vector field

The Karhunen-Loève expansion in the form of (7) cannot directly be used on a computer. In

what follows, we therefore present a means how the Karhunen-Loève expansion can be numer-

ically approximated with finite elements. As before, we only consider the vector valued case
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here. Let the random vector field be given by its expectation E[V ](x) = [Ei[V ](x)]di=1 and its

covariance function Cov[V ](x,x′) = [Covi,j [V ](x,x′)]di,j=1, which we assume to be at least con-

tinuous. Moreover, let {xi}ni=1 ⊂ D be the vertices of the nodal finite element basis {φ1, . . . , φn},
i.e. φi(xj) = δi,j , coming from the finite element space SL where n = nL = dim(SL), see Sub-

section 3.1. Then, we can approximate the expectation by its finite element interpolant

E[V ](x) ≈
n
∑

i=1

E[V ](xi)φi(x)

and in complete analogy the covariance by

Cov[V ](x,x′) ≈
n
∑

i,j=1

Cov[V ](xi,xj)φi(x)φj(x
′).

In order to determine the Karhunen-Loève expansion of V , we have to solve the operator

eigenvalue problem
∫

D

Cov[V ](x,x′)ψ(x′) dx′ = λψ(x).

Thus, by replacing Cov[V ] with its finite element interpolant and testing with respect to the

basis functions φi ⊗ ej , i = 1, . . . , n, j = 1, . . . , d, where {ej}j is the canonical basis of Rd, we

end up with the generalized algebraic eigenvalue problem










M

. . .

M











C











M

. . .

M











v = λ











M

. . .

M











v, v ∈ R
dn. (8)

Herein, the matrix

C :=











[

Cov1,1[V ](xi,xj)
]n

i,j=1
· · ·

[

Cov1,d[V ](xi,xj)
]n

i,j=1

...
. . .

...
[

Covd,1[V ](xi,xj)
]n

i,j=1
· · ·

[

Covd,d[V ](xi,xj)
]n

i,j=1











∈ R
dn×dn

is the covariance function evaluated in all combinations of grid points, while

M := [mi,j ]
n
i,j=1 ∈ R

n×n with mi,j :=

∫

D

φjφi dx

denotes the finite element mass matrix.

The algebraic eigenvalue problem (8) can now efficiently be solved by means of the pivoted

Cholesky decomposition as follows: Let C ≈ LL⊺ with L ∈ R
dn×M and M ≪ n be the low-

rank approximation generated by the pivoted Cholesky decomposition of C as described in, e.g.

[16, 18]. Then, we approximate the eigenvalue problem (8) by










M

. . .

M











LL⊺











M

. . .

M











v = λ











M

. . .

M











v, v ∈ R
dn. (9)
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This eigenvalue problem is equivalent to the much smaller eigenvalue problem

L⊺











M

. . .

M











Lṽ = λṽ, ṽ ∈ R
M . (10)

In particular, if ṽi is an eigenvector of (10) with eigenvalue λi, then vi := Lṽi is an eigenvector

of (9) with eigenvalue λi. Moreover, there holds

v
⊺

i











M

. . .

M











vj = λiδi,j .

Remark 2.3. The cost for computing the pivoted Cholesky decomposition is O(dnM2) and,

since all entries of C can be computed on the fly without the need of storing the entire matrix

C, the storage cost is O(dnM). Moreover, the small eigenvalue problem (10) can be solved with

cost O(M3). Thus, since usually M ≪ n, the overall cost for computing the Karhunen-Loève

expansion of V by the suggested approach is also O(dnM2) in total.

Based on the suggested low-rank approach, we end up with a discretized random field of the

form

Ṽ (x,ω) =

n
∑

i=1

E[V ](xi)φi(x) + θ

M
∑

k=1

σkωk

n
∑

i=1

ck,iφi(x), ω ∈ [−1, 1]M , (11)

where the coefficients ck,i ∈ R
d are obtained from combining all coefficients from the eigenvector

vk that interact with the basis function φi. Moreover, we introduce the scaling parameter θ > 0

to guarantee (4) in our numerical studies.

2.4 Quantities of interest

Due to the randomness of the heart fibers’ orientations as described above, the monodomain

equation (1) now translates into the following parametric version provided for all ω ∈ [−1, 1]M :

∂u(z,ω)

∂t
−∇ ·

(

G(x)∇u(z,ω)
)

+ Iion
(

u(z,ω)
)

= Iapp(z), z := (x, t) ∈ D × (0, T ]. (12)

Our aim is to determine statistics of the random solution u(z,ω), which amounts to the evaluation

of the high-dimensional integral given by

QoI[u] =

∫

[−1,1]M
F
(

u(·,ω)
)

ρ(ω) dω. (13)

Here, ρ(ω) =
∏M

i=1 ρk(ωk) is the joint density function of ω from (11) and F denotes a functional

that encodes a particular quantity of interest. We shall focus here on three different quantities

of interest.
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Transmembrane potential. The transmembrane potential over the totality of the heart ge-

ometry and its evolution in time is the quantity obtained by solving the monodomain equation.

This is demonstrated as an electrical potential wave travelling through the heart, cf. Figure 2.

The functional F in this case is simply the identity function, i.e.

F
(

u(·,ω)
)

= u(·,ω).

We remark that considering a fine discretization in space and time, the full information on

the transmembrane potential represents a high-dimensional output that might easily become a

burden at the memory level in a context of a UQ study.

Figure 2: Wavefront propagation of transmembrane potential.

Activation map. The transmembrane potential can be used in order to extract the activation

map of the heart. This reduces the size of the output to that of the dimension indicating the

times at which cells are activated. The activation time a(x0,ω) at a given location x0 is defined

as the right inverse

a(x0,ω) = min{t ∈ [0, T ] : u(x0, t,ω) ≥ uth}.

The functional F for this case can therefore be written as F
(

u(·,ω)
)

= a(x0,ω).

Action potential. Another relevant quantity of interest is the evaluation of the transmem-

brane time evolution at a given location x0. Mathematically speaking, this corresponds to the

9



Figure 3: Activation map of a heart. Negative value signifies non activated region.

functional

F
(

u(·,ω)
)

= u(x0, t,ω).

Regarding the approximation of the integral (13) for a given functional F , we rely on high-

dimensional quadrature methods that require solving the monodomain equation in quadrature

points represented by different realizations of ω ∈ [−1, 1]M . The resulting procedure is a sampling

method and requires a finite element solve for every sample.

3 Discretization of the monodomain equation

The parametric monodomain equation (12) can be solved numerically for all parameters ω ∈
[−1, 1]M by means of finite elements in space and finite differences in time, i.e. by using a

sequential time-stepping method. In view of employing multilevel quadrature methods for ap-

proximating the integral (13), we set the stage for a similar refinement rate of the space and time

grid resolutions. In particular, we employ an all-at-once approach in space and time, where we

assemble a large space-time system that is solved in parallel [26].

This approach allows for a similar error decay with respect to the space and time discretiza-

tion steps. In addition, it enhances the parallel scalability of the numerical method, by allowing

parallelization also in the time dimension. For a comprehensive review of parallel-in-time meth-

ods, see [9].

3.1 Space-time assembly of the heat equation

Let us consider a nested sequence of shape regular tetrahedralizations {Tl}l≥0 of the spatial

domain D, where each Tl is of mesh size hl ∼ 2−l. For all levels l ≥ 0, we define the continuous,

10



piecewise linear finite element spaces

Sl = {vl ∈ C0(D) : vl|T ∈ P1(T ), T ∈ Tl}.

We denote with {φl,i}nl

i=1 ⊂ P1 the sets of linear nodal basis functions for Sl. For each index l we

also partition the time interval [0, T ] into ml−1 equisized subintervals of length ∆tl = T/(ml−1),

such that ∆tl ∼ hl. This uniform partition is thus given by the nodes tl,k = (k − 1)∆tl with

k = 1, . . . ,ml.

We start by neglecting the non-linear term from (12), that is Iion, to derive instead the space-

time linear system arising from the closely related heat equation. For the sake of readability,

we also assume that a particular realization of parameter ω ∈ [−1, 1]M is given, and therefore

disregard it for the analysis that follows. Assuming that the solution u(x, t) is sufficiently regular

in D, we derive the weak formulation:

for all t ∈ (0, T ], find u(·, t) ∈ H1(D) such that
∫

D

∂u(x, t)

∂t
v(x) dx+

∫

D

G(x)∇u(x, t)∇v(x) dx =

∫

D

Iapp(x, t)v(x) dx

for all v ∈ H1(D).

Assosiated with this weak formulation, we have the Galerkin approximation on level l given by:

for all t ∈ (0, T ], find ul(·, t) ∈ Sl such that
∫

D

∂ul(x, t)

∂t
vl(x) dx+

∫

D

G(x)∇ul(x, t)∇vl(x) dx =

∫

D

Iapp(x, t)vl(x) dx

for all vl ∈ Sl.

As each function ul(·, t) ∈ Sl can be expressed as a linear combination of the corresponding basis

elements, i.e.

ul(x, t) =

nl
∑

i=1

ul,i(t)φl,i(x), (14)

we can recover the semi-discrete formulation of the problem:

M l
∂ul(t)

∂t
+Klul(t) = Iapp,l(t), ul(t) = [ul,1(t), . . . , ul,nl

(t)]⊺. (15)

Here, M l ∈ R
nl×nl and Kl ∈ R

nl×nl are the mass and stiffness matrices on level l defined as

M l :=

[
∫

D

φl,j(x)φl,i(x)dx

]nl

i,j=1

, Kl :=

[
∫

D

G(x)∇φl,j(x)∇φl,i(x)dx

]nl

i,j=1

,

and the right-hand side Iapp,l(t) ∈ R
nl is

Iapp,l(t) :=

[
∫

D

Iapp,l(x, t)φl,i(x)

]nl

i=1

.
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We next apply the second order Crank–Nicolson method for the time discretization of (15)

and obtain for k = 1, . . . ,ml − 1 the system of equations
(

M l +
∆tl
2
Kl

)

ul,k+1 +

(

−M l +
∆tl
2
Kl

)

ul,k = Iapp,l,k and ul,k := ul(tl,k),

with Iapp,l,k :=
∆tl
2

(

Iapp,l(tl,k+1) + Iapp,l(tl,k)
)

.

(16)

If we define Al :=M l +
∆tl
2 Kl and Bl := −M l +

∆tl
2 Kl, the system of equations (16) can be

summarized in compact form according to

Al

Bl Al

Bl Al





































ul,1

ul,2

...

ul,ml

















=

















Iapp,l,1

Iapp,l,2

...

Iapp,l,ml

















⇐⇒ Clul = Iapp,l, (17)

where Cl ∈ R
nlml×nlml is a large space-time system that can be distributed and solved in parallel

and

ul := [ul,1,ul,2, . . . ,ul,ml
]⊺ and Iapp,l := [Iapp,l,1, Iapp,l,2, . . . , Iapp,l,ml

]⊺.

3.2 Space–time assembly of the monodomain equation

The discretization of (12) is an extension of the assembly procedure described in Section 3.1.

In particular, the linear system (17) is modified to contain the discretization of the non-linear

reaction term Iion

Clul + r(ul) = Iapp,l, (18)

where r(ul) ∈ R
nlml is given by

r(ul) := (∆tlIml
⊗Ml)I ion(ul) with I ion(ul) := [Iion(u1), . . . , Iion(unlml

)]⊺.

Here, n and m are respectively the space and time degrees of freedom.

The non–linear equation (18) is solved by using Newton’s method. The Jacobian J(ul) ∈
R

nlml×nlml of the non-linear operator on the left-hand side of (18) is given by

J(ul) = Cl + (∆tlIml
⊗M l) · JI ion(ul)

with JI ion(ul) ∈ R
nlml×nlml being the block diagonal matrix

JI ion(ul) :=

















I ′ion(u1)

I ′ion(u2)

. . .

I ′ion(unlml
)

















.
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3.3 Solution strategy

We rely on a solution strategy that retakes the main features of the one used in [3]. Specifically,

we approach the parallelization of the solver, the preconditioning and the Newton initial guess

strategy as follows.

Multiple time blocks strategy. Combination of the Newton’s method with the space–time

all–at–once approach may face a problem of convergence when a large time interval is required.

We resort to a multiple time blocks strategy, see also [4], consisting of decomposing the original

time interval into smaller chunks (the so–called time blocks). The problem is solved sequentially

on each of the time blocks, provided that the initial condition of the current time block is set to

the final state of the previous one. Considering a time interval [0, T ], uniformly partitioned in m

time steps, the latter is further divided in K multiple blocks such that there exists T ′ ∈ R and

m′ ∈ N for which we have T = KT ′ and m = Km′. We denote the solution on the k−th time

block with

u[k] = [u[k],1, . . . ,u[k],m′ ]⊺ ∈ R
nm′

,

where n is the number of spatial degrees of freedom. The initial condition of the current time

block to solve translates to,

u[k+1],0 = u[k],m′ for all k = 1, . . . ,K − 1,

with respect to that computed from the previous time block. The Newton initial guess is further

set to be the final time step solution of the previous block, generalized to all the time steps, that

is

u
(0)
[k+1] = [u[k],m′ , . . . ,u[k],m′ ]⊺ ∈ R

nm′

.

Preconditioning. Every linear problem in the form of (17) (arising at every Newton iteration)

is solved by means of a space-time parallel GMRES with block Jacobi preconditioner. The

spectral analysis of the space-time system in (17) motivates this choice, see [5] for all the details.

Newton initial guess. We use a sample based Newton initial guess strategy. For each sample,

the first Newton iterate is provided by an unperturbed reference solution. This is done in two

ways, locally, according to the multiple time blocks strategy, and globally with respect to the

original time interval. We compare their performances in Figure 4 with the direct method and the

multiple time blocks strategy described above, by solving the monodomain equation on six time

blocks. The acronyms DM, MTB, LNIG and GNIG designate respectively the Direct Method,

the Multiple Time Block, the Local Newton Initial Guess and the Global Newton Initial Guess.
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Figure 4: Comparison of the different Newton initial guess strategies for a sample on cube.

4 Multilevel quadrature methods

In order to compute the quantities of interest under consideration, i.e.

QoI[u] =

∫

[−1,1]M
F
(

u(·,ω)
)

ρ(ω) dω,

we employ multilevel quadrature methods. To this end, we introduce the sequence Fl[u](ω) :=

F
(

ul(·,ω)
)

that approximates F [u](ω) := F
(

u(·,ω)
)

and, instead of the single level estimator

QoISL
L [u] := QL

(

FL[u](·)
)

, (19)

consider the multilevel estimator

QoIML
L [u] :=

L
∑

l=0

QL−l

(

Fl[u](·)−Fl−1[u](·)
)

, (20)

where {Ql}l≥0 is a sequence of quadrature rules, and Q−1 ≡ 0. This is the standard and widely

used multilevel estimator, which has been introduced in [1, 11, 20]. It consists in defining the

multilevel estimator as the sum of quadratures applied to the difference of finite element solutions.

The construction of this multilevel estimator has been shown to be equivalent to the sparse grid

combination technique of the finite element space and the stochastic space, compare [10, 17]. In

particular, the roles of these spaces can be exchanged to present the multilevel estimator (20) in

a different way. Namely, it can equivalently be written as

QoIML
L [u] :=

L
∑

l=0

(Ql −Ql−1)
(

FL−l[u](·)
)

. (21)

This is especially favourable in case of non-nested meshes. In addition, the computational com-

plexity is reduced when nested quadrature points are applied, see [14] for the details.
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For the approximation error of the multilevel quadrature, there holds a sparse tensor product-

like error estimate. If εl → 0 is a monotonically decreasing sequence with εl · εL−l = εL for every

L ∈ N and

‖QL−lF [u]−QoI[u]‖ ≤ c1εL−l and ‖F [u]−Fl[u]‖ ≤ c2εl

for some suitable norms and constants c1, c2 > 0, then

∥

∥QoIML
L [u]−QoI[u]

∥

∥ ≤ CLεL

for a constant C > 0, provided that u and ul are sufficiently regular. We refer to [16] for details

on the multilevel quadrature. Moreover, we remark that the presented error estimate is based

on error equilibration. It is, however, also possible to equilibrate the computational work or the

degrees of freedom, see [12, 13].

An important component for the multilevel quadrature is the intergrid transfer of the data.

The transfer of data from the coarse level to the fine level is not needed if only real-valued

quantities of interest, based on point evaluations, are considered. Otherwise, the estimator (21)

can efficiently be computed by transferring the data only after accumulating it for each level.

The transfer of data from the fine level to the coarse level however is mandatory for each sample,

as the Karhunen-Loève expansion has to be computed on the fine grid.

We remark that has been shown in [32] that the computation of the stiffness matrix with

respect to the random diffusion field is consistent with a piecewise linear finite element discretiza-

tion if the midpoint rule with respect to the current grid is applied. Therefore, for the transfer of

the random fields from the finest level to the coarser levels, we perform an element–wise transfer

based on the midpoint rule; that is, for every element of the coarse level, we assign an constant

diffusion value corresponding to the fine element containing its center. Therefore, the assembly

of the stiffness matrix on the coarser levels can be performed with linear cost relative to the

particular level of discretization.

5 Numerical experiments

5.1 Setup

The numerical experiments have been conducted for three test-case geometries: a cube, an

idealized ventricle and a heart geometry (atria excluded) that was acquired through real patient

CCT data. We will refer to the latter geometry with the term “realistic heart”. The simulations

have been realized using SLOTH, see [30], a UQ Python library developed at the Institute of

Computational Science (ICS) in Lugano. For this work, we extended it to the monodomain
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equation (and in general to all types of 3 + 1 dimensional PDEs) by employing Utopia, see [33],

for the finite element formulation.

Parameters for the monodomain equation. Regarding the models (1) and (2), we will

always rely on the following parameters:

• The values for the ionic channel model Iion(u) in (2) are set as α = 1.4 · 10−3 mV−2ms−1,

urest = 0 mV, uth = 28 mV, and upeak = 115 mV.

• We choose

Iapp(x, t) =

(

urest + upeak exp

(

− (x− x0)
2

σ2

))

χ[0,t1)(t),

where t1 = ∆t = 0.005 ms is the function we rely on for the applied stimulus. Parameters

σ and x0 represent respectively the power and the location of the stimulus. They are

geometry dependent.

Parameters for Karhunen-Loève expansion. For the numerical experiments, we introduce

a scaling factor θ ∈ R into the covariance kernel Cov[V ] to be able to easily scale the applied

perturbation size. The stochastic dimension M in the computed, parametric Karhunen-Loève

expansion (11) arises from prescribing the truncation error ǫ = 10−2 in the pivoted Cholesky

decomposition. The other parameters used in the Karhunen-Loève expansion differ from one

experiment to another and are listed below:

• Cube. We consider isotropic diffusion and a scaling factor θ = 0.3 on D = [−0.5, 0.5]3. The

covariance matrix is induced by the scalar covariance kernel Cov[V ](x,x′) = θ2e
−‖x−x

′‖2
2

σ
KL

with σKL = 0.25. The low-rank Cholesky approximation of the covariance matrix yielded

the stochastic dimension M = 66. The mean diffusion is set to E[V ](x) = 3.325 ·10−3mm2

ms−1 for all x ∈ D.

• Idealized ventricle. We consider isotropic diffusion and the scaling factor θ = 0.3. The

covariance kernel is given by Cov[V ](x,x′) = θ2e
−‖x−x

′‖2
2

σ
KL with σKL = 0.5. The stochastic

dimension is given by M = 87. The mean diffusion is set to E[V ](x) = 3.325 · 10−3mm2

ms−1 for all x ∈ D. The domain’s bounding box is given by [0.80, 2.8] × [1.01, 3.5] ×
[0.60, 2.6].

• Heart geometry. We consider anisotropic diffusion with a block-diagonal covariance

matrix given by Covi,j [V ](x,x′) = δi,jθ
2e

−‖x−x
′‖2

2

σ
KL for 1 ≤ i, j ≤ 3, where δi,j is the

Kronecker delta. We set σKL = 0.16. The scaling factor is set to θ = 0.3. The stochastic

dimension is M = 135. Furthermore, the perpendicular diffusion in (3) is chosen as g =
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1.625 ·10−3mm2 ms−1 while E[V ](x) is specified later. The domain’s bounding box is given

by [−0.41, 0.66]× [0.21, 1.03]× [0.56, 1.61].

Reference solution and error metrics. In all the convergence and work comparison graphs

that follow, the referenced root mean square error in the Hq norm (L2 = H0 and H1 for

respectively q = 0 and q = 1) for QoIl = QoISL
l or QoIl = QoIML

l is given by

el =
(

E

[

∥

∥QoIl[u]−QoIref[u]
∥

∥

2

L2((0,T );Hq(D))

])1/2

(22)

in case of a space–time quantity of interest, such as the transmembrane potential,

el =
(

E

[

∥

∥QoIl[u]−QoIref[u]
∥

∥

2

Hq(0,T )

])1/2

(23)

in case of a time quantity of interest, such as the action potential at a given location x0 in space,

and

el =
(

E

[

∣

∣QoIl[u]−QoIref[u]
∣

∣

2
])1/2

(24)

in the case of a scalar quantity of interest, such as the activation time at a given point x0 in space.

Note that the mean in the above expressions is taken over the realisations of the possibly non-

deterministic quadrature formulas. Specifically, for the Monte Carlo quadrature, the expectation

for both, the single-level and multilevel runs, are approximated by averaging over 10 simulations

at each level of precision for the nested case study, and 5 simulations for the non–nested example.

The reference quantity of interest QoIref[u] is computed by using N = 10’000 samples drawn from

the Halton sequence.

The intergrid transfer of a space–time quantity of interest from a given coarse level l to the

fine level L, required to evaluate the error (22), is performed by means of the tensor product of

the space and time interpolation matrices. Obviously, the intergrid transfer of a time quantity

of interest from a given coarse level l to the fine level L, required to evaluate the error (23), is

performed analogously by means of the time interpolation matrices.

Quadrature methods. In our experiments, we will consider the Monte Carlo (MC) and quasi-

Monte Carlo (QMC) quadrature method and their multilevel pendants MLMC and MLQMC.

Let us recall that the error is of order 2−2l in the L2 norm (2−l in the H1 norm) when using

linear finite elements of mesh size hl = 2−l. Therefore, in view of the convergence rates for MC

and QMC, the number of samples to be executed by these methods on a level l to get the same

order of error 2−2l is respectively given by

NMC,l = 24l and NQMC,l = 22l. (25)
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Regarding the H1–error, the number of samples to be executed on a level l to get the same order

of error 2−l is respectively given by

NMC,l = 22l and NQMC,l = 2l. (26)

5.2 Scalar random diffusion for simple geometries and nested meshes

In these first experiments, we consider a scalar, thus isotropic, random diffusion for the sake

of simplicity. The experiments are conducted on the cube and the idealized ventricle geometry.

Note that the intergrid mesh transfer in case of the space–time dependent quantity of interest is

straightforward as the meshes are nested.

5.2.1 Cube geometry

We use a hierarchy of L = 6 nested mesh levels. Starting from the finest level l = L−1, the coarser

levels l = 0, 1, . . . , L−2 are successively obtained from the prior finer levels l+1 = 1, 2, . . . , L−1

by uniformly coarsening in space and time. The number of space-time degrees of freedom (DOF),

the space and time discretization steps of all the different levels are reported in Table 1.

l 0 1 2 3 4 5

DOF 16 256 4’096 65’536 1’048’576 16’777’216

h 0.5 0.25 0.125 0.0625 0.03125 0.015625

∆t 0.16 0.08 0.04 0.02 0.01 0.005

Table 1: Details about the considered mesh hierarchy for the cube geometry.

Controlled convergence of the over-all error. We intend to estimate and verify the con-

vergence rate for the quadrature methods under consideration. The number of samples on each

level is determined by the sampling strategy for controlling the error, cf. Section 4, by using the

sample numbers (25) and (26). We report in Figure 5 the convergence of the error in L2 and H1

norms.

The plots show that we recover the expected convergence rates of the general error for all

quadrature methods tested. Note that this does not imply that these quadrature methods are all

equally efficient, but rather that they yield the same precision with a vastly different balancing of

samples on every level. This is demonstrated quite clearly in the corresponding work comparison

plot found in Figure 6.
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Figure 5: Convergence rate for the cube in L2 (left) and H1 (right) norms.

Asymptotical work behaviour. Equivalently to the controlled convergence concept with the

previously introduced sampling strategy, we would like now to study the work in the context

of the controlled error. To this end, we assume that the cost per solve on level l is given by

CFE,l = 2γdl, where γ is the complexity of the finite element solver used and d is the dimension

of the physical problem considered (here d = 4). In view of (25), we can hence recover the total

amount of work required by MC and QMC given a discretization level L with (19) by

WMC,L = CFE,LNMC,L = 2γdL24L = 2(γd+4)L

and

WQMC,L = CFE,LNQMC,L = 2γdL22L = 2(γd+2)L.

The total work for the multilevel pendants with L discretization levels can also be deduced

from (25) with (20), and we can write

WMLMC,L =
L
∑

l=1

CFE,LNMC,L−l =
L
∑

l=1

2γdl24(L−l) = 24L
L
∑

l=1

2(γd−4)l

and

WMLQMC,L =

L
∑

l=1

CFE,LNQMC,L−l =

L
∑

l=1

2γdl22(L−l) = 22L
L
∑

l=1

2(γd−2)l.

These can further be reformulated as

WMLMC,L =











L24L if γd = 4,

2γdL − 24L

2γd−4 − 1
if γd 6= 4,

and

WMLQMC,L =











L22L if γd = 2,

2γdL − 22L

2γd−2 − 1
if γd 6= 2.
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Therefore, the asymptotical work behaviour for MLMC is bounded by O(24L) when γd < 4

(with an additional log-factor if γd = 4), and by O(2γdL) if γd > 4. Likewise, for MLQMC, the

asymptotical work is bounded by O(22L) when γd < 2 (with an additional log-factor if γd = 2),

and by O(2γdL) if γd > 2.

The complexity parameter γ is therefore of major importance in the asymptotical work be-

haviour of the considered quadrature methods. In our case, given the Newton initial guess

strategy, the solver preconditioning and the difference in parallel resources used from one level

to another do not allow to give this parameter a concise value over all levels (compare Section

3). We suggest however to evaluate the work in terms of total execution time, in which the cost

CFE,l for solving a sample at level l is given by the time to solution (averaged over 100 samples).

The resulting plot of work comparison between the different methods is reported in Figure 6. On

the on hand it is clearly visible that both MLMC and MLQMC show a significantly improved

asymptotic efficiency compared to their single level counterpart. On the other hand comparing

MLMC with MLQMC shows that MLQMC seems to be able to use the higher convergence order

of QMC versus MC to achieve an improved asymptotic efficiency over MLMC.

10
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Figure 6: Work comparison for MC/MLMC/QMC/MLQMC. Work is computed on the basis of

execution time on a single thread for all levels.

5.2.2 Idealized ventricle

In the second test case, we rely on a mesh hierarchy of L = 3 levels. The main reason for

the limitation of levels number for this geometry is essentially due to the nestedness condition.

Indeed, for this geometry as opposed to the simple cube one, we proceed in an inverted way,
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i.e. refining a given initial mesh. This procedure becomes demanding at the memory level very

quickly since the refinement step increases the degrees of freedom by the factor 24 = 16 due to

the space–time discretization. In general, this limitation can very often be encountered when

dealing with nested meshes for realistic geometries. This is the main motivation for relying on

non-nested meshes for the last test case, see Subsection 5.3.

The number of space-time degrees of freedom (DOF), the space and time discretization steps

of the three different levels are reported in Table 2. The meshes are visualized in Figure 7. The

rates of convergence and the work of the different quadrature methods are found in Figure 8.

As we have only three levels, the meaningfulness of the results is limited as it is impossible to

conclude the asymptotic behaviour. Nevertheless, it is clearly seen that MLQMC is superior over

the other methods.

l 0 1 2

DOF 154’546 2’120’420 31’184’747

h 0.1 0.05 0.025

∆t 0.02 0.01 0.005

Table 2: Details about the mesh hierarchy for the idealized ventricle geometry.

Figure 7: Nested mesh hierarchy for the idealized ventricle.
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Figure 8: Convergence rate for the idealized ventricle in the L2 norm (left) and work

comparison (right).

5.3 Random fibers in a complex geometry with non-nested meshes

The last test case concerns a realistic heart geometry with data acquired from clinical measure-

ments. As this is meant to be the synthesis of this work, we also account for anisotropic diffusion

defined in (3). The associated expected fiber field E[V ](x) is shown in Figure 9. It is obtained

from a mathematical reconstruction using transmural coordinates [29]. The transmural coordi-

nates are derived by initially solving a diffusion problem with adapted boundary conditions at

the contour of the left and right ventricles [2].

Figure 9: Initial state for fibers E[V ](x).

We also relax the nestedness condition by considering a hierarchy of non-nested meshes. As

we have previously argued, the nestedness condition very quickly becomes a burden in considering

a large number of levels. We rely on a mesh hierarchy with 6 levels in this example. They are
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shown in Figure 10. The details on the space-time DOF and discretization steps are reported in

Table 3.

Figure 10: Non-nested mesh hierarchy for the realistic heart geometry.

l 0 1 2 3 4 5

DOF 18’480 113’312 583’104 1’740’800 8’777’728 34’894’848

h 0.16 0.08 0.04 0.03 0.02 0.01

∆t 0.16 0.08 0.04 0.02 0.01 0.005

Table 3: Details about the mesh hierarchy for the realistic heart geometry.

As we do not have nested finite element spaces, we rely here on the multilevel estimator

(21). Moreover, we evaluate the convergence for the two quantities of interest, namely the action

potential and the activation times for given locations in the domain.

5.3.1 Action potential

We evaluate the evolution of the action potential in several locations of the heart domain. The

first example considers a set of points that are placed along the wall separating the left and right

ventricles. These points are shown in Figure 11.
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Figure 11: Locations selected along the wall separating the left and right ventricles.

As one can see, these points have been selected such that they trace the behaviour of locations

at different distance from the stimulus center, starting from very close (the very below point) to

relatively far (the very top point). We report in Figure 12 the action potential obtained by the

MC quadrature method for different discretization levels.

P1 P2 P3

P4 P5 P6

Figure 12: Action potential behaviour given different mesh level discretizations for the points

specified in Figure 11 following the order going from the bottom to the top.

In Figure 13, we report the convergence graphs of the (pointwise) error (23) for the action

potential at the locations introduced in Figure 11 and q = 1. Notice that the graphs report the

root mean square errors. The expected convergence rate is achieved for all quadrature methods
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tested.
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Figure 13: Convergence in the H1 norm of the action potential at the locations specified in

Figure 11 following the order going from the bottom to the top.

The second test is concerned with points located at the circumference of a horizontal cut of

the heart surface. These are shown in Figure 14.

Figure 14: Locations selected at the circumference of a horizontal cut of the heart surface.

Since the behaviour of the action potential at these points follows a similar pattern to that of

the previously shown ones, cf. Figure 12, we directly show the graph regarding the convergence

of the action potential at these points in Figure 15. Again, we see the expected convergence rate

for all quadrature methods tested.

25



1 2 3 4 5

10
-2

10
-1

1 2 3 4 5

10
1

1 2 3 4 5

10
0

1 2 3 4 5

10
0

1 2 3 4 5

10
0

10
1

1 2 3 4 5
10

0

10
1

1 2 3 4 5

10
0

Figure 15: Convergence of the action potential at the locations specified in Figure 14 following

the order going from left to right.

5.3.2 Activation time

We start by selecting points at equivalent geodesic distance from the stimulus location. These

points are shown in Figure 16. The geodesic distance is calculated by solving an eikonal problem

with a zero initial condition on the originating point [28], i.e. the stimulus in our case. The

graphs showing the convergence of the activation times for these locations are reported in Figure

17, with all of them showing the expected rate of convergence for all quadrature methods tested.
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Figure 16: Locations selected at equivalent geodesic distance from the stimulus.
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Figure 17: Convergence of the activation time at the locations specified in Figure 16 following

the order going from left to right.

We next select locations at the circumference of the left ventricle. These are shown in Figure

18. This electrical signal, when propagated to the chest, is exactly what is perceived clinically

(on a electrocardiogram monitor). Mathematically, it is possible to map the surface potential to

the chest by solving an additional diffusion problem, see [6, 7]. As we have several discretization

27



levels, we need to ensure that these points are well-defined on each one of them. The conver-

gence graphs for the activation times at these locations, which validate the the expected rate of

convergence for all quadrature methods tested, are reported in Figure 19.

Figure 18: Locations selected at the periphery of the heart surface.
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Figure 19: Convergence of the activation time at the locations specified in Figure 18 following

an order going from the furthest of the (final state) travelling wave to the nearest.
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6 Conclusion

In this article, we have considered the monodomain equation from cardiac electrophysiology

with the Fitz-Hugh Nagumo model and an anisotropic conductivity tensor that can account for

increased diffusion along the direction of the heart fibers. Modelling the heart fibers as a random

vector field, by means of the Karhunen-Loéve expansion from given expectation and covariance

vector fields of the heart fibers, we arrive at a parametric monodomain equation. Thus, common

quantities of interest such as the action potential and the activation time then also are subject

to this uncertainty and we therefore aim at computing their statistics, which amounts to the

evaluation of a high-dimensional integral.

To enable the approximate computation of the high-dimensional integral, we propose to

combine a space-time discretisation of the monodomain equation using finite elements in space

and the Crank–Nicolson method in time, which yields a method with good parallel scalability, in

a multilevel manner with dimension robust quadrature methods. The resulting scheme is fully

parallelized in space, time and stochastics.

Our numerical experiments show that the approach is feasible and that the considered quadra-

ture methods consistently satisfy their theoretical convergence rates. This indicates that in the

settings of our numerical experiments the more restrictive regularity requirements for the QMC

quadrature are fulfilled, and that the mixed regularity requirement for the multilevel quadrature

methods MLMC and MLQMC are fulfilled, as well. The results show that we can significantly

improve the amount of work required for a certain error by using the QMC and MLQMC methods

instead of the MC and MLMC methods. It is important to note, that as the QMC and MLQMC

quadrature methods using Halton points are essentially a MC or MLMC method where the

random sequence of sample points is replaced with fewer Halton points, the increased perfor-

mance does not require any additional non-trivial implementation modifications to be made when

changing from the MC and MLMC methods to the QMC and MLQMC methods.

Lastly, the numerical experiments on the realistic heart geometry additionally show the utility

of the multilevel estimator using the quadrature differences instead of solution differences,

QoIML
L [u] :=

L
∑

l=0

(Ql −Ql−1)
(

FL−l[u](·)
)

,

combined with the usage of non-nested meshes when considering involved space geometries.
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