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ON THE REFORMULATION OF THE CLASSICAL STEFAN PROBLEM AS A

SHAPE OPTIMIZATION PROBLEM

RAHEL C. BRÜGGER∗

AND HELMUT HARBRECHT∗

Abstract. This article is concerned with the multi-dimensional one-phase Stefan problem, which be-

longs to the class of moving boundary problems. We suggest to reformulate the classical Stefan problem as

a shape optimization problem, consisting of an objective functional for the moving boundary and a partial

differential equation corresponding to a heat type equation. Minimizing the objective functional subject

to the differential equation under consideration is equivalent to solving the Stefan problem. In order to

apply gradient-based optimization algorithms, we analytically compute the shape gradient of the objective

functional. A numerical example justifies our approach.

Key words. Shape optimization, Stefan problem, moving boundary problem, heat equation, space-

time tube derivative

1. Introduction. The classical Stefan problem goes back to J. Stefan in 1889, who studied

the formation of ice in the polar sea, see [36]. He stated that this growth problem is connected

with heat type problems, where not only the temperature, which is the solution of a differential

equation, is unknown, but also the position of the surface moves within time and thus is part of

the problem.

This specific problem belongs to the class of the moving boundary problems. In general, such

problems contain time-dependent boundaries which are unknown and depend on time and spatial

variables. Moving boundary problems are also called Stefan problems. This is in contrast to free

boundary problems. The latter also contain boundaries which are unknown beforehand, but these

boundaries are in steady-state and are therefore not dependent on the time, cf. [5].

There exists a wide variety of literature on Stefan problems, see for example [16, 18, 28, 34,

37] and the references therein. This literature mostly treats the analysis of the Stefan problem.

Stefan problems find their application, for example, in the modelling of phase transitions, chemical

reactions, fluid flow in porous medium or melting of ice, compare [5].

To solve a Stefan problem numerically, one encounters the problem of treating the moving bound-

ary. In [5], different numerical methods are explained: front-tracking methods, front-fixing methods

and fixed-domain methods. Front-tracking methods compute the position of the moving boundary

at every time step. Front-fixing methods try to fix the front by choosing a good spatial coordinate

system. In fixed-domain methods, the problem is reformulated, for example, by the means of the

enthalpy method such that the position of the boundary appears as a feature of the solution, see

[5].

In the present article, we choose to solve the one-phase Stefan problem by using the tools of

shape optimization introduced in [26] for the one-dimensional Stefan problem. More precisely, we

reformulate the classical one-phase Stefan problem in multiple dimensions as a shape optimization
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problem by introducing an objective functional and a parabolic state equation. The parabolic state

equation is again the Stefan problem, but lacking the Stefan condition on the moving boundary.

The objective functional is chosen such that it is minimal if the Stefan condition is satisfied.

Therefore, the goal is to minimize this objective functional over all admissible surfaces. In order

to apply gradient-based optimization algorithms, we compute the shape gradient of the objective

functional by using the adjoint method, which is known to reduce the computational effort.

The remainder of this article is organized as follows. In Section 2, we introduce the classical one-

phase Stefan problem, which we will then rewrite as a shape optimization problem. Section 3 is

dedicated to the computation of the shape derivative of the objective functional. As the main

focus of the article is the analytical computation of the shape gradient, the numerical example

given in Section 4 serves as a proof of concept for our theoretical findings. In Section 5, we give

some concluding remarks.

2. Problem formulation.

2.1. Classical one-phase Stefan problem. Let us consider the classical one-phase Stefan

problem as described in [19]. This specific Stefan problem models the evolution of the solid-liquid

phase interface. Thus, for every point of time t ∈ [0, T ], we have a time-dependent spatial domain

which we denote by Ωt ⊂ R
d, d ≥ 2. This spatial domain has a time-dependent spatial boundary

Γt := ∂Ωt. The setup is illustrated in Figure 2.1 for two spatial dimensions plus the temporal

dimension. By setting

QT =
⋃

0<t<T

(

{t} × Ωt

)

,

we obtain the space-time non-cylindrical domain (also called tube) with lateral boundary

ΣT =
⋃

0<t<T

(

{t} × Γt

)

.

We assume that the whole problem can be formulated in the hold-all domain D × (0, T ).

QT =
⋃

0<t<T

(

{t} × Ωt

)

Ω0

ΩtΓt

x1

t

x2

Figure 2.1: Setup of the Stefan problem.

For the formulation of the one-phase Stefan problem, we follow [19, 20]. The temperature u(t,x)
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of the liquid in Ωt is thus described by the partial differential equation

∂tu−∆u = 0 in Ωt,(2.1)

〈V,n〉 = −
∂u

∂n
on Γt,(2.2)

u = 0 on Γt,(2.3)

u(0, ·) = u0, in Ω0 = Ω.(2.4)

The domain Ω in (2.4) is the initial shape of the liquid phase while condition (2.2) is called the

Stefan condition [20]. It comes from the movement of the phase interface, see [40, pg. 387]. The

Stefan condition expresses that the normal velocity 〈V,n〉 of the surface Γt equals minus the

normal derivative of u at the boundary. We prescribe the initial position of the interface and the

initial temperature distribution to make the problem meaningful. From this Stefan problem, we can

see that the liquid freezes at zero temperature, cf. [19]. Notice that the one-phase Stefan problem

is actually also a two-phase Stefan problem, but the temperature is only unknown in one region,

while it is vanishing in the other region,compare [40].

The domain Ωt, thus the region which contains the liquid phase, is characterized by {x ∈ R
d :

u(t,x) > 0} if we choose u0 > 0 in Ω. Therefore, u can be interpreted as a level set function. Due

to (2.1), the parabolic Hopf lemma (see e.g. [15] for some remarks) implies ∂u/∂n < 0 on Γt for

t > 0. Therefore, we obtain the so-called Rayleigh-Taylor sign condition

−
∂u0

∂n
≥ λ > 0 on Γ0,

which ensures the nondegeneracy in accordance with [19].

2.2. Notation. Since we will switch back and forth between spatial and space-time consider-

ations depending on what is more useful for the task at hand, we introduce some notation in this

section to clarify the difference between the two.

For every point of time t we denote the spatial unit normal by n = nt, which is thus normal to Ωt.

The time-space unit normal is denoted by ν. Moreover, by ∇, we denote the spatial gradient

∇ =
[

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

]⊺

,

while ~∇ denotes the time-space nabla operator

~∇ =
[

∂
∂t
, ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

]⊺

.

Notice that for a time-space vector, the first entry always corresponds to the time component and

the subsequent entries correspond to the spatial components. Thus, for the time-space normal, the

time component is denoted by ν1.

Moreover, we introduce the tangential gradient and denote it by ∇Γ for space and ~∇Σ for time-

space. Accordingly we denote the tangential divergence (see Definition 3.4). The Jacobian matrix

of a field Z is denoted by DZ in space and for a time-space vector field ~Z by ~D~Z in time-space.
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2.3. Generation of the tube. In order to generate a tube, we can adopt two different points

of view. For both of them, let us assume that we have a spatial domain Ω0. One can generate a

tube QT by mapping this domain Ω0 to a spatial domain Ωt for every point of time t, see also

Figure 2.1.

On the one hand, this can be done by considering a velocity field V and associate to it the solution

T(t, ·) : x 7→ xt = T(t,x) of the differential equation [42, pg. 6]

(2.5)

∂

∂t
T(t,x) = V

(

t,T(t,x)
)

in (0, T )× Ω0,

T(0,x) = x in Ω0.

The map T(t, ·) thus describes the pathline of an individual particle being exposed to the velocity

field V. By setting Ωt = T(t,Ω0), we generate a tube QT (see Figure 2.2).

[

t

x

]

[

t

xt

]

∈ QTxt ∈ Ωtx ∈ Ω0
T(t,x)

Figure 2.2: Generation of the tube by the mapping T(t, ·) induced by the velocity field V.

On the other hand, we can assume to have a smooth C2-diffeomorphism κ for every point of time

t, which maps the initial domain Ω0 onto the time-dependent domain Ωt. In accordance with [29],

we write

(2.6) κ : [0, T ]× R
d → R

d, (t,x) 7→ κ(t,x)

to emphasize the dependence of the mapping κ on the time, where we have κ(t,Ω0) = Ωt. Here,

κ ∈ C2
(

[0, T ]× R
d
)

and, as in [23, pg. 826], we assume the uniformity condition

(2.7) ‖κ(t,x)‖C2([0,T ]×Rd;Rd), ‖κ(t,x)
−1‖C2([0,T ]×Rd;Rd) ≤ Cκ

for some constant Cκ ∈ (0,∞).

[6, Theorem 2.1] and [8, Theorem 2.1] state that under certain assumptions it is equivalent to

consider a family of velocity fields {V(t)} or a family of transformations {T(t)}. Notice that the

two points of view are connected by

V = ∂tκ ◦ κ−1.

In the following, we will adapt the latter parametrization point of view. Therefore, to reduce the

technical level of the ensuing discussion, we assume that Ω0 has C2-smooth boundary which implies

that the boundary of Ωt has the same regularity.

Remark 2.1. Notice that, due to the uniformity condition (2.7), we have as in [23]

0 < σ ≤ min{σ(Dκ)} ≤ max{σ(Dκ)} ≤ σ < ∞,

where σ(.) denote the singular values and Dκ denotes the Jacobian matrix of κ. Moreover, as in

[23, Remark 1, pg. 827], we assume det(Dκ) to be positive. The smoothness of the mapping also

implies that the time derivative ∂tκ is uniformly bounded.
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2.4. Rewriting the Stefan condition. Next, we intend to rewrite the Stefan condition

(2.2) into a form, which will be more useful for the reformulation of the Stefan problem as a shape

optimization problem. To this end, we first consider the spatial normal and the time-space normal.

Since u can be interpreted as a level set function, applying [32, Formula (1.2) pg. 9] implies that

the outward pointing normal can be expressed as

(2.8) n = −
∇u

‖∇u‖

provided that ∇u 6= 0. Notice that a priori the normal could have a plus or a minus sign. Taking

the scalar product of (2.8) with n yields

(2.9) 1 = −
1

‖∇u‖
〈∇u,n〉.

Due to the parabolic Hopf lemma, we have ∂u
∂n

< 0 on Γt and, therefore, the minus sign is the

correct sign. Hence, from (2.9), we can directly infer that the following lemma.

Lemma 2.2. It holds

−
∂u

∂n
= ‖∇u‖ on Γt.

The time-space normal can be written as

(2.10) ν =
1

√

1 + v2ν

[

vν

n

]

for some appropriate vν ∈ R, which will be determined in Lemma 2.4. Lemma 2.4 is a fundamental

property of the tube QT , which then allows us to rewrite the Stefan condition in a form, which

is computable in our numerical setting. For its proof, we need the following representation of the

velocity field V in normal direction, which can be found in [28, Chapter II, pg. 37], see also [40,

pg. 387].

Lemma 2.3. If ∇u 6= 0, then it holds

〈V,n〉 =
∂tu

‖∇u‖
.

Proof. Since u can be interpreted as a level set function, the interface is evolved according to [32,

Formula (3.2), pg. 26] by the convection equation

(2.11) ∂tu+ 〈V,∇u〉 = 0,

where V describes the velocity at every point of the implicit surface. In view of (2.8), we can

rewrite this expression to arrive at the claim.

According to [12, 13, 14], the vector field V belonging to the tube QT has to satisfy the following

fundamental condition in order to generate the tube. Notice that for a given specific parametriza-

tion, this is also stated in [38].

Lemma 2.4. For the vector field V, which generates the tube QT , it holds

〈V,n〉 = −vν ,

where vν is the temporal component of the unnormalized time-space normal, see (2.10).
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Proof. We prove this claim by assuming that the tube is represented by a level set function φ.

Having a level set function, the time-space normal can be computed as

~∇φ

‖~∇φ‖
=

1

‖~∇φ‖

[

∂tφ

∇φ

]

,

where ~∇ denotes the time-space gradient. We can use the level set convection equation (2.11) to

rewrite ∂tφ, because we can interpret φ(t, ·) for every point of time t as the level set function of

the spatial domain. Therefore, we can compute the spatial normal as n = ∇φ
‖∇φ‖ . Thus, we obtain

ν =
‖∇φ‖

‖~∇φ‖

[

−〈V,n〉

n

]

=
1

√

〈V,n〉2 + 1

[

−〈V,n〉

n

]

.

We can now express the Stefan condition by means of the geometric quantity ν, which is stated in

the following lemma.

Lemma 2.5. The left hand side of the Stefan condition (2.2) can be expressed as

〈V,n〉 = −
ν1

√

1− ν21
,

where ν1 denotes the first entry of the normalized time-space normal ν.

Proof. From the representation (2.10), we infer that

ν1 =
vν

√

1 + v2ν
.

Taking the square and multiplying with the denominator gives

ν21(1 + v2ν) = v2ν .

This expression can be solved for v2ν by writing

ν21 = v2ν(1− ν21),

and thus

vν = ±
ν1

√

1− ν21
.

The correct sign is the plus sign, because ν1 and vν have the same sign. Employing Lemma 2.4

yields finally the claim.

Remark 2.6. Using Lemmata 2.2, 2.3, and 2.5, we immediately arrive at

(2.12) ∂tu =
ν1

√

1− ν21

∂u

∂n
.

Moreover, from (2.10), Lemma 2.4, and Lemma 2.5, we obtain

(2.13) ν =

[

ν1
√

1− ν21 n

]

.
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2.5. Reformulation as a shape optimization problem. We are now in the position to

reformulate the Stefan problem (2.1) to (2.4) as a shape optimization problem. To that end, we

consider the reduced Stefan problem

(2.14)

∂tu−∆u = 0 in Ωt,

u = 0 on Γt,

u(0, ·) = u0, in Ω0 = Ω.

This is a typical parabolic partial differential equation, where we assume that the boundary Γt

is unknown. We would like to enforce the Stefan condition (2.2) by introducing a tracking-type

functional for the Stefan condition. But instead of tracking (2.2), we will track the rewritten Stefan

condition by using Lemma 2.5. Our choice of functional is hence

(2.15) J(QT ) =
1

2

∫ T

0

∫

Γt

(

∂u

∂n
−

ν1
√

1− ν21

)2

dσdt,

where u denotes the solution of (2.14) and ν1 denotes the time component of the time-space normal

ν, see (2.10).

Since the integrand in the objective functional (2.15) is non-negative, the objective functional is

minimal if the Stefan condition (2.2) is satisfied. This amounts to the shape optimization problem

minimize J(QT ) from (2.15) over the class of admissible domains, where u satisfies (2.14).

Such problems can, for example, be numerically solved by applying a gradient-based method.

Therefore, we shall compute the shape derivative of J in Section 3.

2.6. Solvability of the state equation. In order to state the solvability of (2.14), we

introduce the following function spaces, which we already used in [1]. We set Q0 = (0, T ) × Ω0,

which has a time-independent boundary denoted by Σ0 := (0, T )× ∂Ω0. The anisotropic Sobolev

spaces are defined by

Hr,s(Q0) := L2
(

(0, T );Hr(Ω0)
)

∩Hs
(

(0, T );L2(Ω0)
)

for r, s ∈ R≥0, see, e.g., [2, 4, 25].

In order to include an initial condition, we can define

Ĥr,s(Q0) :=
{

u = U |Q0
: U ∈ Hr,s

(

(0, T )× Ω0

)

, U(t, ·) = 0, t < 0
}

.

As in the elliptic case, we can include also (spatial) zero boundary conditions into the function

spaces by setting

Hr,s
0 (Q0) :=

{

u ∈ Hr,s(Q0) : u|Σ0
= 0
}

.

We are now in the position to introduce the non-cylindrical analogues of the above spaces by setting

Hr,s(QT ) :=
{

v ∈ L2(QT ) : v ◦ κ ∈ Hr,s(Q0)
}

,

where the composition with κ only acts on the spatial component. Due to the chain rule, v ◦ κ

and v admit the same Sobolev regularity, provided that the mapping κ is smooth enough, see for

example [27, Theorem 3.23] for the elliptic case. We define the norm of Hr,s(QT ) as

‖u‖Hr,s(QT ) = ‖u ◦ κ‖Hr,s(Q0)

for r, s ≥ 0.
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Theorem 2.7. For every u0 ∈ L2(Ω0), there exists a unique solution u ∈ H
1, 1

2

0 (QT ) satisfying

(2.14).

Proof. For the proof, we follow the strategy taken in [11, pg. 14–15]. Considering the problem

with inhomogeneous initial condition u0 ∈ L2(Ω0) but with homogeneous boundary condition and

homogeneous source term, there exists a unique solution u ∈ V0(QT ) in accordance with [41,

Theorem 26.1], since all the requested assumptions of this theorem are already shown in [1]. In

here, the space V0(QT ) consists of all the functions v with v ◦ κ ∈ V0(Q0) and

V0(Q0) :=
{

u ∈ L2
(

(0, T );H1
0 (Ω0)

)

: ∂tu ∈ L2
(

(0, T );H−1(Ω0)
)}

.

Notice that this space is a dense subspace of H
1, 1

2

0 (Q0), thus we deduce the existence of a solution in

H
1, 1

2

0 (QT ). The uniqueness follows by considering two different solutions, looking at their difference

and using that, if u0 = 0, then the unique solution of (2.14) in the space Ĥ
1, 1

2

0 (QT ) is u = 0

according to [1].

Remark 2.8. If the initial data in (2.14) satisfy u0 ∈ H1(Ω0), then the solution u of (2.14) lies

in H2,1(QT ). This is a consequence of [24, Chapter IV, Theorem 9.1].

3. Shape calculus.

3.1. Perturbation of the tube. The shape calculus for time-dependent problems can be

formulated under two points of view: the speed method (see e.g. [14, 29]) or the perturbation of

identity (see [29]). In the speed method, the goal is to find the velocity field V, which generates

a mapping according to (2.5). This is an Eulerian setting. On the other hand, the perturbation of

identity corresponds to a Lagrangian setting. This is the setting which we will use in the following.

One considers the bijective mapping κ from (2.6), which maps the reference domain onto the tube.

The mapping scheme is depicted in Figure 3.1.

[

t

x

]

[

t

xt

]

[

t

xt,s

]

κ(t, φ)

κ+ sZ ◦ κ

I+ sZ

xt ∈ Ωt

xt,s ∈ Ωt,s

x ∈ Ω0

Figure 3.1: Perturbation of identity in the Lagrangian setting.

In order to compute a directional derivative of the objective functional, we perturb the tube QT

using a vector field Z(t,x) ∈ R
d by applying a perturbation of identity I+ sZ, satisfying again the
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uniformity condition as in (2.7) when s is small enough. This yields a new tube

Qs
T =

⋃

0<t<T

(

{t} × (I+ sZ)(Ωt)
)

.

Remark 3.1. Our choice of the objective functional (see (2.15)) is more suitable for the Lagrangian

approach of shape optimization than tracking the L2-error of the Stefan condition (2.2) directly.

This is due to the fact that the Stefan condition (2.2) is posed in an Eulerian form, since it explicitly

contains the vector field V, which generates the tube. In the speed method, we would perturb this

vector field by considering V + sW for an appropriate perturbation field W.

3.2. Local shape derivative. Let us define the space of admissible perturbation fields as

Zad :=
{

Z ∈ C2
(

(0, T )×D;Rd
)

}

and consider a perturbation field Z ∈ Zad. As in the time-independent case, we can define non-

cylindrical material and local shape derivatives. The material derivative v̇[Z] is defined as

(3.1) v̇[Z] = lim
s→0

vt,s ◦ (I+ sZ)− vt
s

,

where vt is the state computed on QT and vt,s on the perturbed domain Qs
T . By the relation

(3.2) δv[Z] = v̇[Z]−∇v · Z,

we can associate the so-called local shape derivative to a state, see [29]. The following theorem

gives a characterization of the local shape derivative.

Theorem 3.2. The local shape derivative of the state u from (2.14) in the direction Z ∈ Zad can

be computed as the solution of the partial differential equation

(3.3)

∂tδu = ∆δu in QT ,

δu = −〈Z,n〉
∂u

∂n
on ΣT ,

δu(0, ·) = 0 in Ω0.

For a proof, one can straightforwardly modify the proof given in [1], which is based on [2].

3.3. Tangential calculus. Before computing the directional derivative of the objective func-

tional, we state some definitions and formulae of the tangential calculus which are used in the

computations afterwards. To that end, we consider a general domain Ω with boundary Γ unless

stated otherwise. Moreover, let n be the outward pointing normal.

Let us consider the signed distance function b (see [7, Chapter 7, Section 2] or [30, Section 2.5.6]),

which can be used to describe surfaces. For smooth surfaces, it holds that the normal n to the

surface corresponds to the gradient of b. Thus, we have a canonical extension N of the normal

from the surface into a tubular neighborhood of the surface. We denote the curvature operator

∇N by R. According to [30, Theorem 2.5.18] and [17, Chapter 13.1], the curvature operator is a

symmetric linear operator acting in the tangent plane. Thus, according to [30, Formula (2.5.162)],

it holds

(3.4) Rn = 0.

We can define the curvature along the lines of [29, Definition 5.4] or [7, Chapter 9, Section 4.2]:

9



Definition 3.3. For a smooth surface Γ ⊂ R
d, d ∈ N, the additive curvature H of Γ is defined as

H = tr(D2b) = ∆b = (d− 1)H.

Here, H is the mean curvature and D2b is the second fundamental form (see [7, Chapter 9, Section

5]) and corresponds to the curvature operator R.

In [7, Chapter 9, Sections 5.1 & 5.2], we find the following definition of the tangential differential

operators.

Definition 3.4. Let the boundary Γ be compact and let the level set function b be smooth enough

in a tubular neighbourhood of Γ. Let us associate to f ∈ C1(Γ) a C1-extension F in a tubular

neighbourhood of Γ. Then, the tangential gradient of f is defined as

∇Γf := ∇F |Γ −
∂F

∂n
n.

Moreover, we can define the tangential Jacobian matrix of a vector field v ∈
(

C1(Γ);Rd
)

, d ≥ 1 as

(3.5) DΓv = DV|Γ −DVnn
⊺,

where V is a smooth extension of v in a tubular neighbourhood of Γ. The tangential divergence is

defined as

divΓ v = divV|Γ − 〈DVn,n〉.

The following lemma gives a formula of tangential calculus, which can be found in [7, Chapter 9,

Section 5.4, pg. 497].

Lemma 3.5. Let W be a C1-vector field in a tubular neighborhood of the boundary Γ. We set

w := W|Γ, wn := 〈W,n〉, wΓ := W − wnn.

Then, there holds

∇Γwn = (DΓw)⊺n+D2bwΓ.(3.6)

If we consider a surface containing a boundary, then we have the following variant of the tangential

Stokes formula according to [9, Corollary 3.1] or [35, Proposition 2.58].

Lemma 3.6. Let S ⊂ Γ be a C2-manifold and ∂S be the boundary of S. For v ∈ H1(Γ;Rd) it holds
∫

S

divS v dS =

∫

S

H〈v,n〉 dS −

∫

∂S

〈v, τ 〉 d∂S,

where H denotes the additive curvature (see Definition 3.3) and τ is the unit tangent vector to S,

outward pointing from S and normal to the boundary ∂S.

3.4. Ingredients for the shape derivative of the objective functional. To present the

proof of the shape derivative of the objective functional in a clear manner, we shall provide some

useful computations beforehand.

Lemma 3.7. There holds

δ

(

∂u

∂n

)

=
∂δu

∂n
on Γt,

where δu denotes the local shape derivative of (2.14).
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Proof. According to Lemma 2.2, we can compute

δ

(

∂u

∂n

)

= −δ (‖∇u‖) .

Thus, we have

δ
(

√

〈∇u,∇u〉
)

=
〈∇u,∇δu〉

‖∇u‖

since spatial derivatives and the local shape derivative commute. Using finally (2.8) leads to the

claim.

Lemma 3.8. The local shape derivative of ν1/
√

1− ν21 is given by

δ

(

ν1
√

1− ν21

)

= −
1

(1− ν21)
3
2

〈~e1, ~∇Σ~zν〉,

where ~e1 ∈ R
1+d denotes the (first) canonical unit vector in R

1+d and ~Z =
[

0
Z

]

.

Proof. With the chain rule and the quotient rule it follows

δ

(

ν1
√

1− ν21

)

=
1

(1− ν21)
3
2

δν1.

It remains to compute δν1. To this end, let us consider the whole time-space domain, which gets

perturbed with the perturbation field ~Z by applying the map ~I + s~Z. Due to the choice of ~Z,

this corresponds to a horizontal perturbation, thus, a perturbation of the spatial component in

the direction Z. For the normal νs on the perturbed surface, it holds according to [7, Chapter 9,

Section 4] that

νs ◦ (~I+ s~Z) =

(

~D(~I+ s~Z)
)⊺

ν
∥

∥

(

~D(~I+ s~Z)
)⊺

ν

∥

∥

R1+d

.

From this, we derive (see also [7])

(3.7) δν = 〈~D~Zν,ν〉ν − (~D~Z)⊺ν − (~D
2~b)~Z

with the time-space signed distance function ~b as introduced in Section 3.3. Especially, δν1 is the

first coordinate of this (vector valued) equation.

Let us define ~Z|Σ := ~z, ~zν := 〈~Z,ν〉, and ~zΣ := ~Z − ~zνν as in Lemma 3.5. Since (3.4) also holds

with the time-space normal ν, we have on ΣT

(~D
2~b)~Z = (~D

2~b)~zΣ

As in [7, pg. 501], we can compute by using (3.5)

(~D~Z)⊺ν = (~DΣ~z+ ~D~Zνν⊺)⊺ν = (~DΣ~z)
⊺
ν + νν

⊺~D~Z⊺
ν = (~DΣ~z)

⊺
ν + 〈~D~Zν,ν〉ν.

We can thus rewrite the first coordinate of the right hand side of (3.7) by

〈

~e1, 〈~D~Zν,ν〉ν
〉

−
〈

~e1, (~D~Z)⊺ν
〉

− 〈~e1, ~D
2~b~Z〉

=
〈

~e1, 〈~D~Zν,ν〉ν
〉

−
〈

~e1, (~DΣ~z)
⊺
ν + 〈~D~Zν,ν〉ν

〉

− 〈~e1, ~D
2~b~zΣ〉

= −〈~e1, ~∇Σ~zν〉,

where we used the time-space analogue of (3.6).

11



Lemma 3.9. There holds the identity

∂

∂n
〈∇u,n〉 = 〈D2un,n〉 =:

∂2u

∂n2
on Γt.

Proof. Due to (3.4), the claim follows from

∂

∂n
〈∇u,n〉 =

〈

∇〈∇u,n〉,n
〉

= 〈D2un+R∇u,n〉.

To compute the second order normal derivative, we give the following lemma:

Lemma 3.10. The second normal derivative of u can be computed as

∂2u

∂n2
=

ν1
√

1− ν21

∂u

∂n
−Hx

∂u

∂n
,

where Hx denotes the spatial mean curvature, compare Definition 3.3.

Proof. Let us consider a fixed point of time t. According to [35, Proposition 2.68], for a smooth

boundary Γ and function φ on Γ, it holds

∆φ = ∆Γφ+Hx

∂φ

∂n
+

∂2φ

∂n2
,

where ∆Γ denotes the Laplace-Beltrami operator, defined as ∆Γφ := divΓ(∇Γφ), compare [7,

Chapter 9, Section 5.3]. Therefore, we can compute the second normal derivative of u as

∂2u

∂n2
= ∆u−Hx

∂u

∂n
,

where we used that u vanishes on the boundary Γt and, thus, the tangential derivative equals to

zero. Due to the state equation, we have that ∂tu = ∆u and, therefore, we arrive at the claim by

using (2.12).

The following lemma connects spatial and temporal derivatives of ν1.

Lemma 3.11. It holds

〈∇ν1,n〉 = −∂tν1
ν1

√

1− ν21
.

Proof. From (3.4) and the symmetry of the curvature operator, we have

~∇νν = ~Rν = 0,

where ~R denotes the time-space curvature operator. Looking at the first entry of ~Rν and using

(2.13) thus gives

∂tν1ν1 + 〈∇ν1,n〉
√

1− ν21 = 0.

3.5. Shape derivative of the objective functional. With the previous preparations at

hand, we can compute the shape derivative of the objective functional (2.15), which is defined by

∇J(QT )[Z] = lim
s→0

J (Qs
T )− J (QT )

s
.

12



Theorem 3.12. The shape derivative of the objective functional (2.15) in the direction Z ∈ Zad

in Hadamard form reads

∇J(QT )[Z] =

∫ T

0

∫

Γt

〈Z,n〉

{

−
∂p

∂n

∂u

∂n
− ~divΣ

(

p
1

1− ν21
~∇Σt

)

− pHx

∂u

∂n
+ p∂tν1

ν1
(1− ν21)

2
+

1

2
Hxp

2

}

dσdt

−

∫

Γ0∪ΓT

τ1
√

1− ν21
〈Z,n〉p dσ,

Here, the adjoint state p satisfies the following backward heat equation

(3.8)

−∂tp−∆p = 0 in QT ,

p =
∂u

∂n
−

ν1
√

1− ν21
on ΣT ,

p(T, ·) = 0 on ΩT ,

Hx denotes the spatial additive curvature of Γt (compare Definition 3.3), and τ1 is the first entry

of τ described in Lemma 3.6.

Proof. We shall first employ the formula from [29, Theorem 5.5], [29, Proposition 6.1] (which

are stated for time-space) or [7, Chapter 9, Theorem 4.3] (only for the inner integral), which

immediately yields

(3.9)

∇J(QT )[Z] = A+B + C :=
1

2

∫ T

0

∫

Γt

δ

(

(

∂u

∂n
−

ν1
√

1− ν21

)2
)

dσdt

+
1

2

∫ T

0

∫

Γt

〈Z,n〉
∂

∂n

(

(

∂u

∂n
−

ν1
√

1− ν21

)2
)

dσdt

+
1

2

∫ T

0

∫

Γt

〈Z,n〉Hx

(

∂u

∂n
−

ν1
√

1− ν21

)2

dσdt

While B and C are already in Hadamard form and only the normal derivative in B has to be

treated, the integral A has to be brought into Hadamard form by using the adjoint problem. With

the aid of the chain rule, Lemma 3.7, and Lemma 3.8, we compute A as

(3.10) A = A1 +A2 =

∫ T

0

∫

Γt

p
∂δu

∂n
dσdt+

∫ T

0

∫

Γt

p
1

(1− ν21)
3
2

〈~e1, ~∇Σ~zν〉 dσdt.

The second term on the right-hand side is similar to [7, pg. 490 resp. 501], but since we only have

the first component of the normal, we have the scalar product with ~e1. To eliminate the Neumann

derivative on δu, we derive the following integration by parts formula by applying Green’s formula

and Reynolds transport theorem:

0 =

∫ T

0

∫

Ωt

(∂tδu−∆δu)p+ δu(∂tp+∆p) dxdt

=

∫ T

0

∫

Ωt

∂t(δup) dxdt+

∫ T

0

∫

Γt

∂p

∂n
δu−

∂δu

∂n
p dσdt

=

∫ T

0

d

dt

∫

Ωt

δup dxdt−

∫ T

0

∫

Γt

δup〈V,n〉 dσdt+

∫ T

0

∫

Γt

∂p

∂n
δu−

∂δu

∂n
p dσdt.

13



By using the fundamental theorem of calculus together with the zero initial condition of δu and

the zero end condition of p, we conclude that the domain integral vanishes. Lemma 2.5 yields

A1 =

∫ T

0

∫

Γt

∂p

∂n
δu dσdt+

∫ T

0

∫

Γt

δup

(

ν1
√

1− ν21

)

dσdt.

Inserting the boundary condition of δu leads finally to

A1 =

∫ T

0

∫

Γt

〈Z,n〉

{

−
∂p

∂n

∂u

∂n
−

∂u

∂n
p

(

ν1
√

1− ν21

)}

dσdt.

Let us next look at the term A2. When inserting ~e1 = ~∇t, we get

A2 =

∫ T

0

∫

Γt

p
1

(1− ν21)
3
2

〈~∇t, ~∇Σ~zν〉 dσdt.

We can split ~∇t in its tangential and normal component in time-space. The normal component

vanishes within the scalar product due to [7, Chapter 9, Theorem 5.1]. Using

(3.11) dΣ =
1

√

1− ν21
dσdt

as it is stated in [29, Remark 6.3, pg. 167], we therefore obtain

A2 =

∫

ΣT

p
1

1− ν21
〈~∇Σt, ~∇Σ~zν〉 dΣ.

Following the ideas of [7, Chapter 9, Section 5.7], we apply the product rule to get

A2 =

∫

ΣT

~divΣ

(

p
1

1− ν21
~∇Σt~zν

)

− ~divΣ

(

p
1

1− ν21
~∇Σt

)

~zν dΣ.

Using Lemma 3.6 then gives

A2 =

∫

ΣT

Ht,xp
1

1− ν21
〈~∇Σt,ν〉~zν dΣ−

∫

Γ0∪ΓT

p
1

1− ν21
〈~∇Σt, τ 〉~zν dσ

−

∫

ΣT

~divΣ

(

p
1

1− ν21
~∇Σt

)

~zν dΣ.

Herein, the first integral of the right-hand side vanishes due to 〈~∇Σt,ν〉 = 0. In view of

(3.12) ~∇Σt = ~e1 − ν1ν,

and 〈ν, τ 〉 = 0, the second integral of the right-hand side reduces to pτ1~zν/(1 − ν21), where τ1

denotes the first coordinate of τ . By using (2.13), ~zν =
√

1− ν21〈Z,n〉, and (3.11), we thus have

also A2 in Hadamard form:

A2 = −

∫

Γ0∪ΓT

p
τ1

√

1− ν21
〈Z,n〉 dσ −

∫ T

0

∫

Γt

~divΣ

(

p
1

1− ν21
~∇Σt

)

〈Z,n〉 dσdt.

Next, we shall treat the term B in (3.9). It can be computed by using Lemma 3.9:

B =

∫ T

0

∫

Γt

〈Z,n〉p

{

∂2u

∂n2
−

∂

∂n

(

ν1
√

1− ν21

)}

dσdt.
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In view of Lemma 3.10, we can eliminate the second order normal derivative. Moreover, the second

term can be treated by using the quotient rule, resulting in

∂

∂n

(

ν1
√

1− ν21

)

=
1

(1− ν21)
3
2

〈∇ν1,n〉.

Application of Lemma 3.11 yields finally

B =

∫ T

0

∫

Γt

〈Z,n〉p

{

ν1
√

1− ν21

∂u

∂n
−Hx

∂u

∂n
+ ∂tν1

ν1
(1− ν21)

2

}

dσdt.

The claim follows when taking finally into account that

C =
1

2

∫ T

0

∫

Γt

〈Z,n〉Hxp
2 dσdt

and computing A1 +A2 +B + C.

3.6. Shape derivative for the numerical computations. The shape gradient of the ob-

jective functional given in Theorem 3.12 is in Hadamard form. Nevertheless, for numerical compu-

tations, we need to rewrite the term containing the surface divergence to make it computable. Two

approaches can be chosen: On the one hand, we can compute the surface divergence directly by

treating the three terms separately and try to reformulate them into computable terms. Especially,

one would have to reformulate the surface gradient of the adjoint problem. On the other hand, we

could stop the manipulations of the term A2 in the proof of Theorem 3.12 at (3.10) in order to

avoid the computation of the surface divergence of several other terms. We then have to compute

the surface gradient of the perturbation field in normal direction. Since we choose a smooth setting

for our numerical computations, we pursue this approach.

In view of the definition of A2 in (3.10), we compute

〈

~e1, ~∇Σ〈~Z,ν〉
〉

=
√

1− ν21
〈

~e1, ~∇Σ〈Z,n〉
〉

− 〈Z,n〉
ν1

√

1− ν21
〈~e1, ~∇Σν1〉.

The term 〈~e1, ~∇Σν1〉 corresponds to an entry in the time-space curvature operator, namely ∂tν1.

Adding the terms A1, B, and C from the proof of Theorem 3.12 to the so computed expression of

A2 yields

∇J(QT )[Z] =

∫ T

0

∫

Γt

〈Z,n〉

{

−
∂u

∂n

∂p

∂n
− p

∂u

∂n

ν1
√

1− ν21

}

+ p
1

1− ν21

〈

~e1, ~∇Σ〈Z,n〉
〉

− 〈Z,n〉p
ν1

(1− ν21)
2
∂tν1

+ 〈Z,n〉

{

p

(

ν1
√

1− ν21

∂u

∂n
−Hx

∂u

∂n
+ ∂tν1

ν1
(1− ν21)

2

)

+
1

2
Hxp

2

}

dσdt.

Two terms cancel out and we therefore arrive at

(3.13)

∇J(QT )[Z] =

∫ T

0

∫

Γt

〈Z,n〉

{

−
∂u

∂n

∂p

∂n
−Hxp

∂u

∂n
+

1

2
Hxp

2

}

dσdt

+

∫ T

0

∫

Γt

p
1

1− ν21

〈

~e1, ~∇ΣT
〈Z,n〉

〉

dσdt.

We use this form of the shape gradient for our numerical computations.
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4. Numerical experiment. In this section, we indicate how we solve the optimization prob-

lem. The example serves as a proof of concept, and is therefore intentionally kept simple.

4.1. Parametrization of the shape optimization problem. To numerically solve the

Stefan problem, reformulated as a shape optimization problem, we restrict ourselves to a star-

shaped spatial domain Ωt ⊂ R
2 for every point of time t (compare also [1]). This choice can

be parametrized in space by using a Fourier series for the unknown radial function, where the

coefficients are time-dependent. Thus, the boundary ΣT can be represented by

ΣT =

{[

t

γ(t, θ)

]

∈ R
3 : t ∈ [0, T ], θ ∈ [0, 2π)

}

,

where the time-dependent parametrization γ(t, ·) : [0, 2π) → Γt employs polar coordinates

(4.1) γ(t, θ) = w(t, θ)

[

cos(θ)

sin(θ)

]

.

Here, w(t, θ) denotes the time- and angle-dependent radius, given by

w(t, θ) :=

NL
∑

ℓ=0

Lℓ(t)

(

α0,ℓ +

NK
∑

k=1

{

αk,ℓ cos(kθ) + βk,ℓ sin(kθ)
}

)

,

with Lℓ(t) being appropriate dilations and translations of the Legendre polynomials of degree ℓ.

Finding the optimal tube now corresponds to determining the unknown coefficients αk,ℓ and βk,ℓ

of the parametrization. Hence, we have the following finite dimensional problem:

Seek γ
⋆ ∈ ZN such that ∇J(γ⋆)[Z] = 0 for all Z ∈ ZN .

Here, ZN is the finite dimensional ansatz space of parametrizations. To compute the discrete shape

gradient, we hence have to consider the directions

(4.2) (Z ◦ γ)(t, θ) = Lℓ(t) cos(kθ)

[

cos(θ)

sin(θ)

]

for all ℓ = 1, . . . , NL and k = 0, . . . , NK , and

(4.3) (Z ◦ γ)(t, θ) = Lℓ(t) sin(kθ)

[

cos(θ)

sin(θ)

]

for all ℓ = 1, . . . , NL and k = 1, . . . , NK . Notice that, since the initial domain Ω0 has to remain

fixed, we do not wobble at the shape parameters αk,0 and βk,0.

4.2. Implementation of the shape gradient. With the parametrization of the boundary

at hand, we shall next explain how to implement the shape gradient (3.13).

We first need to compute the solutions u of the state equation (2.14) and p of the adjoint equation

(3.8). Although we only need the Neumann data on the boundary, we cannot apply the boundary

element method easily as we have a non-trivial initial condition u = u0 for t = 0. Therefore,

we employ the finite element method in space and couple it with the theta-scheme to solve the

parabolic equation.
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We use the space-time cylinder as reference domain, which means that we need to introduce a finite

element mesh the unit circle. This mesh then gets mapped onto the spatial domain Ωt described

by the parametrization for every point of time t, similarly as in [22]. Then, standard piecewise

linear finite elements can be used to solve the partial differential equation for every time step,

when mapping the weak formulation back to the reference domain. For the time discretization,

we use the theta-scheme on the reference domain, including the inhomogeneous Dirichlet data, see

[39, Section 8.2.1] for example.

For the mapping of the domain onto the reference domain, we need to evaluate the Legendre

polynomials in the parametrization, which can be done by using their three-term recurrence formula

as described in [33].

From the finite element approximation of the state, the Neumann data can be computed, which are

piecewise constant. The approximate Neumann data are then projected onto the space of piecewise

linear functions as they enter the Dirichlet data of the adjoint state. Notice that the adjoint problem

has a singularity at t = T . We do not treat this singularity specifically, but need to perform our

computations on a fine level to resolve this singularity.

Another component for the shape gradient (3.13) is the additive curvature and the mean curvature

in space. Since we consider a two-dimensional setting, both coincide and can be computed from

the parametrization, see [10, pg. 21]. Finally, the surface gradient of 〈Z,n〉 can be computed as

explained in [3] or [21, Section C.1] by using the parametrization at hand.

We have now all the components to compute the integrand of the shape gradient in (3.13). The

integral is computed by using a trapezoidal rule in space and a trapezoidal rule in time on the

reference cylindrical domain.

(a) View with the

x1-axis in front.

(b) View with the

x2-axis in front.

(c) Three-dimensional view.

Figure 4.1: Initial guess of the shape optimization problem. The colours correspond to the time

slices.

4.3. Numerical results. For the parametrization of the boundary, we choose 15 Fourier

coefficients in space (NK = 8) and 10 Legendre polynomials in time (NL = 9), leading to 150

design parameters in total, from which 135 are unknown as we let Ω0 be fixed. We choose Ω0 as

the unit circle of radius 1. We set u0 = J0
(

‖x‖λ0

)

, where J0 denotes the Bessel function of the first

kind and λ0 is its smallest positive root. In every time-step, we use 163’840 finite elements. We
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choose T = 0.2 and a time step size of ∆t = 0.0005. We perform 50 iterations in the optimization

procedure and use a quasi-Newton method updated by the limited memory inverse BFGS rule,

where 10 updates are stored, see [31] for example. A second order line search is applied to find an

appropriate step size in the quasi-Newton method. The optimization algorithm is started with the

initial shape displayed in Figure 4.1.

In Figure 4.2 on the left, the evolution of the ℓ∞-norm of the shape gradient is displayed during the

course of the minimization algorithm, while on the right the evolution of the functional is shown.

0 10 20 30 40 50
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20

40

60

80

Iteration

ℓ∞-norm of gradient

0 10 20 30 40 50

0

5

10

15

Iteration

Value of functional

Figure 4.2: The histories of the shape gradient (left) and of the functional (right).

We clearly observe that these two values tend to zero, thus we have convergence of the minimization

algorithm. Figure 4.3 shows the terminal shape at the end of the optimization process. It is a

truncated cylinder. This solution corresponds to the intuition we have for the solution of the

Stefan problem, as we would expect the initial circle to grow uniformly throughout time.

x1

t

x2

Figure 4.3: Terminal shape of the shape optimization problem.

5. Conclusion. In this article, we reformulated the Stefan problem as a shape optimization

problem by introducing a shape functional subject to a differential equation. Bearing in mind

that we would like to apply a gradient-based optimization algorithm, we computed the directional
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derivative of the shape functional after rewriting the so-called Stefan condition in a suitable form.

Using a parametrization of the boundary by means of a Fourier series allows for computing all terms

of the discrete shape gradient. The theoretical results are supported by a numerical experiment,

which serves as a proof of concept.
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