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Summary
Mutations in RYR1, the gene encoding ryanodine receptor 1, are linked to a variety of neuromuscular disorders including malignant

hyperthermia (MH), a pharmacogenetic hypermetabolic disease caused by dysregulation of Ca2+ in skeletal muscle. RYR1 encodes a
Ca2+ channel that is predominantly expressed in skeletal muscle sarcoplasmic reticulum, where it is involved in releasing the Ca2+

necessary for muscle contraction. Other tissues, however, including cells of the immune system, have been shown to express ryanodine

receptor 1; in dendritic cells its activation leads to increased surface expression of major histocompatibility complex II molecules and
provides synergistic signals leading to cell maturation. In the present study, we investigated the impact of an MH mutation on the
immune system by studying the RYR1Y522S knock-in mouse. Our results show that there are subtle but significant differences both in

resting ‘non-challenged’ mice as well as in mice treated with antigenic stimuli, in particular the knock-in mice: (i) have dendritic cells
that are more efficient at stimulating T cell proliferation, (ii) have higher levels of natural IgG1 and IgE antibodies, and (iii) are faster
and more efficient at mounting a specific immune response in the early phases of immunization. We suggest that some gain-of-function
MH-linked RYR1 mutations might offer selective immune advantages to their carriers. Furthermore, our results raise the intriguing

possibility that pharmacological activation of RyR1 might be exploited for the development of new classes of vaccines and adjuvants.
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Introduction
The ryanodine receptor (RyR1) intracellular Ca2+ channel is

preferentially expressed in skeletal muscle where it plays a

central role in excitation-contraction coupling by releasing Ca2+

from the sarcoplasmic reticulum. Recently it was shown that

RyR1s are also expressed in other cell types, including neurons,

smooth muscle cells and immune cells, specifically in B-

lymphocytes and dendritic cells (DC) (Sei et al., 1999; Girard

et al., 2001; Bracci et al., 2007; Uemura et al., 2007; O’Connell

et al., 2002). DCs are the most potent antigen presenting cells

connecting innate and adaptive immunity. They are located

in peripheral tissues where they continuously sample the

environment for the presence of foreign antigens; when these

are encountered DCs process them and then migrate to secondary

lymphoid organs where they present the processed antigens in

conjunction with major histocompatibility complex II (MHCII)

molecules to T-lymphocytes and initiate a specific immune

response (Banchereau et al., 2000). Studies on the role of RyR1

in immune cells in vitro has established that in B-lymphocytes its

activation is coupled to cytokine release (Girard et al., 2001)

whereas in DCs it leads to enhanced maturation, release of pro-

inflammatory cytokines and enhanced ability to prime T-cells

(Bracci et al., 2007).

In humans, mutations in RYR1 are associated with several

neuromuscular disorders, including Malignant Hyperthermia,

Central Core disease, some forms of multi-minicore disease,

centronuclear myopathy and congenital fibre type disproportion.

More than 200 causative mutations have been identified in

patients and though they have not all been characterized

functionally, malignant hyperthermia (MH) causative mutations

are characterized by ‘gain of function’, whereby they increase the

sensitivity of the RyR1 Ca2+ channel to activation (Treves et al.,

2008; Robinson et al., 2006). Indeed MH Susceptibility (MHS) is

characterized by abnormal release of Ca2+ from the sarcoplasmic

reticulum, metabolic acidosis, increase in body temperature and

rhabdomyolysis after contact with a trigger agent. To date the

functional effects of RYR1 mutations have been extensively

studied in muscle cells and more recently, in the central nervous

system (De Crescenzo et al., 2012) but no data is available on if

and how mutations in RYR1 affect the immune system. In the

present study, we analysed the general characteristics of the

immune system of a mouse model knocked in for the RYR1Y522S

mutation, a mutation that in humans has been shown to be

causative of MH. Indeed mice carrying the mutation at the

heterozygous state (HET RYR1Y522S) are MHS, heat intolerant

and develop an MH reaction when exposed to anaesthetics,
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whereas at the homozygous state the mutation causes death soon

after birth possibly due to breathing impairment (Chelu et al.,

2006). Our results show that there are subtle differences in the

immune system of the heterozygous RyR1Y522S knock-in mice

compared to their wild-type littermates, even in non immunized

animals; specifically their DCs have a more mature phenotype, are

more potent at stimulating T-cells and the serum concentrations of

circulating natural IgG1 and IgE are significantly increased.

Moreover, following a primary antigenic challenge, heterozygous

RYR1Y522S mice produce higher levels of antigen-specific IgG.

These results support the intriguing possibility that some RYR1

mutations exert beneficial effects on the immune system.

Results
Phenotypic and functional characteristic of dendritic cells

from the HET RYR1Y522S knock-in mouse

It has previously been shown that human monocyte-derived DCs

and mouse bone marrow-derived DC express RyR1 (Bracci et al.,

2007; O’Connell et al., 2002). In this study we isolated CD11c+

cells from mouse spleens and confirm the presence of the RyR1

transcript. As shown in Fig. 1A, RYR1 transcripts in DCs from

wild-type (WT) and heterozygous (HET) RYR1Y522S knock-in

mice differ, as the presence of the T.C substitution results in the

appearance of a BlpI restriction site in the HET RYR1Y522S mice

(Chelu et al., 2006). The presence of the RYR1 MH-causing

mutation in DCs caused a small but significant increase in the

resting [Ca2+]i (Fig. 1B) as well as a significant increase in the

surface expression of the maturation marker CD83 (Fig. 1C). An

increase in CD83 surface expression could be induced in DCs

from WT mice by stimulation with 10 mM caffeine (inset

Fig. 1C), indicating that DCs are endowed with a pool of CD83

molecules that can be expressed on the plasma membrane by

RyR1 activation. Fig. 1D shows results obtained by real-time

PCR of common DC maturation markers; the relative expression

of CD83, CD86, IL-12 and IL-23 do not differ between HET

RYR1Y522S and WT littermates, indicating that the presence of

the mutation does not affect transcription of these genes but

rather affects the Ca2+-dependent release of CD83 onto the

plasma membrane.

We next investigated if the increase in CD83 surface

expression in DCs from the HET RYR1Y522S mice was

paralleled by functional changes, as monitored by the mixed

lymphocyte reaction. DCs were isolated from spleens of either

WT or HET RYR1Y522S littermates (both having the C57BL/6

background) and incubated with different amounts of T-cells

from Balb/c mice. The capacity of DCs to stimulate T-cell

proliferation was assayed by measuring [3H]thymidine

incorporation. As shown in Fig. 2A starting from a DC:T-cell

ratio of 1:20, cells isolated from HET RYR1Y522S (grey bars)

mice were significantly more efficient at stimulating alloreactive

T cell proliferation compared to cells from their WT littermates.

Furthermore, supernatants collected 72 h after co-culture of T

cells and DCs from the HET RYR1Y522S mice contained

significantly higher levels of IFN-c, with no difference in the

Fig. 1. Expression of RYR1Y522S in mouse CD11c-positive spleen DCs affects the resting [Ca2+]i and the expression of the maturation marker CD83.

(A) Total RNA was extracted from purified DCs and the expression of RyR1 was evaluated by RT-PCR as described in Materials and Methods. Digestion of the

RyR1 cDNA from wild-type mice (WT) yields the uncut band of about 376 bp, whereas digestion of the cDNA from heterozygous mice (HET RYR1Y522S) yields

two bands of 276 bp and 100 bp plus the uncut 376 bp band from the wild-type allele. (B) The resting [Ca2+] of DCs from HET RYR1Y522S mice is significantly

higher than that of their WT littermates (Student’s t-test, ***P,0.0001). Fluorescence measurements were performed on single DCs loaded with the ratiometric

Ca2+ indicator fura-2; results show the mean (6s.d.) intracellular free [Ca2+] (nM) of 74 WT (white bars) and 100 (HET RYR1Y522S, grey bars) cells. (C) CD11c-

positive DCs were isolated from the spleens of WT and HET RYR1Y522S littermates and the percentage of CD83-positive DCs was determined by flow cytometry

and is significantly higher in the RYR1Y522S mice (Student’s t test, *P,0.01). The inset shows that treatment of DCs from WT mice with 10 mM caffeine

significantly increases surface CD83 expression. Results represent the mean fluorescence intensity values from experiments on four mice, performed in duplicate

(ANOVA followed by Bonferroni’s post hoc test; **P,0.0001, ***P,0.0000002). (D) Real-time PCR for the indicated maturation markers was performed on

DCs from WT (empty bars) and HET RYR1Y522S (grey bars) mice. Boxes represent the mean (6s.e.m.) fold increase of four different experiments carried out on

CD11c-positive cells from different mice. Results were not statistically different.

Journal of Cell Science 126 (15)3486



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

amount of TNF-a, and IL-4 (Fig. 2B). No IL-10 was detected in

the supernatants of the mixed lymphocyte reactions from either

group (not shown).

Blood counts, immune cell subpopulations and natural Ig

in non-challenged mice

The total number of circulating leukocytes, erythrocytes and

reticulocytes were similar in WT and HET RYR1Y522S mice

(supplementary material Table S1). There was a small but

significant increase in the total number of circulating

lymphocytes but close evaluation did not reveal any differences

in the % CD4 or CD8 positive cells (not shown). Splenocytes

isolated from HET RYR1Y522S and WT littermates were labelled

with antibodies against CD4, CD8, CD3, CD19, MHCII, CD11c,

CD11b and CD83 and the % positive cells was monitored by

FACS. Supplementary material Fig. S1 shows that there was no

significant difference in the % of DCs, B-lymphocytes and

macrophages; there was a small but significant increase in CD3-

positive T-cells (mean % 6 s.e.m. was 29.460.78% vs 33.360.9%

in 12 WT and 10 HET RYR1Y522S littermates, respectively

P,0.003). A closer evaluation revealed that this is due to an

increase in the % CD4-positive subpopulation (mean % 6 s.e.m.

were 54.860.4% and 58.760.5% P,0.0001 in WT and HET

RYR1Y522S littermates, respectively). Spleen weights were similar

in WT and HET RYR1Y522S littermates (mean 6 s.e.m. weights

were 93.164.8 and 100.664.8 mg, respectively).

When examining the levels of circulating immunoglobulins in

non-immunized mice, we noticed that HET RYR1Y522S mice

have significantly higher levels of natural IgG1 and IgE

compared to their WT littermates but show no significant

differences in the levels of IgM, IgG2a, IgG2b or IgG3 (Fig. 3).

Such changes were not accompanied by changes in IL-4, IL-10 or

IL-6 as the circulating levels of these cytokines remained

undetectable in both mice groups. Surprisingly there were no

changes in the population of splenic Th2 cells, as WT and HET

RYR1Y522S mice showed similar levels of expression of the Th2-

specific surface markers T1/ST2, OX40 and inducible T-cell co-

stimulator (COS) (Clay et al., 2009; Withers et al., 2009).

Furthermore no changes were observed in the levels of the Th1

and Th2 commitment transcription factors T-box expressed in T-

cells (Tbet) and GATA-3 (Zhu et al., 2010) (supplementary

material Table S2). In addition, no differences were found in the

native spleen B-cell populations as determined by the expression

of surface immunoglobulins (IgM, IgG1, IgE), nor in the spleen

populations of plasma cells, as determined by the expression of

CD138 (supplementary material Table S2). Re-stimulation of

splenic T-cells in vitro with CD3/CD28 beads did not reveal any

difference between HET RYR1Y522S and WT T-helper cell

commitment since intracellular cytokine staining related to Th1/

Th2/Th17 profiles were not changed (supplementary material

Table S2).

Enhanced humoral immune response in HET RYR1Y522S

knock-in mice after antigenic challenge

Since HET RYR1Y522S knock-in mice express high levels of

natural circulating immunoglubulins we investigated if they

Fig. 2. DCs from HET RYR1Y522S mice are more

efficient at stimulating T cells than their WT

counterparts. (A) DCs were isolated from WT (white bars)

and HET RYR1Y522S mice (grey bars) (C57BL/6) and

cultured with allogenic CD4-positive T cells isolated from

Balb/c mice as detailed in Materials and Methods, in graded

DC to T-cell ratios. [3H]thymidine incorporation from three

different experiments carried out in triplicate is shown

(mean6s.e.m.). (B) Analysis of cytokines released into the

supernatant following the mixed lymphocyte reaction at a

DC:T-cell ratio of 1:2.5 as detailed in Materials and

Methods. T-cells incubated with HET RYR1Y522S DCs (grey

bars) release significantly higher levels of IFNc compared

with T-cells incubated with WT DCs (white bars). Results

are the mean6s.e.m. of three experiments carried out in

triplicate.
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showed an enhanced immune response after an antigenic

challenge. To this end we followed the immune response to (i)

ovalbumin (OVA), a well-characterized antigen for studying

murine immune functions, and (ii) Heligmosomoides polygyrus

(H.p.) bakeri, a helminthic parasite. In the first case, mice were

immunized intraperitoneally with different amounts of ovalbumin

(10, 20, 50, 100 and 200 mg) and the serum levels of OVA-

specific immunoglobulins were determined after 7, 14 and 21

days. Fig. 4A shows that after 7 days HET RYR1Y522S mice

immunized with 100 mg OVA produced double the amount of

OVA-specific IgG1 than their WT littermates. With higher

or lower concentrations of OVA IgG1 levels were similar in WT

and HET RYR1Y522S littermates (not shown). No significant

differences were found in OVA-specific IgG1 levels 14 and 21

days after the primary challenge (Fig. 4A).

Because HET RYRY522S mice have elevated natural IgE and

because immune responses to helminthic infections preferentially

elicit IgE responses, we challenged HET RYR1Y522S knock-in

and control WT littermates to infection with H.p. bakeri. After 7

and 14 days, the serum was checked for parasite-specific

antibodies and at 15 days the mice were sacrificed, the worm

titre per mouse and white blood cell counts evaluated. No

differences in the number or type of white blood cells were

observed between WT and knock-in mice (supplementary

material Table S3). Antibody titres to two worm-specific

antigens were assessed by enzyme linked immunosorbent assay

(ELISA) by monitoring reactivity against: (i) soluble extracts of

whole worms and (ii) H. p. bakeri excretory-secretory (HES) Ag,

a major target of the murine primary immune response. Fig. 4B

and supplementary material Tables S4, S5 show that after 7 days

there is a significant increase in parasite-specific IgG1, both to

whole worm extracts and to the HES Ag, in HET RYRY522S

knock-in mice compared to WT littermates. At 14 days parasite-

specific IgG1 reach the same levels in WT and knock-in mice. No

correlation was found between the titres of worm/HES-specific

antibodies and worm load.

Discussion
A large number of studies have investigated the effects of RYR1

mutations on muscle cell Ca2+ homeostasis but very little

information is available concerning how such mutations affect

other RyR1 expressing cells including immune cells. In this study

we explored the consequences of the MHS-causative RYR1

Y522S mutation by analysing the phenotypic and functional

characteristics of DCs from HET RYR1Y522S mice as well as

their immune response to antigenic challenges.

Fig. 3. Pre-immune serum IgG1 and IgE levels are

significantly higher in HET RYR1Y522S knock-in

mice compared with those in their wild-type

littermates. Mice were caged in the specific pathogen

free facility of the ZLF of the Basel University

Hospital; each point represents the concentration of the

indicated immunoglobulin determined per mouse. WT

mice, black boxes; HET RYR1Y522S knock-in mice,

black triangles. P-values were significantly different

according to the Student’s t-test.

Journal of Cell Science 126 (15)3488
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Effect of the RYR1 Y522S mutation on the unchallenged

immune system

Splenic CD11c-positive DCs from the HET RYR1Y522S mice

exhibit elevated resting Ca2+ levels, a result which is consistent

with the finding that most dominant RYR1 mutations linked to

MHS cause an increase in the resting [Ca2+] concentration in

skeletal muscle cells and B-lymphocytes (Ducreux et al., 2004;

López et al., 2005; Levano et al., 2009; Vukcevic et al., 2010).

Thus we hypothesized that the HET RYR1Y522S knock-in mouse,

which expresses a gain-of-function mutation (Chelu et al., 2006)

would be a useful tool to study in depth the role(s) of RyR1-

dependent signalling in the immune system. We first focused our

efforts on identifying differences in the ‘resting’ characteristics

of the immune system by analysing the phenotype of freshly

isolated unchallenged DCs and levels of natural

immunoglobulins and subsequently studied the animal’s

immune response to antigenic challenges. DCs isolated from

the spleens of HET RYR1Y522S mice express higher levels of the

maturation marker CD83 compared to their wild-type littermates,

a result that is compatible with the finding that surface expression

of CD83 is increased in mature human and murine DCs

(Weissman et al., 1995; Zhou and Tedder, 1996; Berchtold

et al., 1999; Kuwano et al., 2007). We have previously shown

that in human DCs Ca2+ signals generated via RyR1 activation

act synergistically with toll like receptors and induce DC

maturation (Bracci et al., 2007) yet Stolk et al. (Stolk et al.,

2006) reported that DCs isolated from WT and RyR1 knock-out

mice exhibit similar capacities to mature, endocytose antigens

and stimulate T-cell proliferation. We would like to point out that

chronic depletion of a protein from birth can activate

compensatory mechanisms and the results of the present study

support the role(s) of RyR1-signalling in DC function.

We are aware that the change in CD83 expression observed in

DCs from HET RYR1Y522S mice is equivalent to a 30% increase,

however (i) we exclude that such a small difference is due to

differences in the genetic background of wild-type and knock-in

mice since the mice were backcrossed in the same mouse strain

(C57BL/6) and all experiments were performed on littermates, so

that the only difference between the mice is a mutation in the

RYR1 gene which causes increased agonist sensitivity and an

increase in the cytoplasmic resting [Ca2+] from ,50 nM to

125 nM, and (ii) the increase in CD83 expression is sufficient to

cause a measurable change in function since in a mixed

lymphocyte reaction, DCs from HET RYR1Y522S mice were

more potent at stimulating T-cell proliferation and induced higher

levels of IFN-c release than was observed in T-cells stimulated

with WT DCs. Since no increase in CD83 transcripts were

observed, we suggest that the increase in CD83 surface

expression in the HET RYR1Y522S mice is due to Ca2+-

dependent release from an internal pool. Indeed increased

surface expression of CD83 in DCs from WT mice could be

induced already 2 minutes after the addition of the RyR1 agonist

caffeine. These results are in line with the finding that CD83

molecules recycle between endosomes and the cell surface (Klein

et al., 2005); in endosomes they co-localize with MHC class II

molecules and we have previously shown that pharmacological

stimulation of RyR1 results in the rapid expression of pre-formed

MHC class II molecules on the cell surface (Vukcevic et al.,

2008). Taken together these results support the observations that

DC maturation results from the convergence of different signals

Fig. 4. HET RYR1Y522S knock-in mice produce higher titres of antigen-specific IgG1 than their wild-type littermates at the early stages post-infection or

immunization. (A) Mice were immunized with 100 mg OVA as described in Materials and Methods, and the concentration of circulating OVA-specific IgG1 was

determined after 7, 14 and 21 days. After 7 days the mice were re-immunized. Each point represents the average level of IgG1 per mouse. WT mice, black boxes;

HET RYR1Y522S knock-in mice, black triangles. The serum levels of anti-OVA IgG1 are significantly higher in the HET RYR1Y522S mice. Statistical analysis was

performed using the ANOVA test followed by the Bonferroni post hoc test (*P,0.02). (B) Mice were orally infected with H. p. bakeri larvae and the

concentration of worm-specific (left panel) or HES-specific (right panel) IgG1 was determined after 7 days by ELISA. Each point represents the average amount of

IgG1 per mouse. WT mice, black boxes; HET RYR1Y522S knock-in mice, black triangles. P-values were significantly different according to the Student’s t-test.
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arising from cytokine release, RyR1-activation and NFkB

translocation (Bracci et al., 2007; Baeuerle and Henkel, 1994;
Frantz et al., 1994).

An interesting observation concerning the role played by RyR1
in the immune system is that the sera of ‘un-stimulated’ HET

RYR1Y522S mice show elevated levels of circulating natural IgG1

and IgE. Natural antibodies are produced in the absence of
external antigenic stimulation and are directed against a wide

spectrum of self- and non-self antigens (Avrameas et al., 2007);
their role is related to early protection against pathogens
(Ochsenbein et al., 1999; Baumgarth et al., 2005; McCoy et al.,

2006). On the other hand, high levels of IgEs in conjunction with
increased levels of eosinophils are often seen in the circulation of
allergic individuals and are thought to arise because T cells orient
towards the Th2 phenotype (Yazdanbakhsh et al., 2002). Our

results suggest that RyR1 signalling in DCs may affect Th-cell
differentiation by influencing their development into Th1 or Th2
and/or Treg. However, no changes in the release of IL-4 and

TNF-a were observed in the mixed lymphocyte reaction and IL-
10 and IL-4 were not detected in the sera of either mouse group.
Furthermore under basal conditions no shift in the T-cell profile

was observed in the spleens of WT and HET RYR1Y522S mice
when evaluated for expression of transcription factors and surface
markers characteristic for Th1 or Th2 cells. Accordingly,

additional signals besides changes in Ca2+ homeostasis are
probably required for T-cell orientation and release of IgG1/IgE
by plasma cells may be controlled by several Th-dependent
mechanisms.

HET RYR1Y522S mice respond faster to antigenic challenges

Our next question deals with the influence of altered Ca2+

signalling on the development of a specific humoral immune

response. This was approached by immunizing mice either with
the non-infectious agent ovalbumin or, in light of the elevated
IgE levels, with the helminthic parasite H. p. bakeri. In both cases

the levels of antigen-specific IgG1 reached similar levels in WT
and HET RYR1Y522S mice at 2 weeks or later; however, HET
RYR1Y522S mice were more rapid at responding to antigenic

challenges during the early phases, i.e. at 7 days, indicating that
the gain of function of antigen-presenting cells brought about by
the RYR1 knock-in mutation, primes the immune system so that it
is more efficient at responding in a specific and T-cell dependent

way to antigenic challenges. Indeed anti-OVA IgM values were
similar in WT and HET RYR1Y522S mice. In the case of the
parasitic infection HET RYR1Y522S mice were also faster than

WT littermates in responding to the infection and produced more
parasite-specific IgG1 antibodies both to whole worm extracts
and to the HES antigen, even though they ultimately harboured

the same level of parasite counts as their wild-type littermates.
Vaccination with HES has been reported to confer protection to
experimental infection with H. p. backeri, but of the various

antibodies generated, those recognizing the VAL-1, VAL-2 and
VAL-4 antigens are non-protective and possibly act as decoy
molecules giving rise to an ineffective immune response
(Hewitson et al., 2011). In this context it should be mentioned

that the number of circulating eosinophils was similar in both
mice; thus, since eosinophils are involved in killing helminths,
the early development of specific IgG1 is not sufficient to protect

the host against this parasitic infection.

The main question underlying the experiments described in the
present manuscript is whether or not gain-of-function mutations

in the RyR1 Ca2+ channel offers, or not, a selective advantage to
its host. The primary organ that is affected by mutations is

skeletal muscle, and aside from rendering the muscle excitation-
contraction machinery more excitable to low levels of
stimulation, there seems to be no overt advantage. While

investigating the relationship between MH and cytokines we
found that the presence of MH-causing RYR1 mutations is
associated with a higher release of the pro-inflammatory
cytokines IL-6 and IL-1 from cultured myotubes and B-

lymphocytes (Girard et al., 2001; Ducreux et al., 2004).
Furthermore in humans, but not in mice, circulating levels of
IL-1 and IL-6 are significantly elevated in individuals bearing

dominant RYR1 mutations compared to control subjects (S.T., F.Z.
and M.V., unpublished results), indicating a potential complex
interplay between infection/inflammation/RYR1 mutations.

In conclusion, this report provides evidence that HET
RYR1Y522S mice carrying the RYR1 mutation Y522S have a
gain in immune functions. These experiments represent ‘the

proof of concept’ that pharmacological activation of ‘normal’
RyR1 may enhance primary immune responses. These results
also raise several potentially important scientific and medical

issues, namely the possibility that individuals with a genetic
predisposition to develop allergies, thus possessing a Th2
orientation (IgE, eosinophils, IL-4 and IL-10) may express gain
of function polymorphic variants of RYR1. Since vaccination

induces a primary immune response and DCs represent a key
target for adjuvant activity an important focus for future research
in the field of new vaccine and adjuvant development could

target the skeletal muscle RyR1 in doing so however, one must
keep in mind that the RyR1 is predominantly expressed in
skeletal muscle and its pharmacological activation could lead to

severe consequences from abnormal muscle contraction to full-
blown MH-like episodes.

Materials and Methods
Mice

HET RYR1Y522S knock-in mice model were kindly provided by Prof. Susan L.
Hamilton (Chelu et al., 2006). Mice were caged in the Specific Pathogen Free SPF
facility of the ZLF of the Basel University hospital and all experiments were
performed following the regulations of the local Kantonal authorities (animal
permit no. 1728 and 1729, 2081). For all experiments 8–10-week-old male
heterozygous (HET RYR1Y522S) mice and their wild-type littermate same sex
siblings were used. Mice were genotyped by PCR amplification of genomic DNA
isolated from a biopsy using the following primers and conditions: F 59-
TCTCCCTGGTCCTGAATTGC-39 and R 59-AGCGTACAGCCACACCATTG-
39, 95 C̊ 3 min followed by 30 cycles 95 C̊ 30 sec, 54 C̊ 45 sec, 72 C̊ 45 sec and a
final extension at 72 C̊ for 4 min. Genotyping was performed by restriction
enzyme digestion of the amplified genomic DNA with BlpI restriction enzyme.
DNA from WT mice (2/2) yields a band of about 700 bp, while digestion of the
genomic DNA from HET RYR1Y522S mice (+/2) shows in addition to the band
700 bp, a band of 600 bp.

Isolation of DCs, T-cells and B-cells from mouse spleens

Single-cell suspensions were prepared from mouse spleens by enzymatic
disaggregation using collagenase type I (Sigma chemicals, St. Louis, MO, USA,
C0130) according to the magnetic cell sorting protocol (Miltenyi Biotech, Bergisch
Gladbach, Germany). DCs, T-cells and B-cells were isolated by positive sorting
using anti-CD11c, CD4 and CD19-coated magnetic MicroBeads (Miltenyi
Biotech, Bergisch Gladbach, Germany), according to the manufacturer’s
instructions.

Resting [Ca2+]

Measurements were performed on fura-2 (Invitrogen, Lucerne, Switzerland)
loaded CD11c+ splenic DCs isolated from wild-type and HET RYR1Y522S knock-
in mice, as previously described (Ducreux et al., 2004). Briefly, after loading, cells
were rinsed, resuspended in Krebs-Ringer medium containing 2 mM CaCl2 and
allowed to adhere to poly-lysine treated glass coverslips. Online (340 nm, 380 nm,
and ratio) measurements were recorded using a fluorescent Axiovert S100 TV
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inverted microscope (Carl Zeiss, Jena, Germany) equipped with a 406oil
immersion Plan NeoFluar objective (0.17 NA) and filters (BP 340/380, FT 425,
BP 500/530) and attached to a Cascade 128+ CCD camera. Cells were analyzed
using Metamorph and the average pixel value for each cell was measured at
excitation wavelengths of 340 and 380 nm, as previously described (Ducreux et al.,
2004). Fura-2 fluorescent ratio signals were converted into [Ca2+] using the Fura-2
Ca2+ imaging calibration kit from Molecular Probes (Invitrogen, Lucerne,
Switzerland, catalogue N˚ F6774) following the manufacturer’s instructions.
Images of Fura-2 in the different buffers were acquired using a 406oil immersion
Plan NeoFluar objective (0.17 NA) and filters (BP 340/380, FT 425, BP 500/530)
and attached to a Cascade 128+ CCD camera as described above for resting [Ca2+]
measurements.

Flow cytometry

Flow cytometry was performed as previously described (Vukcevic et al., 2008)
using a FACSCalibur equipped with Cell Quest software (Becton Dickinson
Pharmingen, Allschwil, Switzerland). Briefly, cells were washed and resuspended
in phosphate buffered saline (PBS), and incubated for 30 minutes at 4 C̊ in the
presence of fluorochrome labeled commercial monoclonal antibodies against the
following surface markers: CD83, CD3, CD19, CD11c, CD11b, CD4, CD8,
CD138, IgG1, IgM, IgE and I-Ab or isotype-matched controls (Becton Dickinson
Pharmingen, Allschwil, Switzerland).

RT PCR

Total RNA was isolated from dendritic cells using RNAeasy kit from Qiagen and
treated with deoxyribonuclease I (DNase I) (Invitrogen, Lucerne, Switzerland) to
eliminate contaminant genomic DNA. After reverse transcription using 500 ng of
RNA (high-capacity cDNA reverse transcription kit, Applied Biosystems, Forster
City, CA, USA), cDNA was amplified by quantitative real-time PCR using SYBR
Green technology (Fast SYBR Green Master Mix, Applied Biosystem, Forster
Cita, CA, USA) and exon-intron junction-designed primers for TATA box binding
protein, CD83, CD86, IL12p40 and IL23p19. Gene expression was normalized
using self-TATA box binding protein as reference. The expression of RYR1 was
investigated by semi-quantitative RT PCR. cDNA was amplified using primers and
conditions as described in genotyping section. Amplified cDNA was digested with
the restriction enzyme BlpI; cDNA from WT mice (2/2) yields a band of
,376 bp, while digestion of the cDNA from HET RYR1Y522S (+/2) shows bands
of ,376 bp and 276 bp plus a band of 100 bp.

Mixed lymphocytes reaction assay and cytokine secretion

Mixed leukocytes cultures were set up in triplicate in 96-well flat-bottom
microplates (Becton Dickinson Pharmingen, Allschwil, Switzerland) with graded
ratios of DC:T cells (1:2.5, 1:5, 1:10, 1:20, 1:40, 1:80, 1:160) using DCs isolated
from WT and HET RYR1Y522S littermates with the C57BL/6 background as
stimulator cells and 56104 T-cells as isolated from WT BALB/c mice (responder
cells). Cultures were incubated for 4 days in RPMI medium supplemented with
10% foetal calf serum. During last 18 h of culture, [3H]thymidine was added and
lymphocyte proliferation was assessed by [3H]-thymidine incorporation. For
cytokine secretion, the supernatants from mixed lymphocyte cultures were
collected after 3 days of co-culture and the concentrations of IFNc, TNFa, IL-4
and IL-10 were evaluated by ELISA (eBioscience, Inc., Becton Dickinson
Pharmingen, Allschwil, Switzerland) following manufacturer’s instructions.

Immunoglobulin enzyme linked immunosorbent assay (ELISA)

Circulating levels of IgG1, IgG2a, IgG2b, IgG3, IgE and IgM were determined by a
sandwich ELISA using goat anti-mouse IgG1 (GeneTex Inc., catalogue number
GTX29165), IgG2a (GeneTex Inc., catalogue number GTX29163), IgG2b
(GeneTex Inc., catalogue number GTX29164) and IgG3 (GeneTex Inc., catalogue
number GTX77284) as coating antibodies and goat anti-mouse IgG peroxidase
(Sigma, St Louis, MO, USA, catalogue number A2304) as a secondary Ab. In the
case of IgE, plates were coated with goat anti-mouse IgE (SouthernBiotech,
Birmingham, AL, USA, catalogue number 1110-01) and horseradish peroxidase
conjugated goat anti-mouse IgE (SouthernBiotech, Birmingham, AL, USA,
catalogue number 1110-05) were used for detection. As standards we used mouse
IgG1, IgG2a, IgG2b, IgG3 isotype controls (GeneTex Inc.) and mouse IgE isotype
control (Biolegend, San Diego, CA, USA). To detect total IgM we used the ELISA
kit from eBioscience (catalogue number 88-50470) and followed the manufacturer’s
instructions. Sera were diluted from 1:10 to 1:50,000 depending on the
immunoglobulin being investigated.

Immunization and assessment of OVA specific IgGs

Wild-type and HET RYR1Y522S knock-in mice were immunized with five different
concentrations of ovalbumin (10, 20, 50, 100 and 200 mg in 0.2 ml mixture of PBS
and Alum as an adjuvant) and the sera were obtained 7, 14 and 21 days after the
immunization. In some cases mice were re-immunized after 7 days. The presence
of OVA specific IgG, IgG1, IgG2a and IgE antibodies was determined by ELISA.
Briefly, 96-well plates were coated with 100 mg/ml OVA overnight at 4 C̊. Wells

were washed with phosphate buffer saline (PBS), blocked with blocking buffer
(1:100 dilution blocking solution from Roche in PBS) for 2 h at room temperature.
Serum samples were diluted with PBS, added to the plates and incubated over-
night at 4 C̊. Plates were washed with PBS, incubated with horseradish peroxidase
conjugated secondary antibodies (goat anti-mouse IgG, IgG1, IgG2a and IgE
diluted 1:4000 in PBS) for 1 hour at room temperature. The reaction was
developed using 3,39,5,59-tetramethylbenzidine followed by 0.16 M sulphuric acid
as previously described (Ducreux et al., 2004) and the absorbance was monitored
at 450 nm with a Synergy H1 ELISA reader (BioTek Instruments, GmbH).

Heligmosomoides polygyrus bakeri infection, worm count and
measurements of IgGs against soluble extracts of whole worms and H. p.
bakeri excretory-secretory (HES) Ag
8–10 week-old WT or HET RYR1Y522S knock-in mice were infected orally with 80
L3. Blood was taken 7 and 14 days after infection and blood cell counts were
performed with an Advia 120 Haematology Analyzer using the Multispecies Software
(Bayer, Leverkusen, Germany). For worm counts, mice were killed 14 days post-
infection by CO2 euthanasia. For necroscopic examination, the entire intestine was
removed from each mouse, placed in a Petri dish and opened longitudinally. All
worms were removed and counted. Excretory-secretory antigens from adult H. p.
bakeri (HES) were prepared as previously described (Hewitson et al., 2011). Soluble
extracts of adult worms were prepared by lysing worms in 50 mM HEPES pH 8.0,
1 mM EDTA, 140 mM KCl 0.5% NP-40 1% Triton X-100, 1% deoxycholate. After
vortexing, the extracts were placed on a rotary shaker for 30 min shake and
centrifuged at 10,000 g for 5 min. The supernatant (total soluble extract) was collected
and the protein concentration measured using BCA protein assay kit according to the
manufacturer’s instructions (Thermo Scientific Inc.). Specific IgG and IgE antibodies
in plasma were determined by ELISA in 96-well plates (COSTAR 9018) coated
overnight at 4 C̊ with 0.2 mg/well of total worm soluble extract or 0.4 mg/well of HES
Ag in coating buffer (0.1 M Carbonate/Bicarbonate buffer, pH 9.6). Wells were
washed, blocked with blocking buffer for 2 h at room temperature and processed as
described above for anti-OVA IgG determination.

Blood samples
Blood was collected from WT and HET RYR1Y522S knock-in mice in microtainer
coated with EDTA (Becton Dickinson Pharmingen, Allschwil, Switzerland) and
diluted 1:4 in 0.9% Sodium Chloride solution; samples were analysed with an
Advia 120 Haematology Analyzer using the Multispecies Software (Bayer,
Leverkusen, Germany). Peripheral blood mononuclear cells were isolated from
fresh blood by Ficoll density gradient centrifugation (Histopaque, catalogue
number 1077, Sigma Chemicals, St Louis, MO, USA), washed once, resuspended
in phosphate-buffered saline and incubated for 30 minutes at 4 C̊ in the presence of
fluorochrome labeled commercial monoclonal antibodies recognizing the
following surface markers: CD4 and CD8 or isotype-matched controls (Becton
Dickinson Pharmingen, Allschwil, Switzerland). The percentage of CD4-positive
or CD8-positive cells was determined using a FACSCalibur instrument equipped
with Cell Quest software (Becton Dickinson Pharmingen, Allschwil, Switzerland).

T helper cell profiling
Splenocytes were analyzed freshly or 5 days after stimulation (106 cells/ml) with
CD3/CD28 coated Dynabeads (Invitrogen, Lucerne, Switzerland). For re-
stimulation of T cells, Dynabeads were removed from the culture medium, cells
were allowed to recover overnight and were then re-stimulated with CD3/CD28
coated Dynabeads in the presence of monensin (Becton Dickinson Pharmingen,
Allschwil, Switzerland) for 6 h. Prior to fixation, cells were stained for viability with
the LIVE/DEAD cell staining kit (Invitrogen, Lucerne, Switzerland) and surface
staining was performed. For intracellular detection of cytokines and transcription
factors the Becton Dickinson (Pharmingen, Allschwil, Switzerland) Cytofix/
Cytoperm Kit was used. Non-specific binding of Fcc II/III receptors was blocked
with anti-CD16/CD32 antibodies. Cells were analyzed on a FACSCanto II (Becton
Dickinson Pharmingen, Allschwil, Switzerland). The following antibodies were
used: phycoerythrin/Cy7 anti-mouse IL-4 and allophycocyanin anti-mouse IL-17A
(Biolegend Europe), Alexa-Fluor 700 anti-mouse IFN-c (Becton Dickinson
Pharmingen, Allschwil, Switzerland); phycoerythrin anti-mouse GATA-3,
peridinin chlorophyll protein anti-mouse T-bet, allophycocyanin anti-mouse
Rorct, phycoerythrin anti-mouse ICOS, phycoerythrin anti-mouse OX40 and
phycoerythrin anti-mouse IL-13 (eBioscience Inc.).

Statistical Analysis
Statistical analysis was performed using the Student’s t-test; means were
considered statistically significant when the P,0.05. When more than two
groups were compared, analysis was performed by the ANOVA test followed by
the Bonferroni post hoc test.
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Fig. S1. The spleens isolated from HET RYR1Y522S mice contain a significantly higher percentage of CD3-positive T-cells, than the spleens of 
their WT littermates. Splenocytes isolated from WT and HET RYR1Y522S littermates were labelled with antibodies against CD4, CD8, CD3, MHCII, 
CD11c, CD11b and CD83 and the percentage of positive cells was monitored by FACS as described in the Methods section. Bars represent the 
mean (±s.e.m) percentage positive cells of experiments carried out in duplicate on the spleens isolated from n mice. The percentage of CD3-positive 
T-lymphocytes was significantly higher in HET RYR1Y522S mice compared to their WT littermates (P<0.003 Student’s t test).



Table S1. Complete blood counts of WT and HET RYR1Y522S mice.

Table S1: Complete blood counts of WT and HET RYR1Y522S mice 

 WT (n=9) HET RYR1Y522S 
(n=10) 

Significance 

Total leukocytes 10.44 ± 0.87 x109 /L 12.24 ± 2.6 x109 /L N.S. 
Neutrophils 1.02 ± 0.74 x 109 /L 1.11± 0.74 x 109 /L N.S. 
Lymphocytes 8.84 ± 1.44 x 109 /L 10.81± 2.27 x 109 /L P< 0.04 
Monocytes 0.15± 0.1 x 109 /L 0.12± 0.07x 109 /L N.S. 
Eosinophils 0.41± 0.29 x 109 /L 0.31± 0.07x 109 /L N.S. 
Platelets 1.60 ± 0.28 x 1012/L 1.57 ± 0.21 x 1012/L N.S. 
Erythrocytes 1.07± 0.6 x 1012/L 1.13 ± 0.6 x 1012/L N.S. 
Reticulocytes 3.34 ± 0.05 x 1012/L 3.40 ±0.06 x 1012/L N.S. 
Haematochrit 0.52 ±0.02 L/L 0.54 ±0.02L/L P<0.05 
Haemoglobin 154.7±9.8 g/L 159.6±3.5 g/L N.S. 
 

Table S2. T-helper and B-cell populations in the spleens of WT and HET RYR1Y522S mice.

Table  S2: T-helper and B-cell populations in the spleens of WT and HET RYR1Y522S mice 
 
 

 

      

                                                  T-cells 
  

 

 

                                          B-cells 
  

 
Mouse 
genotype 

% of T1/ST2+ 
(mean±S.E.M) 

% of OX40+ 
(mean±S.E.M) 

% of ICOS+ 
(mean±S.E.M) 

% of GATA3+ 
(mean±S.E.M) 

% of Tbet+ 
(mean±S.E.M) 

% of CD138+ 
(mean±S.E.M) 

% of IgM+ 
(mean±S.E.M) 

% of IgG1+ 
(mean±S.E.M) 

% of IgE+ 
(mean±S.E.M) 

WT 1.4±0.2 1.85±0.24 12.6±0.8 3.3±0.09 10.5±1.1 0.4±0.01 0.77±0.05 0.1±0.03 0.53±0.19 
HET 
RYR1Y522S 1.7±0.2 2.28±0.15 13.9±0.4 3.2±0.25 12.8±0.6 0.41±0.04 1.5±0.5 0.09±0.03 0.55±0.17 

 

 

      

      T-cells after stimulation with CD3/CD28 beads 
                                Th1/Th2 cytokine profile 
  
 

Mouse 
genotype 

% of CD44 
(mean±S.E.M) 

% of IFN-g 
(mean±S.E.M) 

% of IL4 
(mean±S.E.M) 

% of IL13 
(mean±S.E.M) 

% of IL17 
(mean±S.E.M) 

WT 52.7±0.44 10.15±1.3 0.30±0.06 0.62±0.02 0.20±0.05 
HET 
RYR1Y522S 52.0±2.20  9.55±1.5 0.33±0.07 0.48±0.07 0.08±0.04 

 
 



Table S3: Complete blood counts of WT and HET RYR1Y522S mice 7 and 14 days 
post H.p. bakeri infection 

7 days post 
infection 

WT (n=10) HET RYR1Y522S 

(n=10) 
Significance 

Total leukocytes 10.6 ± 5.9x 109 /L 8.2± 3.9 x 109 /L n.s. 
Neutrophils 5.0 ± 4.9 x 109 /L 3.4 ± 3.5 x 109 /L n.s.. 
Lymphocytes 5.1 ± 1.7 x 109 /L 4.2 ± 1.9 x 109 /L n.s. 
Monocytes 0.2 ± 0.1 x 109 /L 0.2 ± 0.1 x 109 /L n.s. 
Eosinophils 0.3 ± 0.1 x 109 /L 0.4 ± 0.3 x 109 /L n.s.. 
Platelets 1.5 ± 0.3 x 1012 /L 1.4 ± 0.1 x 1012 /L n.s. 
Erythrocytes 10.6 ± 5.5 x 1012 /L 10.1 ± 4.5 x 1012 /L n.s. 
Reticulocytes 3.4 ± 0.9 x 1012 /L 2.6 ± 0.5 x 1012 /L P<0.03 
Haematocrit 0.49 ± 0.03 L /L 0.50 ± 0.02 L /L n.s. 
Haemoglobin 150.0 ± 9.2 g/L 153.2 ± 5.7 g/L n.s. 
14 days post 
infection 

   

Total leukocytes 10.1 ± 2.9 x109 /L 9.6 ± 3.7 x109 /L n.s. 
Neutrophils 1.6 ± 1.1 x 109 /L 2.4 ± 2.8 x 109 /L n.s.. 
Lymphocytes 7.7 ± 2.5 x 109 /L 6.3 ± 1.7 x 109 /L n.s. 
Monocytes 0.20 ± 0.1x 109 /L 0.20 ± 0.1 x 109 /L  n.s. 
Eosinophils 0.6 ± 0.20 x 109 /L 0.6 ± 0.3 x 109 /L n.s.. 
Platelets 1.6 ± 0.3 x 1012 /L 1.6 ± 0.2 x 1012 /L n.s. 
Erythrocytes 9.6 ± 0.6 x 1012 /L 9.6 ± 0.5 x 1012 /L n.s. 
Reticulocytes 7.6 ± 0.8 x 1012 /L 7.4 ± 0.9 x 1012 /L n.s. 
Haematocrit 0.45 ± 0.02 L /L 0.45 ± 0.03 L /L n.s. 
 

 

	
  

Table S3. Complete blood counts of WT and HET RYR1Y522S mice 7 and 14 days post Heligmosomoides polygyrus bakeri infection.



Table S4. Ig against total Heligmosomoides polygyrus bakeri extract and HES and Heligmosomoides polygyrus bakeri worm load after 7 and 
14 days in WT and HET RYR1Y522S mice.

Table S4:  
Ig against total H.p.bakeri extract and HES and H.p.bakeri worm load after 7 and 14 days in WT and HET RYR1Y522S mice 
 
Mouse N° genotype Anti-H.p.bakeri 

IgG1 7 days 
Anti-HES 
IgG1 7 days 

Anti-
H.p.bakeri 
IgG1 14 days 

Anti-HES IgG1 
14 days 

Anti-
H.p.bakeri 
IgE 14 days 

Anti-HES 
IgE 14 days 

H.p.bakeri 
Worm load 

940 WT 0.159 0.34 0.31 1.10 0. 098 0.33 11 
982 WT 0.18 0.20  0.42 1.20 0.03 0.23 20 
956 WT 0.11 0.18 0.70 1.20 0.014 0.16 81 
991 WT 0.18 0.27 0.40 1.30 0.09 0.20 21 
948 WT 0.21 0.18 0.50 0.90 - 0.22 56 
987 WT 0.1 0.10 0.41 1.10 0.02 0.27 5 
950 WT 0.32 0.34 0.34 0.52 0.01 0.12 20 
937 WT 0.18 0.20 0.67 1.40 0.024 0.22 24 
965 WT 0.1 0.17 0.43 0.90 0.004 0.20 16 
949 WT 0.077 0.10 0.40 0.90 0.02 0.17 19 
939 HET 0.20 0.29 0.80 1.54 0.11 0.43 19 
983 HET 0.46 0.37 0.34 0.56 0.005 0.14 4 
930 HET 0.41 0.50 0.80 0.90 - 0.23 5 
957 HET 0.17 0.21 0.31 0.65 0.013 0.21 10 
988 HET 0.35 0.36 0.60 1.20 0.02 0.35 23 
989 HET 0.14 0.20 0.40 0.60 0.024 0.26 9 
990 HET 0.22 0.27 1.10 2.80 0.03 0.16 81 
951 HET 0.12 0.15 0.40 0.85 0.014 0.25 27 
938 HET 0.38 0.30 0.71 1.75 0 0.37 82 

Table S5. Mean (± SEM) anti-Heligmosomoides polygyrus bakeri and anti-HES Ig titers in WT and HET RYR1Y522S mice. 

Table S5: Mean (±SEM) anti-H. p. bakeri and anti-HES Ig titers in WT and HET RYR1Y522S  mice.  
 
 

 
*P<0.035 Student’s t test 
**P<0.04 
# not detected 
 

                      Whole worm protein extract                                   HES  

Mouse 
genotype 

IgG1 7 days 
 

IgG1 14 days 
 

IgE 7 days ( IgE 14 days  IgG1 7 days 
 

IgG1 14 days 
 

IgE 7 days 
 

IgE 14 days  Worm count 
 

WT 0.162±0.02 0.458±0.04 #n.d. 0.034±0.01   0.208±0.03 1.05±0.08  #n.d. 0.21±0.01 27.3±7.3 
HET 
RYR1Y522S 

*0.267±0.04 0.607±0.08 #n.d. 0.027±0.01 **0.299±0.03 1.27±0.20   #n.d. 0.26±0.03 31.5±9.6 
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