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Abstract

We study the semiclassical limit from the time-dependent Hartree equation with Coulomb
or gravitational potential to the Vlasov-Poisson equation. We prove convergence in trace norm
for mixed states under a technical assumption on the solution of the Vlasov-Poisson equation.
We exhibit a special class of mixed quasi-free states which satisfies this assumption.

1 Introduction

In this paper we shall focus on the derivation of the three-dimensional Vlasov-Poisson system




∂tf(t, x, v) + v · ∇xf(t, x, v) + E · ∇vf(t, x, v) = 0 ,

E(t, x) =
(
∇ γ

|·| ∗ ̺
)
(t, x) , (t, x, v) ∈ R+ × R

3 × R
3

̺(t, x) =
∫
f(t, x, v) dv ,

(1.1)

from the quantum N -body dynamics in a joint mean-field and semiclassical regime. More precisely,
we will assume the mean-field description given by the Hartree equation to be correct and will
address the semiclassical limit from the Hartree dynamics (cf. Eq. (1.4)) towards the Vlasov-
Poisson equation (1.1).
The system (1.1) is an effective equation, whose unknown f : R+ × R

3 × R
3 → R is a time

dependent function on the phase space modelling the probability density of particles in a plasma
under the effect of a self-induced field E, dependent on the spatial density ̺ : R+×R

3 → R+. The
parameter γ takes values −1 or 1 if the interaction is respectively gravitational or Coulombian.
From a physical viewpoint, the attractive case (γ = −1) describes the motion of galaxy clusters
under the gravitational field with many applications in astrophysics (cf. [28, 29]). The repulsive
case (γ = 1) represents the evolution of charged particles in presence of their self-consistent electric
field and it is used in plasma physics or in semi-conductor devices (cf. [48]). In this context, the
self-induced field E(t, x) is a conservative force, hence there exists a real-valued function of time
and space U(t, x) such that E = ∇xU which satisfies the Poisson equation −∆xU = ̺t. More
precisely, Eq. (1.1) can be rewritten as a Vlasov equation coupled with a Poisson equation, whence
the name Vlasov-Poisson system.

Many authors have been investigating the problem of deriving the Vlasov-Poisson system (1.1)
from the many-body quantum dynamics. The aim of this paper is to give a better understanding
of the derivation of the Vlasov-Poisson system from the quantum mean-field dynamics given by
the Hartree equation (cf. Eq. (1.4)), providing strong convergence and explicit estimates on the
semiclassical limit. More precisely, our result focuses on the vertical arrow of the diagram in (1.3)
when the interaction among particles is given by the Coulomb or by the gravitational potential.
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In particular, our setting applies to bosons, but it is also compatible with the one arising from
the mean-field scaling for fermions in which a coupling between the number of particles and the
semiclassical parameter is prescribed. More precisely, a parameter εN (which plays the role of the
Planck constant ~) is linked to the number of particles N by the identity

εN = N− 1
3 . (1.2)

This regime differs from the bosonic one, in which the mean-field approximation and the semi-
classical limit are not coupled, and can be considered as two completely different steps. In other
words, the mean-field scaling for bosons produces an effective Hartree equation that depends on
the Planck constant ~ (whose role is played by the parameter ε throughout this paper), but not on
the number of particles, whereas the Hartree equation for fermions is still N dependent through the
relation (1.2). For a rigorous justification of the mean-field limit for fermions interacting through
a singular potential and its physical motivations we refer to [44, 45].
For the rest of the paper we will discard the subscript N in εN in (1.2) and denote it simply by ε
for the sake of readibility. Moreover, we will focus on the fermionic setting and therefore assume
the solution of the Hartree equation to be a fermionic operator (cf. next paragraph and Eq. (1.5)).
For bosons the exact same proof holds, without the coupling of N and ε given in (1.2).

State of art. The first derivation of the Vlasov equation from many-body quantum dynamics
was obtained in the 80s by Narnhofer and Sewell [39] for interaction potentials V ∈ Cω(R3) and
extended to V ∈ C2(R3) by Spohn in [47]. These results establish convergence of the dynamics,
but no information on the rate of convergence is provided. An analogous result has been obtained
by Graffi, Martinez and Pulvirenti in [26] by analysing the dynamics of factored WKB states and
combining the mean-field and the semiclassical limit.

N-body Schrödinger Eq. Hartree Eq.

Vlasov Eq.

N→∞
ε→0

N≫1

ε→0 (1.3)

A different approach consists in considering the Hartree equation as a bridge between the N -
body Schrödinger dynamics and the Vlasov equation, as pictured in (1.3). The Hartree equation
reads

iε∂t ωN,t =
[
−ε2∆+ V ∗ ̺t , ωN,t

]
(1.4)

where ωN,t is a nonnegative trace class fermionic operator over L2(R3), ̺t is the diagonal kernel
of ωN,t, i.e. ̺t(x) = N−1ωN,t(x;x), and for two operators A and B the standard notation [A,B]
stands for the commutator AB −BA. More precisely, we say that an operator ωN,t is fermionic if
the bounds

0 ≤ ωN,t ≤ 1 (1.5)

hold. Notice moreover that if we assume (1.5) at time t = 0, the equation (1.4) propagates such a
bound for positive times.

Looking at the Hartree equation (1.4), one observes that its solution ωN,t is still N dependent
and one expects it to approach a solution to the Vlasov equation as N → ∞. Figure (1.3) above
describes two ways of deriving the Vlasov equation from the many-body dynamics: either one
performs a direct limit N = ε−3 → ∞, or one first observes that for N large but fixed the
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many-body Schrödinger equation is approximated by the Hartree equation and then performs the
semiclassical limit ε → 0 recovering the Vlasov equation





∂tWt + 2 v · ∇xWt −∇(V ∗ ̺t) · ∇vWt = 0 ,

̺t(x) =
∫
Wt(x, v) dv .

To compare these objects, namely an operator ωN,t on L2(R3) (solution to the Hartree equation
(1.4)) and a function WN,t defined on the phase space R3×R

3 (solution to the Vlasov system (1.1)),
we introduce two standard tools in semiclassical analysis: the Wigner transform of an operator
ωN,t defined as

WN,t(x, v) =
( ε

2π

)3 ∫
ωN,t

(
x+ ε

y

2
;x− ε

y

2

)
e−iv·ydy , (1.6)

and its inverse, known as Weyl quantization, given by

ωN,t(x; y) = N

∫
WN,t

(
x+ y

2
, v

)
eiv·

(x−y)
ε dv . (1.7)

We recall that the Wigner transform of a fermionic operator is not always a probability density
on the phase space, as in general it is not positive. This issue can be fixed by using the Husimi
transform (see [11] for further discussions on this point).

The horizontal line in figure (1.3) in the regime under consideration has been investigated in
[15, 12], where it has been shown that for regular interaction potentials the Hartree equation is a
good approximation for the many-body Schrödinger evolution when considering zero temperature
states enjoying a semiclassical structure. More precisely, in [15] the convergence of the Schrödinger
dynamics towards a solution of the Hartree equation in the sense of reduced density matrices has
been proved for short times and without a control on the rate of convergence. In [12] the authors
prove that such an approximation holds for time intervals of order one and provide explicit estimates
on the speed of convergence in terms of the number of particles N . This latter has been extended
to positive temperature states in [10] and to fermions with semi-relativistic dispersion relation in
[14]. For singular potentials of the form V (x) = γ |x|−α, for α ∈ (0, 1] and γ = ±1, it has been
shown in [44, 45] that the Hartree dynamics is still a good approximation of the many-body one,
at least for a very special class of initial data, namely translation invariant states.
Different regimes have been considered in [5, 6, 7, 8, 19, 40, 42]. More precisely, states confined
in a volume of order O(N) have been studied in [5, 40, 42], while a regime in which the potential
energy is sub-leading with respect to the kinetic one has been considered in [6, 7, 8, 19].

Using (1.6), in [36, 20, 38, 17] the vertical line in figure (1.3) has been investigated. The authors
prove convergence in weak sense towards the solutions of the Vlasov equation. The analysis in
[36, 17] includes the Coulomb potential, but does not provide explicit bounds on the convergence
rate, which are fundamental for applications. Indeed, in all relevant situations, the number of
particles N is large, but finite. An explicit control on the convergence rate therefore allows to
determine how large the system (i.e. the number of particles N) should be in order for the Vlasov
equation to be a meaningful approximation.

The paper [3] was the first of a long list of references in which this aspect has been tackled.
Indeed, in [3] Athanassoulis, Paul, Pezzotti and Pulvirenti obtain the convergence of the Wigner
transform of a solution to the Hartree equation towards a solution to the Vlasov equation in
Hilbert-Schmidt norm with a relative rate N− 2

21 for V ∈ H1(R3). In [42] and [1, 2] an expansion
of the solution of the Hartree equation in powers of ε has been provided.
More recently, in the same spirit of [3], assumptions on the potentials have been relaxed first to in-
teractions V such that∇V ∈ Lip(R3) [11] and then to inverse power law potentials V (x) = γ|x|−α,
for α ∈ (0, 1/2) and γ = ±1 (cf. [45]). A key ingredient is to consider the problem from the per-
spective of the Weyl quantization, instead of the one of the Wigner transform usually adopted in
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the previous literature. In the same regime, convergence of minimizers of the N -particle energy to
the mean-field energy has been proven in [18, 33], respectively for zero and positive temperature.
A different approach has been recently proposed by [23] with the introduction of a new pseudo-
distance which is reminiscent of the Monge-Kantorovich distance for probability measures in the
setting of classical mechanics. Under appropriate conditions on the initial states, such a pseudo-
distance metrizes weak convergence. For potentials V such that the force satisfies ∇V ∈ Lip(R3),
Golse and Paul prove that the Vlasov equation is a good approximation for the Hartree dynam-
ics when considering a special class of bosonic states, defined through Töplitz operators in [23]
and they are able to consider projection operators in [24] by introducing the notion of quantum
empirical measure. In [25] the convergence result in [23] is proven to be uniform in the Planck
constant. On the same line, [23] has been extended by Laflèche in [30, 31] to the case of singular
interaction potentials, here included the Coulomb case, providing an explicit convergence rate. For
a certain class of initial states, the notion of convergence considered in [30, 31] is equivalent to
weak convergence.

In this paper we are interested in giving a strong notion of convergence from the Hartree
dynamics towards the Vlasov-Poisson equation, exhibiting explicit control on the convergence rate
and thus extending and complementing the previous results [36, 17, 30, 31].

Main result. To state precisely the main result of this paper, we introduce the following
notations. For s ∈ N, let Hs(R3 × R

3) denote the Hilbert space of real-valued functions f on the
phase space R

3 × R
3 with finite norm

‖f‖2Hs :=
∑

|β|≤s

∫∫

R3×R3

|∇βf(x, v)|2 dx dv ,

where β is a multi-index and ∇β acts on both x and v. For s,m ∈ N, let Hs
m(R3 ×R

3) denote the
Sobolev space Hs weighted with (1 + x2 + v2)m and define its associated norm

‖f‖2Hs
m
:=

∑

|β|≤s

∫∫

R3×R3

(1 + x2 + v2)m|∇βf(x, v)|2 dx dv .

We denote the m-th velocity moment associated to a function f ∈ L1(R3 × R
3) by

Mm(f) =

∫∫

R3×R3

|v|mf(x, v) dx dv . (1.8)

Moreover, we denote by ̺|[x,ωN ]| the function associated with the diagonal of the integral kernel of
the operator |[x, ωN ]|

̺|[x,ωN ]|(x) := |[x, ωN ]|(x;x) , for x ∈ R
3 , (1.9)

where we recall that given an operator A, |A| is defined as (A∗A)
1
2 .

Moreover, throughout the paper we look at the situation in which a smooth solution to the
Vlasov-Poisson equation exists and is unique. This is the case when the following assumptions on
the initial datum WN are satisfied:

i) WN ∈ L1 ∩ L∞(R3 × R
3) and Mm(WN ) < ∞ for all m < m0, with m0 > 6.

ii) For all R, T > 0,

ess sup
y, w

{|∇kWN |(y + vt, w) : |y − x| ≤ R, |w − v| ≤ R}

∈ L∞((0, T )× R
3
x;L

1(R3
v) ∩ L2(R3

v))
(1.10)

for k = 0, 1, . . . , 5.
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iii) There exists C > 0 independent of N such that ‖WN‖H6
4
≤ C .

In the same spirit of [11, 46], the main result of this paper reads

Theorem 1.1. Let ε = εN be defined as in (1.2). Let ωN be a sequence of fermionic operators on
L2(R3), 0 ≤ ωN ≤ 1, with tr ωN = N and with Wigner transform WN satisfying i), ii), iii). Let
ωN,t denote the solution of the time-dependent Hartree equation (1.4) with initial data ωN,0 = ωN

and let W̃N,t be the solution of the Vlasov-Poisson system (1.1) with initial data W̃N,0 = WN . Let

ω̃N,t denote the Weyl quantization of W̃N,t and assume that there exist a time T > 0, a number
p > 5 and a positive constant C such that

sup
t∈[0,T ]

3∑

i=1

[
‖̺|[xi,ω̃N,t]|‖L1 + ‖̺|[xi,ω̃N,t

‖Lp

]
≤ CNε . (1.11)

Then

tr |ωN,t − ω̃N,t| ≤ Ct N ε

[
1 +

4∑

i=1

εi sup
N

‖WN‖Hi+2
4

]
. (1.12)

where Ct is a constant depending only on the time t and on ‖WN‖H2
4
.

We comment on the meaning of the Theorem 1.1 above and discuss the assumptions.

• We notice that because of the normalization tr ωN,t = N , Eq. (1.12) proves that ωN,t and
ω̃N,t are close as N is large. Indeed, the trace norm of ωN,t − ω̃N,t is smaller than the trace
of ωN,t and ω̃N,t.

• We observe that assumptions ii) and iii) restrict our analysis to the case of mixed states,
i.e. states at positive temperature. Indeed, at zero temperature a state can be approximated
by Slater determinants, whose Wigner transform is in general not smooth. Assumptions of
Theorem 1.1 are therefore expected to hold for states describing systems of N particles at
positive temperature, but do not include pure states, i.e. states at zero temperature (cf. [11]
for details).

• We comment on the assumptions. Hypotheses i) and ii) (for k = 0, 1) where proven in
[37] to guarantee existence, uniqueness and propagation of moments of a solution to the
Vlasov-Poisson system (1.1). Hypotheses ii) (for k = 2, . . . , 5) and iii) are crucial to ensure
regularity of the solution in H6

4 . The bounds (1.11) are assumed to hold true at positive time.
This is a severe restriction of our result. The quantity (1.9) has already played a central role
in [12, 44, 45]. We recall that the assumption

‖̺|[x,ωN ]|‖L1 = tr |[x, ωN ]| ≤ CNε (1.13)

is equivalent to ask for initial states enjoying a semiclassical structure. More precisely, the
Hartree equation is expected to be a good approximation for the many-body Schrödinger
dynamics if the kernel of the initial data ωN (x; y) is concentrated on the diagonal and decays
when |x− y| ≫ ε. Thus, as pointed out in [12], the kernel of ωN should be of the form

ωN (x; y) ≃ 1

ε3
ϕ

(
x− y

ε

)
̺

(
x+ y

2

)
, (1.14)

where ̺ represents the density of particles in space and ϕ fixes the momentum distribution.
In particular, (1.14) is compatible with (1.13). See Chapter 6 in[13] for a detailed explanation
and Section 5 in [12] for the propagation in time of (1.13) in the case of smooth interaction
potentials.

5



To deal with the singularity of the Coulomb and gravitational potentials, we need also to
control Lp norms of ̺|[x,ω̃N,t]| for p > 5, that means to require more structure on the operator
|[x, ω̃N,t]|. Under the assumptions of Theorem 1.1 we can control the L1 norm of ̺|[x,ω̃N,t]|,
by using that

‖̺|[x,ω̃N,t]|‖L1 = tr |[x, ω̃N,t]|
≤ ‖(1− ε2∆)−1(1 + x2)−1‖HS‖(1 + x2)(1− ε2∆)[x, ω̃N,t]‖HS

≤ C
√
N‖(1 + x2)(1− ε2∆)[x, ω̃N,t]‖HS ,

for a positive constant C. In the last line of the above inequality the Hilbert-Schmidt norm
(denoted by ‖ · ‖HS) can indeed be written in terms of the L2 norm of its kernel, that is

bounded by C
√
Nε‖W̃N,t‖H4

4
, in turn bounded under the assumptions i), ii), iii) on the

initial datum WN .
This reasoning leaves hope to the possibility of propagating in time the Lp norms of ̺|[x,ω̃N,t]|,
with p > 5, thus making our conditional assumption (1.11) not unreasonable. However, at
the moment we do not know which conditions one has to assume on the initial datum of
the Vlasov-Poisson equation in order for ‖̺|[x,ω̃N,t]|‖Lp to be bounded by CNε at positive
time when p > 1. Theorem 1.1 is therefore a result conditioned to the uniform in time
bounds (1.11). Nevertheless, there is one peculiar situation in which it is possible to verify
assumption (1.11) holds true for all p and it will be discussed in Section 4.

• Theorem 1.1 is stated and proved for the Hartree dynamics. However, at least heuristically,
it is expected to be true also for the Hartree-Fock equation





iε∂t ωN,t =
[
−ε2∆+ V ∗ ̺t −Xt , ωN,t

]
,

Xt(x; y) =
1

N
V (x− y)ωN (x; y) ,

(1.15)

for in this setting the exchange term should still be sub-leading. This has been proven in [12]
in the case of smooth interactions. At the moment, a rigorous proof in the case of singular
interactions is missing.

• With respect to the previous literature, Theorem 1.1 provides a strong notion of convergence
with explicit rate in the case of Coulomb and gravitational potentials. In particular, a
comparison with [30], where the Coulomb and gravitational interactions are considered, is
in order. Indeed, in [30] the semiclassical limit is proven in the weak topology induced by
the Monge-Kantorovich distance, whereas in the present paper we deal with the trace norm
topology. The price to pay for such stronger notion of convergence is that assumption (1.11)
seems at the moment difficult to state as an assumption at time zero, whereas in [30] all
assumptions are stated on the initial data. However, we will show in Section 4 that, at least
for a certain class of initial states, assumption (1.11) is satisfied.

Strategy of the proof. We present here the strategy of the proof in an informal way. We
proceed as in [11] by performing a comparison between solutions to the Hartree equation and the
Vlasov-Poisson system at the level of operators. This means to consider the Vlasov-Poisson system
in its Weyl quantized form (see Eq. (2.4)). More precisely, we consider a sequence of fermionic
operators ωN , i.e. operators such that 0 ≤ ωN ≤ 1, and look at their evolution first accordingly
to the Hartree equation and then according to the Weyl quantized Vlasov-Poisson equation. We
denote the solution to the Cauchy problem associated to the Hartree equation with initial data ωN

by ωN,t, whereas the solution of the Weyl quantized Vlasov-Poisson system with initial data ωN is
denoted by ω̃N,t. We recall that such a solution exists and it is unique under the assumptions of
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our theorem, due to the result by Lions and Perthame [37] and its extension to signed measure (see
[11] and [45]). We therefore compare ωN,t and ω̃N,t looking for a Grönwall type inequality on the
trace norm of the operator ωN,t − ω̃N,t. The fist difficulty to cope with is a bound on the kinetic
energy associated with the difference ωN,t− ω̃N,t. To overcome this issue, in the same spirit of [11]
we introduce a reference frame through a unitary dynamics. This suffices to tackle the problem
since in this new reference frame the kinetic energy term

[ −ε2 ∆ , ωN,t − ω̃N,t ]

does not appear anymore (see Lemma 2.1). With respect to [11], where interactions with two
bounded derivatives have been treated, the new difficulty here is to deal with the singularity at
zero of the Coulomb and gravitational potential. To face this more fundamental point, we make
use of an expression for the Coulomb potential introduced by Fefferman and de la Llave (see
Lemma 2.2). This turned out to be useful in [44, 45] in the context of the mean-field limit from
the many-body Schrödinger equation to the Hartree equation. To be more precise, we employ a
smooth version of it (see Eq. (2.9)):

γ

|x− y| = Cγ

∫ ∞

0

∫

R3

1

r5
χ(r,z)(x)χ(r,z)(y) dz dr

where χ(r,z)(·) is a smooth function depending on the distance | · −z| and varying on a scale r, C
is a positive numerical constant and γ = ±1. The most important implication of such a rewriting
of the Coulomb and gravitational potentials as an integral over all possible spheres of radius r ≥ 0
consists in isolating the singularity at zero from all the other terms appearing in the Grönwall
like type inequality (most of them produce errors which are estimated in Proposition 2.5). Hence,
the key idea is to cancel part of the interaction by estimating the trace norm of the commutator
[χ(r,z), ω̃N,t], where χ(r,z) acts as a multiplication operator. In order to absorb the singularity at
r = 0, we need the bound on tr |[χ(r,z), ω̃N,t]| to be sharp in the r variable (see Lemma 2.4). The
same strategy applies to the gravitational potential up to a sign that disappears once taking the
absolute value to perform the estimates. Such a sharp bound in the r variable forces us to look at
quantities (see Eq. (1.9)) that are in general not known to be bounded in terms of the assumptions
on the initial data. This is the reason why we need to restrict our analysis to a special class of
initial data (see Section 4).

Organisation of the paper. In Section 2 we present some preliminary estimates which will
be used in Section 3, where the proof of Theorem 1.1 is presented; we conclude with Section 4,
where examples of initial states verifying the assumptions of Theorem 1.1 are analysed, namely
steady states for the attractive Vlasov-Poisson system. Hence, Theorem 1.1 shows that when
the interaction is the gravitational potential, the Hartree evolution for non stationary states can
be approximated by steady states of the Vlasov-Poisson system, thus showing that the Hartree
dynamics leaves the state of the system approximately invariant.

2 Auxiliary Lemmas and Propositions

We start by giving a handier expression for the trace norm of the difference of a solution to the
Hartree equation (2.1) and the Weyl transform of the solution to the Vlasov-Poisson system (1.1).

Lemma 2.1. Let ωN be a sequence of fermionic operators on L2(R3), 0 ≤ ωN ≤ 1, with tr ωN = N
and denote by WN its Wigner transform. For each N ∈ N, let ωN,t be the solution of the time-
dependent Hartree equation with Coulomb or gravitational interaction

i ε ∂tωN,t =

[
−ε2∆+

γ

| · | ∗ ̺t , ωN,t

]
(2.1)
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with initial data ωN,0 = ωN and let W̃N,t be the solution of the Vlasov-Poisson system (1.1) with

initial data W̃N,0 = WN . Moreover, let ω̃N,t denote the Weyl quantization of W̃N,t. Then the
following estimate holds true

tr |ωN,t − ω̃N,t| ≤
1

ε

∫ t

0

tr

∣∣∣∣
[

γ

| · | ∗ (̺s − ˜̺s), ω̃N,s

]∣∣∣∣ ds+
1

ε

∫ t

0

tr |Bs| ds , (2.2)

where for every t ≥ 0, Bt is the operator associated with the kernel

Bt(x; y) =

[(
γ

| · | ∗ ˜̺t
)
(x)−

(
γ

| · | ∗ ˜̺t
)
(y)−∇

(
γ

| · | ∗ ˜̺t
)(

x+ y

2

)
· (x− y)

]
ω̃N,t(x; y) (2.3)

for all x, y ∈ R
3.

Proof. We perform the Weyl transform of the Vlasov-Poisson system (1.1)





∂tW̃N,t + v · ∇xW̃N,t + E · ∇vW̃N,t = 0 ,

E(t, x) = ∇
(

γ
|·| ∗ ˜̺t

)
(x) ,

˜̺t(x) =
∫
W̃N,t(x, v) dv ,

and we obtain
i ε ∂tω̃N,t = [−ε2∆ , ω̃N,t] +At (2.4)

where ω̃N,t is the Weyl transform of W̃N,t and At is the operator associated with the kernel

At(x; y) = ∇
(

γ

| · | ∗ ˜̺t
)(

x+ y

2

)
· (x− y) ω̃N,t(x; y) .

Since we are interested in finding an expression for the difference of the operators ωN,t and ω̃N,t,
we look for a Grönwall type estimate and compute the quantity iε∂t(ωN,t − ω̃N,t). To cope with
the kinetic terms, we introduce a fictitious unitary dynamics given by the two-parameter group of
unitary transformations U(t; s). Its time evolution is given by

i ε ∂t U(t; s) = hH(t)U(t; s) , (2.5)

where hH = −ε2∆+ γ
|·| ∗ ̺t is the Hartree Hamiltonian.

We then conjugate the operator (ωN,t − ω̃N,t) by U(t; s). We observe that such a choice makes
ωN,t play the role of a reference frame, thus we get

i ε ∂t U∗(t; 0) (ωN,t − ω̃N,t)U(t; 0)
= − U∗(t; 0) [hH(t), ωN,t − ω̃N,t]U(t; 0)

+ U∗(t; 0) ([hH(t), ωN,t]− [−ε2 ∆, ω̃N,t]−At)U(t; 0)

= U∗(t; 0)

([
γ

| · | ∗ ̺t, ω̃N,t

]
−At

)
U(t; 0)

= U∗(t; 0)

([
γ

| · | ∗ (̺t − ˜̺t), ω̃N,t

]
+Bt

)
U(t; 0)

(2.6)

where Bt denotes the operator with the integral kernel defined in (2.3).
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Since at time t = 0 ωN,0 = ω̃N,0 = ωN , integration in time gives

U∗(t; 0) (ωN,t − ω̃N,t)U(t; 0) =
1

iε

∫ t

0

U∗(t; s)

[
γ

| · | ∗ (̺s − ˜̺s), ω̃N,s

]
U(t; s) ds

+
1

iε

∫ t

0

U∗(t; s)Bs U(t; s) ds .
(2.7)

Taking the trace norm in (2.7), we obtain

tr |ωN,t − ω̃N,t| ≤
1

ε

∫ t

0

tr

∣∣∣∣
[
γ

| · | ∗ (̺s − ˜̺s), ω̃N,s

]∣∣∣∣ ds+
1

ε

∫ t

0

tr |Bs| ds (2.8)

as desired.

We will estimate the two terms in the right-hand side of (2.8) separately, and conclude by
applying Gronwall’s lemma. The key idea is to rewrite the interaction as an integral over all
possible spheres of radius r ≥ 0, that is the content of the following Lemma first used in [16] by
Fefferman and de la Llave to prove stability of matter in the relativistic case.

Lemma 2.2. For every x ∈ R
3 and r ≥ 0, let χ(r,x)(y) := exp(−|x− y|2/r2), then

1

|x− y| =
4

π2

∫ ∞

0

∫

R3

1

r5
χ(r,z)(x)χ(r,z)(y) dz dr . (2.9)

In the statement by Fefferman and de la Llave the Gaussians χ(r,z)(·) are replaced by the
characteristic functions of the sphere {z ∈ R

3 : | · −z| ≤ r} and the numerical constant 4/π2 is
replaced by 1/π. It is easy to check that the symmetries and scaling of the Coulomb potential
allow to replace the characteristic function by any smooth version of it that preserves the same
symmetries and scaling, e.g. χ(r,x)(y) := exp(−|x − y|2/r2), provided the numerical constant in
front of the integrals is appropriately modified. A detailed proof that holds also for more general
radial potentials decaying at infinity can be found in [27].

Lemma 2.3. For every x ∈ R
3 and r ≥ 0, let χ(r,x)(y) := exp(−|x− y|2/r2). Then

tr

∣∣∣∣
[
γ

| · | ∗ (̺s − ˜̺s) , ω̃N,s

]∣∣∣∣ ≤ C

∫ ∞

0

1

r5

∫∫
|̺s(y)− ˜̺s(y)|χ(r,z)(y) tr |[χ(r,z) , ω̃N,s]| dz dy dr .

(2.10)

Proof. The identity (2.9) allows to rewrite the convolution on the l.h.s. of (2.10), for every x ∈ R
3,

as
1

| · | ∗ (̺s − ˜̺s)(x) =
4

π2

∫ ∞

0

∫∫
1

r5
χ(r,y)(x)χ(r,z)(y) (̺s(y)− ˜̺s(y)) dz dy dr .

Therefore, for every x, x′ ∈ R
3, we obtain the following expression for the kernel of the commutator

in the l.h.s. of (2.10)

[
1

| · | ∗ (̺s − ˜̺s) , ω̃N,s

]
(x;x′)

=
4

π2

∫ ∞

0

∫∫
1

r5
(̺s(y)− ˜̺s(y))χ(r,z)(y) [χ(r,z) , ω̃N,s](x;x

′) dz dy dr .

(2.11)

Taking the trace norm of the operator associated with the kernels in the above expression, the
bound (2.10) holds.
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The following Lemma provides a key estimate to deal with the Coulomb singularity at zero.
The proof can be found in [44], but we report it here for completeness.

Lemma 2.4 (Lemma 3.1 in [44]). Let χ(r,z)(x) := exp(−|x − z|2/r2) and, given T > 0, assume
[xi, ω̃N,t] to be a trace class operator for all t ∈ [0, T ]. Then, for all 0 < δ < 1/2 there exists C > 0
such that the following bound holds point-wise

tr
∣∣[χ(r,z), ω̃N,t]

∣∣ ≤ C r
3
2−3δ

3∑

i=1

‖̺|[xi,ω̃N,t]|‖
1
6+δ
1

(
̺∗|[xi,ω̃N,t]|(z)

) 5
6−δ

, (2.12)

where ̺∗|[xi,ω̃N,t]| denotes the Hardy-Littlewood maximal function of ̺|[xi,ω̃N,t]|, defined by

̺∗|[xi,ω̃N,t]|(z) = sup
B:z∈B

1

|B|

∫

B

̺|[xi,ω̃N,t]|(x) dx (2.13)

where the supremum is taken over all spheres B containing the point z ∈ R
3, and ̺|[xi,ω̃N,t]| is

defined in (1.9).

Proof. We consider the commutator [χ(r,z) , ω̃N,t] and we write it as

[χ(r,z) , ω̃N,t] =
3∑

j=1

Ij + Jj ,

where Ij and Jj are defined as follows

Ij = −
∫ 1

0

χ(r/
√
s,z)(x)

(x− z)j
r2

[xj , ω̃N,t]χ(r/
√
1−s,z)(x) ds

Jj = −
∫ 1

0

χ(r/
√
s,z)(x) [xj , ω̃N,t]

(x− z)j
r2

χ(r/
√
1−s,z)(x) ds

for j = 1, 2, 3. As the two terms can be treated in the same way, we focus on Ij . By assumption,
[xj , ω̃N,t] is an antiself-adjoint trace class operator and therefore it has a spectral decomposition.
Let {fk}k be an orthonormal system in L2(R3) and {αk}k be the associated eigenvalues, where
αk ∈ R for all k. Then

[xj , ω̃N,t] = i
∑

k

αk| fk〉〈fk | (2.14)

Eq. (2.14) and the definition of trace norm then leads to

tr |Ij | ≤
1

r

∑

k

|αk|
∫ 1

0

1√
s
tr

∣∣∣∣
∣∣∣∣χ(r/

√
s,z)(x)

√
s|x− z|

r
fk

〉〈
χ(r/

√
1−s,z)(x) fk

∣∣∣
∣∣∣∣ ds

≤ 1

r

∫ 1

0

1√
s

(
∑

k

|αk|
∥∥∥∥χ(r/

√
s,z)(x)

√
s|x− z|

r
fk

∥∥∥∥
2

2

) 1
2
(
∑

k

|αk|
∥∥∥χ(r/

√
1−s,z)(x)fk

∥∥∥
2

2

) 1
2

ds

where in the last line we used Cauchy-Schwarz inequality.
By using the definition of the kernel of the multiplication operator χ(r/

√
1−s,z)(x) and again the

spectral decomposition (2.14), we get the following bounds: on the one hand, integrating level set
by level set, we get

∑

k

|αk|
∥∥∥χ(r/

√
1−s,z)(x) fk

∥∥∥
2

2
=

∫ 1

0

∫

B(z,
√

r2 log(1/t)/2(1−s))

̺|[xj , ω̃N,t]|(x) dx dt

≤ C r3

(1− s)3/2
̺∗|[xj ,ω̃N,t]|(z) ,

(2.15)
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where C is a positive constant, B(z,
√
r2 log(1/t)/2(1− s)) is the ball centred at z with radius√

r2 log(1/t)/2(1− s) and ̺∗|[xj ,ω̃N,t]| is the Hardy-Littlewood maximal function of ̺|[xj ,ω̃N,t]| de-

fined in (2.13).
On the other hand we have

∑

k

|αk|
∥∥∥χ(r/

√
1−s,z)(x)fk

∥∥∥
2

2
≤ C

∑

k

|αk| = tr |[xj , ω̃N,t]| = C‖̺|[xj ,ω̃N,t]|‖L1 . (2.16)

Interpolating between (2.15) and (2.16), we obtain

∑

k

|αk|
∥∥χ(r/

√
s,z)(x)fk

∥∥2
2
≤ C

r3θ‖̺|[xj ,ω̃N,t]|‖1−θ
L1

s
3
2 θ

(
̺∗|[xj ,ω̃N,t]|(z)

)θ

that, with the choice θ = 2
3 − 2δ yields the desired bound.

Proposition 2.5. Let Bt be the operator associated with the kernel (2.3). Then, there exists a

constant C > 0 depending on ‖W̃N,t‖H2
4
, ‖ρ̃t‖L1 and ‖∇2ρ̃t‖L∞ such that

tr |Bt| ≤ C N ε2

(
1 +

4∑

k=1

εk‖W̃N,t‖Hk+2
4

)
. (2.17)

Before giving the proof, we remark that the objects on which the constant C depends on are
bounded by standard regularity theory for the Vlasov-Poisson system (cf. for instance [21]).

Proof. To bound the trace norm of Bt we introduce the identity operator

1 = (1− ε2∆)−1(1 + x2)−1(1 + x2)(1− ε2∆).

By applying Cauchy-Schwarz inequality we have

tr |Bt| ≤ ‖(1− ε2∆)−1(1 + x2)−1‖HS ‖(1 + x2)(1− ε2∆)Bt‖HS . (2.18)

We notice that for some C > 0 the following bound holds

‖(1− ε2∆)−1(1 + x2)−1‖HS ≤ C
√
N ,

where we have used the explicit form of the kernel of the operator (1− ε2∆)−1 and the fact that
ε3 = N−1.
We denote by Ut the convolution of the interaction with the spatial density at time t

Ut :=
γ

| · | ∗ ˜̺t. (2.19)

We introduce the notation
B̃ := (1− ε2∆)Bt

and observe that the kernel of B̃ reads

B̃(x;x′) :=
7∑

j=1

B̃j(x;x
′) (2.20)

where

B̃1(x;x
′)

=N

[
Ut(x)− Ut(x

′)−∇Ut

(
x+ x′

2

)
· (x− x′)

] ∫
W̃N,t

(
x+ x′

2
, v

)
ei v·

(x−x′)
ε dv;
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B̃2(x;x
′)

=−Nε2
[
∆Ut(x)−

1

4
∆∇Ut

(
x+ x′

2

)
· (x− x′)−

1

2
∆Ut

(
x+ x′

2

)]∫
W̃N,t

(
x+ x′

2
, v

)
ei v·

(x−x′)
ε dv;

B̃3(x;x
′)

=−
Nε2

4

[
Ut(x)− Ut(x

′)−∇Ut

(
x+ x′

2

)
· (x− x′)

] ∫
(∆1W̃N,t)

(
x+ x′

2
, v

)
ei v·

(x−x′)
ε dv;

B̃4(x;x
′)

= N

[
Ut(x)− Ut(x

′)−∇Ut

(
x+ x′

2

)
· (x− x′)

] ∫
W̃N,t

(
x+ x′

2
, v

)
v2ei v·

(x−x′)
ε dv;

B̃5(x;x
′)

=−
Nε2

2

[
∇Ut(x)−

1

2
∇2Ut

(
x+ x′

2

)
(x− x′)−∇Ut

(
x+ x′

2

)]∫
(∇1W̃N,t)

(
x+ x′

2
, v

)
ei v·

(x−x′)
ε dv;

B̃6(x;x
′)

=−Nε

[
∇Ut(x)−

1

2
∇2Ut

(
x+ x′

2

)
(x− x′)−∇Ut

(
x+ x′

2

)]∫
W̃N,t

(
x+ x′

2
, v

)
vei v·

(x−x′)
ε dv;

B̃7(x;x
′)

=−Nε

[
Ut(x)− Ut(x

′)−∇Ut

(
x+ x′

2

)
· (x− x′)

] ∫
(v · ∇1W̃N,t)

(
x+ x′

2
, v

)
ei v·

(x−x′)
ε dv;

where we used the notation ∇1 and ∆1 to indicate derivatives with respect to the first variable.
In order to gain extra powers of ε, we write

Ut(x)− Ut(x
′)−∇Ut

(
x+ x′

2

)
· (x− x′)

=

∫ 1

0

dλ

[
∇Ut (λx+ (1− λ)x′)−∇Ut

(
(x+ x′)

2

)]
· (x− x′)

=
3∑

i,j=1

∫ 1

0

dλ

(
λ− 1

2

)∫ 1

0

dµ ∂i∂jUt

(
µ(λx+ (1− λ)x′) + (1− µ)

(x+ x′)

2

)
(x− x′)i(x− x′)j .

We notice that Ut defined in (2.19) has a convolution structure. Therefore derivatives of Ut are
equivalent to derivatives of the spatial density ˜̺t. Hence, when integrating out the z variable in
the Fefferman - de la Llave representation formula (2.9), we are left with

Ut(x)− Ut(x
′)−∇Ut

(
x+ x′

2

)
· (x− x′)

= γ

3∑

i,j=1

∫ 1

0

dλ

(
λ− 1

2

)∫ 1

0

dµ

∫ ∞

0

dr

r2

×
∫

dy χ(r,y)

(
µ(λx+ (1− λ)x′) + (1− µ)

(x+ x′)

2

)
∂i∂j ˜̺t(y) (x− x′)i(x− x′)j .

(2.21)

Inserting (2.21) into the definition of B̃1, using twice the identity

(x− x′)

∫
W̃N,t

(
x+ x′

2
, v

)
eiv·

x−x′

ε dv = −iε

∫
∇vW̃N,t

(
x+ x′

2
, v

)
e−iv· x−x′

ε dv (2.22)
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we get

|B̃1(x;x
′)|

≤C N ε2
3∑

i,j=1

∫ 1

0

dλ

∣∣∣∣λ−
1

2

∣∣∣∣
∫ 1

0

dµ

∣∣∣∣
∫

∞

0

dr

r2

∫
dy χ(r,y)(µ(λx+ (1− λ)x′) + (1− µ)(x+ x′)/2)∂2

i,j ˜̺t(y)
∫

dv ∂2
vi,vj

W̃N,t

(
x+ x′

2
, v

)
eiv·

(x−x′)
ε

∣∣∣∣ .

Therefore, the Hilbert-Schmidt norm of the operator (1 + x2)B̃1, where (1 + x2) is the multi-
plication operator, can be estimated as follows:

‖(1 + x2)B̃1‖2HS

≤CNε4
∫

dq

∫
dp′
[
1 + q2 + ε2p2

]2
∣∣∣∣∣∣

3∑

i,j=1

∫ 1

0

dλ

(
λ− 1

2

)∫ 1

0

dµ

∫ ∞

0

dr

r2

∫
dy χ(r,y)(q + εµ(λ− 1/2)p)∂2

i,j ˜̺t(y)
∫

dv ∂2
vi,vjW̃N,t (q, v) e

iv·p
∣∣∣∣
2

where we performed the change of variables

q =
x+ x′

2
, p =

x− x′

ε
(2.23)

with Jacobian J = 8 ε3 = 8N .
We fix k > 0 and divide the integral into the two sets

A< := {r ∈ R+ | r ≤ k} and A> := {r ∈ R+ | r > k},

so that

‖(1+x2)B̃1‖2HS

≤CNε4
∫

dq

∫
dp[1 + q2 + ε2p2]2

3∑

i,j=1

∫ 1

0

dλ

∣∣∣∣λ− 1

2

∣∣∣∣
∫ 1

0

dµ

∣∣∣∣
∫

A<

dr

r2

∫
dy χ(r,y)(q + εµ(λ− 1/2)p)∂2

ij ˜̺t(y)
∫

dv ∂2
vi,vjW̃N,t (q, v) e

iv·p
∣∣∣∣
2

+CNε4
∫

dq

∫
dp[1 + q2 + ε2p2]2

3∑

i,j=1

∫ 1

0

dλ

∣∣∣∣λ− 1

2

∣∣∣∣
∫ 1

0

dµ

∣∣∣∣
∫

A>

dr

r2

∫
dy χ(r,y)(q + εµ(λ− 1/2)p)∂2

ij ˜̺t(y)
∫

dv ∂2
vi,vjW̃N,t (q, v) e

iv·p
∣∣∣∣
2

.

(2.24)

Denote by A< and A> the first and the second term of the sum on the r.h.s. of (2.24) respectively.
For A< we first observe that

∫

A<

dr

r2

∫
dy χ(r,y)(q + εµ(λ− 1/2)p) ∂2

ij ˜̺t(y)
∫

dv ∂2
vi vjW̃N,t (q, v) e

iv·p

≤
∫

A<

r ‖∇2 ˜̺t‖L∞

∫
dv ∂2

vi vjW̃N,t(q, v) e
iv·p .
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Therefore, the singularity in r at zero is solved and

A< ≤ C N ε4
∫

dq

∫
dp [1 + q2 + ε2p2]2

3∑

i,j=1

∫ 1

0

dλ

∣∣∣∣λ− 1

2

∣∣∣∣
∫ 1

0

dµ

∫
dv

∫
dv′∂2

vi vj
W̃N,t(q, v) ∂v′

i v
′

j
W̃N,t(q, v

′) ei(v−v′)·p

≤ C N ε4
∫

dq (1 + q2)2
∫

dv |∂2
vi vjW̃N,t(q, v)|2 + C N ε8

∫
dq

∫
dv |∇4

vW̃N,t(q, v)|2 ,

where in the last inequality we used that [1 + q2 + ε2p2]2 ≤ C[(1 + q2)2 + ε4p4] and we have
integrated by parts twice in v in the last term on the r.h.s. in the same spirit of identity (2.22).
We therefore get the bound

A< ≤ CNε4 ‖W̃N,t‖2H2
2
+ CNε8 ‖W̃N,t‖2H4 (2.25)

where C depends on ‖∇2 ˜̺t‖L∞ .

For A>, we integrate by parts twice in the y variable and recall that e−|z−y|2/r2(1+ |z− y|2/r2) is
bounded uniformly in z ∈ R

3. Since ˜̺t ∈ L1(R3) we get the bound

A> ≤ CNε4
∫

dq

∫
dv(1 + q2)2|∇2

vW̃N,t(q, v)|2 + CNε8
∫

dq

∫
dv |∇4

vW̃N,t(q, v)|2 , (2.26)

where C depends on ‖˜̺t‖L1 .
Whence, considering the two estimates (2.25), (2.26) together, we get

‖(1 + x2)B̃1‖HS ≤ C
√
Nε2‖W̃N,t‖H2

2
+ C

√
Nε4‖W̃N,t‖H4 (2.27)

where C = C(‖˜̺t‖L1 , ‖∇2 ˜̺t‖L∞).

The Hilbert-Schmidt norms ‖(1+x2)B̃3‖HS, ‖(1+x2)B̃4‖HS and ‖(1+x2)B̃7‖HS can be handled
analogously, thus obtaining

‖(1 + x2)B̃3‖HS ≤ C
√
Nε4‖W̃N,t‖H4

4
+ C

√
Nε6‖W̃N,t‖H6

4
, (2.28)

‖(1 + x2)B̃4‖HS ≤ C
√
Nε2‖W̃N,t‖H2

4
+ C

√
Nε4‖W̃N,t‖H4

4
, (2.29)

‖(1 + x2)B̃7‖HS ≤ C
√
Nε3‖W̃N,t‖H2

3
+ C

√
Nε5‖W̃N,t‖H5

2
. (2.30)

To bound the B̃6 term in which a higher order derivative of Ut appears, we proceed as for B̃1:
we first use (2.21) and then divide the integral in the r variable into two parts, according to the
definition of the sets A< and A>:

|B̃6(x;x
′)|

≤C N ε3
∫ 1

0

dλ

∣∣∣∣λ− 1

2

∣∣∣∣
∫ 1

0

dµ

∣∣∣∣
∫

A<

dr

r2

∫
dy∇χ(r,y)

(
(2λ− 1)

µ

2
(x− x′) +

(x+ x′)

2

)
∇2 ˜̺t(y)

∫
dv∇2

vW̃N,t

(
x+ x′

2
, v

)
eiv·

(x−x′)
ε

∣∣∣∣

+C N ε3
∫ 1

0

dλ

∣∣∣∣λ− 1

2

∣∣∣∣
∫ 1

0

dµ

∣∣∣∣
∫

A>

dr

r2

∫
dy∇3χ(r,y)

(
(2λ− 1)

µ

2
(x− x′) +

(x+ x′)

2

)
˜̺t(y)

∫
dv∇2

vW̃N,t

(
x+ x′

2
, v

)
eiv·

(x−x′)
ε

∣∣∣∣
(2.31)
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where in the second term we have integrated by parts twice in the y variable.
We denote by B̃<

6 and B̃>
6 the operators with kernels defined respectively by the first and

second term in the r.h.s. of (2.31). We consider ‖(1 + x2)B̃<
6 ‖HS, perform the change of variables

(2.23) and choose k = 1. Then we can apply Jensen’s inequality with measure dr and we get the
bound

‖(1 + x2)B̃<
6 ‖2HS ≤ C N ε6

∫
dq

∫
dp[1 + q2 + ε2p2]2

∫ 1

0

dλ

∣∣∣∣λ− 1

2

∣∣∣∣
2 ∫ 1

0

dµ

∫ 1

0

dr

r4∫
dy χ(r,y)(q + εµ(λ− 1/2)p)

|q + εµ(λ− 1/2)p− y|
r∫

dy′χ(r,y′)(q + εµ(λ− 1/2)p)
|q + εµ(λ− 1/2)p− y′|

r∫∫
dv dv′ ∇2

vW̃N,t(q, v)∇2
v′W̃N,t(q, v

′) ei(v−v′)·p

≤ C N ε6‖W̃N,t‖2H2
2
+ C N ε10‖W̃N,t‖2H4

(2.32)

where C depends on ‖∇2 ˜̺t‖L∞ .

For r ∈ A>, we consider ‖(1 + x2)B̃>
6 ‖HS. We perform the change of variables (2.23) and recall

that e−|z−y|2/r2(|z − y|/r)n ≤ C for every z ∈ R
3 and n ∈ N. Since ˜̺s ∈ L1(R3) we get the bound

‖(1 + x2)B̃>
6 ‖2HS ≤ C N ε6‖W̃N,t‖2H2

2
+ C N ε10‖W̃N,t‖2H4 (2.33)

where C depends on ‖˜̺t‖L1 .

Thus considering the two terms together we get the desired bound

‖(1 + x2)B̃6‖HS ≤ C
√
Nε3‖W̃N,t‖H2

2
+ C

√
Nε5‖W̃N,t‖H4 (2.34)

where C = C(‖˜̺t‖L1 , ‖∇2 ˜̺t‖L∞).

The norms ‖(1 + x2)B̃j‖HS, j = 2, 5, can be dealt analogously, thus obtaining

‖(1 + x2)B̃2‖HS ≤ C
√
Nε4‖W̃N,t‖H2

2
+ C

√
Nε6‖W̃N,t‖H4 (2.35)

and
‖(1 + x2)B̃5‖HS ≤ C

√
Nε4‖W̃N,t‖H4

2
+ C

√
Nε6‖W̃N,t‖H6 (2.36)

where C = C(‖˜̺t‖L1 , ‖∇2 ˜̺t‖L∞).
Gathering together all the terms, we get

‖(1 + x2)B̃‖HS

≤ C
√
N
[
ε2‖W̃N,t‖H2

4
+ ε3‖W̃N,t‖H3

4
+ ε4‖W̃N,t‖H4

4
+ ε5‖W̃N,t‖H5

4
+ ε6‖W̃N,t‖H6

4

]
.

(2.37)

3 Proof of Theorem 1.1

From Lemma 2.1 Eq. (2.2) and Proposition 2.5, we know that

tr |ωN,t − ω̃N,t| ≤
1

ε

∫ t

0

tr

∣∣∣∣
[
γ

| · | ∗ (̺s − ˜̺s) , ω̃N,s

]∣∣∣∣ ds+ C N ε

∫ t

0

(
1 +

4∑

k=1

εk‖W̃N,s‖Hk+2
4

)
ds.

(3.1)
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We focus on the first term on the r.h.s. of (3.1). Recalling Lemma 2.3 Eq. (2.10), we fix a positive
real number k and we write

tr

∣∣∣∣
[
γ

| · | ∗ (̺s − ˜̺s) , ω̃N,s

]∣∣∣∣ ≤ C

∫ ∞

0

1

r5

∫∫
|̺s(y)− ˜̺s(y)|χ(r,z)(y) tr |[χ(r,z) , ω̃N,s]| dz dy dr

≤ C

∫ k

0

1

r
7
2+3δ

∫
|̺s(y)− ˜̺s(y)| gr(y)

3∑

i=1

‖̺|[xi,ω̃N,s]|‖
1
6+δ

L1 dy dr

+ C

3∑

i=1

‖̺|[xi,ω̃N,s]|‖L1

∫ ∞

k

1

r6

∫
|̺s(y)− ˜̺s(y)| dy dr

(3.2)

where

gr(y) =

∫
χ(r,z)(y)

(
̺∗|[x,ω̃N,s]|(z)

) 5
6−δ

dz ,

and we used Lemma 2.4 in the second line of equation (3.2) and the bound (2.16) in the last line
of equation (3.2).

We now compute the L∞ norm of gr(y):

‖gr‖L∞ ≤ Cr
3
q ‖̺∗|[x,ω̃N,s]|‖

5
6−δ

L( 5
6
−δ)q′

≤ Cr
3
q ‖̺|[x,ω̃N,s]|‖

5
6−δ

L( 5
6
−δ)q′

where q and q′ are conjugated Hölder exponents and we have used the Ls boundedness of the
Hardy-Littlewood maximal operator in the last inequality, for s = ( 56 − δ)q′ > 1.

To deal with the singularity at zero in the r variable in (3.2), we choose q′ > 6 and q < 6/5.
Hence, there exist a constant Ct,1, depending on time but independent on N , such that

tr

∣∣∣∣
[
γ

| · | ∗ (̺s − ˜̺s) , ω̃N,s

]∣∣∣∣ ≤ C‖̺s − ˜̺s‖L1

3∑

i=1

(
‖̺|[xi,ω̃N,s]|‖

1
6+δ

L1 ‖̺|[xi,ω̃N,s]|‖
5
6−δ

Lp + ‖̺|[xi,ω̃N,s]|‖L1

)

≤ Ct,1 ε tr |ωN,s − ω̃N,s| .
(3.3)

In the last inequality we used assumption (1.11) with p > 5 and the fact that

‖̺s − ˜̺s‖L1 = sup
O∈L∞(R3)
‖O‖L∞≤1

∣∣∣∣
∫

O(z) (̺s(z)− ˜̺s(z)) dz
∣∣∣∣

≤ 1

N
sup

O : ‖O‖≤1

|tr O(ωN,s − ω̃N,s)|

≤ 1

N
tr |ωN,s − ω̃N,s| ,

where in the second line the supremum is taken over all bounded operators O with operator norm
‖O‖ ≤ 1.

We now analyse the second term on the r.h.s. of (3.1). Using assumptions i), ii) and iii) in
Theorem 1.1 and a trivial adaptation of Appendix A in [46], we can bound the weighted Sobolev

norms ‖W̃N,t‖Hk+2
4

, for k = 1, . . . , 4, in terms of the initial data WN :

‖W̃N,t‖Hk+2
4

≤ Ct‖WN‖Hk+2
4

, (3.4)

where Ct is a time dependent constant, for t ∈ [0, T ].
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Therefore, Eq. (3.3) and Eq. (3.4) leads to the Grönwall type estimate

tr |ωN,t − ω̃N,t| ≤ Ct,1

∫ t

0

tr |ωN,s − ω̃N,s| ds+ Ct,2 N ε

∫ t

0

(
1 +

4∑

k=1

εk‖WN‖Hk+2
4

)
ds ,

where, for every fixed T > 0 and for all t ∈ [0, T ], Ct,1 is proportional to the constant appearing
in assumption (1.11) and Ct,2 depends on t ∈ [0, T ] and on ‖WN‖H2

4
. Both Ct,1 and Ct,2 are

independent of N . Hence, by Grönwall Lemma, we conclude the proof of (1.12).

4 Steady states of the Vlasov-Poisson system

In general, for T > 0 fixed, we do not know which hypotheses ωN should satisfy at time t = 0 in
order for the bounds (1.11) to hold for all t ∈ [0, T ]. In this section, we are interested in identifying
a special class of states which satisfy the assumptions of Theorem 1.1.

We start by considering a sequence of fermionic reduced densities ωN which are superpositions
of coherent states

fq,p(x) = ε−
3
2 e−ip·x/εG(x− q)

where, for every δ > 0, G is the Gaussian defined as follows

G(x− q) =
e−|x−q|2/2δ2

(2πδ2)
3
4

.

Namely, forM : R3×R
3 → R+ probability density such that 0 ≤ M(q, p) ≤ 1 for all (q, p) ∈ R

3×R
3

and
∫∫

M(q, p) dq dp = 1, we define the sequence of fermionic operators

ωN =

∫∫
M(q, p) |f(q,p)〉〈f(q,p)| dq dp , (4.1)

with kernel

ωN (x; y) =

∫∫

R3×R3

M(q, p) f(q,p)(x) f(q,p)(y) dq dp , (4.2)

where in formula (4.1) we used the bra-ket notation.
We notice that, if M ∈ W1,1(R3 × R

3), the Sobolev space of functions such that the norm
‖∇M‖L1 is finite, then the sequence ωN defined as in (4.1) satisfies the bound

‖̺|[x,ωN ]|‖L1(R3) = tr |[x, ωN ]| ≤ CNε ,

where C = ‖∇vM‖L1(R3
x×R3

v)
. Indeed, consider the kernel of the commutator [x, ωN ]:

[x, ωN ](x; y) =

∫∫
(x− y)M(q, p) f(q,p)(x) f(q,p)(y) dq dp

=
Nε

i

∫∫
∇pM(q, p) f(q,p)(x) f(q,p)(y) dq dp

thus

[x, ωN ] =
Nε

i

∫∫
∇pM(q, p) |f(q,p)〉〈f(q,p)| dq dp

hence the trace norm is easily bounded as follows

tr |[x, ωN ]| ≤ Nε

∫∫
|∇pM(q, p)| ‖f(q,p)‖2L2(R3) dq dp = Nε‖∇vM‖L1(R3×R3) .
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We do expect that, under suitable regularity and integrability assumptions on M , there exists a
finite positive constant C such that ‖̺|[x,ωN ]|‖Lp(R3) ≤ CNε for some p > 5.

Now consider ωN defined in (4.1) and satisfying the bound

‖̺|[x,ωN ]|‖L1 + ‖̺|[x,ωN ]|‖Lp ≤ C Nε , p > 5 (4.3)

to be the initial datum of the Cauchy problem associated with Eq. (2.4). Its evolution is denoted
by ω̃N,t. If we restrict to attractive interactions, then the existence of steady states for the Vlasov-
Poisson system (cf. [9]) allows to sigle out a specific class of initial data for which assumption (4.3)
can be trivially propagated at time t to satisfy (1.11). Indeed, if ω̃N,t is a steady state for the
Weyl transformed Vlasov-Poisson system then, for every fixed T > 0, ω̃N,t automatically satisfies
the bound

‖̺|[x,ω̃N,t]|‖L1 + ‖̺|[x,ω̃N,t]|‖Lp ≤ C Nε , p > 5 (4.4)

for all t ∈ (0, T ], if it does at time t = 0.
More precisely, if ω̃N = ω̃N,t is a steady state for Eq. (2.4) with gravitational interaction, then its

Wigner transform W̃N solves the equation





v · ∇xW̃N −∇xU · ∇vW̃N = 0 ,

−∆xU(x) = ˜̺(x) ,

˜̺(x) =
∫
W̃N (x, v) dv .

(4.5)

One example of states which satisfy (4.5) are functions of the form

W̃N (x, v) = Φ ◦H(x, v)

where Φ is a smooth function of the local energy

H(x, v) =
|v|2
2

− U(x) . (4.6)

The existence of this class of steady states and their stability properties have been addressed in
[9, 32]. For such states, the associated fermionic operator ωN is independent of time. Hence, if we
assume (4.3), the bounds (4.4) are satisfied.
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[17] A. Figalli, M. Ligabò, T. Paul. Semiclassical limit for mixed states with singular and rough
potentials. Indiana Univ. Math. J., 61 (2012), no. 1, pp. 193–222.

[18] S. Fournais, M. Lewin, J.P. Solovej. The semi-classical limit of large fermionic systems. Calc.
Var. Partial Differ. Equ., (2018), pp. 57–105.
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