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Summary 

Gene expression oscillations control diverse biological processes. One such example of gene expression 

oscillations, are those found for thousands of genes during C. elegans larval development. However, it 

remains unclear whether and how gene expression oscillations regulate development processes in C. 

elegans. In this work, I aimed to study the molecular architecture and the system properties of the C. 

elegans oscillator to provide insight into potential developmental functions and reveal features that are 

unique, as well as those that are shared among oscillators.    

Here, performing temporally highly resolved mRNA-sequencing across all larval stages (L1-L4) of C. 

elegans development, we identified 3,739 genes, whose transcripts revealed high-amplitude oscillations 

(>2-fold from peak to trough), peaking once every larval stage with stable amplitudes, but variable 

periods. Oscillations appeared tightly coupled to the molts, but were absent from freshly hatched larvae, 

developmentally arrested dauer larvae and adults. Quantitative characterization of transitions between 

oscillatory and stable states of the oscillator showed that the stable states are similar to a particular phase 

of the oscillator, which coincided with molt exit. Given that these transitions are sensitive to food, we 

postulate that feeding might impact the state of the oscillator. These features appear rather unique, and 

hence a better understanding may help to reveal general principles of gene expression oscillators. 

Our RNAPII ChIP-seq revealed rhythmic occupancy of RNAPII at the promoters of oscillating genes, 

suggesting that mRNA transcript oscillations arise from rhythmic transcription. Given that oscillations are 

coupled to the repetitive molts and that the molecular mechanisms that regulate molting are unknown, 

we aimed to find transcription factors important for molting and oscillations. Hence, we screened 92 

transcription factors that oscillate on the mRNA level for their role in molting and identified grh-1, myrf-

1, blmp-1, bed-3, nhr-23, nhr-25 and ztf-6. We showed that oscillatory activity of GRH-1 is required for 

timely completion of the molt, to prevent cuticle rupturing, and for oscillatory expression of structural 

components of the cuticle and ‘ECM regulators’, among others, including grh-1 itself. Hence, we propose 

GRH-1 as a putative component of the (sub-)oscillator that regulates molting. We showed that loss of 

BLMP-1 increased the duration of molts, affected cuticle integrity, and changed the oscillatory dynamics 

of a subset of genes in diverse ways. We postulate that BLMP-1 acts as factor that couples gene expression 

oscillations, and potentially sub-oscillators or repetitive developmental processes. In conclusion, this work 

provides insight into the function of the oscillator, and its system properties. Moreover we identified 

relevant factors, which we propose as a starting point to unravel the molecular wiring of the C. elegans 

oscillator and its functional relevance.  
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1. Introduction 

1.1 Oscillations in biology: diversity and similarity 

Oscillations are a common feature in biological systems. At the same time, biological oscillations diverge 

in many aspects, from functional relevance to the level and the timescales at which they occur. For 

example, predator-prey oscillations emerge at the population level and exhibit a periodicity of months or 

even years, whereas repetitive activation of neuronal cells occurs in the order of milliseconds.  

Oscillations are characterized by repetitive fluctuations around an equilibrium over time. The maximal 

displacement from the equilibrium is called the amplitude and the time it takes to make one repetition is 

the period of the oscillation (Figure 1.1A). The frequency is the number of repetitions per unit of time. An 

oscillator is the ensemble of components, i.e. the network, which is required to generate oscillations 

(Figure 1.1B).   

 

Figure 1.1: Schematic of the characteristics of an oscillation and an oscillator network 

A, An oscillation is characterized by an amplitude, A, the displacement from the equilibrium and a period, T, the time 
to complete one repetition. 

B, An oscillator comprises a network required to generate output oscillations. Some oscillators may require an input 
as a trigger (section 3.7.3) or for entrainment (section 1.1.1) 

 

Functionally, oscillations can be considered as a tool to transfer information. As oscillations are 

characterized by an amplitude and frequency, much more information can be encoded in oscillatory 

compared to stationary signals. Hence, changes in the dynamics of a signal can be decoded by cells in 

distinct ways resulting in specific cellular responses (Purvis and Lahav, 2013). Indeed, sustained and 

oscillatory gene expression have been shown to promote differentiation and self-renewal respectively in 
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stem cells, which I further address below (section 1.1.4).  Moreover, oscillations can serve to entrain or 

couple a system to other recurring processes. For example, the circadian rhythm functions to anticipate 

and adapt processes to repetitive environmental changes (section 1.1.1). Hence, the circadian oscillator 

keeps ‘external time’ and is often referred to as a ‘biological clock’ (Rensing et al., 2001). Besides time-

keeping mechanisms, oscillators have been proposed to control events in space, as I will discuss below 

(section 1.1.2). The focus of this thesis will be on gene expression oscillators which function at the cellular 

and organism level, of which circadian rhythms and somitogenesis are two well-known examples (section 

1.1.1 and section 1.1.2). Recent progress in single cell and genomics techniques led to the discovery of 

new molecular oscillators, examples which I will discuss in section 1.1.3 and section 1.3.3.  

1.1.1 Circadian rhythms 

The 24-hour rhythm exists in almost all, if not all, organisms. This rhythm is established by an endogenous 

oscillator. It synchronizes physiological and behavioral processes, such as sleep, metabolism, body 

temperature, and hormone release with day-night cycles. The circadian rhythm has three characteristics. 

First, the circadian rhythm is cell-autonomous, meaning that in the absence of external repetitive cues, a 

period close to 24 hours is maintained. The autonomy arises from the fact that all cells express core clock 

genes and can produce circadian oscillations on their own. However, different tissues control different 

rhythmic processes (reviewed in Dibner et al., 2010). Second, the circadian clock can be entrained by 

external cues, predominantly by light, but also by temperature and food. These so-called zeitgebers allow 

the endogenous oscillator to match its period with fluctuations in the environmental period, such as the 

light-dark cycles (Aschoff, 1960). The entrainment by light takes place as it is sensed by photo-receptors 

in the retina and transmitted to the neurons in the hypothalamic suprachiasmatic nucleus (SCN). These 

neurons function as the master circadian pacemaker to entrain clocks in other tissues of the body 

(reviewed in Welsh et al., 2010). The third hallmark of circadian rhythms is temperature compensation, 

i.e. the period of the oscillator is largely invariant over a range of physiological temperatures.  

The circadian clock consists of three elements: the oscillator, the input (zeitgebers) and the output 

(rhythmic physiological processes) (Figure 1.1B). The circadian oscillator is driven by a transcriptional 

network consisting of interlocked feedback loops (reviewed in Takahashi, 2017) (Figure 1.2A). At the core 

of the clock are the transcription factors BMAL1 and CLOCK, two transcriptional activators that act as 

heterodimers (BMAL1-CLOCK). In contrast to BMAL1, the nuclear localization, but not the transcription, 

of CLOCK is controlled by the circadian rhythm (Kondratov et al., 2003; Lee et al., 2001). BMAL1-CLOCK 

induce the expression of the repressors PER1, PER2, PER3, CRY1 and CRY2. PER and CRY form a complex 
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with the serine/threonine kinases CK1δ and CK1ε, which translocates to the nucleus to repress their own 

transcription, allowing the mRNA levels to decrease. As PER and CRY are additionally turned-over by 

protein degradation, regulated by E3 ubiquitin ligase complexes, BMAL1 and CLOCK can initiate a new 

cycle of PER and CRY transcription. A second feedback loop induced by BMAL1 and CLOCK, is that of REV-

ERBα and REV-ERBβ, which leads to the repression of BMAL1 and NFIL3 transcription. In the third loop, 

CLOCK and BMAL1 drive the expression of DBP, TEF and HLF, which interact with NFIL3 to regulate the 

expression of RORs. In turn, RORs induce BMAL1 and NFIL3 transcription. The combination of the three 

interlocked feedback loops sets the period of the core oscillator. The transcription factors that act at the 

core, are also responsible for driving the expression of so-called clock-controlled genes (CCG) to generate 

the rhythmic output of the clock (Figure 1.2B).  
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Figure 1.2: Transcriptional network of the circadian clock in mammals 

A, Schematic of transcriptional network at the core of the circadian oscillator. The heterodimer BMAL1-CLOCK drives 
the expression of three feedback loops. i) CRYs and PERs, which form a complex with CK1, inhibit their transcription, 

and are degraded (Ø). ii) REV-ERBs, which repress BMAL1 and NFIL3 transcription. iii) DBP, which interact with NFIL3 

to induce RORs expression. Based on (Takahashi, 2017) 

B, Transcription factors of the core oscillator drive the expression of the clock-controlled genes (CCG), the output of 
the circadian clock. Based on (Takahashi, 2017) 

 

However, the clock output does not appear to be solely driven by the rhythmic transcriptional activity of 

the core clock transcription factors. RNA-seq revealed that between roughly 5% and 20% of the protein-

coding genes exhibit rhythmic mRNA expression in a given organ, with liver accounting for the highest 

percentage (Zhang et al., 2014). However, of those oscillating mRNA transcripts in the liver, only 22% were 

reported to arise from rhythmic transcription (Koike et al., 2012), suggesting that additional layers of post-

transcriptional regulation modulate the circadian oscillations. Indeed, functions of transcriptional 

termination, alternative splicing, translation, miRNAs, polyadenylation and mRNA degradation in 

establishing circadian rhythms have been reported (reviewed in Lim and Allada, 2013).  

How are differences between rhythmic production and accumulation of oscillating factors achieved? 

Mathematical models and experimental data have shown that increasing the stability of the product, 

dampens its relative amplitude and delays its peak expression (Korenčič et al., 2012; Le Martelot et al., 

2012; Lück et al., 2014). On the contrary, an increase in relative amplitude and broad range of possible 

peak phases can be explained by rhythmic degradation (Le Martelot et al., 2012; Lück et al., 2014). The 

maximum amplitude occurs when production and degradation are in antiphase (Lück et al., 2014).  

Although there are discrepancies among studies, it has been estimated that a large fraction, ranging from 

30% (Lück et al., 2014) to over 70% (Koike et al., 2012) of the liver transcriptome is affected by post-

transcriptional regulation.  

Among the rhythmically transcribed genes, there is not only little overlap between different tissues, but 

also the peak phases of the same genes are wide-spread across different tissues (Mavroudis et al., 2018; 

Zhang et al., 2014), suggesting that tissues-specific mechanisms are at play. Part of the phase differences 

has been explained by regulatory elements in the genome (Korenčič et al., 2012; Mavroudis et al., 2018), 

tissue-specific chromatin conformations, and tissue-specific transcription factors (Yeung et al., 2017), 

whereas the remainder might be explained by post-transcriptional control and systemic signals. How the 

tissue-specific clocks are coupled and what their functional relevance is remains to be established. 
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1.1.2 Somitogenesis 

A key event during vertebrate embryogenesis is segmentation of the posterior-anterior axis, which will 

eventually give rise to the vertebrae, ribs, muscles, nerves and blood vessels. The segments, called 

somites, are rhythmically produced from the anterior tip of the presomitic mesoderm (PSM). At the same 

time, cells in the tail bud undergo cell divisions elongating the PSM at the posterior end. A mathematical 

model, the ‘clock and wavefront’ model (Cooke and Zeeman, 1976) has been suggested to drive the 

periodic formation of somites. The idea of this model is that an abrupt change in cellular properties is 

achieved when cells in a certain phase of a cellular oscillator (clock) are hit by the wavefront, which moves 

as the tissue grows. This converts temporal cues from an oscillator into a spatial pattern. As a 

consequence, the number of somites is determined by the total duration of somitogenesis and the period 

of the oscillator. The distance that the wavefront travels during one period of the oscillator determines 

the size of the somite (reviewed in Gomez and Pourquié, 2009). Hence, the combination of wavefront and 

clock are suggested to ensure space rather than time (Webb and Oates, 2016).  Interestingly, the size and 

the number of somites are different between species (Gomez et al., 2008). Below I will summarize the 

molecular mechanisms underlying the clock and wavefront model. 

1.1.2.1 The oscillator 

The existence of an oscillator was supported by the identification and characterization of HAIRY1, a 

member of the HER family of basic helix-loop-helix (bHLH) transcription factors, in chicken embryos 

(Palmeirim et al., 1997). Besides the members of the HER family, factors of the Notch, Wnt and FGF 

signaling pathways were found to oscillate. These gene expression oscillations travel from posterior to 

anterior, and arrests at the anterior of the PSM. This process is repeated with every formation of a somite 

(reviewed in Oates et al., 2012). I will summarize the molecular mechanism of the segmentation oscillator 

in zebrafish and mice below (as reviewed in Dequéant and Pourquié, 2008). 

In zebrafish, oscillations in Her1 and Her7 have been shown to arise from a negative feedback loop, in 

which they directly inhibit their own transcription. The Her1-Her7 oscillator is thought to be coupled to, 

and induce, oscillations of the Notch ligand, important for synchronizing the oscillator in neighboring cells. 

Moreover, the Her1-Her7 oscillator requires Hes6, which is regulated by FGF signaling. Indeed and 

consistent with the Clock and Wavefront model, mutations in hes6 (Schröter et al., 2012), and the Notch 

signaling network (Herrgen et al., 2010) resulted in an increased period and segment length in zebrafish, 

without affecting growth of the PSM. Although the Her1-Her7 oscillator requires other pathways for its 

function, it has been suggested to be the core oscillator in zebrafish.  
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In mice, Hes7, Hes1, Hes5 and Hey2 function similar to Her1-Her7 oscillator in zebrafish. In contrast to 

zebrafish, additional factors of the Notch pathway and factors of the FGF and Wnt signaling pathways also 

oscillate in mice. These oscillators appear to functionally coupled as the FGF and Notch pathway are 

connected via their interaction with Hes7 (Niwa et al., 2007), and cross-talk between Wnt and Notch 

signaling pathways was found to control segmentation (Sonnen et al., 2018). Thus, it is the collective 

oscillatory behavior of these pathways that is thought to control the periodicity of somitogenesis in mice.  

1.1.2.2 The wavefront 

The finding that gradients of FGF, Wnt and Retinoic acid (RA) exist along the PSM (reviewed in Aulehla 

and Pourquié, 2010), provided support for the wavefront model. FGF and Wnt levels are highest in the 

posterior end, and decline towards the anterior end of the PSM (Aulehla et al., 2003; Dubrulle et al., 2001). 

In contrast, reporter experiments suggest that RA is produced in the somites and decreases towards the 

posterior end (Niederreither et al., 1997; Rossant et al., 1991). Hence, opposing gradients are established. 

Whereas high levels of Wnt and FGF signaling are thought to ensure that cells stay in an undifferentiated 

state, high levels of RA and low levels of Wnt and FGF promote a developmental switch in the anterior 

end of the PSM (reviewed in Aulehla and Pourquié, 2010). The wavefront, a threshold at the anterior is 

thought to prime cells to respond to signaling of the segmentation clock. As a consequence, the expression 

of MESP genes is induced in repetitive manner, which determines the initial boundaries where the future 

segments will form (Saga et al., 1997). Finally, the cells undergo mesenchymal-epithelial transition to 

eventually form differentiated somites.  

1.1.3 Lateral root branching 

Plants also exhibit rhythmic formation of modules.  Branching of the shoots and lateral roots of plants 

occurs in a repetitive manner. Whereas shoots form a pyllotactic (spiral) pattern, roots are produced 

laterally and repetitively along the growing axis. Recently, a DR5::LUC reporter construct was found to 

oscillate in a region close to the root tip and mark evenly spaced sites which later develop into new 

lateral roots, the so-called pre-branch sites (Moreno-Risueno et al., 2010). Oscillations were not limited 

to that of the reporter, instead two sets of roughly 2000 and 1400 genes oscillated in antiphase. 

Mutants of rhythmically expressed transcription factors revealed defects in number and spacing of 

branches, suggesting that transcription factors regulate rhythmic priming of pre-branch sites (Moreno-

Risueno et al., 2010). Although growth of the primary root and the spacing of pre-branch sites is 

sensitive to changes in temperature, the number of pre-branch sites remained largely unchanged, 

suggesting that the process is temperature compensated. Hence, the authors concluded that positioning 
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of pre-branch sites at evenly spaced intervals is controlled by an autonomous oscillator (Moreno-

Risueno et al., 2010). However, alternative hypotheses, e.g. tissue-level modulations in auxin levels and 

Turing-type periodic patterning, have been suggested to control lateral root branching in plants 

(Laskowski and Tusscher, 2017). Although auxin is a key regulator of lateral root formation, exogenous 

auxin fluctuations were not sufficient for the formation of pre-branch sites (Moreno-Risueno et al., 

2010). However, the amplitude of the oscillations appeared to be controlled by auxin levels in the tip of 

the root and a local auxin source is required for the formation of lateral roots (Xuan et al., 2015). These 

observations suggest that although auxin does not appear to be the predominant driver, it contributes 

to and likely feeds into the oscillator.  

1.1.4 Oscillations in lineage-specifying transcription factors 

In the previous sections, I described oscillators that act to drive repetitive processes in time and space at 

the tissue and organism level. However, recent studies using time-lapse imaging of single cells 

expressing fluorescent reporters revealed that oscillations in genetic networks can also result in 

different cellular states rather than rhythmic outcomes (reviewed in Isomura and Kageyama, 2014; 

Levine et al., 2013; Purvis and Lahav, 2013). One such a distinct cellular outcome is the ability of stem 

cells to differentiate into different cell types. Indeed, the transcription factor Nanog fluctuates in 

embryonic stem cells. Although loss of Nanog did not affect the proliferative capacity, it predisposed 

stem cells to commit to differentiation (Chambers et al., 2007).  Similarly, the transcription factor Hes1 

has been found to oscillate in neural progenitor cells (Shimojo et al., 2008) and embryonic stem cells 

(Kobayashi et al., 2009). Stem cells expressing high and low levels of Hes1 were prone to adopting 

mesodermal and neuronal fate respectively. Hence, Hes1 oscillations in embryonic stem cells are 

thought to sustain the ability to give rise to different cell fate choices (Kobayashi et al., 2009).  A recent 

study by Imayoshi et al. showed that together with Hes1, oscillatory expression of the transcription 

factors Olig2 and Ascl1 maintained neuronal progenitor cells in a proliferative and multipotent state. 

Upon induced differentiation towards neurons, astrocytes and oligodendrocytes, oscillations ceased and 

the expression of one factor, Ascl1, Hes1 and Olig2 respectively, was predominantly upregulated. 

However, sustained high expression was not sufficient to determine cell fate choices (Imayoshi et al., 

2013). Hence, it seems likely that the expression dynamics of lineage-specifying transcription factors 

offer cells an opportunity to adopt multiple cell fates, depending on environmental conditions. How 

binary responses can arise from oscillatory gene networks will be discussed below (section 1.2.1).  
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1.2 Oscillations from a theoretical point of view 

To understand the molecular mechanisms that drive an oscillator, it is not only important to identify its 

components and how they are wired, but also to describe the network from a theoretical perspective. 

Especially because it is not straightforward how interactions within the network give rise to the dynamic 

behavior of its components. On the one hand, this requires analysis tools that can extract and quantify 

the characteristics of oscillatory signals. On the other hand, mathematical models that can describe the 

characteristics of oscillatory networks are needed. Here, I will describe the design principles that are 

required (section 1.2.1) for a network to generate oscillations, and some of theoretical tools that are used 

to describe oscillations (section 1.2.2 and section 1.2.3).  

1.2.1 Design principles of oscillators 

To understand the requirements for a system to oscillate, I consider a simple one-gene network in which 

an mRNA is transcribed from a gene and translated into a protein (Figure 1.3A). As mentioned above, a 

prerequisite of a component to exhibit oscillations is sufficient instability of mRNA and protein (Ø in Figure 

1.3A). Here, I will discuss the design principles of oscillators as previously described (Novák and Tyson, 

2008). 

1.2.1.1 A negative feedback loop 

The first design principle of an oscillator is a negative feedback loop. In our case, the protein represses its 

own transcription (Figure 1.3B, Negative autoregulation). When protein levels are high, production is 

lower than degradation, allowing protein levels to drop. As protein levels decrease, repression is released 

and mRNA and protein levels rise again. Indeed, at the core of the circadian and the segmentation 

oscillators are negative feedback loops (section 1.1.1 and section 1.1.2). However, a negative feedback 

on its own is not sufficient to generate oscillations. Hence, the system might initially reveal fluctuations, 

but mRNA and protein levels will soon reach a steady state, in which the rate of production and 

degradation are equal (Alon, 2007). 

1.2.1.2 Sufficiently large time delays 

The second design principle is a sufficiently large time delay. Hence, the production at a given time 

depends on the protein concentration in the past. This allows the system to overshoot and undershoot 

the steady state. In the simple network that I describe here, time delay represents the time it takes for 

transcription, post-transcriptional processes, translation, and nuclear localization to occur. These time 

delays are considered to be in the order of seconds to minutes. Indeed, in a mathematical model of Hes1 

and Her7 oscillations driven by a negative auto-regulatory feedback loop, a transcriptional delay was 
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sufficient to generate a period of 30 minutes, which is close to the period observed in zebrafish 

somitogenesis (Lewis, 2003). However, longer periods (90-120 min) as observed in mouse and chick 

somitogenesis could not be achieved without changing the parameters (Lewis, 2003). Hence, the time 

delay must be sufficiently large to match these periods. This can be achieved by introducing additional 

slow steps. Indeed, PER undergoes multiple slow post-translational modifications before being 

transported back to the nucleus (reviewed in Hirano et al., 2016). Alternatively, sufficiently large time 

delays can be obtained by adding genes to our simple model, resulting in a two-gene network (Figure 

1.3C), or a multi-gene network. Accordingly, the core circadian oscillator does not comprise a one-gene 

network, but consists of three interlocked feedback loops with numerous genes involved (section 1.1.1). 

These example show that design principles predicted by mathematical models occur in biology.  

Besides slow steps and addition of components, a third way to introduce delays is by adding a positive 

feedback loop (Figure 1.3C). In a one-component network with a positive feedback loop (Figure 1.3B), the 

production rate is low, when levels are low. Only when levels are sufficiently high, production increases 

rapidly. Hence, the response time of positive feedback loops is larger than that negative feedback loops 

and simple regulation (Figure 1.3B). Thus, positive feedback loops can generate a delay (Alon, 2007). 

In a two-gene system, gene A (activator) induces the expression of gene R (repressor), which inhibits the 

expression of gene A. Additionally, gene A induces its own expression (Figure 1.3C). Three different 

versions of repression by R have been described: transcriptional repression, sequestration of A by R, and 

repression by degradation (Purcell et al., 2010). Although the dynamics resulting from these networks 

might differ, the general principles are the same. When levels of A are high, A will be repressed by R. The 

levels of A initially reduce gradually, but suddenly A switches to low levels (undershooting) due to the 

delayed positive feedback. Once A is low, repression is released and A gradually increases. At some point 

the delayed positive feedback loop kicks in, switching A to high levels (overshooting). When certain design 

principles are met, e.g. degradation and translation rates of A are larger compared to R (a design principle 

I will discuss below) (Guantes and Poyatos, 2006), this system can reveal self-sustained oscillations. The 

initial slow accumulation of A followed by the rapid increase in A characterizes so-called relaxation 

oscillators. Moreover, the network I describe here can reveal bistability (Ferrell, 2002). A bistable system 

can alternate between two different states, a state in which levels or A are low (Figure 1.3D, i) and one in 

which levels of A are high (Figure 1.3D, iii), but it cannot stay in an intermediate state (Figure 1.3D, ii, iv). 

Indeed, the cell cycle oscillator, consisting of a negative and positive feedback loop, has revealed 

bistability in vivo (Pomerening et al., 2003). Although the network I describe here can be bistable, 
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bistability is not assured and other network topologies can also be bistable (Ferrell, 2002). Moreover and 

in contrast to a ‘negative-only’ oscillator,  ‘combined negative and positive’ oscillators revealed less 

variable amplitudes for changes in its frequency in mathematical models (Tsai et al., 2008) and synthetic 

oscillators (Stricker et al., 2008). Tunability and robustness can be of particular importance for biological 

oscillators that act in a range of environmental conditions (Tsai et al., 2008).  

1.2.1.3 Non-linearity 

Third, the design of the oscillator often reveals non-linear reaction steps. Novak and Tyson (Novák and 

Tyson, 2008) described four examples of non-linearity. (i) Assembly of multiple components that 

subsequently act as a complex, for example multimeric transcription factor complexes that binds to a 

single site at the DNA. (ii) Binding of multiple factors to different sites and acting in a cooperative fashion. 

(iii) Modification, such as phosphorylation, of a protein at multiple sites. (iv) Sequestration of an activator 

by a repressor, e.g. a stoichiometric inhibitor that binds a regulatory protein to form an inactive complex. 

All these examples exhibit sigmoidal-shaped reaction curves that help generating oscillations.  

1.2.1.4 Balanced reaction rates 

Finally, and as already mentioned in the second requirement, the rates of the different steps must be 

balanced to generate oscillations. For example, the timescale of degradation must be slower than that of 

production, and the time delay must be larger than the timescale of degradation. If production were to 

be slower than degradation, levels of the product cannot rise. If degradation were to be slower than the 

negative feedback loop, repression cannot be released. Hence, a network will only oscillate when the 

timescales of the different steps are matched accordingly (Novák and Tyson, 2008). 

1.2.1.5 Conclusion on design principles 

To summarize, genetic oscillations can be generated in a network that comprises nonlinear negative 

feedback loops with sufficiently long delays and fast decay rates, which are balanced accordingly. Indeed, 

the design principles described here have been observed in for example the circadian clock (section 1.1.1), 

somitogenesis (section 1.1.2) and the cell cycle of Xenopus eggs (Pomerening et al., 2003), indicating their 

functional relevance. Mathematical models (reviewed in Purcell et al., 2010) and synthetic oscillators 

(Elowitz and Leibler, 2000) have revealed that other network motifs are also capable of generating 

oscillations. However, whether and to what extent these networks exists in vivo remains to be 

investigated. 
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Figure 1.3: Network motifs and bistability 

A, Schematic representation of a one-gene network. Gene x is transcribed in mRNA x which is degraded (Ø). mRNA 
is translated into protein which is degraded (Ø). 

B, Overview of one-gene network motifs and their dynamics. Dynamics are represented in a cartoon showing how 
the concentration of X over the concentration of X at steady state changes over time. Simple regulation (as in A, red), 
negative autoregulation (black) and positive autoregulation (blue) are indicated. In negative autoregulation, the 
product of gene X inhibits its own transcription, and dynamics are faster compared to simple regulation (arrow). In 
positive autoregulation, the product of gene X induces its own transcription and dynamics are delayed compared to 
simple regulation (arrow). Based on (Alon, 2007) 

C, Overview of two-gene network motifs. In a negative feedback loop only model, the product of gene X induces the 
expression of repressor R, which inhibits the production of X. In a combined negative and positive feedback loop, 
activator A additionally induces its own expression. 

D, Cartoon of bistability. Dynamics of the levels of A over time in the combined negative and positive feedback 
network. Levels of A increase gradually (i), and subsequently shoot up when the positive feedback kicks in (ii), R 
inhibits A gradually and slowly (iii), and subsequently levels of A drop rapidly when the positive feedback loop 
becomes active (iv). Note that low (i) and high (iii) states exist, but no intermediate states. Based on (Tsai et al., 
2008). 
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1.2.2 Theoretical description of an oscillation in a phase plane 

To visualize how an oscillator behaves, a geometrical representation in a so-called phase plane can be 

made. Here, I will describe the phase plane of a genetic network consisting of two genes, X and Y (based 

on Strogatz, 2015, chapter 2 and chapter 5). The axes of a phase plane represent the levels of the X and Y 

respectively (Figure 1.4A). The phase plane is filled with arrows, which have a certain length and a certain 

direction. The arrows indicate how the system evolves over time, given the initial conditions, X0 and Y0. 

Each point in the phase plane can serve as an initial condition. Hence, when choosing X0 and Y0 in the 

phase plane and following the arrow that leaves from that point (X0,Y0), and the subsequent arrows, one 

will observe a trajectory through the phase plane. Depending on the initial conditions, the system can 

exhibit very different paths in phase plane (Figure 1.4A). 

Trajectories can converge to a point (attractor) or diverge from one point (repeller) (Strogatz, 2015, 

chapter 2). These so-called fixed points lack an arrow, hence the system will stay in this point and does 

not change anymore over time. A fixed point is called stable when a small change in the levels of A or B 

results in the return of the system to the fixed point (Figure 1.4B). A stable fixed point is represented with 

a closed dot. In contrast, when a small perturbation in A or B prevents the system from returning, the 

fixed point is called unstable. An unstable fixed point is represented with an open dot. For certain systems, 

some trajectories might never converge, i.e. they tend to infinity.  

For certain systems, the trajectories can form closed loops. A closed loop in a phase plane implies 

oscillations, as the system returns to the same point after travelling through the phase plane. A special 

case of a closed loop is a limit cycle (Strogatz, 2015, chapter 7), for which the neighboring trajectories 

spiral toward or away from the closed loop. Similar to fixed points, the terminology stable and unstable 

also applies for limit cycles.  A limit cycle is stable if all neighboring trajectories approach the limit cycle 

(Figure 1.4C).  Hence, the oscillations are self-sustained. A limit cycle is unstable if neighboring trajectories 

spiral away from the limit cycle. Stable states are represented in a solid line and unstable states with a 

dotted line. For higher dimensional systems, i.e. systems with more than 2 genes, the geometrical 

representation becomes more complicated and additional types of trajectories are possible.  

1.2.3 Bifurcations in oscillating systems 

Above I have presented a theoretical representation of how a given system changes over time. However, 

the existence of fixed points and limit cycles and their topology depends on the interactions and the 

parameters of the network. In fact, a system can show different qualitative behaviors for different 

parameter values (Strogatz, 2015, chapter 3 and chapter 8). A bifurcation is the transition between these 
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different qualitative behaviors when one or more of the parameters, the so-called bifurcation parameters, 

are varied. Bifurcation points are the parameter values at which these transitions occur. Hence, 

bifurcations can be used to describe changes in oscillatory behavior, e.g. transitions from a stable into an 

oscillatory state and vice versa. Here, I will describe some of the so-called codimension-1 bifurcations, i.e. 

only one bifurcation parameter is necessary for a bifurcation to take place. An overview of possible 

codimension-1 bifurcations has been described before (Izhikevich, 2000; Saggio et al., 2017; Strogatz, 

2015). Here, I will summarize the characteristics of the following codimension-1 bifurcations: the 

supercritical Hopf bifurcation, the subcritical Hopf bifurcation, the Saddle Node bifurcation and the SNIC 

bifurcation. Higher order codimension bifurcations are beyond the scope of this thesis. 

A well-known example of a bifurcation is a supercritical Hopf bifurcation (Figure 1.4D). Below a certain 

parameter value, the system is in a steady state (a fixed point) and the amplitude is zero. However, as the 

parameter value increases and reaches the bifurcation point, the fixed point becomes unstable and a 

stable limit cycle emerges. Hence, the system starts oscillating. Upon further increase of the parameter 

value, the amplitude of the limit cycle increases. Transitions of supercritical Hopf bifurcations are 

characterized by stable periods but gradually changing amplitudes. Hence, when the systems transitions 

from an oscillating to a stable state it reveals damped oscillations.  

Similar to the supercritical Hopf bifurcation, the subcritical Hopf bifurcation has a stable fixed point (Figure 

1.4D). However, and in contrast to the supercritical Hopf bifurcation, the stable fixed point is surrounded 

by an unstable limit cycle, which is in turn surrounded by a stable limit cycle (Izhikevich, 2000). As the 

parameter value increases, the fixed point loses its stability and the unstable limit cycle decreases and 

resolves, causing the system to jump to the stable limit cycle. Compared to the supercritical Hopf 

bifurcation, oscillations with a less gradual onset and relatively large amplitudes are observed in a 

subcritical Hopf bifurcation.  

In contrast to the Hopf bifurcations, a Saddle Node bifurcation is characterized by pairs of fixed points 

with different stabilities that emerge or disappear when the bifurcation parameter is changed (Figure 

1.4D). A special case of the Saddle Node bifurcation is the Saddle Node on Invariant Circle (SNIC) 

bifurcation. In contrast to the Saddle Node bifurcation, the pair of fixed points emerge or disappear on a 

closed trajectory. When the pair of fixed points disappear (also referred to as collided fixed point, Figure 

1.4D) a stable limit cycle emerges, i.e. the system starts oscillating. When the pair of fixed point emerge, 

the closed trajectory is disrupted, i.e. oscillations are lost. As the system is already on a closed trajectory, 

the stable state can be referred to as quiescent, i.e. it is arrested at a certain point of the cycle.  Hence, 
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the transition from an oscillatory state to a stable state during a SNIC bifurcation is characterized by a 

sudden offset of oscillations with invariant amplitudes, and a slowing down of the period. Similar 

characteristics are observed when the system transitions from a stable to an oscillatory state.  

 

Figure 1.4: Phase planes and bifurcations 

A, B, C, Cartoon of an arbitrary system in a phase plane. Arrows indicate how an arbitrary system evolves over time. 
B, Stable fixed and attractive point. C, Stable limit cycle. 

D, Examples of how an arbitrary system changes when the bifurcation parameter is varied. At the bifurcation point, 
a qualitative change in the behavior of the systems occurs. Phase planes for supercritical Hopf, subcritical Hopf and 
Saddle Node on Invariant circle bifurcations are shown. Based on (Izhikevich, 2000; Saggio et al., 2017) 
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In summary, a system exhibits self-sustained oscillations only in a certain range of parameter values, 

depending on the network design and its parameters. Indeed, theoretical modelling and experimental 

data of the p53 oscillating network revealed that adding a positive feedback loop to negative feedback 

oscillator changed the bifurcation diagram from a supercritical Hopf to a SNIC bifurcation (Mönke et al., 

2017). Hence, investigating the bifurcations of an oscillating system will help to unravel its architecture.  

1.3 C. elegans as a model organism to study development and its timing 

Caenorhabditis elegans is a free-living, non-parasitic roundworm of 1 mm in length and is found worldwide 

in rotten organic material, rich in nutrients and micro-organisms. In the lab, animals are maintained on 

agar plates or liquid cultures containing Escherichia coli bacteria as food source, at temperatures ranging 

from ~12°C to ~25°C. C. elegans has two sexual forms: self-fertilizing hermaphrodites, and males, which 

arise spontaneously with a frequency of about one in thousand. Self-fertilization results in the generation 

of genetically identical off-spring, whereas male mating allows the exchange of genetic material (reviewed 

in Corsi et al., 2015).  

The life-cycle consists of embryogenesis (section 1.3.1), four larval stages (L1-L4), and an adult stage, 

which together takes roughly 2.5 days at 25°C from egg until egg-laying adults. The larval stages are 

separated by molts, in which animals renew their exoskeleton, the cuticle. Under unfavorable conditions, 

e.g. absence of food, high temperature, or overcrowding, L1 animals can develop into L2d stage and 

subsequently into a developmentally arrested state, called dauer diapause (Cassada and Russell, 1975), 

which they can survive for months.  

Upon hatching, L1 larvae contain 558 nuclei, which increases to 959 somatic nuclei in adult 

hermaphrodites. Despite the small number of cells, C. elegans features many organs, including nervous 

system, muscles, intestine, epidermis, and gonad. However, it lacks a respiratory and circulatory system 

and more specialized digestive organs. Given its transparency and its invariant number and fate of somatic 

cells, all cell divisions and cell fates in C. elegans have been mapped (Kimble and Hirsh, 1979; Sulston and 

Horvitz, 1977; Sulston et al., 1983). As a result, the first so-called heterochronic genes, which control the 

timing of stage-specific events relative to other developmental events, could be identified (Ambros and 

Horvitz, 1984).  Subsequent genetic studies facilitated the identification and characterization of molecular 

pathways involved in development. Thus, C. elegans has emerged as a popular model to study 

developmental biology.  
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Precise timing of events is crucial for the development of an organism. The developmental stages of C. 

elegans can be considered repetitive as well as linear. For example, the molts are repeated at the end of 

every stage (section 1.3.2), but at the same time stage-specific events occur. Hence, it seems likely that 

timing of larval development comprises two distinct but interacting mechanisms. A cyclical time keeping 

mechanism that ensures timing of repetitive events (section 1.3.3) and a linear time keeping mechanism 

that times the sequence of stage-specific events. Thus, besides studying developmental processes as such, 

C. elegans is also a powerful model to their timing.  

1.3.1 Embryogenesis 

Embryogenesis of C. elegans takes about 840 min (14 hours) at 22°C (the timing of events in this chapter 

is based on (Hall et al.), Figure 1.5). During fertilization, when the haploid oocyte and haploid sperm fuse, 

a diploid single cell embryo arises. Fertilization is followed by multiple rounds of cell divisions 

(proliferation), which have been fully mapped (Sulston et al., 1983), and spatial relocation (gastrulation). 

Early proliferation of the single-cell embryo takes places in the hermaphrodite uterus, from 0 to 150 min 

post-fertilization, and is characterized by a series of asymmetric divisions, during which the principle axes 

of the body plan are set-up. The asymmetric divisions result in six founder cells that differ in cell fate. They 

undergo further divisions and eventually give rise to partially overlapping tissue types. At approximately 

30-cell stage, eggs are laid and additional proliferation events continue to occur from 150 to 350 min post-

fertilization. At the same time (100 to 350 min), gastrulation takes place, i.e. cells start to move and 

internalize, leading to separation of ectoderm, endoderm and mesoderm precursor cells.  

During morphogenesis, cells become terminally differentiated, and the shape of the animal is determined, 

which is largely dominated by the epidermis (Chisholm and Hardin, 2005). The major epidermal cells are 

already generated around 280 min post-fertilization. Soon after, they start to express the junction protein 

AJM-1 (McMahon et al., 2001), and the epidermal sheath, an apical extracellular matrix (ECM) is formed. 

Epidermal cells in embryo undergo spatial rearrangements and morphological changes (dorsal 

intercalation), until eventually the embryo becomes enclosed by the epidermal sheath, a process known 

as epidermal enclosure. Epidermal morphogenesis is followed by elongation at 400 min post-fertilization. 

Elongation is characterized by lengthen the bean-shaped embryo into the shape of a worm. Tension and 

forces provided by the epidermal sheath is required for elongation (Priess and Hirsh, 1986; Vuong-Brender 

et al., 2017a). Leucine-rich repeat proteins LET-4, and EGG-6 (Mancuso et al., 2012), and the conserved 

structural proteins (Jovine et al., 2005), so-called zona pellucida domain proteins FBN-1/Fibrillin (Kelley et 

al., 2015), NOAH-1 and NOAH-2 (Vuong-Brender et al., 2017b) are implicated in elongation. Quickening is 
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the final stage before hatching and starts at 550 minutes when the first coordinated movements of the 

worm (3-fold stage) are observed within the egg. Although the first ECM structures arise during the early 

stages of morphogenesis, the synthesis of the first larval cuticle only occurs at roughly 700 min, not long 

before the worm hatches at 840 min post-fertilization.  

 

Figure 1.5: Timeline of developmental stages during embryogenesis 

Timing of events during embryogenesis in minutes. Time refers to developmental time after fertilization at 20-22°C. 
Specific events during embryogenesis are indicated below and specific stages of embryogenesis are indicated above 
timeline. Based on (Hall et al., 2017). 

 

1.3.2 Molting, a repetitive feature during C. elegans development 

Besides stage-specific processes, a hallmark of C. elegans larval development is repetitive molting at the 

end of each larval stage. Molting is characterized by a period of behavioral quiescence (lethargus), during 

which the worm replaces its old cuticle, a complex extracellular matrix (ECM), for a new one. I will discuss 

the structural basis of the cuticle, the different events during molting (apolysis, cuticle synthesis and 

ecdysis) and their regulation in further detail below. 

1.3.2.1 Cuticle structure 

The cuticle of C. elegans is an apical multi-layered ECM (Figure 1.6), most of which is synthesized by the 

underlying epidermis. The cuticle is connected with the epidermis and the underlying basement 

membrane through bundles of filaments, called fibrous organelles. Features on the surface of the cuticle 

include protruding longitudinal ridges, called alae, found in L1 larvae, dauer larvae and adults, and 

circumferential furrows, called annuli, found in all stages (Cox et al., 1981a). Besides the external cuticle, 

cuticles which are directly covering the internal epithelial cells are observed in the openings of the animal, 
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i.e. buccal cavity, pharynx, vulva, rectum, excretory duct and excretory pore (reviewed in Lažetić and Fay, 

2017).  

The internal cuticles have a simple structure and except for the pharyngeal cuticle which contains chitins 

(George-Raizen et al., 2014; Veronico et al., 2001), the other internal cuticles consist predominantly of 

collagen (Gill et al., 2016). In contrast, the external cuticle comprises multiple layers (Figure 1.6):  the 

surface coat, the epicuticle and the cortical, medial and basal zones (Cox et al., 1981b). Although the 

overall structure is very similar between worms in different developmental stages, there are stage-specific 

features, e.g. larva lack the medial zone in their cuticle (Cox et al., 1981a). Whereas the main component 

of the cortical, medial and basal zone are proteins, the surface coat and the epicuticle consist of 

carbohydrates and lipids respectively. Although little is known, the surface coat is thought to protect 

against pathogens and the epicuticle is thought to serve as a hydrophobic barrier. The outermost layer of 

the cortical zone differs from the underlying zones as it mostly contains non-collagen proteins, such as 

cuticlins. Interestingly, non-collagen proteins FBN-1, NOAH-1 and NOAH-2, implicated in the epidermal 

sheath, the embryonic ECM, are also found in the cuticle of larvae (Frand et al., 2005). Collagen-like 

proteins are the most predominant components of the external cuticle, and are mainly found in the 

cortical, medial and basal zones. Although some collagens are stage-specific, numerous collagens appear 

to be incorporated into the cuticle in every larval stage. Back in 1981, Cox and colleagues revealed that 

synthesis of cuticle components was increased during the molt compared to the intermolt (Cox et al., 

1981c). Indeed, later work reported that the expression of several genes encoding structural components 

of the cuticle peaks four times during development (Frand et al., 2005; Johnstone and Barry, 1996; 

McMahon et al., 2003). However, how their rhythmic expression is regulated remains unclear.  
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Figure 1.6: Structure of the C. elegans cuticle and the underlying tissues 

Longitudinal cross-section of the adult cuticle. The five layers of the cuticle, i.e. surface coat, epicuticle, cortical zone, 
medial zone, and basal zone, are indicated. The underlying tissues include the epidermis, the basement membrane 
and the muscles. Based on (Lažetić and Fay, 2017a; Page and Johnstone, 2007). 

 

1.3.2.2 Collagen structure and synthesis 

The C. elegans cuticular collagens are encoded by roughly 170 genes (C. elegans Sequencing Consortium, 

1998). The structure is characterized by a helical domain and a collagenous domain flanked by three 

cysteine-rich regions. The collagenous domain consists of 37 to 43 Gly-X-Y triplets, with X and Y often 

being proline and 4-hydroxyproline residues. Classification of cuticular collagens in 5 groups is based on 

structural similarity, i.e. on the number of interruptions in the Gly-X-Y repeats (Teuscher et al., 2019). 

Despite extensive genetic screens, mutants of numerous cuticular collagens do not exhibit obvious 

phenotypes. Thus, it seems likely that the function of at least some cuticular collagens are partially 

redundant. Whether functional redundancy occurs within or across classes remains to be established. 

Nevertheless, mutants of some 20 cuticular collagen genes have revealed phenotypes, which fall in the 

following groups: dumpy (Dpy, short and fat), roller (Rol, helically twisted), Blister (Bli, blistering of the 

cuticle), squat (Sqt, short and twisted), ray abnormal (Ram) and long (Lon) (reviewed in Page and 

Johnstone, 2007).  

Although little is known about the synthesis of cuticular collagen in C. elegans, it seems likely that the 

process is similar to that of collagen in mammals (reviewed in Page and Johnstone, 2007). The first step 

in collagen synthesis is the hydroxylation of the prolines in the Gly-X-Y repeats, which is required for 

proper folding. This process occurs co-transcriptionally, takes places in the endoplasmic reticulum and is 

catalyzed by prolyl 4-hydroxlyase. In C. elegans, dpy-18 encodes for one of the subunits of prolyl 4-

hydroxylase (Winter and Page, 2000).  Next, disulfide bonds between monomers are formed by protein 

disulfide isomerase, followed by trimerization by peptidyl prolyl cis-trans isomerases. Trimers are 

exported from the ER, which is thought to be facilitated by SEC-23 a component of secretory vesicles 

(Roberts et al., 2003). BLI-4 (Thacker et al., 1995) and DPY-31 (Novelli et al., 2004) are required for the 

removal of N-terminal and C-terminal peptides respectively. The final step in collagen synthesis involves 

the crosslinking of multiple trimers by a hydrogen peroxide-generating NADPH dual oxidase enzyme BLI-

3 (Edens et al., 2001) and a heme peroxidase MLT-7 (Thein et al., 2009).  
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1.3.2.3 Molting stages 

The molting stages have been described in detail by Singh and coworkers (Singh and Sulston, 1978), and I 

will summarize them here. The onset of molting is characterized by lethargus, a stage of quiescence in 

which movements strongly decreases, with a bursts of locomotion once in a while. Pumping is also 

gradually reduced and the mouth becomes sealed with a plug, preventing the animal from feeding. Before 

the new cuticle can be synthesized, the current cuticle needs to be detached from the underlying 

epidermis, a process called apolysis. Detachment starts at the head, followed by the tail and finally the 

old cuticle is released from the central body region. At the same time, animals exhibit rotations around 

the longitudinal axis, which is thought to facilitate apolysis. After synthesis of the new cuticle, the old one 

can be shed, a process called ecdysis. The pharynx as well as the complete body of the worm start to make 

spontaneous movements and the old cuticle becomes inflated at the head region. The pharyngeal lining 

and the cuticle break, and the plug is expelled, although the order of these events can differ among 

animals. Finally, the worm crawls out of the cuticle and resumes feeding. 

Although the molting is a fundamental process in the development of C. elegans, insight into its regulators 

has remain limited. Genetic screens have identified several potentially important factors (Frand et al., 

2005; Kamath et al., 2003). Their mutant phenotypes include: complete encasement, trapping in the 

cuticle with partial detachment, a corset or string around the mid body and an old cuticle that remains 

attached to the tail (reviewed in Lažetić and Fay, 2017). Although most molting phenotypes appear as 

shedding defects, apolysis or cuticle synthesis can be affected as well, but defects only become 

phenotypically visible during ecdysis. These phenotypes indicated a role of certain proteases, protease 

inhibitors, reductases, and endocrine regulators (further discussed below) in remodeling of the C. elegans 

cuticle (Frand et al., 2005; reviewed in Lažetić and Fay, 2017). For example, the proteases NAS-36, NAS-

37 and CPZ-1 are implicated in the degradation of the old cuticle, as mutants fail to release the cuticle in 

the central body. The expression of these proteins peaks during the molt, particularly in the epidermis. 

Moreover, NAS-37 and CPZ-1 were found to accumulate in the cuticle (Davis et al., 2004; Hashmi et al., 

2004; Suzuki et al., 2004).     

1.3.2.4 Regulation of molting 

Molting is a highly complex, animal-wide process, which involves behavioral changes, neuronal aspects 

and potentially other events, such as metabolism, to faithfully renew the cuticle. Hence, not only control 

of epidermal remodeling as such, but also the coordination with other processes appears essential for 

molting (Lažetić and Fay, 2017a). However, the molecular mechanisms that drive molting in C. elegans are 

currently unknown. In Drosophila melanogaster, the steroid hormone ecdysone is the master regulator of 
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molting (reviewed in Yamanaka et al., 2013). Once produced by the prothoracic gland, ecdysone is 

converted to its active form, 20-hydroxyecdysone (20E). 20E binds to its nuclear receptor to initiate the 

transcription of a cascade of transcription factors, which in turn induces transcriptional responses that 

promote molting and morphogenesis. The nuclear hormone receptor DHR3 which is responsive to 20E 

signaling, and its downstream target, the nuclear hormone receptor βFTZ-F1, have orthologues in C. 

elegans, NHR-23 (Kostrouchova et al., 1998) and NHR-25 (Gissendanner and Sluder, 2000) respectively 

(section 1.4.2.1). These and several other nuclear hormone receptors are implicated in molting (reviewed 

in Antebi, 2006). Although C. elegans lacks ecdysone and its receptor, sterol signaling is indispensable for 

development and molting: as cholesterol deprivation caused developmental arrest (Merris et al., 2003) 

and failure to shed the cuticle. A similar phenotype has been observed in mutants of lrp-1, a low density 

lipoprotein receptor (Yochem et al., 1999). Whether and how molting in C. elegans is regulated by steroid 

hormones and which steroid hormones are involved remains to be established.  

Besides nuclear hormone receptors, another signaling pathway that may be important for molting is the 

hedgehog-patched signaling pathway. Hedgehog (Hh) is a ligand secreted from a signal producing cell that 

binds its receptor Patched (Ptc) on a signal receiving cell. This interaction releases the latent activity of 

Smoothened (Smo), which in turn promotes the transcription factor, Cubitus interruptus (Ci), to shuttle 

to the nucleus and induce the expression of Hh targets (reviewed in Bürglin and Kuwabara, 2006). In 

Drosophila and vertebrates, Hedgehog signaling is important for cell patterning, fate, survival and 

proliferation during development (reviewed in Briscoe and Thérond, 2013). The Hh signaling pathway in 

C. elegans has diverged, as the C. elegans genome lacks genes encoding for Hh or the downstream effector 

Smo (C. elegans Sequencing Consortium, 1998), but Hh-related genes are considerably expanded to over 

sixty (Aspöck et al., 1999). Moreover, the C. elegans genome encodes for two ptc homologs, one ptc-

pseudogene, two dispatched and 24 ptc-related genes (ptr) (Kuwabara et al., 2000). As RNAi against Hh-

related, ptr and ptc genes revealed molting phenotypes, among others, a role in molting has been 

postulated (Zugasti et al., 2005). Indeed, expression patterns of Hh signaling genes are predominantly, 

but not limited to, the hypodermis or epithelial derived cells (reviewed in Bürglin and Kuwabara, 2006). 

Numerous of them exhibit cyclical expression with each of the molts (Hao et al., 2006; Hendriks et al., 

2014). Interestingly, ptc in C. elegans and other species contain sterol sensing domains and Hh is modified 

by cholesterol. Moreover, cholesterol is not required for Hh signaling, but it does affect its potency and 

signaling activity (reviewed in Kuwabara and Labouesse, 2002). Given the requirement of sterols in C. 

elegans development, it seems likely that Hh-related genes play a role in sterol-mediated signaling during 

molting.  
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1.3.3 Timing of recurring events during C. elegans development 

Using genome-wide gene expression studies, we and others have identified large-scale mRNA level 

oscillations during C. elegans larval development (Hendriks et al., 2014; Kim et al., 2013). Thousands of 

genes, hereafter referred to as ‘oscillating’ genes, are affected and their expression changes are more 

than 2-fold from peak to trough. The oscillations share an 8-hr period at 25°C, which resembles the larval 

stage durations. Moreover, the periodicity of molting and the oscillation period both increase when 

worms are grown at lower temperatures, i.e. they are not temperature compensated. Hence, a 

connection between molting and oscillations is likely (Kim et al., 2013). Indeed, previous work reported 

rhythmic expression of several genes encoding structural components of the cuticle (Frand et al., 2005; 

Johnstone and Barry, 1996; McMahon et al., 2003), and our global analyses showed that these genes were 

strongly enriched among ‘oscillating’ genes (Hendriks et al., 2014). However, the peak phase distribution 

of the oscillations is wide-spread, i.e. the expression of various genes peaks outside of the molt. This 

suggests that the function of gene expression oscillations is not limited to molting, but more likely 

functions to coordinate and time numerous developmental events.  

Mechanistically, it seems possible that transcript oscillations arise from rhythmic transcription, as mRNA 

level oscillations were preceded by rhythmic pre-mRNA accumulation (Hendriks et al., 2014). Indeed, 

unpublished data from our lab revealed that the expression of destabilized GFP driven from the promoter 

of several ‘oscillating’ genes resembles the expression of the endogenous genes (Yannick Hauser, 

unpublished). We could recapitulate not only the oscillation as such, but also its phase and amplitude, 

indicating that the promoter sequence is sufficient for oscillatory gene expression. However, the factors 

that drive rhythmic transcription and the step at which rhythmic transcription is regulated (explained in 

more detail in section 1.4.1), are currently unknown. 

Besides molting, another repetitive developmental event is the division and differentiation of skin 

progenitor cells (seam cells), although some of them occur stage-specifically (Sulston and Horvitz, 1977). 

Timing of seam cell divisions relative to other developmental events is controlled by the heterochronic 

pathway. The so-called retarded mutants of the heterochronic pathway repeat seam cell divisions and 

molts, whereas in the so-called precocious mutants those are skipped (Ambros and Horvitz, 1984). 

Moreover, exit from the molting cycle and seam cell exit from the cell cycle are some of the features that 

characterize the transition from larvae to adults from the skin point of view (Ambros, 1989). These studies 

suggest that molting and seam cell divisions are coupled. Pharmacological activation of nicotinic 

acetylcholine receptors resulted in uncoupling, i.e. seam cell divisions were delayed relative to the molt 
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in L2 stage, leading to lethality (Ruaud and Bessereau, 2006). Thus, it seems likely that molting and seam 

cell divisions are driven by independent but synchronized time keeping mechanisms. 

1.4 Transcription 

Expression of the right gene at the right time and place is crucial during development. Although regulation 

of gene expression occurs at many levels, the focus of this thesis is on transcriptional regulation (section 

1.4.1). I will also discuss functions of the transcription factors that were identified through a screen in this 

thesis (section 1.4.2). 

1.4.1 Transcriptional regulation 

Regulation of gene expression at the level of transcription is mediated by an interplay of RNA polymerase, 

transcription factors, and co-factors. RNA polymerase exists in three flavors that differ in structure and 

associated factors: RNAPI produces the large ribosomal RNA (rRNA) precursor, RNAPII produces 

messenger RNA (mRNA) and non-coding RNA, and RNAPIII produces transfer RNA (tRNA) and the small 

rRNA (Sentenac, 1985). Here, I will describe how RNAPII transcribes mRNA in mammals, focusing on 

promoter recognition, transcription initiation, elongation (as reviewed in Cramer, 2019) and termination 

(as reviewed in Porrua and Libri, 2015). Although transcription is conserved throughout eukaryotes, some 

of the aspects are C. elegans specific, which will be pointed out below. 

Transcription of mRNA is initiated at the promoter region, upstream of the transcription start site. In an 

inactive state, promoters are protected by nucleosomes or DNA methylation. For a gene to be transcribed, 

the promoter must be accessible for binding of RNAPII. Accessibility, and thus activity, of promoters is 

regulated by transcription factors and chromatin remodeling factors. Most of the transcription factors 

bind open chromatin, but some can open up small stretches of closed chromatin, the so-called pioneer 

transcription factors. As different families of transcription factors recognize different DNA sequences, this 

allows for some degree of specificity (further discussed below). In contrast, the binding site for RNAPII is 

more, although not completely, uniform among promoters (Smale and Kadonaga, 2003). Once the 

promoter is accessible, RNAPII together with associated initiation factors bind as a pre-initiation complex 

(PIC) to the promoter sequence. In contrast to mammals, the core promoter elements in C. elegans have 

been difficult to assess, as about 70% of the genes are trans-spliced to SL1 or SL2, a 22-nucleotide 

sequence (Blumenthal, 2018). Opening of the two DNA strands by PIC requires recruitment of the DNA 

translocase XPB. Next, transcription initiation is facilitated by the so-called Mediator complex, which 

promotes the phosphorylation of Serine-5 in the repeats of the C-terminal domain (CTD) of RNAPII by 

CDK7, required for elongation. Once initiated, RNAPII can pause after roughly 50 base pairs downstream 
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of the promoter, mediated by the factors DSIF and NELF. Pause-release and the transition into active 

elongation is regulated by P-TEFb which phosphorylates DSIF, NELF and Serine-2 of the CTD of RNAPII. In 

contrast to mammals, NELF is not encoded by the C. elegans genome (C. elegans Sequencing Consortium, 

1998) and hence, pausing downstream of the promotor is not commonly observed during larval 

development (Baugh et al., 2009; Maxwell et al., 2014). As RNAPII slides along the DNA, a nascent 

transcript is synthesized. Once the polyadenylation signal (PAS) is transcribed, the nascent transcript is 

cleaved a few nucleotides downstream of PAS and subsequently adenosine nucleotides are added. The 

exact mechanism of how RNAPII is released from the DNA remains unclear. Two models have currently 

been proposed. In the one model conformational changes in the elongation complex are proposed to 

destabilize the complex (allosteric model). In the other model, an 5’-3’ exoribonuclease degrades the 

nascent RNA after cleavage leading to dislocation of the elongation complex (torpedo model) (reviewed 

in Porrua and Libri, 2015).   

Although the basics of transcription are generic, specificity is required to give rise to distinct cellular 

behaviors and different cell types during development. How is specificity achieved? The accessibility of 

chromatin and the presence of transcription factor binding motifs in the promoter region alone fail to fully 

explain transcriptional activity. Moreover, transcription factors of the same family often have similar 

transcription factor binding motifs, but have distinct targets (reviewed in Biggin, 2011). Indeed, additional 

layers of regulation at each step of the transcription cycle are known to control the transcriptional output. 

For example, numerous transcription factors bind not only to the DNA in the promoter region, but also 

interact with more distant DNA sequences, called enhancers. Another level of complexity is achieved by 

the interaction of monomeric transcription factors that act cooperatively to regulate gene expression as 

homodimers, heterodimers or even multi-mers (reviewed in Todeschini et al., 2014). Dimerization has 

been observed in particular for nuclear hormone receptors (reviewed in Forman and Samuels, 1990), a 

specific class of transcription factors, of which I will discuss some examples below (section 1.4.2.1).  

Finally, signaling pathways that modify transcription factor activity post-translationally are important to 

transduce internal and external cues and thus allow temporal control of gene expression (reviewed in 

Benayoun and Veitia, 2009). Clearly, transcriptional regulation is complex and characterization of 

transcription factors, their functioning and architecture will help to better understand how gene 

expression is regulated. 
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1.4.2 Transcription factors in this thesis 

The work I present in this thesis focuses on the transcription factors NHR-23, NHR-25, GRH-1, BLMP-1, 

MYRF-1. This section will describe the function and relevance of these transcription factors. 

1.4.2.1 nhr-23 and nhr-25 

NHR-23 and NHR-25 belong to a family of 284 nuclear hormone receptors (NHR) encoded in the C. elegans 

genome (reviewed in Antebi, 2006). NHRs are transcription factors, which often act as homo- or 

heterodimers (reviewed in Forman and Samuels, 1990). Many of the NHRs require lipophilic ligands for 

their activity, while for other NHRs the ligands are unknown or unidentified. Moreover, the mechanisms 

of action of numerous vertebrate NHRs and some C. elegans NHRs are well characterized (reviewed in 

Antebi, 2006). However, the biological function of the majority of the 284 NHRs in C. elegans is poorly 

understood or completely unknown.   

nhr-23 is the orthologue (Kostrouchova et al., 1998) of Drosophila Dhr3, an ecdysone-response gene 

involved in molting and morphogenesis, and mammalian RORα, regulator of oscillatory expression of 

Bmal-1, the second feedback loop in the circadian rhythm. Although nhr-23 is uniformly expressed in early 

embryos, expression becomes restricted to epidermal cells once they are born during embryogenesis and 

expression continues during larval stages (Kostrouchova et al., 1998). nhr-23(RNAi) causes a Dpy 

phenotype, larval arrest, embryonic lethality, and cuticle shedding defects, mostly constrictions 

(Kostrouchova et al., 1998). As molting defects could be induced at every molt, NHR-23 seems to be 

required for every molt (Kostrouchova et al., 2001). Indeed, we and others showed that expression of nhr-

23 oscillates with its peak occurring during the intermolt (Gissendanner et al., 2004; Hendriks et al., 2014; 

Kostrouchova et al., 2001). Genome-wide expression microarrays in nhr-23(RNAi) animals revealed genes 

encoding for collagens and hedgehog-related proteins among the affected genes (Kouns et al., 2011).  

nhr-25 is the orthologue (Gissendanner and Sluder, 2000) of Drosophila Ftz-f1, involved in molting and 

morphogenesis, and the mammalian Sf-1, involved in sex determination. nhr-25 is expressed in epidermal 

cells from the moment they arise in embryos and expression is maintained in the epidermis during larval 

development (Asahina et al., 2000; Gissendanner and Sluder, 2000). nhr-25(RNAi) caused embryonic and 

larval lethality, larval arrest, and failure of vulva formation and sterility in adults. More specific phenotypes 

in larvae include Dpy, uncoordinated, posterior patterning defects and defects in shedding the cuticle 

resulting in cuticle attachment at the rectum (Asahina et al., 2000; Gissendanner and Sluder, 2000). 

Moreover, cell fusion defects were reported in embryonic epidermal cells, vulva cells, and its precursors 

(Chen et al., 2004), and seam cells (Šilhánková et al., 2005) of nhr-23(RNAi) animals. Clearly, NHR-25 plays 
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a role in epidermal development, but is also required for somatic gonad development (Asahina et al., 

2000; Gissendanner and Sluder, 2000). Expression of nhr-25 oscillates, but in contrast to nhr-23, the peak 

occurs during the molt (Gissendanner et al., 2004; Hendriks et al., 2014). 

Mechanistically, nhr-23 and nhr-25 are at least partially controlled by the miRNAs mir-84 and let-7 

involved in the heterochronic pathway, as nhr-23(RNAi) and nhr-25(RNAi) restored mir-84 and let-7 

supernumerary molting phenotypes. However, regulation of nhr-23, but not nhr-25 is most likely indirect 

as the 3’UTR of nhr-23 lacks obvious binding sites for these miRNAs (Hayes et al., 2006). Even though the 

orthologue of nhr-25, Ftz-f1, is a target of the orthologue of nhr-23, Dhr-3, this interaction is not conserved 

in C. elegans (Kostrouchova et al., 2001). To date, the molecular mechanisms through which NHR-23 and 

NHR-25 act in the regulation of epidermal development and molting is unknown. 

1.4.2.2 grh-1 

GRH-1 belongs to the LSF/Grainyhead family of transcription factors (Venkatesan et al., 2003). The C. 

elegans and Drosophila genome encode one grh gene, whereas mammals have three Grhl genes (Grhl1-

3). The first member, Grainyhead, was identified in Drosophila (Bray and Kafatos, 1991; Bray et al., 1989; 

Dynlacht et al., 1989; Johnson et al., 1989) and subsequent identification of other members showed high 

structural conservation in their DNA binding domain and dimerization domain (Venkatesan et al., 2003). 

Recently, the structure of the DNA binding domain of Grhl1 and Grhl2 has been solved and revealed their 

binding to the DNA consensus sequence (AACCGGTT) in a dimeric arrangement (Ming et al., 2018).  

The name grainyhead is derived from the phenotypes observed in Grainyhead mutants in Drosophila, i.e. 

soft, thin and granular cuticles, some of which ruptured, resulting in cell extrusion (Bray and Kafatos, 1991; 

Nüsslein-Volhard et al., 1984a). Similar phenotypes have been reported for grh-1(RNAi) in C. elegans 

embryos (Venkatesan et al., 2003), suggesting a conserved role of Grainyhead family members in cuticle 

development. Indeed, Ddc, a Dopa decarboxylase and tyrosine hydroxylase, crucial for cross-linking 

components in the cuticle is a direct, but not the only, target of Grainyhead (Bray and Kafatos, 1991). 

Besides its role in cuticle formation, Grainyhead is important for cytoskeleton rearrangements and 

epidermal cell shape changes during epidermal wound healing (Bray and Kafatos, 1991; Cristo et al., 2018; 

Mace et al., 2005), size control of the epithelial tube (Hemphälä et al., 2003), and polarization of the adult 

epidermis (Lee and Adler, 2004).  

Consistently, the mammalian Grhl1-3 genes are important for development and maintenance of epithelial 

tissues. Grhl genes are predominantly expressed in epithelial tissues and partially, but not completely 

functionally redundant (Auden et al., 2006). Grhl genes play a role in epithelial differentiation (Yu et al., 
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2006), wound healing, eye lid closure (Boglev et al., 2011), neural tube closure (Rifat et al., 2010), and 

formation of hair coat (Wilanowski et al., 2008). Grhl3 directly regulates expression of transglutaminase 

1, the enzyme essential for cross-linking structural components of the epidermis (Ting et al., 2005), a role 

analogous to that of Dopa decarboxylase (Ddc) in the cuticle of Drosophila (Bray and Kafatos, 1991). Grhl1 

has been shown to directly regulate the expression of Desmoglein-1 (Dsg1), a desmosomal cadherin, 

which is a component of the intracellular junctions of the epidermis (Wilanowski et al., 2008). Grhl2 is 

known to directly regulate the expression of Cadherin-1 and Claudin 4, among other cell interaction genes, 

and its phenotypes reveal defective cell-cell junctions and impaired cell migration (Varma et al., 2012; 

Werth et al., 2010). In line with their role in promoting cell adhesion, loss of Grhl genes has been 

correlated with epithelial-mesenchymal transition (EMT) and progression of epithelial-derived cancers. In 

contrast, overexpression of GRHL2 has been associated with poor prognosis non-EMT-driven cancer, 

suggesting that grhl2 may function not only as a tumor suppressor, but also as an oncogene (Frisch et al., 

2017).  

Mechanistically, binding of Grh to its DNA binding sites was found to be stable over embryonic 

development, whereas the expression of Grh-regulated genes was dynamic during this time (Nevil et al., 

2017). Moreover, Grh is required for the opening the chromatin at enhancers in epithelial tissues, but is 

not sufficient to drive their gene expression (Jacobs et al., 2018). Hence, Grh has been proposed to acts 

as a pioneer transcription factor in developmental programs of epithelial cells. It has been postulated that 

the dual role of Grh, i.e. acting as a transcriptional repressor and activator, might be attributed to the 

ability of other transcription factors to now bind accessible DNA (Jacobs et al., 2018; Nevil et al., 2017).  

Functions of the mammalian Grhl and Drosophila Grainyhead do not appear to be limited to the epidermis. 

Grainyhead family members are also expressed in neuroblasts at the end of embryogenesis (Brody and 

Odenwald, 2000; Johnson et al., 1989) and in proliferative post-embryonic neural precursor cells (Prokop 

et al., 1998). Grainyhead has been placed downstream of the Hunchback  Krüppel  Pdm  Castor 

cascade (Brody and Odenwald, 2000; Isshiki et al., 2001), which regulates the birth order of ganglion 

mother cells during asymmetric divisions of neuroblasts. In post-embryonic neuroblasts, Grainyhead is 

required for their mitotic activity (Almeida and Bray, 2005; Cenci and Gould, 2005). 

Given that our previous study identified grh-1 as an ‘oscillating’ transcription factor and grh-1(RNAi) 

embryos revealed defective cuticles, a role of GRH-1 in cuticle remodeling during larval development 

sounds appealing. However, the functional relevance of GRH-1 and molecular mechanisms through which 

it acts remain to be identified.  
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1.4.2.3 blmp-1 

BLMP-1 is a transcription factor, consisting of an N-terminal SET domain, a proline rich domain and a Zn-

finger C-terminal domain. BLMP-1 shares sequence similarity to the mammalian BLIMP1, a B-lymphocyte 

maturation factor (Turner et al., 1994), which has been implicated in epidermal terminal differentiation 

(Magnúsdóttir et al., 2007). BLMP-1 plays a role in distal tip cell (DTC) migration in the gonad, i.e. BLMP-

1 prevents its precocious turn (Huang et al., 2014). BLMP-1 has been identified as proteolytic target of 

DRE-1 (Horn et al., 2014), an E3-ubiquitin ligase. blmp-1 is potentially part of a gene regulatory network 

which controls DTC migration through positive feed-forward loops that involve daf-12, lin-42, lin-29, and 

dre-1 (Chepyala et al., 2016). Besides expression in DTCs, BLMP-1 is also expressed in seam and 

hypodermal cells. Whereas BLMP-1 is specifically expressed in L2-L3 stage in DTCs, expression peaked 

during L4 stage and remained stable during the rest of development in seam and hypodermal cells (Horn 

et al., 2014). Although we did not quantify BLMP-1 levels, we previously observed oscillations in blmp-1 

mRNA levels (Hendriks et al., 2014). Besides its function in DTC migration, whether and how BLMP-1 is 

involved in regulating oscillatory gene expression is unknown. A role of BLMP-1 in regulating molting is 

however plausible as genes encoding for molting and cuticle factors were found to be affected in blmp-1 

mutant animals in an RNA-seq experiment (Horn et al., 2014). 

1.4.2.4 myrf-1 

myrf-1 is the C. elegans homolog of the transcription factor Myelin Regulatory Factor (Myrf). Myrf is 

expressed in the Central Nervous System, where it is required for the expression of myelin genes, 

myelination of oligodendrocytes (Emery et al., 2009) and maintenance of myelination in mature 

oligodendrocytes (Koenning et al., 2012). Even though C. elegans does not have myelin, its genome 

encodes two Myrf genes: myrf-1 and its paralog myrf-2. In C. elegans, MYRF-1 and MYRF-2 act functionally 

redundant in promoting synaptic rewiring of DD neurons in L1 stage (Meng et al., 2017). Biochemical 

assays revealed that MYRF is an ER-associated transcription factor that frees its N-terminal region 

containing the DNA binding domain from the ER via auto-proteolytic cleavage (Bujalka et al., 2013; Li et 

al., 2013). This allows direct binding of the N-terminal product to a DNA consensus sequence, thereby 

inducing gene expression (Bujalka et al., 2013; Chen et al., 2018). 

In C. elegans, myrf-1 has also been identified in a screen for molting factors (Russel et al., 2011, here 

named pqn-47, later renamed to myrf-1). myrf-1(0) animals underwent apolysis, but failed to shed the 

cuticle and died trapped in the cuticle. Weaker alleles of myrf-1 revealed supernumerary molts in adults, 

and heterochronic genes lin-41, lin-28 and lin-14 could suppress this phenotype (Russel et al., 2011). 

Therefore, interaction with the heterochronic pathway has been suggested. The transcriptional reporter 
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and the GFP fusion protein showed broad spatial expression patterns (Russel et al., 2011), but in contrast 

to our previous observation (Hendriks et al., 2014), myrf-1 levels were not found to oscillate (Russel et al., 

2011). How myrf-1 exactly regulates molting in C. elegans and whether myrf-2 shares functional 

redundancy in molting remains to be determined.   

1.5 Aims for this thesis 

Genetic oscillations are essential in regulating developmental events, such as somitogenesis in 

vertebrates, lateral root branching in plants and cell fate decisions. Our previous identification of 

oscillations affecting thousands of genes during C. elegans development (Hendriks et al., 2014), provide a 

new system to study the role of gene expression oscillations, their architecture and design principles in 

the context of development. However, to date, it is not well understood whether and how oscillations 

drive developmental processes in C. elegans. Hence, I aimed to provide insight into the properties of the 

oscillator. Moreover, I aimed to understand whether and how oscillations are coupled to development. I 

sought to investigate the architecture of the oscillator and identify relevant components. Given the 

molting phenotypes that we identified along the way, I aimed to provide insight into the molecular 

mechanisms that regulate molting.  

Given that the design of an oscillator determines its dynamics, we investigated how the oscillator behaved 

in response to perturbations and how it transitions between different states. To study such state 

transitions, we first investigated the gene expression patterns of oscillating genes across the C. elegans 

life cycle. After we identified distinct expression patterns of oscillating genes in embryos, freshly hatched 

larvae and adults, I next aimed to quantitatively describe the dynamic changes in gene expression that 

occur during the transitions between the developmental stages. Moreover, we took the advantage of our 

previous finding that oscillations appeared absent during dauer diapause (Hendriks et al., 2014), to 

investigate a state transition from a developmentally arrested stage. The quantitative characterization of 

transitions between oscillatory and stable states can provide insight into the properties of the oscillator. 

Although the oscillation period resembled the larval stage durations, a quantitative analysis is currently 

lacking. Here, we quantified C. elegans developmental stage durations and gene expression oscillation 

periods using population-based and single animal approaches to investigate to what extent oscillations 

are coupled to developmental processes, such as molting. Given that molting is repetitive in its nature, 

one would expect that a regulatory, perhaps rhythmic, genetic network is required for timing of molting 

and coordination with other developmental events. However, only a few factors have been implicated in 

molting and the molecular mechanisms are currently unknown. Our results here suggested that mRNA 
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level oscillations arise from rhythmic transcription. Hence, I aimed to identify transcription factors that 

are important for oscillatory gene expression and molting. The characterization of such transcription 

factors is of interest to better understand the molecular basis of molting, the molecular wiring of the 

oscillator and functional relevance of the coupling between oscillations and molting.  
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2. Results 

2.1 Manuscript: State transitions of a developmental oscillator 

Gert-Jan Hendriks and Yannick Hauser performed RNA sequencing time courses. MM and YH analyzed the 

RNA sequencing data. MM performed and analyzed luciferase assays. Guy Bogaarts developed the 

graphical user interface for analyzing the luciferase data. YH acquired and analyzed the single worm 

imaging data. Jan Eglinger wrote the KNIME workflow for analyzing the single worm imaging. Charisios 

Tsiairis conceived parts of the analysis. Helge Grosshans, MM and YH conceived the project and wrote the 

manuscript. 
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Abstract 

Gene expression oscillators can structure biological events temporally and spatially. Different biological 

functions benefit from distinct oscillator properties. Thus, finite developmental processes rely on 

oscillators that start and stop at specific times; a poorly understood behavior. Here, we have characterized 

a massive gene expression oscillator comprising >3,700 genes in C. elegans larvae. We report that 

oscillations initiate in embryos, arrest transiently after hatching and in response to perturbation, and cease 

in adults. Experimental observation of the transitions between oscillatory and non-oscillatory states at a 

resolution where we can identify bifurcation points reveals an oscillator operating near a Saddle Node on 

Invariant Cycle (SNIC) bifurcation. These findings constrain the architecture and mathematical models 

that can represent this oscillator. They also reveal that oscillator arrests occur reproducibly in a specific 

phase. Since we find oscillations to be coupled to developmental processes, including molting, this 

characteristic of SNIC bifurcations thus endows the oscillator with the potential to halt larval 

development at defined intervals, and thereby execute a developmental checkpoint function.   
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Introduction 

Gene expression oscillations occur in many biological systems as exemplified by circadian rhythms in 

metabolism and behavior (Panda et al., 2002), vertebrate somitogenesis (Oates et al., 2012), plant lateral 

root branching (Moreno-Risueno et al., 2010), and C. elegans larval development (Hendriks et al., 2014). 

They are well-suited for timekeeping, acting as molecular clocks that can provide a temporal, and thereby 

also spatial, structure for biological events (Uriu, 2016). This structure may represent external time, as 

illustrated by circadian clocks, or provide temporal organization of internal processes without direct 

reference to external time, as illustrated by somitogenesis clocks (Rensing et al., 2001). 

Depending on these distinct functions, oscillators require different properties. Thus, robust 

representation of external time requires a stable period, i.e., the oscillator has to be compensated for 

variations in temperature and other environmental factors. It also benefits from a phase-resetting 

mechanism to permit moderate realignments, if needed, to external time. Intuitively, either feature seems 

unlikely to benefit developmental oscillators. By contrast, because developmental processes are finite, 

e.g., an organism has a characteristic number of somites, developmental oscillators need a start and an 

end. How such changes in oscillator activity occur in vivo, and which oscillator features enable them, is 

largely unknown (Riedel-Kruse et al., 2007; Shih et al., 2015). 

Here, we characterize the recently discovered ‘C. elegans oscillator’ (Hendriks et al., 2014; Kim 

et al., 2013) at high temporal resolution and across the entire period of C. elegans development, from 

embryo to adult. The system is marked by a massive scale where ~3,700 genes exhibit transcript level 

oscillations that are detectable, with large, stable amplitudes and widely dispersed expression peak times 

(i.e., peak phases), in lysates of whole animals. For the purpose of this study, and because insufficient 

information exists on the identities of core oscillator versus output genes, we define the entire system of 

oscillating genes as ‘the oscillator’. We demonstrate that the oscillations are coupled to molting, i.e., the 

cyclical process of new cuticle synthesis and old cuticle shedding that occurs at the end of each larval 

stage. We observe and characterize onset and offset of oscillations both during continuous development 
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and upon perturbation, and find that these changes in the state of the oscillator system (or bifurcations), 

occur with a sudden change in amplitude. They also occur in a characteristic oscillator phase and thus at 

specific, recurring intervals. Because of the phase-locking of the oscillator and molting, arrests thus 

always occur at the same time during larval stages, around molt exit. This time coincides with the 

recurring windows of activity of a checkpoint that can halt larval development in response to nutritionally 

poor conditions. Hence, our results indicate that the C. elegans oscillator functions as a developmental 

clock whose architecture supports a developmental checkpoint function. Indeed, the features of the 

bifurcations constrain oscillator architecture, excluding a simple negative-loop design, and possible 

parameters of mathematical models. 
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Results 

Thousands of genes with oscillatory expression during the four larval stages 

Although previous reports agreed on the wide-spread occurrence of oscillatory gene expression in C. 

elegans larvae (Grün et al., 2014; Hendriks et al., 2014; Kim et al., 2013), the published data sets were 

either insufficiently temporally resolved or too short to characterize oscillations across C. elegans larval 

development. Hence, to understand the extent and features of these oscillations better, including their 

continuity throughout development, we performed two extended time course experiments to cover the 

entire period of post-embryonic development plus early adulthood at hourly resolution. We extracted total 

RNA from populations of animals synchronized by hatching in the absence of food. The first time course 

(designated TC1) covered the first 15 hours of development on food at 25°C, the second time course 

(TC2) covered the span of 5 hours through 48 hours after plating at 25°C. [Fig. S1A provides a summary 

of all sequencing time courses analyzed in this study.] The extensive overlap facilitated fusion of these 

two time courses into one long time course (TC3) (Fig. S1B), and a pairwise-correlation plot of gene 

expression over time showed periodic similarity that was repeated four times (Fig. 1A, light-gray off-

diagonals), presumably reflecting progression through the four larval stages. 

The larger dataset enabled us to improve on the previous identification of genes with oscillatory 

expression (Hendriks et al., 2014). Using cosine wave fitting, and an amplitude cut-off of 20.5, we 

classified 3,739 genes (24 % of total expressed genes) as ‘oscillating’ (i.e., rhythmically expressed) from 

TC2 (Fig. 1B, S1C and Table S1; Methods). Relative to the previous result of 2,718 oscillating genes 

(18.9% of total expressed genes) in mRNA expression data of L3 and L4 animals (Hendriks et al., 2014), 

this adds 1,240 new genes and excludes 219 of the previously annotated oscillating genes. We consider 

this latter group to be most likely false positives from the earlier analysis, resulting from the fact that 

some genes behave substantially different during L4 compared to the preceding stages as shown below. 
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 Visual inspection of a gene expression heatmap of the fused time course (TC3; Fig. 1C) revealed 

four cycles of gene expression for the oscillating genes. Oscillations were absent during the first few 

hours of larval development as well as in adulthood, from ~37 hours on, and both their onset and offset 

appeared to occur abruptly. We will analyze these and additional features of the system and their 

implications in more detail in the following sections. 

 

‘Oscillating’ genes are expressed in several tissues with dispersed peak phases  

An examination of the calculated peak phases confirmed the visual impression that individual transcripts 

peaked at a wide variety of time points, irrespective of expression amplitude (Fig. 1D). In circadian 

rhythms, peak phase distributions are typically clustered into three or fewer groups when examined in a 

specific tissue (Koike et al., 2012; Korenčič et al., 2014). However, the identity of oscillating genes 

differs across cell types and tissues, and for those genes that oscillate in multiple tissues, phases can differ 

among tissues (Zhang et al., 2014). Hence, we wondered whether the broad peak phase distribution was a 

consequence of our analysis of RNA from whole animals, whereas individual tissues might exhibit a 

more defined phase distribution.  

To understand in which tissues oscillations occur, we utilized a previous annotation of tissue-

specifically expressed genes (Cao et al., 2017). 1,298, and thus a substantial minority (~35%) of 

oscillating genes, fell in this category for seven different tissues. They were strongly (~2.5-fold) enriched 

in the hypodermis (epidermis) and pharynx, and more modestly (≤1.5-fold) in glia and intestine (Fig. 1E). 

By contrast, oscillating genes were greatly depleted from body wall muscle, neurons, and gonad. Hence, 

oscillatory gene expression occurs indeed in multiple tissues. However, although peak phase distributions 

deviated for each tissue to some degree from that seen for all oscillating genes, they were still widely 

distributed for each individual tissue (Fig. 1F).  
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We conclude that a wide dispersion of peak phases appears to be an inherent oscillator feature 

rather than the result of a convoluted output of multiple, tissue-specific oscillators with distinct phase 

preferences. 

 

Oscillations initiate with a time lag in L1 

The observation that oscillations were undetectable during the first few hours of larval development and 

started only after > 5 hours into L1 (Fig. 1A, C) surprised us. Hence, we performed a separate experiment 

that covered the first 24 hours of larval development (TC4). This confirmed our initial finding of a lack of 

oscillations during the first few hours of larval development (Fig. 2A, B). 

To understand how oscillations initiate after the initial quiescence, we looked at individual genes 

and observed that the start of detectable oscillations differed for individual genes (Fig. 2A, C). 

Nonetheless, the occurrence of first peaks was globally well correlated to the peak phases calculated from 

data in Fig. 1 (Fig. 2D, E). Moreover, the transcript levels of many genes with a late-occurring (11 – 13 

hours) first peak proceeded through a trough before reaching their first peak as exemplified in Fig. 2C for 

F11E6.3. We conclude that initiation of larval development after hatching is accompanied by a time lag 

prior to transition into an oscillatory state, and that oscillations exhibit a structure of phase-locked gene 

expressing patterns as soon as they become detectable.  

 

L1 larvae undergo an extended intermolt 

Although the gene expression oscillations occur in the context of larval development, functional 

connections have been lacking. However, genes encoding cuticular components were reported to be 

enriched among previously identified oscillating genes (Hendriks et al., 2014; Kim et al., 2013), and Gene 

Ontology (GO-) term analysis of the new extended set of oscillating genes confirms that the top 12 
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enriched terms all linked to cuticle formation and molting, or protease activity (Fig. 3A). These findings, 

and the fact that molting is itself a rhythmic process, repeated at the end of each larval stage, suggest the 

possibility of a functional link between molting and gene expression oscillations. 

If such a link were true, we would predict that the initial period of quiescence in the early L1 

stage be accompanied by a lengthened stage, and, specifically, intermolt duration. Indeed, using a 

luciferase-based assay that reveals the period of behavioral quiescence, or lethargus, that is associated 

with the molt (Fig. S2A-C), others had previously reported an extended L1 relative to other larval stages 

(Olmedo et al., 2015). However, they reported an extension of both molt and intermolt. 

As the previously used luciferase-expressing transgenic strains developed relatively slowly and 

with limited synchrony across animals, presumably due to their specific genetic make-up, we repeated the 

experiment with a newly generated a strain that expressed luciferase from a single copy integrated 

transgene and that developed with improved synchrony and speed (Fig. S2D-J, Methods). Our results 

confirmed that L1 was greatly extended relative to the other larval stages (Fig. S2I). However, in contrast 

to the previous findings (Olmedo et al., 2015), but consistent with our hypothesis, the differences 

appeared largely attributable to an extended intermolt (Fig. S2G). The duration of the first molt (M1) was 

instead comparable to that of M2 and M3 (Fig. S2H).  

Thus, an extended first intermolt coincides with the fact that no oscillator activity can be detected 

by RNA sequencing during the first five hours of this larval stage. Moreover, because we performed the 

experiment by hatching embryos directly into food, we can conclude that the extended L1 stage is an 

inherent feature of C. elegans larval development, rather than a consequence of starvation-induced 

synchronization. 
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Development is coupled to oscillatory gene expression 

The luciferase assay revealed that also the L4 stage took significantly longer than the two preceding 

stages, though not as long as L1 (Fig. S2I). In this case, both the fourth intermolt and the fourth molt 

were extended (Fig. S2G,H). As apparent from the gene expression heatmap, and quantified below, the 

oscillation period during L4 was also extended. Hence, grossly similar trends appeared to occur in larval 

stage durations and oscillation periods, determined by the luciferase assay and RNA sequencing, 

respectively. We considered this as further evidence for a coupling of the two processes. 

To test this hypothesis explicitly, we sought to quantify the synchrony of oscillatory gene 

expression and developmental progression in individual animals at the same time. To this end, we 

established a microchamber-based time-lapse microscopy assay by adapting a previous protocol (Turek et 

al., 2015). In this assay, animals are hatched and grown individually in small chambers where they can be 

tracked and imaged while moving freely, enabling their progression through molts. Using Mos1-mediated 

single copy transgene integration (MosSCI) (Frøkjær-Jensen et al., 2012), we generated transgenic 

animals that expressed destabilized gfp from the promoter of qua-1, a highly expressed gene with a large 

mRNA level amplitude. 

Consistent with the RNA sequencing data, we detected oscillations of the reporter with four 

expression peaks (Fig. 3B). Moreover, we observed similar rates of development as in the luciferase 

assays when we curated the molts (Fig. 3C, Table S2, Methods). The stage durations were in good 

agreement with the averaged oscillation period times for each cycle, obtained through a Hilbert transform 

of GFP intensities, for all three larval stages, L2 through L4, for which oscillations period lengths could 

be reliably determined (Fig. 3D). 

Single animal imaging enabled us to ask when molts occurred relative to oscillatory gene 

expression, and we observed a very uniform behavior across animals (Fig. 3B). To quantify this 

relationship, we determined the gene expression phases at molt entries and exits. We obtained highly 
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similar values across worms within one larval stage (Fig. 3E), and only a minor drift when comparing 

phases across larval stages. Two additional reporter transgenes, based on the promoters of dpy-9 and 

F11E6.3, which differ in peak expression phases from qua-1 and one another, yielded similar results (Fig. 

S3). 

We considered two possible interpretations of the narrow distributions of oscillation phases at 

molt entry and exit: first, both oscillations and development could be under independent, but precise 

temporal control. In this model, certain developmental events would merely coincide with specific phases 

of oscillations rather than being coupled to them. Therefore, variations in the periods of oscillation and 

development would add up, non-linearly, to the experimentally observed phase variations. Second, phase-

locking of oscillatory gene expression and developmental events might result from the two processes 

being truly coupled and/or from one driving the other. In this case, the variations in the two periods would 

partially explain each other, causing a reduction in the expected phase variation relative to the first 

scenario (Fig. 3F).  

To distinguish between these scenarios, we used error-propagation to calculate the expected error 

for two independent processes (Methods). Focusing on L2 and L3 stages to exclude any edge effects on 

period calculation by Hilbert transform, we found that this calculated error consistently exceeded the 

experimentally observed error (Fig. 3G), for all three reporter genes, for both molt entry and molt exit, 

and for both larval stages. Thus, our observations agree with the notion that development and oscillatory 

gene expression are functionally coupled (Fig. 3H), and potentially causally connected.  

 

Quantification of amplitude and period behavior over time reveal characteristic systems properties 

Consistent with the coupling between oscillations and development, both the last larval stage and the 

period of the last oscillation cycle appeared increased (Fig. 3D), before oscillations ceased. The 

characteristics of such a transition from oscillatory to non-oscillatory state, or bifurcation, can be 
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examined in the light of bifurcation theory. Bifurcation, that is, a qualitative change in system behavior, 

occurs in response to a change in one or more control parameters. Depending on the system’s topology, 

characteristic changes of amplitude and period occur during bifurcation (Fig. 4A) (Izhikevich, 2000; Salvi 

et al., 2016; Strogatz, 2015). Thus, transition into a quiescent state through a supercritical Hopf (supH) 

bifurcation involves a declining, and ultimately undetectable, amplitude and a constant period. By 

contrast, a Saddle Node on Invariant Cycle (SNIC) bifurcation results in a declining frequency (and thus 

increasing period) but a stable amplitude.  

Hence, to gain a better understanding of the oscillator’s bifurcation, we quantified oscillation 

amplitudes and periods over time. To minimize variations from differences between experiments, we did 

this for the contiguous 5 – 48 hour time course (TC2). This enabled reliable quantification of these 

features for the last three oscillation cycles, C2 through C4, which begin at 14 h (C2), 20 h (C3) and 27 h 

(C4), respectively (Fig. 4C). Excluding a small set of 291 genes that exhibited unusual expression trends 

during the fourth larval stage, i.e., a major change in mean expression levels (Fig. S4) this analysis 

revealed a good agreement of amplitudes across stages, and in particular no indication of damping during 

the last cycle, C4 (Fig. 4B). 

We used a Hilbert transform (Pikovsky et al., 2001) to quantify the period over time with high 

temporal resolution, i.e., at every hour of development. The mean oscillation period thus calculated was 

approximately seven hours during the first cycles but increased during the fourth cycle (Fig. 4C). This 

change was also apparent when we reconstructed an oscillation from the mean observed oscillation period 

and compared it to an oscillation with a constant period of seven hours (Fig. 4D).  

In summary, these analyses reveal a sudden loss of oscillation upon transition to adulthood 

without prior amplitude damping and an oscillator that can maintain a stable amplitude in the presence of 

period changes. These are features of an oscillator operating near a SNIC rather than a supH bifurcation 

(Fig. 4A) (Izhikevich, 2000; Salvi et al., 2016; Strogatz, 2015). 
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Arrest of the oscillator in a specific phase upon transition to adulthood 

SNIC and supH bifurcations differ not only in amplitude and period behavior, but also in the stable state, 

or fixed point, that the systems adopts. In a supH bifurcation, the system spirals from a limit cycle onto a 

fixed point, whereas in a SNIC bifurcation, the fixed point emerges on the limit cycle (Fig. 5A) (Saggio et 

al., 2017). In other words, a quiescent oscillator near a SNIC bifurcation adopts a state similar to that of a 

specific phase of the oscillator; the oscillator has become ‘arrested’. By contrast, following a supH 

bifurcation, the oscillator adopts a stable state that is distinct from any phase of the oscillator. Hence, if 

the C. elegans oscillator entered an arrested state through a SNIC bifurcation, the overall expression 

profile of the oscillating genes in the adult stage should resemble that seen at some other time point 

during larval development. 

To test this prediction, we analyzed the correlation of oscillating gene expression for adult time 

points (TP ≥ 37 h) to all other time points of the fused time course (TC3). (In the following, we will use 

“TPx” to refer to any time point ‘x’, in hours, after hatching. Technically, this is defined in our 

experiment as the time after plating synchronized, first larval stage animals on food.) For this analysis 

(illustrated in Fig. S5), we used the pairwise correlation matrix resulting from the oscillating gene set 

without the previously excluded genes that changed in expression in the L4 stage (Fig 5B). This provided 

two insights. First, correlation coefficients among adult time points all exceeded 0.8 with little change 

over time, confirming the high similarity of samples TP37 – 48 to one another and thus an absence of 

detectable oscillations. Second, in addition to one another, TP37 – 48 are particularly highly correlated to 

a specific time – and thus phase – of the oscillatory regime, namely TP13 and the ‘repetitive’ TP19 and 

TP26/27 (Fig. 5C, arrows). In other words, expression levels of oscillating genes in the adult resembled a 

specific larval oscillator phase, providing further support for a SNIC bifurcation. 

Phase-specific arrest of the oscillator after hatching 

We noticed that the gene expression states of TP37 – 48 also correlated well to each of TP1 – 5; i.e., the 

early L1 larval stage (Fig. 5B). To examine this further, we performed the same correlation analysis as 
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described above, but now for TP1 – 5. Mirroring the adult situation, correlation coefficients among all 

these five time points were high and exhibited little change over time, and TP1 – 5 exhibited particularly 

high levels of correlation to TP13 and the ‘repetitive’ TP19 and TP27 (Fig. 5D). These are the same larval 

time points to which the adult time points exhibit maximum similarity. We confirmed these two key 

observations when fusing the independent time course TC4 to TC2 (generating TC5; Fig. S6).  

We conclude that also during the first five hours after plating, oscillating genes adopt a stable 

expression profile that resembles a specific phase of the oscillator. In other words, both the transition into 

the oscillatory state during L1 and out of it during L4 occur through a SNIC bifurcation. This finding 

indeed explains our observation (Fig. 2) that in L1 stage larvae, oscillations exhibit a structure of phase-

locked gene expressing patterns as soon as they become detectable: the oscillator initiates from an 

arrested phase. 

 

Initiation of oscillation soon after gastrulation 

We wondered how the oscillator entered the arrested state observed in early larvae, i.e., what dynamics 

the class of larval oscillating genes exhibited in embryos. Hence, we examined single embryo gene 

expression data from a published time series (Hashimshony et al., 2015). When plotting the embryonic 

expression patterns of oscillating genes sorted by their peak phase defined in larvae, we observed a 

dynamic expression pattern with a striking phase signature (Fig. 6A). To investigate this further, we 

performed a correlation analysis between embryonic and larval time points (TC3) for the oscillating genes 

(Fig. S7A). When we plotted the correlation coefficients for each embryonic time point over larval time 

we observed two distinct behaviors (Fig. 6B, C), which separated at ~380 min (95%-CI: 317.6 minutes – 

444.2 minutes) (Fig. 6D; Fig. S7B): First, from the start of embryogenesis until ~380 min, the peak of 

correlation occurred always for the same larval time point, but the extent of correlation increased rapidly 

(Fig. 6B, D). Second, past ~380 min of embryonic development, the peaks of correlation moved 
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progressively from TP14 (which we define as 0°/360° because it demarcates the end of the first and the 

beginning of the second oscillation cycle in the fused time course, Fig. 1C); towards TP19 (accordingly 

defined as 300°), but the extent of correlation increased only modestly (Fig 6C, D). 

We conclude that the system adopts two distinct states during embryogenesis (Fig. 6E): Initially, 

it approaches the oscillatory regime through increasing similarity to the oscillator phase TP14/0°. After 

completion of gastrulation and around the beginning of morphogenesis/organogenesis (Hall et al., 2017), 

it transitions into the oscillatory state and reaches, at hatching, a phase corresponding to larval 

~TP19/300°, where oscillations arrest until resumption later in L1. 

 

A shared oscillator phase for experimentally induced and naturally occurring bifurcations 

The arrested states of the oscillator in both early L1 stage larvae and in adults are highly similar and 

resemble the oscillator state at TP19/300°. Therefore, we wondered whether this oscillator phase was 

particularly conducive to state transitions of the system in response to changes in the developmental 

trajectory. To test this, we examined animals that exited from dauer arrest, a diapause stage that animals 

enter during larval development under conditions of environmental stress such as heat, crowding, or food 

shortage. Using a published time course of animals released from dauer arrest after starvation (Hendriks 

et al., 2014), we found that their expression patterns of oscillating genes correlated highly with those of 

animals initiating oscillations (TC3) in the L1 stage (Fig. 7A, B). Additionally, gene expression patterns 

at 1 hour through 5 hours and at 13 hours post-dauer were highly correlated to those of the repetitive 

TP13, TP19 and TP26/27 during continuous development. Hence, the system state during a period of 

quiescence during the first five hours after placing animals on food corresponds to an arrest of the 

oscillation in a phase seen at TP19/300° of the continuous development time course.  

 We conclude that the system bifurcates in the same manner during continuous, unperturbed 

development, after hatching, and in response to a perturbation, namely starvation-induced dauer arrest. 
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Discussion 

In this study, we have characterized biological function and behavior of the C. elegans larval oscillator. 

Our results from single animal- and population-based analyses reveal a close coupling to development, 

and specifically molting, and imply that processes essential for molting may not be restricted to lethargus. 

We have observed that oscillations are highly similar during the four cycles (Fig. 7C, Fig. S8). Yet, 

oscillations cease and (re-) initiate several times during physiological development, and similar state 

transitions, or bifurcations, of the system can be induced through an external perturbation (Fig. 7C). In 

particular, all non-oscillatory states correspond to an arrest of the oscillator in one specific phase. Hence, 

the observed bifurcations provide a conceptual model of how a developmental checkpoint can operate to 

halt larval development at a particular, repetitive point of development. Moreover, they constrain possible 

system architectures and properties as well as the choice and parametrization of mathematical models that 

can represent the system. 

 

Oscillatory expression of thousands of genes 

Our previous work (Hendriks et al., 2014) identified ~2,700 oscillating (i.e., rhythmically expressing) 

genes, a number that we now increase to 3,739 genes (24% of total expressed genes). We attribute this 

improved identification of oscillating genes to the fact that our present analysis focused on the L1, L2 and 

L3 stages, where a constant oscillation period of ~7 hours facilitates cosine wave fitting. This contrasts 

with the situation in the previous experiment, which used data from the L3 and L4 stages and thus, as we 

reveal here, a time of changing period. 

Even our current estimate is conservative, i.e., the ‘non-oscillating’ genes contain genes that 

exhibit oscillatory expression with low amplitude or, potentially, strongly non-sinusoidal shapes. It is 

possible that such dynamics may play important roles for specific genes and processes and our data 
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provide a resource to identify these in the future. However, here we focused on genes with robust and 

extensive oscillations to facilitate functional dissection of the oscillator.  

 

A developmental oscillator with functions in and beyond molting and lethargus  

The physiological function of the C. elegans oscillator has remained unclear. Here, we have tested a 

possible connection with molting. By quantifying the periods of both molting and gene expression 

oscillations simultaneously, in the same individual animals, we revealed their high degree of similarity 

and showed that the two processes are more closely phase-locked than expected from mere coincidence, 

i.e., they are coupled. We propose that a function of the oscillator as a developmental clock provides a 

parsimonious explanation for the coupling, but other models remain possible, e.g., the oscillator may 

facilitate an efficient molting process by anticipating the time of peak demand for cuticular building 

blocks and other factors. 

Conventionally, molting is subdivided into three distinct steps, namely apolysis (severing of 

connections between the cuticle and the underlying epidermis), new cuticle synthesis, and ecdysis (cuticle 

shedding) (Lažetić and Fay, 2017). The first two occur during, and the latter terminates, lethargus, a 

period of behavioral quiescence. However, we find that the temporal structure imposed by the C. elegans 

oscillator extends beyond lethargus. Our data reveal two probable causes: occurrence of processes 

required for molting before lethargus and a temporal organization that extends to processes unrelated to 

molting. 

Specifically, we observed initiation of oscillations in embryos, which execute cuticle synthesis 

but neither apolysis nor ecdysis, at ~380 min into embryo development and thus long before the first signs 

of cuticle synthesis at ~600 min (Sulston et al., 1983). Instead, this time coincides with formation of an 

apical extracellular matrix (ECM). Although termed embryonic sheath, we find genes encoding 

components of this ECM, namely sym-1; fbn-1; noah-1; noah-2 (Vuong-Brender et al., 2017), also 
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detectably expressed in larvae, and all four are required for larval molting or proper cuticle formation 

(Frand et al., 2005; Niwa et al., 2009). Moreover, their mRNA levels oscillate with high amplitudes, and 

as predicted from the embryonic data, their expression peaks long before lethargus, and in fact shortly 

after ecdysis, i.e., after a molt has been completed. Hence, to account for all these facts, we propose that 

molting involve processes that are executed long before the onset of lethargus and that include ECM 

remodeling. 

However, even a substantially more complex molting process may fail to account for the fact that 

a majority of oscillating genes is phase-locked with the molt but exhibits peak expression outside the molt 

and lacks any obvious link to molting. We consider it plausible that robust larval development may 

benefit from a coordination of molting with other physiological or developmental processes, as previously 

postulated for skin cell proliferation (Ruaud and Bessereau, 2006). Similarly, as lethargus involves 

cessation of food-uptake, oscillatory gene expression may serve to anticipate this event, consistent with a 

large number of intestinally expressed oscillating genes. Nonetheless, even for this class, a broad 

dispersion of peak expression phases may suggest additional functions, yet to be uncovered. Whatever the 

benefit, it is evident that the oscillator imposes a temporal structure of gene expression that extends far 

beyond lethargus. 

 

Oscillatory state transitions and developmental checkpoints 

We have observed a loss of oscillations under three distinct conditions, in early L1 stage larvae, dauer 

arrested animals, and adults. The similarity of the oscillator states under all three conditions is striking 

and involves an arrest in the same specific phase.  

Formally, for the L1 arrest, we cannot distinguish between perturbation-induced or naturally 

occurring arrest, as the sequencing experiments required animal synchronization by hatching animals in 

the absence of food, causing a transient arrest of development. However, the fact that the L1 stage is 
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extended also in animals hatched into food suggests that they may adopt a similar arrested state even in 

the presence of food, perhaps because the nutritional resources in the egg (i.e., egg yolk) have become 

depleted by the time that hatching occurs. In other words, synchronization of L1 animals by hatching 

them in the absence of food may propagate a pre-existing transient developmental and oscillator arrest. 

Irrespective of this interpretation, a key feature of the arrests that we observe under different 

conditions is that they always occur in the same phase. This is a behavior one would predict for a 

repetitive developmental checkpoint. Such a checkpoint has indeed been found to operate shortly after 

each larval molt exit, arresting development in response to a lack of food (Schindler et al., 2014). 

Importantly, developmental arrest does not result from an acute shortage of resources. Rather, it is a 

genetically encoded, presumably adaptive, response to nutritionally poor conditions, as demonstrated by 

the fact that mutations in the daf-2/IGFR signaling pathway causes animals to continue development 

under the same food-depleted conditions (Baugh, 2013; Schindler et al., 2014).  

Within the limits of our resolution, the phase of the arrested oscillator corresponds to the phase 

seen around ecdysis. Hence, oscillations and development are synchronously arrested, and we propose 

that signals related to food sensing, metabolism, or nutritional state of the animal help to control the state 

of the oscillatory system and thereby developmental progression. An oscillator operating near a SNIC 

bifurcation appears ideally suited to processing such information, because it acts as a signal integrator, 

i.e., it becomes active when a signal threshold is surpassed (Forger, 2017; Izhikevich, 2000). This 

contrasts with the behavior of oscillators operating near a supH bifurcation, which function as resonators, 

i.e., they respond most strongly to an incoming signal of a preferred frequency. Hence, both the phase-

specific arrest and the integrator function as characteristics of an oscillator operating in the vicinity of a 

SNIC bifurcation are physiologically relevant features of this C. elegans oscillator.  
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Insights into oscillator architecture and constraints for mathematical modelling 

What mechanisms determine the type and behavior of the C. elegans oscillator? Although the nature and 

wiring of the ‘core oscillator’, i.e., the machinery that drives the pervasive gene expression oscillation, 

remains to be established, the behavior of the oscillator that we characterized here provides clear 

constraints. Thus, a change in period without a noticeable change in amplitude, as seen in L4 stage larvae, 

is a feature of rigid oscillators (Abraham et al., 2010) that is considered incompatible with the function of 

a simple negative feedback loop but compatible with the operation of interlinked positive and negative 

feedback loops (Mönke et al., 2017; Tsai et al., 2008). This conclusion is supported by evidence from 

synthetic biology, where most synthetic genetic oscillators appear to operate near a supH bifurcation 

(Purcell et al., 2010). An exception are so-called amplified negative feedback oscillators, which operate 

near a SNIC bifurcation and rely on interlinked negative and positive feedback loops. 

Beyond constraining possible oscillator architectures, our experimental observations will help to 

guide mathematical modelling of the C. elegans oscillator. Modelling is needed because the nonlinear 

dynamic behaviors of oscillators are difficult to grasp intuitively. However, it is usually difficult to ensure 

the relevance of a given model, because both its formulation and its parametrization determine whether 

oscillations occur and which behaviors the resulting oscillator model displays. Amplified negative 

feedback oscillators are a case in point as they can also operate near a supH bifurcation; operation near a 

SNIC bifurcation occurs only in a certain parameter space (Conrad et al., 2008; Guantes and Poyatos, 

2006). The experimental characterization of the system’s bifurcation that we have achieved here will 

therefore provide crucial constraints to exclude invalid mathematical models. 

We do note that mathematical models of somitogenesis clocks, inspired by mechanistic 

knowledge about the identity of individual oscillator components and their wiring, tend to represent 

oscillators operating near a supH bifurcation (Jensen et al., 2010; Webb et al., 2016). This appears 

consistent with observations on isolated cells in vitro (Webb et al., 2016). At the same time it contrasts 

with changes in both amplitude and period that were shown to occur in zebrafish embryos during somite 
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formation and prior to cessation of oscillation (Shih et al., 2015). Thus, and because an analysis of 

bifurcation behavior of somitogenesis clocks in vivo is challenging due to a complex space-dependence of 

oscillation features (Soroldoni et al., 2014), it remains to be answered whether and to what extent the C. 

elegans oscillator and the somitogenesis clocks share specific properties. However, whatever the answer, 

a comparison of the similarities and differences in behaviors, architectures and topologies will help to 

reveal whether and to what extent diverse developmental oscillators follow common design principles. 
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Fig 1: A massive oscillator with dispersed peak phases in several tissues 

 (A) Pairwise correlation plot of log2-transformed gene expression patterns obtained from synchronized 

population of L1 stage larvae sampled and sequenced from t = 1 h until t = 48 h (TC3; a fusion of the two 

time courses TC1 and TC2 after 13 h; Fig. S1A,B). Asterisk indicates an outlier, time point t = 40 h. 

(B) Scatter plot identifying genes with oscillatory expression (henceforth termed oscillating genes, blue) 

based on amplitude and 99% confidence interval (99%-CI) of a cosine fitting of their expression quantified 

in TC2 (Methods). A lower CI-boundary ≥ 0, i.e. p-value ≤ 0.01, and a log2(amplitude) ≥ 0.5, which 

corresponds to a 2-fold change from peak to trough, were used as cut-offs. Genes below either cut-off were 

included in the ‘not oscillating’ group (black). Fig. S1C reveals gene distributions in a density scatter plot. 

(C) Gene expression heatmaps of oscillating genes as classified in Fig. 1B and Fig. S1C. Oscillating genes 

were sorted by peak phase and mean expression per gene from t = 7 h to t = 36 h (when oscillations occur) 

was subtracted. n=3,680 as not all genes from the long time course (TC2) were detected in the early time 

course (TC1). Gray horizontal bars indicate the individual oscillation cycles, C1 through C4 as later 

determined in Fig. S8.  

(D) Radar chart plotting amplitude (radial axis, in log2) over peak phase (circular axis, in degrees) as 

determined by cosine fitting in Fig. 1B. 

(E) Enrichment (red) or depletion (blue) of tissues detected among oscillating genes expressed tissue-

specifically relative to all tissue-specific genes using annotations derived from (Cao et al., 2017). 

Significance was tested using one-sided binomial tests which resulted in p-values < 0.001 for all tissues. 

(F) Density plot of the observed peak phases of tissue-specifically expressed oscillating genes for all 

enriched tissues. 



64 
 

 

Fig 2: Oscillations start with a time lag in L1 

(A) Gene expression heatmap of detectably expressed oscillating genes sampled from a separate early 

developmental time course (TC4; t = 1 h to t = 24 h). Genes were ranked according to their peak phase as 

determined in Fig. 1. 

(B) Pairwise correlation plot of log2-transformed oscillating gene expression data obtained from both early 

larval development time courses, TC1 and TC4. 

(C) Gene expression traces of representative genes F11E6.3, col-68 and col-46.  

(D) Scatter plot of calculated oscillating gene peak phase (Fig. 1) over the time of occurrence of the first 

expression peak in L1 larvae, observed in TC4. Peak detection was performed using a spline analysis. As 

visual inspection did not reveal peaks in the heatmap during the first three hours, and as the first cycle 

ends at 13 h, we performed this analysis for t = 3 h to t = 13 h to reduce noise. 

(E) Scatterplot comparing experimentally identified first peaks of gene expression (as in D) of the two early 

time course replicates, TC1 and TC4.  

All analyses for oscillating genes identified in Fig. 1 with detectable expression (n=3,680). 
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Fig 3: Oscillatory gene expression is coupled to molting 

(A) GO-term enrichments for oscillating genes as classified in Fig. 1C. The top 15 enriched terms are 

displayed. 

(B) GFP signal quantification for Pqua-1::gfp::pest::h2b::unc-543’UTR expressing single animals 

(HW2523, n=20) over larval development, starting from hatch (t = 0 h). Molts (red), mean intensity (blue 

line) and standard deviation across population (shading) are indicated. 

(C), (D) Boxplots of molt, intermolt and larval stage durations (C) and of larval stage durations and 

period times of oscillations (D) of single animals (HW2523) developing in microchambers (n=20). In (D), 

L1 was excluded because of the time lag before oscillations manifest after hatching. 

(E) Boxplot of phase at molt entry (start of lethargus) and molt exit (end of lethargus) separated by larval 

stages for single animals (HW2523) developing in microchambers (n=20) 

(F) Schematic models of size of expected phase variation (radius of colored blur) at molt entry (gray) and 

molt exit (blue) depending on the coupling status between oscillations and molting. 

(G) Barplots displaying the ratio of expected standard deviation over observed standard deviation for 

phase calling at either molt entry or molt exit for the indicated reporters. A dashed line indicates parity. 

(H) Schematic depiction of coordination between oscillatory gene expression and development. 

Boxplots in (C) – (E) extend from first to third quartile with a line at the median, outliers are indicated 

with a cross, whiskers show 1.5*IQR. 
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Fig 4: Change in period without noticeable change in amplitude 

(A) Schematic depiction of amplitude and period behaviors in response to a control parameter change for 

an oscillatory system transitioning between a quiescent (stationary) and an oscillatory state through the 

indicated bifurcations (created with BioRender.com). Note that transitions can occur in either direction. 

(B) Amplitudes derived from cosine fitting to the individual oscillations of L2, L3 and L4 stage (TC2) 

plotted against each other. Pearson correlation coefficient r, slope of the linear regression (black) and the 

diagonals (slope=1; red) are indicated. 291 genes were excluded from oscillating genes due to altered mean 

expression in L4, see Fig. S4, i.e., n=3,448.  

(C) Density plot showing oscillation period at every time point for each of the oscillating genes (n=3,448) 

as quantified by Hilbert transform. Mean oscillation period over all oscillating genes is shown by the black 

line. Horizontal gray bars indicate oscillation cycles C1 through C4 as in Fig. 1C. 

(D) Expression changes for an oscillation with a constant 7h period (dotted line), and an oscillation 

reconstructed from the mean oscillation period in (C) (black line), both amplitudes set to four. The 

expression of a representative gene, col-147 (mean normalized) is shown (red line). Horizontal gray bars 

indicate oscillation cycles C1 through C4 as in Fig. 1C. 
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Fig 5: The oscillator is phase arrested in early L1 and adults 

(A) Phase plane diagrams depicting supH and SNIC bifurcations, respectively, showing the change in 

qualitative behavior as the bifurcation parameter value changes (arrow). The bifurcation point, i.e. the 

parameter value at which the bifurcation occurs, is indicated. 

(B) Pairwise correlation plot of log2-transformed oscillating gene expression data obtained from TC3, i.e., 

the fusion of TC1 (blue labels) and TC2 (black). Genes which deviated in mean expression in L4 were 

excluded (Fig. S4), resulting in n=3,393 genes. 

(C) Lines of correlation for TP37–48 (red) to all time points in the fused larval time course. Arrows 

indicate local correlation maxima at TP13, 19 and 26/27. Correlation traces for TP ≤ 36 h are shown in 

light gray, except for TP19 (orange). Fig. S5 illustrates how correlation lines were generated. 
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(D) Lines of correlation for TP1–5 (blue) and TP19 (orange) to all time points in the fused larval time 

course. Arrows indicate local correlation maxima at TP13, 19 and 26/27.  

All correlations were determined by Pearson correlation. Correlation values were obtained from Fig. 5B. 
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Fig 6: Transition to an oscillatory state during embryogenesis 

(A) Heatmap of log2-transformed embryonic expression of oscillating genes, excluding L4 deviating 

genes, sorted by larval peak phase (defined as in Fig. 1). 

(B, C) Pairwise correlation coefficients between embryonic and larval time points (Fig. S7) plotted over 

larval time for embryonic TP10-370 min (B, black-blue gradient) and TP380-830 min (C, red-yellow 

gradient), respectively. Dots represent peaks of the correlation lines after spline analysis in the second 

oscillation cycle (C2), arrows indicate trends. Horizontal gray bars indicate oscillation cycles C1 through 

C4 as in Fig. 1C. 

(D) 3D-scatter plot of the correlation coefficient peak for each embryonic time point to the time of larval 

development at the second oscillation cycle (C2). Embryonic time is determined by time of sample 

collection, larval time by spline interpolation. Color scheme as in B and C. 

(E) Polar plot of correlation coefficient peak over the time point in the second larval oscillation cycle (C2) 

at which the correlation peak is detected. TP14 is defined as 0° and correlates most highly to TP20, thus 

defined as 360°. Values are as in D; color scheme as in B and C. 

All correlations were determined by Pearson correlation. 
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Fig 7: Re-initiation of oscillations after dauer from an arrested oscillator phase 

(A) Pairwise-correlation map of log2-transformed oscillatory gene expression of dauer exit samples 

(“postdauer”) and fused larval time course (TC3) samples. 

(B) Correlation of the indicated time points after plating dauer-arrested animals on food (TPpostdauer) to 

the fused larval time course, TC3. Arrows indicate peaks of correlation to TP13/19/26.5 (300°) of TC3. 

(C) Schematic depiction of behavior of the C. elegans oscillator from embryo to adult. A phase-specific 

arrest (red dot) is observed in hatch, early L1, young adults, and dauer-arrested animals. See Fig. S8 for 

additional data supporting four similar oscillation cycles during L1 through L4. 
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Methods 

 

C. elegans strains 

The Bristol N2 strain was used as wild type. The following transgenic strains were used: 

HW1370: EG6699; xeSi136 [F11E6.3p::gfp::h2b::pest::unc-54 3’UTR; unc-119 +] II (this study) 

HW1939: EG6699, xeSi296 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] II (this study) 

HW2523: EG6699: xeSi437 [Pqua-1::gfp::h2b::pest::unc-54 3’UTR; unc-119 +] II (this study) 

HW2526: EG6699: xeSi440 [Pdpy-9::gfp::h2b::pest::unc-54 3’UTR; unc-119 +] II (this study) 

PE254: feIs5 [Psur-5::luc::gfp; rol-6(su1006)] V (Lagido et al., 2008)  

PE255: feIs5 [Psur-5::luc::gfp; rol-6(su1006)] X (Lagido et al., 2008) 

 

All transcriptional reporters and luciferase constructs produced for this study were generated using 

Gibson assembly (Gibson et al., 2009) and the destination vector pCFJ150 (Frøkjaer-Jensen et al., 2008). 

First a starting plasmid was generated by combining NotI digested pCFJ150, with either Nhe-1::GFP-

Pest-H2B or Nhe-1::luciferase::GFP (adapted from pSLGCV (Lagido et al., 2008)) and ordered as codon 

optimized, intron containing gBlocks® Gene Fragment (Integrated DNA Technologies), and unc-54 

3’UTR (amplified from genomic DNA) to yield pYPH0.14 and pMM001 respectively. Second, promoters 

consisting of either 2kb upstream of the ATG or up to the next gene were amplified from C. elegans 

genomic DNA before inserting them into NheI-digested pYPH0.14 or pMM001. PCR primers and 

resulting plasmids are listed in the Table S3. Third, we obtained transgenic worms by single-copy 

integration into EG8079 worms, containing the universal ttTi5605 locus on chromosome II by following 

the published protocol for injection with low DNA concentration (Frøkjær-Jensen et al., 2012). All 

MosSCI strains were backcrossed at least twice.  

 

Methods luciferase assay 

Gravid adults were bleached and single embryos were transferred by pipetting into a well of a white, flat-

bottom, 384-well plate (Berthold Technologies, 32505). Embryos hatched and developed in 90 µL 

volume containing E. coli OP50 (OD600 = 0.9) diluted in S-Basal medium (Stiernagle, Theresa, n.d.), and 

100 μM Firefly D-Luciferin (p.j.k., 102111). Plates were sealed with Breathe Easier sealing membrane 

(Diversified Biotech, BERM-2000). Luminescence was measured using a Luminometer (Berthold 
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Technologies, Centro XS3 LB 960) for 0.5 seconds every 10 minutes for 72 hours at 20°C in a 

temperature-controlled incubator and is given in arbitrary units. 

Luminescence data was analyzed using an automated algorithm for molt detection on trend-

corrected data as described previously (Olmedo et al., 2015), but implemented in MATLAB, and with the 

option to manually annotate molts in a Graphical User Interface. The hatch was identified as the first data 

point (starting from time point 4 to avoid edge effects) that exceeds the following value: the mean + 

5*stdev of the raw luminescence of the first 20 time points.   

To quantify the duration of the molts, we subtracted the time point at molt entry from the time 

point at molt exit. To quantify the duration of larval stages, we subtracted the time point at molt exit of 

the previous stage (or time point at hatch for L1) from the time point at molt exit of the current stage. The 

duration of the intermolt was quantified as duration of the molt subtracted from duration of the larval 

stage. For statistical analysis, we assumed the durations to be normally distributed and used Welch two-

sample and two-sided t-test, i.e. the function ‘t.test’ of the package ‘stats’ (version 3.5.1) (R Core Team, 

n.d.) in R. 

 

RNA sequencing 

For RNA sequencing, synchronized L1 worms, obtained by hatching eggs in the absence of food, were 

cultured at 25°C and collected hourly from 1 hour until 15 hours of larval development, or 5 hours until 

48 hours of larval development, for L1–L2 time course (TC1) and L1–YA time course (TC2) 

respectively. A replicate experiment was performed at room temperature from 1 hours until 24 hours 

(TC4). RNA was extracted in Tri Reagent and DNase-treated as described previously (Hendriks et al., 

2014). For the TC2 and TC4, libraries were prepared using the TruSeq Illumina mRNA-seq (stranded – 

high input), followed by the Hiseq50 Cycle Single-end reads protocol on HiSeq2500. For the TC1, 

libraries were prepared using the Illumina TruSeq mRNA-Seq Sample Prep Kit (Strand-sequenced: any), 

followed by the Hiseq50 Cycle Single-end reads protocol on HiSeq2500. 

 

Processing of RNA-seq data  

RNA-seq data were mapped to the C. elegans genome using the qAlign function 

(splicedAlignment=TRUE) from the QuasR package (Au et al., 2010; Gaidatzis et al., 2015) in R. Gene 

expression was quantified using qCount function from the QuasR package in R. For TC2 and Dauer exit 

(Hendriks et al., 2014) time course, QuasR version 1.8.4 was used, and data was aligned to the ce10 

genome using Rbowtie aligner version 1.8.0. For TC1, QuasR version 1.2.2 was used, and data was 
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aligned to the ce6 genome using Rbowtie aligner version 1.2.0. For TC4 (Fig. 2), RNA-seq data were 

mapped to the C. elegans ce10 genome using STAR with default parameters (version 2.7.0f) and reads 

were counted using htseq-count (version = 0.11.2). 

Counts were scaled by total mapped library size for each sample. A pseudocount of 8 was added and 

counts were log2-transformed. For the TC2, lowly expressed genes were excluded (maximum log2-

transformed gene expression - (log2(gene width)-mean(log2(gene width))) ≤ 6). This step was omitted in 

the early time courses because many genes start robust expressing only after 5-6 hours. Expression data of 

the dauer exit time course was obtained from (Hendriks et al., 2014). 

 

Classification of genes 

To classify genes, we applied cosine fitting to the log2-transformed gene expression levels from t=10 

hours until t=25 hours of developmental time (mid L1 until late L3) of TC2, when the oscillation period is 

most stable (Fig. 4C). During this time the oscillation period is approximately 7 hours, which we used as 

fixed period for the cosine fitting. We built a linear model as described (Hendriks et al., 2014) using 

cos(ωt) and –sin(ωt) as regressors (with 13 degrees of freedom). In short, a cosine curve can be 

represented as:  

𝐶 ∗ cos(𝜔𝑡 +  𝜑) = 𝐴 ∗ cos(𝜔𝑡) − 𝐵 ∗ sin (𝜔𝑡) 

With 𝐴 = 𝐶 ∗ cos(𝜑)  

and 𝐵 = 𝐶 ∗ sin(𝜑) 

From the linear regression (‘lm’ function of the package ‘stats’ in R) we obtained the coefficients A and 

B, and their standard errors. A and B represent the phase and the amplitude of the oscillation:  

𝑝ℎ𝑎𝑠𝑒 =  arctan (𝐴, 𝐵) 

𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 =  √𝐴2 + 𝐵2 

As the density of the genes strongly decreased around 0.5 (Fig. S1C) we used amplitude ≥ 0.5 as a first 

classifier. We propagated the standard error of the coefficients A and B to the amplitude using Taylor 

expansion in the ‘propagate’ function (expr=expression(sqrt(((A^2)+(B^2))), ntype = ‘stat’, 

do.sim=FALSE, alpha=0.01) from the package ‘propagate’ (version 1.0-6) (Spiess, 2018) in R. We 

obtained a 99% confidence interval (99%-CI) for each gene. As 99%-CI that does not include 0 is 

significant (p-value=0.01), we used the lower boundary (0.5%) of the CI as a second classifier. Thus, we 

classified genes with an amplitude ≥ 0.5 and lower CI-boundary ≥ 0 as ‘oscillating’ and genes with an 
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amplitude < 0.5 or a lower CI-boundary < 0 were classified as ‘not oscillating’ (Fig. 1B, S1C). Every 

gene thus has an amplitude and a peak phase. A peak phase of 0° is arbitrarily chosen, and thus current 

peak phases are expected to differ systematically from the previously assigned peak phases (Hendriks et 

al., 2014). To compare the peak phases of TC2 with those of the previously published L3-YA time course 

(TC6), we calculated the phase difference (TC2 – TC6) (Fig. S1D, E). We added 360° to the difference 

and used the modulus operator (%%360), to maintain the circularity within the data. The coefficient of 

determination, R2, was calculated by 1-(SSres/SStot), in which the SStot (total sum of squares) is the sum 

of squares in peak phase of the L1-YA time course. SSres (response sum of squares) is the sum of squares 

of the phase difference.  

 

Time course fusion 

In order to obtain an RNAseq time course spanning the complete larval development, we fused the L1–L2 

time course (TC1, TP1 – TP15) with the L1–YA course (TC2, TP5 – TP48). To decide which time points 

to choose from the individual time courses, we correlated the gene expression of all genes (n = 19,934) of 

both time courses against each other using the log2 transformed data with a pseudocount of 8 with pearson 

correlation. In general, we saw good correlation between the two time courses, e.g. TP1(TC1, L1–L2) 

correlated well with TP1(TC2, L1–YA) etc. (Fig. S1B). Additionally, we could see comparable correlation 

values of TP13(TC2, L1–YA) and TP13(TC1, L1-L2) with TP1–5(TC1, L1–L2) (not shown). We concluded that 

TP13(TC1, L1–L2) and TP13(TC2, L1–YA) are highly similar and thus fused at this time point, i.e., combined TP1–

TP13(TC1, L1–L2) with TP14–TP48(TC2, L1–YA). 

 

Exclusion of genes based on L4 mean expression 

Given that oscillating genes were identified based on gene expression in TP10-TP25, when oscillation 

period is most stable, some genes showed deviating behavior in the last oscillation cycle, C4. Hence, for 

quantification of oscillation amplitude, period and correlation, we excluded those genes. We determined 

the mean expression levels for each gene over time in oscillation cycles C2 (TP14-TP20), C3 (TP20-

TP27) and C4 (TP27-TP36). Genes (n=291) were excluded if the absolute value of the difference in mean 

expression between L2 and L4 normalized by their mean difference exceeded 0.25, i.e. 

abs((L2meanExpr-L4meanExpr)/(0.5*(L2meanExpr-L4meanExpr)))>0.25. 
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Quantification of oscillation amplitude 

To quantify the oscillation amplitude for each larval stage, we split the TC2 in 4 separate cycles, roughly 

corresponding to the developmental stages, i.e. C1: TP6-TP14, C2: TP14-TP20, C3: TP20-TP27 and C4: 

TP27-TP36 developmental time. We applied cosine fitting to C2, C3 and C4 as described above to the 

expression of oscillating genes in TC2, excluding genes with deviating mean expression in L4 as 

described above. We excluded C1, because amplitudes were sometimes difficult to call reliably. We used 

a fixed period of 7 h for C2-C3 and 8.5 h for C4 as determined by quantification of the oscillation period 

(Fig. 4C). We applied a linear regression using the function ‘lm’ of the package ‘stats’ in R to find the 

relationship between the amplitudes across different stages, i.e. the slope. The correlation coefficient, r, 

was determined using the ‘cor’ function (method=pearson) of the package ‘stats’ in R. 

 

Quantification of oscillation period 

For a temporally resolved quantification of the oscillation period, we filtered the mean-normalized log2 

transformed gene expression levels of oscillating genes, excluding L4 deviating genes (we selected TP5-

TP39, because oscillations cease at ~TP36 and the inclusion of 3 additional time points avoided edge 

effects) using a Butterworth filter (‘bwfilter’ function of the package ‘seewave’ (version 2.1.0) (Sueur et 

al., 2008) in R, to remove noise and trend-correct the data. The following command was used to perform 

the filtering: bwfilter(data, f = 1 , n = 1, from = 0.1, to = 0.2, bandpass = TRUE, listen = FALSE, output = 

"matrix"). The bandpass frequency from 0.1 to 0.2 (corresponding to 10 hour and 5 hour period 

respectively) was selected based on the Fourier spectrum obtained after Fourier transform (‘fft’ function 

with standard parameters of the package ‘stats’). As an input for the Hilbert transform we used the 

butterworth-filtered gene expression. The ‘ifreq’ function (with standard parameters from the package 

‘seewave’) was used to calculate the instantaneous phase and frequency based on the Hilbert transform. 

To determine the phase progression over time we unwrapped the instantaneous phase (ranging from 0 to 

2π for each oscillation) using the ‘unwrap’ function of the package ‘EMD’ (version 1.5.7) (Kim and Oh, 

2018) in R. To avoid edge effects, we removed the first 4 data points (TP5-TP8) and last 3 data points 

(TPTP37-TP39) of the unwrapped phase (retaining TP9-TP36). The angular velocity is defined as the rate 

of phase change, which we calculated by taking the derivative of the unwrapped phase. The instantaneous 

period was determined by 2π/angular velocity and was plotted for each gene individually and as mean in a 

density plot. The mean of the instantaneous period over all oscillating genes was used to reconstruct a 

‘global’ oscillation by taking the following command: sin(cumsum(mean angular velocity)) and plotted 
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together with a 7h-period oscillation and the mean normalized expression of a representative gene, col-

147. 

 

Correlation analyses of RNAseq data 

Log2-transformed data was filtered for oscillating genes and then plotted in a correlation matrix using the 

R command cor(data, method=”pearson”). The correlation line plots represent the correlations of selected 

time points to the fused full developmental time course (Fig. S5) and are specified in the line plot. 

To reveal the highest correlations for a selected time point, we analyzed the correlation line of this time 

point between TP7 and TP36 (the time in which oscillations occur) using a spline analysis from Scipy 

(Jones et al., 2001) in python (“from scipy.interpolate import InterpolatedUnivariateSpline” with k=4) 

and stored the spline as variable “spline”. We identified peaks of the correlation line by finding the zeros 

of the derivative of the spline (cr_points = spline.derivative().roots()). The highest correlations of the 

respective correlation line were thus the value of the spline at the time point where the spline derivative 

was zero and the value was above the mean of the correlation line (cr_vals = spline(cr_pts) followed by 

pos_index = np.argwhere(cr_vals>np.mean(data.iloc[i])) and peak_val = cr_vals[pos_index]). Thus, we 

identified the correlation of particular time points (e.g. TP14–TP19) with their corresponding time points 

in the next oscillation cycle. Thereby, we were able to identify cycle time points as described in the 

results section. We defined the first cycle time point, e.g. TP14 of cycle 2, as 0°, and the last unique one, 

TP19, as 300°. TP14 (0° of cycle 2) is also 360° of cycle 1. Note that a sampling interval of 1 hour means 

that a TP in one cycle may correlate equally well to two adjacent TPs in another cycle, as seen for 

instance in the correlation of TP13 to TP26 and TP27. The spline interpolation places the peak of 

correlation in the middle of these time points at ~TP26.5. The spline analysis thus annotates cycle points 

correctly even in C4 which has an extended period.  

We performed correlation analyses without mean normalization of expression data, hence 

correlation values cannot be negative but remain between 0 and 1. We made this decision because a 

correlation analysis using mean-centered data, where correlations can vary between -1 and +1, requires 

specific assumptions on which time points to include or exclude for mean normalization, and because it is 

sensitive to gene expression trends. However, we confirmed, as a proof of principle, the expected 

negative correlation of time points that are in antiphase when using mean-centered data (Fig. S9) using all 

oscillating genes in TC3 (n = 3680).  
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GO-term analysis 

GO-term analysis was performed using the GO biological process complete option (GO ontology 

database, release 2019-02-02) from the online tool PANTHER (“PANTHER Classification System,” n.d.) 

(overrepresentation test, release 2019-03-08, standard settings). 

 

Tissue specific analysis 

In order to reveal if particular tissues are enriched in oscillating genes, we used single cell sequencing 

data from (Cao et al., 2017). In particular, we used Supplementary “Table S6: Differential expression test 

results for the identification of tissue-enriched genes” where each gene’s highest and second highest 

tissue expression and the ratio of is reported. We selected tissue specific genes based on a ratio > 5 and a 

qvalue < 0.05 (these criteria reduced the number of genes to investigate). Using this list of genes we 

calculated the percentage of tissues present in both, all genes and oscillating genes using the function 

“Counter” from “collections” in python (labels, values = 

zip(*Counter(tissue_info_thr["max.tissue"]).items()) ). In order to obtain the enrichment of tissues, we 

divided the percentage of tissue X among oscillating genes in the tissue enriched dataset by the 

percentage of tissue X among all genes in the tissue enriched data set and plotted the resulting values. The 

list of tissue specific oscillating genes was further used to investigate the peak phases within one tissue by 

plotting a density plot of the peak phase (from Fig. 1) for every tissue. As we lack data below 0 degree 

and above 360 degree, density values at these borders are distorted as the density is calculated over a 

moving window. Since we are confronted with cyclical data and thus 0 degree corresponds to 360 degree, 

we added and subtracted 360 degree to each phase value, thus creating data that ranged from -360 degree 

to 720 degree which allowed us to plot the correct density at the borders 0 and 360 degree. We used 

python (pandas) to plot this data using the following command:  

data_tissue ["Phase"].plot(kind="kde", linewidth=5, alpha=0.5, bw=0.1) 

 

Identification of first gene expression peaks in L1 larvae 

To identify the first peak of oscillating genes, we used a spline analysis in Python (“from scipy.interpolate 

import InterpolatedUnivariateSpline”) from TP3 – TP13. We chose these time points to remove false 

positives in the beginning due to slightly higher noise for the first 2 time points as well as not to identify 

the second peak which occurred at ≥TP14 for some very early genes. The function used was 

“InterpolatedUnivariateSpline” with k=4. After constructing the spline, we identified the zeros of the 
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derivative and chose the time point value with the highest expression value and a zero derivative as the 

first peak time point. 

 

Embryonic gene expression time course 

Embryonic gene expression data was obtained from (Hashimshony et al., 2015), and represented precisely 

staged single embryos at 10 min intervals from the 4-cell stage up to muscle movement and every 10-70 

min thereafter until 830 minutes. We obtained the gene count data from the Gene Expression Omnibus 

data base under the accession number GSE50548, for which sequencing reads were mapped to 

WBCel215 genome and counted against WS230 annotation.  

We normalized the gene counts to the total mapped library size per sample, added a pseudocount of 8, and 

log2-transformed the data. We selected genes according to the larval oscillating gene annotation, with L4 

deviating genes excluded, and plotted their embryonic expression patterns according to peak phase in 

larvae. The embryonic time course was correlated to the fused larval time course (TC3) using the ‘cor’ 

function (method=’pearson’) of the package ‘stats’ in R (Fig. S7A). Correlation line plots were generated 

by plotting the correlation coefficients for each embryonic time point over larval time. To identify the 

peaks of the correlation lines with a resolution higher than the sampling frequency, we interpolated the 

correlation lines using the ‘spline’ function (n=240, method='fmm') of the package ‘stats’ in R. To call the 

peaks of the interpolated correlation lines, we applied the ‘findpeaks’ function (with nups=5, ndowns=5) 

of the package ‘pracma’ on the time points on the interpolated time points 10-185, that cover the four 

cycles. To find the embryonic time point at which oscillations initiate, we plotted the larval TP in cycle 2 

at which the correlation peak occurred over embryonic time (Fig. S7B) and determined the intersection of 

the two linear fits, using the ‘solve’ function of the package ‘Matrix’ (version 1.2-15) (Bates and 

Maechler, 2018) and the ‘lm’ function of the package ‘stats’ in R respectively. To determine the 95%-CI 

of the x-coordinate of the intersect, the standard error of the slope a and the intercept b of the two linear 

fits was propagated using Taylor expansion in the ‘propagate’ function (expr = expression((b1-b2)/(a2-

a1)), ntype = "stat",do.sim = FALSE, alpha=0.05) from the package ‘propagate’ in R. The pairwise 

correlation map was generated with the ‘aheatmap’ function of the package ‘NMF’ (version 0.21.0) 

(Gaujoux and Seoighe, 2010) and the 3D plot was generated with the ‘3Dscatter’ function of the package 

‘plot3D’ (version 1.1.1) (Soetaert, 2017) in R. 
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Time-lapse imaging of single animals 

Single worm imaging was done by adapting a previous protocol (Turek et al., 2015), and is similar to the 

method reported in (Gritti et al., 2016). Specifically, we replaced the previous 3.5-cm dishes with a 

“sandwich-like” system: The bottom consisted of a glass cover slip onto which two silicone isolators 

(GRACE Bio-Labs, SKU: 666103) with a hole in the middle were placed on top of each other and glued 

onto the glass cover slip. We then placed single eggs inside the single OP50 containing chambers, which 

were made of 4.5% agarose in S-basal. The chambers including worms were then flipped 180 degree and 

placed onto the glass cover slip with the silicone isolators, so that worms faced the cover slip. Low melt 

agarose (3% in S-basal) was used to seal the agarose with the chambers to prevent drying out or drifts of 

the agarose chambers during imaging. The sandwich-like system was then covered with a glass slide on 

the top of the silicone isolators to close the system.  

We used a 2x sCMOS camera model (T2) CSU_W1 Yokogawa microscope with 20x air 

objective, NA = 0.8 in combination with a 50µm disk unit to obtain images of single worms. For a high 

throughput, we motorized the stage positioning and the exchange between confocal and brightfield. We 

used a red LED light to combine brightfield with fluorescence without closing the shutter. Additionally, 

we used a motorized z-drive with 2 µm step size and 23 images per z-stack. The 488nm laser power for 

GFP imaging was set to 70% and a binning of 2 was used.  

To facilitate detection of transgene expression and oscillation, we generated reporters using the 

promoters of genes that exhibited high transcript levels and amplitudes, and where GFP was concentrated 

in the nucleus and destabilized through fusion to PEST::H2B (see strain list above). We placed embryos 

into chambers containing food (concentrated bacteria HT115 with L4440 vector) and imaged every worm 

with a z-stack in time intervals of 10 min during larval development in a room kept at ~21°C, using a 

double camera setting to acquire brightfield images in parallel with the fluorescent images. We exploited 

the availability of matching fluorescent and brightfield images to identify worms by machine learning. 

After identification, we flattened the worm at each time point to a single pixel line and stacked all time 

points from left to right, resulting in one kymograph image per worm. We then plotted background-

subtracted GFP intensity values from the time of hatch (t = 0 h), which we identified by visual inspection 

of the brightfield images as the first time point when the worm exited the egg shell.  

Time lapse images were analyzed using a customized KNIME workflow (File S1). We analyzed 

every worm over time using the same algorithm. First, we identified the brightest focal planes per time 

point by calculating the mean intensity from all focal planes per time point and selecting the focal planes 

that had a higher intensity than the mean. Then we maximum-projected the GFP images over Z per time 

point and blurred the DIC image and also max projected over Z (blurring the DIC improved the machine 
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learning process later on). All images per worm over time were analyzed by Ilastik machine learning in 

order to identify the worm in the image. The probability map from Ilastik was used to select a threshold 

that selected worms of a particular experiment best. (The threshold might change slightly as DIC images 

can look slightly different due to differences in the sample prep amongst experiments.) Using a 

customized ImageJ plugin, we straightened the worm. The straightened GFP worm image was then max 

projected over Y which resulted in a single pixel line representing the GFP intensities in a worm and after 

stacking up all the single pixel lines in Y direction, we obtained the kymographs. In order to remove noise 

coming from the head and tail regions of the worm due to inaccuracy of the machine learning, we 

measured mean GFP intensities per time point ranging from 20% until 80% of the worms anterior – 

posterior axis. For background subtraction we exploited the fact that only the nuclei were GFP positive 

and thus subtracted the minimum intensity value between GFP nuclei from their intensity values. 

After the KNIME workflow, we imported the measured GFP intensities into Python and analyzed 

the traces using a butterworth filter and Hilbert transform analysis (both from Scipy (Jones et al., 2001)). 

We used the butterworth bandpass filter using b, a = butter(order =1, [low,high], btype=”band”) with 

low=1/14 and high=1/5, corresponding to 14 hour and 5 hour periods respectively. We then filtered using 

filtfilt(b, a, data, padtype='constant') to linearly filter backwards and forwards. 

For individual time points where the worm could not be identified by the Ilastik machine learning 

algorithm, we linearly interpolated (using interpolation from pandas (McKinney, 2010)) using 

“pandas.series.interpolate(method = 'linear', axis =0, limit = 60, limit_direction = 'backward'”, between 

the neighboring time points to obtain a continuous time series needed for the Hilbert transform analysis. 

Using Hilbert transform, we extracted the phase of the oscillating traces for each time point and 

specifically investigated the phase at molt entry and molt exit for our different reporter strains. 

In order to determine time points in which worms are in lethargus, we investigated pumping 

behavior. As the z-stack of an individual time point gives a short representation of a moving worm, it is 

possible to determine whether animals pump (feeding, corresponds to intermolt) or not (lethargus / molt). 

Additionally to the pumping behavior, we used two further requirements that needed to be true in order to 

assign the lethargus time span: First, worms needed to be quiescent (not moving, and straight line) and 

second, a cuticle needed to be shed at the end of lethargus. Usually worms start pumping one to two time 

points before they shed the cuticle. This analysis was done manually with the software ImageJ, and results 

were recorded in an excel file, where for every time point, the worms’ behavior was denoted as 1 for 

pumping and as 0 for non-pumping. 
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To determine a possible connection between oscillations and development, we applied error 

propagation, assuming normal distribution of the measured phases and larval stage durations. Thereby, we 

exploited the inherent variation of the oscillation periods and developmental rates among worms, rather 

than experimental perturbation, to probe for such a connection. We define the phase 𝜃 at either molt exit 

or entry as 𝜃 ≡  
2𝜋

𝑇𝑜 
 ∗  𝑇𝑑  ~ (𝜇, 𝜎2)  

with 𝑇𝑜 ~ (µ𝑜, 𝜎𝑜
2) being the period of oscillation and 𝑇𝑑  ~ (µ𝑑, 𝜎𝑑

2) the intermolt duration (for phase at 

molt entry) or larval stage duration (for phase at molt exit), resulting in a phase with mean 𝜇 and a 

standard deviation 𝜎. Should the two processes be coupled as in scenario 2, we would expect  

𝜎𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 <  𝜎𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑. 

To calculate the phase at molt entry and molt exit with error propagation we used the 

“uncertainties” package (Lebigot, n.d.) in python. The larval stage duration as well as intermolt duration 

and period were treated as ufloat numbers, representing the distributions coming from our measurement 

(e.g. 7.5 +/- 0.2). These distributions were then used to calculate the expected phase at molt entry (using 

the intermolt duration) and molt exit (using the larval stage duration) using: 𝑝ℎ𝑎𝑠𝑒(𝑒𝑟𝑟. 𝑝𝑟𝑜𝑝) =
2∗𝑝𝑖

𝑝𝑒𝑟𝑖𝑜𝑑
∗

𝑙𝑎𝑟𝑣𝑎𝑙 𝑠𝑡𝑎𝑔𝑒 . This resulted in the phase being represented by an ufloat number and thus a distribution 

which we used for plotting after normalizing for the mean to compare the variation of the data. 
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Fig. S1. Identification of 3,739 ‘oscillating’ genes 

(A) Overview of time courses in this study 

(B) Pairwise-correlation of log2 transformed count data (n=19,934) of the early time course (TC1) with 

the long developmental time course (TC2). High correlation is detected for samples that correspond to the 

same time points, justifying a fusion of these time courses to one continuous full developmental time 

course (TC3). 

(C) Smooth scatter of amplitude over lower boundary of 99% confidence interval of the amplitude as 

determined by cosine fitting and error propagation (see methods, related to Fig. 1B).   



87 
 

(D, E) Scatterplot (D) of the peak phase of the long developmental time course (TC2) described here over 

the previously published L3-YA time course (TC6) (Hendriks et al., 2014). Genes that were identified as 

‘oscillating’ in both time courses (n = 2,499) are shown. Peak phases correlate well as confirmed by the 

coefficient of determination, R2, as indicated. However, they differ systematically (E) because a peak 

phase of 0° is arbitrarily chosen. A red vertical line indicates the mean phase difference (TC2 – TC6; 

corrected for circularity as described in Methods). Note that the gene-specific peak phase calculated here 

and previously both also differ from the arbitrarily assigned cycle phases in Fig. S8 and their discussion.  
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Fig. S2. A strain with single-copy integrated luciferase transgene develops rapidly and 

synchronously  

(A-C) Representative raw luminescence traces of individual animals grown at 20°C. As the egg-shell is 

impenetrable to luciferin, a sudden increase in luminescence at the beginning of the time course indicates 

hatch (pre-hatch in red). Abrupt drops and subsequent rises in luminescence specify molts (in green). The 

previously published strains (B, PE254; C, PE255) (Olmedo et al., 2015) express luciferase from 

randomly integrated multi-copy transgene arrays that carry a semi-dominant version of the cuticular 

collagen rol-6 as a marker (Lagido et al., 2008). To exclude that this genetic make-up could interfere with 

our quantification, we integrated a luciferase transgene, driven by the strong, ubiquitous and constitutive 

eft-3 promoter, into the genome through Mos1-mediated single copy integration (MosSCI) (A, HW1939). 

(D-F) Heatmap per strain showing trend-corrected luminescence (Lum.) trace for one animal per 

horizontal line (D, Single-copy integrated HW1939 (n=86). E, Multi-copy integrated PE254 (n=88). F, 

Multi-copy integrated PE255 (n=79)). Hatch is set to t = 0 h and traces are sorted by time of entry into 

first molt. Blue indicates low luminescence and corresponds to the molts.  

(G-I) Quantification of the duration of each intermolt (G), molt (H), larval stage I) for indicated strains in 

hours. The newly generated strain developed more rapidly and with less variability with regard to the 

duration of individual stages. Although the general trend in larval stage durations was shared between the 

different strains, i.e. L1>L4>L2&L3 (I), animals carrying the rol-6-marked multi-copy luciferase arrays 

also exhibited an extended M1 molt (H) as reported previously (Olmedo et al., 2015). This effect 

disappeared when using the single-copy transgene strain. Hence, the duration of molt M1 became 

comparable to that of M2 and M3 and lengthening of L1 is explained by lengthening of intermolt 1. 

Significant differences between single-copy integrated (n=86) and multi-copy integrated strains (PE254 

(n=88) and PE255 (n=79)) is indicated (*** P<<0.001, Welch two sample, two-sided t-test). Boxplots 

extend from first to third quartile with a line at the median, outliers are indicated with a cross, whiskers 

show 1.5*IQR. 

(J) Table showing fold changes of mean durations of indicated stages for PE254 and PE255 compared to 

HW1939 for data shown in G-I. P-values are indicated in brackets (Welch two-sample, two-sided t-test). 
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Fig. S3. Single worm imaging with two additional reporter strains confirms phase-locking of 

oscillations to molts independently of peak phases 

(A, D) GFP quantification of single worm kymographs for the F11E6.3 (HW1370, n=16) and the dpy-9 

(HW2526, n=22) transcriptional reporters respectively. All traces were aligned to the time of hatching, 

which was set to t = 0 h. Segments in red indicate lethargus while the blue shading indicates the standard 

deviation at each time point with the blue line representing the mean across worm. Only three peaks are 

visible for the F11E6.3 reporter, because the assay terminated before the final rise in expression seen with 

RNA sequencing.  

(B, E) Comparison of larval stage duration and period times of oscillations in hours for L2-L4 larval 

stages for F11E6.3 and dpy-9 transcriptional reporters respectively. 

(C, F) Boxplot of expression phases at molt entry (start of lethargus) and molt exit (end of lethargus) 

separated by larval stages; n = 16 for F11E6.3 (D) and n = 22 for dpy-9 (I) transcriptional reporters.  

Boxplots extend from first to third quartile with a line at the median, outliers are indicated with a cross, 

whiskers show 1.5*IQR. 
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Fig. S4: Exclusion of genes based on deviating behavior in L4 stage 

(A) Scatter plot showing mean expression over time in L2, L3 or L4 for each oscillating gene. Genes 

indicated in red were excluded based on the L2-L4 scatter plot (Methods).  

(B) Scatter plot showing the amplitude in L2, L3 or L4 for each oscillating gene. Genes indicated in red 

correspond to red genes in A and were excluded from amplitude analysis in Fig. 4. 

(C) Polar Scatterplot visualizing the amplitude and peak phase of all oscillating genes (n = 3739) in blue 

and the excluded oscillating genes (n = 291) in red. The excluded genes do not show a particular peak 

phase or amplitude preference.  

(D) Gene expression heatmap of log2 transformed mean normalized data of the excluded oscillating genes 

in the fused time course TC3 (n = 291). 

(E) Example gene expression of four excluded oscillatory genes that were excluded based on the L2-L4 

scatter plot in (A). 
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Fig. S5. Correlation line explanation  

(A) Left: Pairwise-correlation plot of log2-transformed oscillatory gene expression patterns without L4 

deviating genes obtained from synchronized population of L1 stage larvae at 25°C (TC1, TP1 – 13) 

combined time points from the long developmental time course (TC2, TP14 –48), as in Fig. 5B (n = 

3,393). Right: The correlation of TP19 versus all other time points is plotted as a line (orange), correlation 

with itself at 19 hours is 1.0 (orange arrow). 
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Fig. S6: Arrested phase of the oscillator is reproduced in a second RNA sequencing experiment 

(A) Pairwise correlation plot of log2-transformed oscillatory gene expression patterns without L4 

deviating genes (n=3,448) from the replicate time course TC4 (TP1 – 13) fused with TP14 – 48 of the 

long RNA seq time course TC2 (TP14 – 48). 

(B) Correlations of expression patterns for the indicated time points to all other time points of the fused 

time course from A. TP1 – 5 (blue) as well as the adult time points (red) correlate highly with TP13, 

TP19 and TP26/27 (arrows). Hence, oscillations are arrested in the same phase at the beginning and the 

end of the time course.  
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Fig. S7. Initiation of oscillations during mid-embryogenesis 

(A) Pairwise correlation map of log2-transformed oscillating gene counts of fused larval time course to 

embryonic time course (Hashimshony et al., 2015).  

(B) Scatter plot showing the larval time point of the larval oscillation cycle 2 (Fig. 6) for each embryonic 

time point. The larval time point of the peak was determined after spline interpolation (9). Linear model 1 

(y = 5.312e-04*x + 13.98, p=0.098, R2 = 0.162, 16 degrees of freedom) was fitted to the data of 

embryonic TP10-TP230 min (in green) and linear model 2 (y = 0.0108*x + 10.07, p=2.08e-11, R2 = 

0.985, 11 degrees of freedom) was fitted to the data of embryonic TP450-TP830min (in blue). The 

embryonic time at the intersection (in red, 380.0 min (95%-CI 317.6 min – 444.2 min)) of the linear 

models was determined in the inflection zone, i.e. points (in grey) not used for model 1 or model 2 fit, and 

the 95% CI was determined by propagating the standard errors of the coefficients of the linear models 

(Methods). 
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Fig. S8: Oscillations are invariant over time 

The correlation analysis revealed a stably arrested oscillator state in early L1 and young adults. To 

explore how the oscillating state changes over time, we investigated the similarity among the four 

oscillation cycles, C1 through C4. Specifically, we compared oscillator states at each time point sampled 

during C2 to the three other cycles. By choosing C2 as a starting point, we could examine correlations to 

both earlier and later cycles. Because the last time point (360°) of one cycle is the first time point (0°) of 

the following cycle, we truncated each cycle at 300° for this analysis, to avoid an artificially inflated 

correlation. 

 Using spline interpolation and local maxima detection to determine correlation peaks (Methods) 

for each of the six time points TP14/0° through TP19/300° of C2 to the other cycles, we observed high 

and largely invariant values across each of the other three cycles. In other words, except for the extended 

period during L4, little variability occurs in oscillations across the four cycles. 

(A) Correlation of cycle 2 time points (TP14–19; corresponding to 0° to 300°; marked by indicated 

colors) to all other time points of the fused larval time course (TC3). For the correlation analysis we used 

the log2-transformed oscillating gene expression data without the L4 deviating genes. Diamonds (cycle 1), 

circles (cycle 2), squares (cycle 3) and stars (cycle 4) indicate correlation peak values and peak times 

determined by spline interpolation. 

 (B) Polar plot displaying correlation of cycle 2 gene expression patterns with those of the corresponding 

points in the other cycles. Color scheme and symbols as in B. Adult time points (red circles) and start (0° 

in cycle 1; orange) are placed according to correlations in A and B, respectively. 
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Fig. S9: Correlation analysis with mean normalized data yields qualitatively similar results to an 

analysis without mean normalization 

(A) Pairwise correlation plot of log2-transformed, mean normalized oscillating gene expression from the 

fused developmental time course (Fig 1C, n = 3,680). 

(B) Correlation line plots reveal repetitive similarity of TP1 – 5 to TP13, TP19 and TP26/27. Due to mean 

normalization, the correlation lines oscillates around 0. 

(C) Scatter plot comparing log2-transformed, mean-normalized oscillating gene expression data of 

individual time points. 

The Spearman correlation coefficient is indicated on the left corner and can range from anti-correlation (-

1) to full correlation (+1).  
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Table S1. Related to Fig. 1 – Similar GO terms are enriched for the L1–YA developmental time 

course and the L3-YA time course 

GO term enrichment for ‘GO biological process complete’ for the L1–YA developmental time course 

described here and the previously published L3–YA time course (Hendriks et al., 2014). Similar GO 

terms were enriched for both time courses. 

Analysis Type:  
PANTHER 
Overrepresentation Test 

  Released 2019-03-08   
Annotation Version and Release Date:  GO Ontology database    Released 2019-02-02   
       
  L1-YA time course 

GO biological process complete total # in GO # expected # Fold Enrichment p-value FDR 

cuticle development involved in collagen and cuticulin-based cuticle molting cycle 34 24 6.24 3.85 2.00E-06 9.79E-05 

molting cycle, collagen and cuticulin-based cuticle 110 72 20.19 3.57 3.24E-15 6.89E-13 

cuticle development 54 35 9.91 3.53 4.63E-08 3.21E-06 

molting cycle 113 73 20.74 3.52 3.42E-15 7.04E-13 

collagen and cuticulin-based cuticle development 50 31 9.18 3.38 5.43E-07 2.94E-05 

negative regulation of endopeptidase activity 58 34 10.65 3.19 5.92E-07 3.18E-05 

negative regulation of peptidase activity 69 39 12.67 3.08 1.35E-07 8.33E-06 

negative regulation of proteolysis 71 39 13.03 2.99 2.24E-07 1.30E-05 

extracellular matrix organization 59 32 10.83 2.95 3.35E-06 1.53E-04 

extracellular structure organization 60 32 11.01 2.91 4.28E-06 1.91E-04 

regulation of endopeptidase activity 67 34 12.3 2.76 5.54E-06 2.42E-04 

regulation of peptidase activity 82 40 15.05 2.66 1.86E-06 9.18E-05 

carboxylic acid transmembrane transport 46 22 8.44 2.61 5.49E-04 1.46E-02 

organic acid transmembrane transport 46 22 8.44 2.61 5.49E-04 1.45E-02 

aminoglycan metabolic process 63 30 11.57 2.59 6.72E-05 2.28E-03 

negative regulation of hydrolase activity 85 39 15.6 2.5 8.26E-06 3.47E-04 

alpha-amino acid biosynthetic process 59 27 10.83 2.49 2.37E-04 6.85E-03 

endoplasmic reticulum unfolded protein response 57 26 10.46 2.48 3.37E-04 9.32E-03 

innate immune response 220 100 40.39 2.48 1.40E-12 1.92E-10 

immune response 222 100 40.75 2.45 1.81E-12 2.28E-10 

immune system process 227 102 41.67 2.45 1.65E-12 2.17E-10 

cellular amino acid biosynthetic process 63 28 11.57 2.42 2.22E-04 6.42E-03 

organic acid transport 80 34 14.69 2.32 1.23E-04 3.92E-03 

carboxylic acid transport 80 34 14.69 2.32 1.23E-04 3.90E-03 

defense response 277 116 50.85 2.28 1.45E-12 1.94E-10 

negative regulation of catalytic activity 111 46 20.38 2.26 1.14E-05 4.64E-04 

cellular response to unfolded protein 70 29 12.85 2.26 4.35E-04 1.18E-02 

fatty acid metabolic process 104 43 19.09 2.25 2.76E-05 1.01E-03 

response to unfolded protein 74 30 13.58 2.21 5.53E-04 1.45E-02 

carboxylic acid biosynthetic process 113 45 20.74 2.17 3.37E-05 1.22E-03 

organic acid biosynthetic process 114 45 20.93 2.15 3.69E-05 1.32E-03 

alpha-amino acid metabolic process 125 49 22.95 2.14 1.99E-05 7.57E-04 

sulfur compound biosynthetic process 74 29 13.58 2.13 9.36E-04 2.34E-02 

negative regulation of molecular function 123 47 22.58 2.08 4.47E-05 1.58E-03 

organic anion transport 148 56 27.17 2.06 1.46E-05 5.86E-04 

sodium ion transport 77 29 14.14 2.05 1.73E-03 3.93E-02 

sulfur compound metabolic process 139 50 25.52 1.96 1.06E-04 3.41E-03 

organic acid catabolic process 99 35 18.17 1.93 1.64E-03 3.77E-02 

carboxylic acid catabolic process 99 35 18.17 1.93 1.64E-03 3.75E-02 

lipid transport 94 33 17.26 1.91 2.00E-03 4.45E-02 

regulation of proteolysis 145 50 26.62 1.88 2.17E-04 6.38E-03 

lipid catabolic process 113 38 20.74 1.83 2.11E-03 4.59E-02 

oxoacid metabolic process 380 126 69.76 1.81 3.59E-08 2.52E-06 

monocarboxylic acid metabolic process 151 50 27.72 1.8 5.53E-04 1.45E-02 

organic acid metabolic process 420 139 77.1 1.8 7.28E-09 6.41E-07 

carboxylic acid metabolic process 345 112 63.33 1.77 4.25E-07 2.38E-05 

cellular amino acid metabolic process 183 57 33.59 1.7 8.42E-04 2.12E-02 

anion transport 245 75 44.98 1.67 1.77E-04 5.41E-03 

lipid metabolic process 432 125 79.3 1.58 1.40E-05 5.63E-04 

oxidation-reduction process 637 175 116.94 1.5 3.32E-06 1.53E-04 

cellular lipid metabolic process 337 91 61.86 1.47 1.49E-03 3.46E-02 

transmembrane transport 900 243 165.22 1.47 1.21E-07 7.60E-06 

small molecule metabolic process 717 189 131.62 1.44 1.28E-05 5.18E-04 

ion transport 698 167 128.14 1.3 2.17E-03 4.68E-02 
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*empty rows were present in L1-YA time course but not in L3-YA time course (Hendriks 
et al. 2014) 

      
       
       
  L3-YA time course (Hendriks et al, 2014) 

GO biological process complete total # in GO # expected # Fold Enrichment p-value FDR 

cuticle development involved in collagen and cuticulin-based cuticle molting cycle 34 22 4.52 4.87 1.21E-07 7.07E-06 

molting cycle, collagen and cuticulin-based cuticle 110 67 14.62 4.58 2.33E-19 9.59E-17 

cuticle development 54 30 7.18 4.18 9.14E-09 6.96E-07 

molting cycle 113 68 15.01 4.53 2.03E-19 8.94E-17 

collagen and cuticulin-based cuticle development 50 26 6.64 3.91 2.36E-07 1.15E-05 

negative regulation of endopeptidase activity 58 29 7.71 3.76 9.26E-08 5.55E-06 

negative regulation of peptidase activity 69 33 9.17 3.6 2.83E-08 1.92E-06 

negative regulation of proteolysis 71 33 9.43 3.5 4.81E-08 3.06E-06 

extracellular matrix organization 59 24 7.84 3.06 1.85E-05 6.42E-04 

extracellular structure organization 60 24 7.97 3.01 2.31E-05 7.90E-04 

regulation of endopeptidase activity 67 29 8.9 3.26 9.71E-07 4.13E-05 

regulation of peptidase activity 82 34 10.9 3.12 2.61E-07 1.25E-05 

carboxylic acid transmembrane transport 46 18 6.11 2.94 2.91E-04 8.04E-03 

organic acid transmembrane transport 46 18 6.11 2.94 2.91E-04 8.01E-03 

aminoglycan metabolic process 63 24 8.37 2.87 6.23E-05 2.02E-03 

negative regulation of hydrolase activity 85 33 11.29 2.92 1.65E-06 6.87E-05 

alpha-amino acid biosynthetic process*         

endoplasmic reticulum unfolded protein response 57 19 7.57 2.51 1.07E-03 2.42E-02 

innate immune response 220 60 29.23 2.05 3.42E-06 1.35E-04 

immune response 222 61 29.5 2.07 2.40E-06 9.73E-05 

immune system process 227 62 30.16 2.06 2.04E-06 8.44E-05 

cellular amino acid biosynthetic process*         

organic acid transport 80 25 10.63 2.35 6.12E-04 1.51E-02 

carboxylic acid transport 80 25 10.63 2.35 6.12E-04 1.50E-02 

defense response 277 71 36.81 1.93 3.01E-06 1.19E-04 

negative regulation of catalytic activity 111 34 14.75 2.31 7.24E-05 2.30E-03 

cellular response to unfolded protein*         

fatty acid metabolic process*         

response to unfolded protein*         

carboxylic acid biosynthetic process*         

organic acid biosynthetic process*         

alpha-amino acid metabolic process 125 33 16.61 1.99 1.07E-03 2.43E-02 

sulfur compound biosynthetic process*         

negative regulation of molecular function 123 34 16.34 2.08 3.99E-04 1.07E-02 

organic anion transport*         

sodium ion transport*         

sulfur compound metabolic process*         

organic acid catabolic process*         

carboxylic acid catabolic process*         

lipid transport*         

regulation of proteolysis 145 38 19.27 1.97 4.55E-04 1.16E-02 

lipid catabolic process*         

oxoacid metabolic process 380 80 50.49 1.58 3.12E-04 8.51E-03 

monocarboxylic acid metabolic process*         

organic acid metabolic process 420 94 55.81 1.68 1.11E-05 3.92E-04 

carboxylic acid metabolic process*         

cellular amino acid metabolic process*         

anion transport*         

lipid metabolic process*         

oxidation-reduction process 637 131 84.64 1.55 1.02E-05 3.71E-04 

cellular lipid metabolic process*         

transmembrane transport 900 166 119.59 1.39 1.14E-04 3.44E-03 

small molecule metabolic process*         

ion transport*         

ecdysis, collagen and cuticulin-based cuticle 14 10 1.86 5.38 2.00E-04 5.76E-03 

molting cycle process 14 10 1.86 5.38 2.00E-04 5.73E-03 

chitin metabolic process 21 11 2.79 3.94 6.93E-04 1.69E-02 

glucosamine-containing compound metabolic process 24 11 3.19 3.45 1.61E-03 3.44E-02 

amino acid transmembrane transport 35 15 4.65 3.23 4.28E-04 1.10E-02 

amino acid transport 45 16 5.98 2.68 1.90E-03 3.98E-02 

carbohydrate derivative catabolic process 65 21 8.64 2.43 1.04E-03 2.39E-02 

carbohydrate derivative metabolic process 476 95 63.25 1.5 4.56E-04 1.16E-02 

 

Table S2. Related to Figure 3 - Larval developmental duration in single worm imaging experiments 

Median durations of molts, intermolts and larval stage durations determined for single worm imaging 

reporter strains grown in microchambers at ~21°C ambient temperature. 

 
Reporter Larval stage Median 

duration (h) 

qua-1 I1 10 

qua-1 I2 4.7 

qua-1 I3 5 
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qua-1 I4 6.8 

qua-1 M1 2.2 

qua-1 M2 1.8 

qua-1 M3 1.8 

qua-1 M4 2.8 

qua-1 L1 12.2 

qua-1 L2 6.5 

qua-1 L3 6.9 

qua-1 L4 9.5 

dpy-9 I1 10.2 

dpy-9 I2 5.5 

dpy-9 I3 5.6 

dpy-9 I4 7.8 

dpy-9 M1 2 

dpy-9 M2 1.8 

dpy-9 M3 2 

dpy-9 M4 2.7 

dpy-9 L1 12 

dpy-9 L2 7.3 

dpy-9 L3 7.7 

dpy-9 L4 10.4 

F11E6.3 I1 10.5 

F11E6.3 I2 5 

F11E6.3 I3 5.3 

F11E6.3 I4 7.5 

F11E6.3 M1 1.8 

F11E6.3 M2 1.7 

F11E6.3 M3 1.8 

F11E6.3 M4 2.5 

F11E6.3 L1 12.5 

F11E6.3 L2 6.8 

F11E6.3 L3 7.2 

F11E6.3 L4 10 
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Table S3. Plasmids and primers used 

 

Vector 

name 

Backbone Inserts Primers Primer sequence 

pYPH0.1

4 

pCFJ150 GFP::H2B::Pe

st 

 GFP-pest-H2B FW1 + 

Overhang  

gcgtgtcaataatatcactcGCTAGCATGTCTAGAC

TTAGCCATGGC  

 GFP-pest-H2B RV1 + 

Overhang  

gccgatgcggagctcttatcTTACTTGCTGGAAGTG

TACTTG  

Unc-54 

3'UTR 

 Unc-54 3’UTR FW1 + 

Overhang  

AGTACACTTCCAGCAAGTAAgataagagctcc

gcatcg  

 Unc-54 3’UTR RV1 + 

Overhang  

Aacatatccagtcactatggaaacagttatgtttggtatattggga  

pYPH5 pYPH0.14 F11E6.3 

promoter 

F11E6.3 FW1 + Overhang gcgtgtcaataatatcactcaggaaaacctcaaattttgttaacact 

F11E6.3 RV + Overhang GCTAAGTCTAGACATcatggttacctaaaaatataaa

gctct 

pYPH69 pYPH0.14 dpy-9 

promoter 

dpy-9 promoter FW +OH to 

pYPH0.14 

gcgtgtcaataatatcactcgtacaatagaaaaaaagcagcaat 

dpy-9 promoter RV +OH to 

pYPH0.14 

CCATGGCTAAGTCTAGACATtctgcaataataa

gtattgaaaacaaga 

pYPH70 pYPH0.14 qua-1 

promoter 

qua-1 promoter FW +OH to 

pYPH0.14 

gcgtgtcaataatatcactcatacttttgcactacacggag 

qua-1 promoter RV +OH to 

pYPH0.14 

CCATGGCTAAGTCTAGACATcttaaatataggtt

aagcatgataggat 

pMM001 pCFJ150 luciferase::GF

P 

unc-54 3'UTR + overhang gfp GCATGGATGAACTATACAAAgataagagctcc

gcatcg 

gfp + overhang unc-54 3'UTR gccgatgcggagctcttatcTTTGTATAGTTCATCC

ATGCC 

luc, piece2 + overhang piece 1 GACTACAAGgtaagtttaaacagttcggtactaactaacc

a 

luc, piece1 + overhang piece 2 ccgaactgtttaaacttacCTTGTAGTCTTGGAG 

luc, piece1 + overhang NheI 

and backbone 

tgtcaataatatcactcGCTAGCATGGAGGACGCC

AAGAA 

Unc-54 

3'UTR 

gfp + overhang luc::spacer 

(piece2) 

TACCGGTAGAAAAAATGAGTAAAGGAG

AAGAACTTTTCACTGG 

luc::spacer (piece2) + 

overhang gfp 

GTGAAAAGTTCTTCTCCTTTACTCATTTT

TTCTACCGGTAC 

pMM002 pMM001 eft-3 promoter Peft-3 RV primer (OH to 

:luciferase) 

ATGTTCTTGGCGTCCTCCATtgagcaaagtgttt

cccaac 

Peft-3 FW primer (OH to 

pCF150) 

gcgtgtcaataatatcactcGCACCTTTGGTCTTTTA

TTGT 
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2.2 Rhythmic transcription of oscillating genes results from rhythmic RNAPII occupancy 

Milou Meeuse and Helge Grosshans conceived the project. MM performed the experiments, under HG’s 

supervision. Sarah Carl and MM analyzed the data. 

Our lab previously showed that oscillating mRNA levels are preceded by rhythmic pre-mRNA accumulation 

(Hendriks et al., 2014). However, sufficient intronic reads were detected for only ~30% of the genes that 

oscillate on the mRNA level and it remained possible that splicing is rhythmic. At least for a subset of 

genes, it seems likely that mRNA level oscillations arise from rhythmic transcription. Whether the 

remainder of transcript oscillation also result from rhythmic transcription and at which step of 

transcription this is regulated is unknown. Given that transcription can be regulated at the level of RNAPII 

recruitment, transcription initiation, pause release, elongation and termination, I aimed to investigate 

whether binding of RNA polymerase II (RNAPII) to the promoters of oscillating genes is rhythmic. To this 

end, we performed RNAPII chromatin immunoprecipitation coupled to sequencing (ChIP-seq) and total 

mRNA sequencing (mRNA-seq) on synchronized wild-type L1 larvae collected hourly from 22 hrs until 33 

hrs after plating at 25°C. RNAPII ChIP-seq reads were quantified in a 1-kb window around the annotated 

transcription start site (TSS) serving as a proxy for temporal RNAPII promoter occupancy. We found 

rhythmic binding of RNAPII (Figure 2.1) at many of the promoters of genes previously assigned as 

oscillating (Meeuse et al., 2019), consistent with the idea that transcript level oscillations arise to a large 

extent from rhythmic transcription.  
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Figure 2.1: Rhythmic RNAPII occupancy at the transcription start site of oscillating genes 

Heatmaps showing fold changes of RNA Polymerase II occupancy in a 1-kb window around the transcription start 
site (RNAPII), fold changes of intronic expression (introns) and fold changes of exonic expression (mRNA) of ‘high-
confidence-oscillating’ genes (sufficiently expressed, n=2,106) sorted by phase as annotated previously (Meeuse et 
al., 2019). Synchronized wild-type L1 worms were grown at 25°C, sampled from 22 hrs until 33 hrs after plating, and 
followed by RNAPII ChIP-sequencing and total RNA-sequencing. Mean normalized log2-transformed expression is 
shown. 
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2.3 Screening ‘oscillating’ transcription factors for their role in molting 

Milou Meeuse and Helge Grosshans conceived the project. MM generated the strains, with help from Iskra 

Katic with the microinjections. MM performed and analyzed all the experiments, under HG’s supervision. 

Dimos Gaidatzis built the HSMM to automatically quantify stage durations.  

Given that our RNAPII ChIP-seq data suggests that mRNA level oscillations predominantly arise from 

rhythmic transcription, specifically at the level of RNAPII recruitment to the TSS, I aimed to investigate 

which transcription factors could regulate oscillatory gene expression. To this end, we performed an RNAi 

screen targeting the 92 transcription factors that oscillate themselves on the transcript level (based on 

our previous annotation (Hendriks et al., 2014)). Although quantification of transcript oscillations in 

transcription factor mutants by RNA-seq or transcriptional reporters might allow us to directly investigate 

the effects on oscillations globally or for a specific mRNA, respectively, they do not support high-

throughput screening. Given that our quantitative analysis revealed that oscillations are tightly coupled 

to the molting cycles (Meeuse et al., 2019), we screened for aberrant progression or duration of 

developmental stages, including that of the molts.  

2.3.1 RNAi screen set-up and validation 

Developmental progression can be tracked at high temporal resolution, i.e. 10 minute intervals, by 

measuring luminescence in single worms expressing luciferase from a constitutive and ubiquitous 

promoter, when they are grown in the presence of D-luciferin, the substrate of luciferase (Meeuse et al., 

2019; Olmedo et al., 2015) (Figure 2.2A). In short, the abrupt drop in luminescence during the lethargus, 

when larvae are in a quiescent state and do not feed, marks the entry of the molt. The subsequent sharp 

rise in luminescence due to resumption of feeding after animals escape from the old cuticle, characterizes 

the molt exit. These features allow the identification of molts during larval development and hence 

quantification of their duration. We cultured animals from the embryo stage until adulthood in a 384-well 

plate in liquid medium containing D-luciferin. Knock-down of 92 ‘oscillating’ transcription factors was 

achieved by feeding worms with HT115 bacteria carrying L4440 RNAi vectors. To control for effects that 

are unrelated to the knock-down of transcription factors, we performed the screen using a specific plate 

design (Figure 2.2A) and in a wildtype (WT) and an RNAi deficient strain (rde-1(ne219)). We confirmed 

that the WT and the RNAi-deficient strain developed with similar rates on mock RNAi (Figure 2.2B,F,G,H).  

To validate that the RNAi deficient strain rescues the phenotype induced by RNAi in the WT strain, we 

used RNAi against nhr-23 and nhr-25, two ‘oscillating’ transcription factors, which are known to be 

required for molting (Gissendanner and Sluder, 2000; Kostrouchova et al., 1998). To identify aberrant 
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molts, we visualized the luminescence traces of single animals in heatmaps, in which low luminescence 

levels correspond to dark grey and are characteristic for the molts (Figure 2.2B,C,D). nhr-23(RNAi) animals 

failed to complete development; only two molts were observed (Figure 2.2C,E). nhr-25(RNAi) revealed 

lengthening of molts and intermolts (Figure 2.2D,F,G,H). Both effects were completely rescued in the rde-

1(ne219) background (Figure 2.2C-H), confirming that the assay works robustly. Given that RNAi by 

feeding is generally considered less potent compared to RNAi by microinjection, a disadvantage of our 

approach is that phenotypes might be weak or delayed in onset. Indeed, we observed that L1 and L2 stage 

were large unaffected by nhr-23(RNAi) and nhr-25(RNAi) (Figure 2.2). 
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Figure 2.2: RNAi screen set-up and validation 

A, (i) Schematic overview of the plate set-up of the screen. Two consecutive columns are filled with same RNAi 
condition. WT (in black) and RNAi deficient (rde-1(ne219), in grey) animals alternate in blocks of 8 wells to avoid 
plate effects. (ii) Representative luminescence trace of a single WT animal on mock RNAi recorded for 72 hours. 
Sudden drop and subsequent rise in luminescence corresponds to molts. 

B-D, Heatmaps showing trend-corrected luminescence (Lum) of WT (top) and RNAi deficient (rde-1(ne219), bottom) 
animals expressing luciferase from the eft-3 promoter. Single embryos were plated and cultured for 72 hrs in a 
temperature controlled incubator. RNAi was achieved by feeding on HT115 bacteria with L4440 vector for mock 
RNAi (B), nhr-23(RNAi) (C), and nhr-25(RNAi) (D). One horizontal line represents one animal. Hatch is set to t = 0 
hours and traces are sorted by entry into the first molt. Black corresponds to low luminescence and is associated 
with the molt. 

E, Quantification of percentage of animals in last observed molt for mock RNAi, nhr-23(RNAi), and nhr-25(RNAi) in 
WT and RNAi deficient animals (rde-1(ne219)). Number of animals in each conditions as indicated in B-D. 

F-H, Quantification of molt (F), intermolt (G) and larval stage (H) durations in WT and RNAi deficient (rde-1(ne219)) 
animals that make 4 molts grown in the presence of mock RNAi (n=15 and n=15 in WT and rde-1(ne219) respectively), 
and nhr-25(RNAi) (n=16 and n=14 in WT and rde-1(ne219) respectively). Boxes extend from first to third quartile, 
horizontal line indicates the median and dots indicate outliers. Significant differences between WT and rde-1(ne219) 
are indicated for each RNAi condition (*** p<<0.001, ns: not significant, Welch two sample t-test). 

 

2.3.2 Identification of transcription factors with strong molting phenotypes 

By visual inspection of the heatmaps of the RNAi screen, we could readily identify blmp-1, bed-3, grh-1 

and myrf-1, and confirm nhr-23, nhr-25, which all revealed strong defects in molt progression or molt 

duration (GRH-1 manuscript). Further characterization of blmp-1, grh-1 and myrf-1, nhr-23, and nhr-25 

will be discussed in section 2.5.  

However, small differences in stage durations could not be identified by visual inspection of the heatmaps. 

Hence, I aimed to accurately quantify the durations of developmental stages for each of the RNAi 

conditions to identify subtle molting phenotypes. To this end, we exploited a method for the automatic 

annotation of molts in luciferase traces, which is described in further detail in the next section.  
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2.3.3 A Hidden Semi Markov Model to annotate molting in luciferase traces 

To quantify the duration of developmental stages from the luciferase data, we annotated the molts in the 

luminescence traces using a Hidden Semi Markov Model (HSMM). The basis of a HSMM is a Markov 

Model, with some extensions that we will discuss below. A Markov Model is a stochastic model that 

describes a Markov Chain (Figure 2.3A) (tutorial Rabiner, 1989), i.e. a series of states for which the 

probability of each state depends only on the previous state. Thus, a Markov Model allows to make 

predictions about the future state based on the current state. The transitions between the states are 

described by transition probabilities, the probability of moving from state 1 to state 2 (a12), but also the 

probability of staying in state 1 (a11). 

In a Hidden Markov Model, the states 1, 2, and 3 are invisible, or hidden (tutorial Rabiner, 1989). Instead, 

the stochastic observations or measurements X1, X2, and X3, which are influenced by the states are visible 

(Figure 2.3B), i.e. they are ‘emitted’. The probability of observing Xn is described by an ‘emission’ 

probability distribution, e(Xn). Similar to the Markov Model, a limitation of the Hidden Markov Model is 

that the chance to be in the same state is represented by a constant probability, e.g. a11. The probability 

at a given time does not change depending on the time elapsed since entering that state (a11, t=n = a11, t=n+1). 

Thus, the overall probability to stay within a state over multiple consecutive time points decreases 

exponentially with time (a11
t, t = time and 0<a<1). However, the state duration of processes is often better 

described using other distributions, e.g. a normal or poisson distribution.  

A Hidden Semi Markov Model circumvents this limitation (reviewed in Yu, 2010). In contrast to a constant 

probability, the state duration (D) is described by a probability distribution, p(D) (Figure 2.3C). The 

probability distribution describes how the probability of being in the current state changes over the time 

that passed from the moment of going into that state. Here, we used an HSMM to find the most likely 

sequence of states, i.e. the developmental stages, given the observed data, i.e. the luminescence levels 

(Figure 2.3C). In order words, we annotated the molts and intermolts in the luminescence traces, using a 

HSMM.  

We determined the parameters of the HSMM by evaluating the performance of the model on a set of 

luminescence traces obtained from WT animals, before applying the model to the traces of RNAi-treated 

animals. In principle, the parameters of the duration probability distribution describe how likely it is to 

find a molt with a certain duration. Since we were interested in finding subtle differences that we could 

not readily identify from the heatmaps, we designed the distributions in such a way that small changes in 



110 
 

stage durations between mutants and wildtype are much more likely than big changes, which rapidly 

decay to zero.   

Once our HSMM annotated the molts and the intermolts in the luciferase traces, we aimed to confirm 

that the developmental stages were reliably identified. To this end, we aligned the luminescence traces 

with the HSMM-based annotation to a single reference trace which we annotated manually using the 

graphical user interface as described before (Meeuse et al., 2019). If molts were to be annotated correctly 

by the HSMM (Figure 2.4A, RNAi trace 1), the low luminescence intensities corresponding to the molts 

would align with those of the reference trance. Hence, the dark intensities would fall in vertical columns, 

set by the alignment boundaries. However, if a molt is extended too much, i.e. the probability of the 

duration is zero or close to zero, the model annotates a ‘molt’ that is shorter than the actual molt (Figure 

2.4A, RNAi trace 2, molt 4). As a result, after the alignment, the luminescence intensities of the actual 

molt fall outside of the alignment boundaries. Thus, the molt duration is longer than the parameters of 

the model allow. Indeed, hatch and molts fall in vertical columns for animals treated with mock RNAi 

(Figure 2.4B). In contrast, molt 4 of nhr-25(RNAi) failed to align, as L4 duration was extended more than 

the probability distribution permitted (Figure 2.4C). Likewise, the genes we identified at first instance 

(GRH-1 manuscript), i.e. by visual inspection of the heatmap, failed to align (data not shown) and were 

omitted from the analysis. Given that we specifically aimed to quantify more subtle changes and designed 

the probability distributions of the HSMM according to this, these observations were not unexpected.  
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Figure 2.3: The Markov Model and its extensions 

A, Example of a Markov Chain. States (1, 2, 3) and state transition probabilities (a11, a12, a21) are indicated.  

B, Example of a Hidden Markov Model. Hidden states (1, 2, 3), observations (X1, X2, X3), state transition probabilities 
(a11, a12) and emission probabilities (e1, e2, e3) are indicated. Emission probabilities are described by a probability 
distribution, which is a function of X. 

C, Hidden Semi Markov Model describing the developmental stages as hidden states, and the luminescence traces 
as observations. Before hatch (B), intermolt n (In, with n=1,2,3,4), molt n (Mn, with n=1,2,3,4), adults (A) and an 
arbitrary terminal state (T) are indicated. State duration probability distributions p(Dn) are described with a Poisson-
shift distribution and emission probability distributions are described with a normal distribution. 

Based on (Hayashi et al., 2017) 
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Figure 2.4: HSMM allows annotation of molts in luciferase traces 

A, Cartoon of alignment of HSMM-annotated (red) luminescence traces to manually annotated (blue) reference trace 
(left). Cartoon of aligned luminescence intensities (right), in which black corresponds to low luminescence (molt) 
and grey high luminescence (intermolt). Alignment boundaries are indicated with green dashed lines. 

B-C, Heatmaps of luminescence traces of mock RNAi (B) and nhr-25(RNAi) (C) in WT and RNAi deficient (rde-1(ne219)) 
animals aligned to reference trace. One horizontal line represents one animal. Dark grey corresponds to low 
luminescence and is associated with the hatch and molts respectively. Wells without a developing animals are 
indicated with *. Note that alignment works reliably in mock RNAi for both strain and nhr-25(RNAi) in (rde-1(ne219)) 
animals, but not in nhr-25(RNAi) in WT animals. 

 

2.3.4 ztf-6(RNAi) reveals lengthening of intermolts 

To identify transcription factors whose depletion caused subtle phenotypes, we quantified the durations 

of developmental stages and plotted the directed p-value in log10 in a heatmap (Figure 2.5A). Hierarchical 

clustering of the directed p-values for each gene revealed no consistent lengthening or shortening of 

development over time. Moreover, mock RNAi conditions did not cluster together, suggesting that the 

differences we observed represent the variability in the data independent of transcription factor knock-

down. We reasoned that RNAi effects might become visible only in later stages. To test this notion, we 

quantified the duration of L3 and L4 together (Figure 2.5B). We observed lengthening of L3-L4 in 

‘WBGene00012317’, which corresponds to ztf-6, a transcription factor implicated in the control of 

dopaminergic neuron production (Doitsidou et al., 2018). Using manual annotation of the molts (as 

described in methods of (Meeuse et al., 2019)), we confirmed that I3 and I4, but not M3 and M4 are 

extended in ztf-6(RNAi) (Figure 2.5C,D). Thus, the method we present here reliably identified more subtle 

changes in stage durations and identified, besides blmp-1, bed-3, grh-1, myrf-1, nhr-23, and nhr-25, the 

zinc finger transcription factor ztf-6 as a factor required for normal duration of intermolts.  
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Figure 2.5: HSMM-based identification of subtle ztf-6(RNAi) phenotype 

A, Heatmap of directed log10 – transformed p-value of each developmental stage in WT animals relative to RNAi 
deficient animals. Red corresponds to lengthening and blue corresponds to shortening of developmental stages. 
Data is hierarchically clustered over developmental time. P-values are obtained by a paired t-test. 

B, Barplot of directed log10 – transformed p-value of L3-L4 stage in WT animals relative to RNAi deficient animals. 
Data is sorted as in B. Red bar indicates significant lengthened L3-L4 stage in ztf-6(RNAi). P-values are obtained by a 
paired t-test. 

C-D, Quantification of intermolt (C) and molt (D) in WT and RNAi deficient (rde-1(ne219)) animals in the presence of 
mock RNAi, and ztf-6(RNAi). Boxes extend from first to third quartile, horizontal line indicates the median and dots 
indicate outliers. Significant differences between WT and rde-1(ne219) are indicated (*** p<<0.001, ns: not 
significant, Welch two sample t-test). 
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2.4 Manuscript: Control of oscillatory gene expression and molting through the transcription 
factor GRH-1 

Kathrin Braun imaged the N2 molt. Anca Neagu generated the SWI strains and dissected the grh-1 

promoter. MM performed the experiments and analyzed all the data. Michael Stadler conceived the 

differential expression analysis. HG and MM conceived the project and wrote the manuscript. 

 

Control of oscillatory gene expression and molting through the 

Grainyhead/LSF transcription factor GRH-1 

Authors: Milou W.M. Meeuse1,2, Michael Stadler1,3, Kathrin Braun1, Anca Neagu1, Helge 
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Abstract 

Molting is a recurring process of cuticle synthesis and shedding in nematodes. As a cyclical process, it 

appears tightly coupled to massive gene expression oscillations seen for thousands of genes in C. elegans. 

However, specific transcriptional molting programs and mechanisms of their presumed rhythmic execution 

are unknown. Here, we identified the Grainyhead/LSF protein GRH-1 as a transcription factor important 

for molting and gene expression oscillations in C. elegans. Oscillatory activity of GRH-1 is required for 

proper rhythmic expression of a large group of oscillating genes encoding various structural components 

of the cuticle and ECM regulators as well as other factors including GRH-1 itself. Hence, in the absence of 

GRH-1, a timely completion of the molt fails and the integrity of the cuticle is compromised to the extent 

that the cuticle ruptures and animals die. These results identify GRH-1 as a key factor for molting programs 

and a putative component of the C. elegans developmental oscillator. Thus, they provide a basis for further 

dissection of the oscillator’s architecture and molecular as well as developmental function. 
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Introduction 

Various repetitive developmental processes, such as somitogenesis in vertebrates and branching of lateral 

roots in plants, are driven by gene expression oscillations. An extreme case is observed in C. elegans larvae, 

where ~3700 genes produce transcripts undergoing >2-fold changes from peak to trough levels (Meeuse et 

al., 2019). Mechanistically, mRNA level oscillations in C. elegans appear to arise from rhythmic 

transcription, as pre-mRNA expression patterns oscillate and precede rhythmic mRNA accumulation at the 

global level (Hendriks et al., 2014). 92 transcription factors were found to oscillate on the mRNA level 

(Hendriks et al., 2014). However, whether and how these transcription factors drive oscillatory gene 

expression in C. elegans remains to be determined. 

Oscillations peak once during each of the four larval stages, L1 – L4, but peak-phases are widely distributed 

(Hendriks et al., 2014; Meeuse et al., 2019), suggesting a role of oscillations in diverse processes. Notably, 

however, oscillations appear tightly coupled to the molting cycle (Meeuse et al., 2019), exhibiting phase 

locking to all four molts, M1 – M4 despite variations in the duration of the individual larval stages. Hence, 

it seems likely that the developmental ‘oscillator’ in C. elegans serves to time molting and potentially other 

developmental processes. 

Molting is fundamental to the development of C. elegans and indeed nematodes more generally. 

Nonetheless, the molecular mechanisms that control molting are poorly understood. C. elegans molting is 

characterized by a period of behavioral quiescence (lethargus) in which the exoskeleton, called the cuticle, 

is renewed. The C. elegans cuticle is a multi-layered extracellular matrix (ECM) consisting of protein, lipids 

and carbohydrates. The predominant class of structural proteins are collagens, which are produced by the 

underlying epidermis, also referred to as hypodermis. The cuticular collagens are encoded by ~170 genes 

and previous global analysis revealed their enrichment among oscillating genes (Hendriks et al., 2014). 

Before cuticle synthesis, connections between the old cuticle and the underlying epidermis are severed, first 

at the head and tail region and later at the central body, a phase called apolysis (Singh and Sulston, 1978). 

Following synthesis of the new cuticle, the old cuticle is removed. In a process termed ecdysis, animals 

undergo a series of stereotypic movements, i.e. rotating around the body axis and spontaneous back-and-

forth motions. Breakage of the cuticle occurs at the head region, after which the worm escapes from the old 

cuticle and resumes feeding (Singh and Sulston, 1978). Although one would postulate that specific 

transcriptional programs play a role in timing and coordination of ECM remodeling, only a few 

transcription factors have been implicated in molting (Frand et al., 2005; Gissendanner and Sluder, 2000; 

Gissendanner et al., 2004; Kostrouchova et al., 1998; Russel et al., 2011) and the molecular programs that 

they control, and thus the molecular architecture that drives molting remains largely unexplored.  
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Here, we screened ‘oscillating’ transcription factors for their role in molting and we report the identification 

and characterization of a putative component of the C. elegans oscillator. Our characterization reveals that 

GRH-1, the sole C. elegans member of the conserved LSF/Grainyhead transcription factor family, is 

essential for the integrity of the cuticle. The majority of the genes affected by depletion of GRH-1 are 

oscillating genes, among them numerous structural components of the cuticle and ECM regulators. We find 

that rhythmic activity of GRH-1 is required not only for completion of the molt as such but also for its 

duration, suggesting an important role in epidermal remodeling. A negative transcriptional feedback loop 

controls rhythmic accumulation of GRH-1, a hallmark of an oscillator. Hence, our finding that GRH-1 is a 

key factor for the molting cycle and a potential oscillator component, will facilitate the characterization of 

the network that drives molting and oscillatory gene expression in C. elegans. Moreover, as Drosophila 

Grainyhead and the three mammalian Grainyhead-like factors (Grhl) play major roles in epithelial 

development and maintenance (Almeida and Bray, 2005; Boglev et al., 2011; Bray and Kafatos, 1991; 

Hemphälä et al., 2003; Lee and Adler, 2004; Rifat et al., 2010; Wilanowski et al., 2002; Yu et al., 2006), a 

phylogenetically conserved role of Grainyhead transcription factors in providing temporal coordination to 

epidermal programs seems possible. 
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Results 

Identification of grh-1 in an RNAi screen for ‘oscillating’ transcription factors that affect molting 

Our previous study hinted towards rhythmic transcription as the predominant driver of mRNA transcript 

oscillations during larval development (Hendriks et al., 2014). To find transcription factors that drive 

oscillatory gene expression, we performed an RNAi screen targeting 92 transcription factors that exhibit 

oscillatory mRNA levels, according to our previous annotation (Hendriks et al., 2014). Given that our 

previous study revealed a tight coupling between gene expression oscillations and molting cycles (Meeuse 

et al., 2019), we screened for mutants with aberrant duration or progression of molting. To obtain such 

information, we examined luciferase activity in animals that express a luciferase transgene and are grown 

in the presence of D-luciferin (Meeuse et al., 2019; Olmedo et al., 2015). This assay detects, at the level of 

individual animals, periods of reduced feeding, related to the molts, by a drop in luminescence. We depleted 

92 transcription factors by feeding animals on RNAi-expressing bacteria. To control for differences in larval 

growth among RNAi conditions unrelated to target protein depletion, we performed the experiment in 

parallel on RNAi deficient (rde-1(ne219)) animals (Figure 1A). 

To detect mutants with aberrant molting, we plotted the luminescence intensities sorted by entry 

into the first molt in a heatmap (Figure 1B,C). Thus, we identified six genes of which the depletion caused 

abnormal progression through development following atypical molts (nhr-23, myrf-1 and grh-1) (Figure 

1B,C, Figure S1), or aberrant duration of molts (blmp-1, bed-3 and nhr-25) (Figure 1B,C,D, Figure S2). 

In the remainder of this paper, we focus on validating and characterizing a role of one of these, grh-1, in 

regulating oscillatory gene expression. 
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Figure 1: RNAi screen for ‘oscillating’ transcription factors revealed aberrant duration or progression of 

molting 

A, Heatmap showing trend-corrected luminescence (Lum) of wild-type (WT, top) and RNAi-deficient (rde-1(ne219), 

bottom) animals expressing luciferase from the eft-3 promoter grown on mock (empty vector) RNAi in a temperature-

controlled incubator set to 20 °C. Each line represents one animal. Hatch is set to t = 0 hours and traces are sorted by 

entry into the first molt. Darker color corresponds to low luminescence and is associated with the molt. 

B, Heatmap showing trend-corrected luminescence (Lum) as in A, for indicated RNAi conditions causing cessation 

of development. 

C, Heatmap showing trend-corrected luminescence (Lum) as in A, for RNAi indicated conditions causing extension 

of molt duration. 

D, Quantification of the percentage of animals in last molt that they entered on indicated RNAi conditions in wildtype 

animals. 

 

Loss of GRH-1 causes cuticle rupturing at the head during ecdysis 

We aimed to validate our findings of the RNAi screen using an independent approach. Since grh-1(0) 

mutants died as embryos (data not shown), we used the auxin inducible degradation (AID) system (Zhang 
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et al., 2015) to degrade GRH-1 rapidly and conditionally. To this end, we tagged grh-1 endogenously with 

degron::3xflag to generate allele grh-1(xe135), and expressed the plant specific F-box protein TIR-1 as a 

transgene. In the presence of the plant hormone auxin, we observed rapid degradation of GRH-1, as shown 

below (Figure S9A). When we plated synchronized L1 grh-1::aid::3xflag animals on auxin-containing 

plates, we observed a lethality phenotype at the end of the first molt. The lethality was fully penetrant for 

high auxin concentrations (≥400 nM), and decreased in a dose-dependent manner (Figure S3A). At 

concentrations ≥1 mM, addition of auxin caused non-specific defects, independent of the presence of a 

degron on GRH-1 (Figure S3B,C). 

To investigate the lethality during the molt in more detail, we first imaged molting in wild-type animals. 

We used time-lapse DIC imaging on L1 animals placed on a agar pad in a drop of M9, which allowed them 

to move. We could readily identify loosened cuticles at the tip of the head (Figure S4), indicating that 

apolysis occurred. After loosening the cuticle around the tip of the head, animals made spontaneous back-

and-forth movements and the pharynx contracted rapidly (Figure S4). We observed animals in which the 

pharyngeal lining broke and the mouth plug was expelled before the animals escaped from the cuticle 

(Figure S4A), and animals in which the cuticle broke first and the pharyngeal lining with the mouth plug 

was expelled afterwards (Figure S4B). Our live imaging observations are consistent with previous 

observations (Singh and Sulston, 1978). 

As observed in wild-type animals, loosening of the cuticle in the head region (Figure 2A) was followed by 

rapid back-and forth movements in animals depleted of GRH-1 (Figure 2B). However, the cuticle became 

looser and inflated in the head region (Figure 2C) and vesicles started to appear in the cavity underneath 

the loosened cuticle (Figure 2D). Finally, the cuticle broke in the head region and the underlying tissue 

was extruded (Figure 2E,F). The process from loosened cuticle until rupturing of the cuticle took roughly 

5 to 10 minutes. We conclude that depletion of GRH-1 during L1 impairs the integrity of the newly forming 

cuticle. 

 

GRH-1 phenotype occurs every larval stage 

We wondered whether this phenotype was specific to L1. To test whether we could induce lethality and 

molting defects in every larval stage, we depleted GRH-1 by addition of auxin at the beginning of each 

larval stage and investigated the appearance of larval death using the luciferase assay (Figure 2G,H,I,J). 

Indeed, we observed lethality in M1, M2, M3 and M4, when auxin was present in L1, L2, L3 and L4 stage 

respectively. In conclusion, activity of GRH-1 is repetitively required for normal completion of molts. 
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Figure 2: GRH-1 degradation leads to rupturing of the cuticle in the head region in M1 and subsequent molts 

A-F, Image sequence of L1 synchronized grh-1(xe135); peft-3::tir-1 animal (HW2418) plated on 250 μM auxin-

containing plates, grown at 20°C. Animals were transferred to an agar-pad containing microscopy slide and images 

were collected every 1 sec, using DIC, 100x magnification. Selected images are shown. Time stamp (min:sec) is 
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indicated. Arrows indicate phenotypic features: A. Loosening of the cuticle, B. Back-and-forth movements, C. 

Inflation of the cuticle, D. Vesicles underneath loosened cuticle, E and F. Rupturing of the cuticle. 

G-H, Zoom in of C and D. 

I-L, Heatmap showing trend-corrected luminescence (Lum) of grh-1(xe135); peft-3::luc; peft-3::tir-1 animals 

(HW2434). L1 (I), L2 (J), L3 (K) and L4 (L) phenotypes are shown. t = 0h corresponds to time of plating. Arrow 

indicates time point when 250 μM auxin was added at the beginning of each larval stage. Note that in L1, auxin was 

present at t=0h, before animals hatched.  

 

GRH-1 protein levels oscillate and peak shortly before molt entry 

Since GRH-1 seemed to be required for proper execution of recurring molts, and its mRNA levels oscillate 

(Hendriks et al., 2014; Meeuse et al., 2019), we wondered whether GRH-1 protein accumulation is also 

rhythmic. To this end, we sampled a synchronized population of animals expressing endogenously 

3xFLAG-tagged GRH-1 (grh-1(xe135)), from M1 until M2. A qualitative analysis using western blotting 

revealed oscillatory accumulation of GRH-1 protein with its peak shortly before molt entry (Figure 3A).  

Next, we performed time-lapse microscopy of single animals grown in micro-chambers as described 

previously (Meeuse et al., 2019), to investigate the GRH-1 levels in single animals and with high temporal 

resolution. By acquiring in parallel fluorescence and bright-field images, we could simultaneously quantify 

GRH-1::GFP level changes and developmental progression for the same animal to relate GRH-1 peak levels 

more accurately to the time of molting. As GFP intensities did not suffice for quantification using our 

previously published pipeline (Meeuse et al., 2019), we manually selected hypodermal cells and quantified 

the maximum intensity (Figure 3B,C, Figure S6). Although GRH-1 levels fall during the trough below the 

level of detection, preventing amplitude quantification, these data clearly reveal that GRH-1 accumulation 

peaks before molt entry (Figure 3B,C, Figure S6), confirming the western blot analysis (Figure 3A).  
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Figure 3: GRH-1 accumulation oscillates with its peak at molt entry 

A, Western blot analysis of grh-1(xe135); peft-3::luc; peft-3::tir-1 animals (HW2434) using anti-FLAG antibody. 

ACT-1 was used as loading control. Time points represent time of development of a synchronized population in liquid 

culture at 20°C with start of the culture at t = 0h. Molts were determined by luciferase assays (Figure S5). 

B, Quantification of GFP intensities at the peak of GRH-1::GFP expression in a single animal (HW2603) grown in 

micro-chambers. GFP intensity was determined by manual selection of a hypodermal cell for each time point and 

quantification of the maximum intensity. Specifically, we randomly selected a hypodermal cell in the mid-body of the 

worm, for which GFP intensity was among the brightest. Given that GFP intensities could not be distinguished from 

background in the trough of the oscillation, we cannot quantify amplitudes. t = 0h corresponds to the time of plating. 

Pre-hatch (red) and molts (blue) are indicated. 

C, Quantification of GFP intensities in three animal expressing GRH-1::GFP (HW2603) grown in micro-chambers 

(grey) (Figure S6). Black line represents a smoothed spline. GFP intensity was determined as in B. t = 0h corresponds 

to the time of plating of the animal with the longest pre-hatch period. Animals are synchronized at hatch. Pre-hatch 

(red) and molts (blue) are indicated.  

 

Molting requires oscillatory GRH-1 activity  

Both the rhythmic accumulation of GRH-1 and a recurring requirement for GRH-1 for each molt provide 

circumstantial evidence for a rhythmic activity of GRH-1. If this were true, the consequences of perturbing 

GRH-1 should depend on when, during a given larval stage, the perturbation occurs. To test this prediction, 

we initiated GRH-1 degradation at variable times in L3 by adding auxin and monitored developmental 

progression using the luciferase assay. Plotting luminescence traces by the time when the animals entered 

molt 3 (M3 entry) in a heatmap (Figure 4A) revealed a striking cutoff on the onset of lethality: addition of 

auxin up to 3 hours before the M3 was sufficient for phenotypic onset at the end of M3 (Figure 4A,B, 
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blue), whereas animals receiving auxin later showed the phenotype one stage later (Figure 4A,B, red). 

Hence, initiation of GRH-1 depletion in the time window ranging from 3 hours before M3 until M3 is not 

sufficient for lethality at M3. We observed similar results when auxin was added in L2 (Figure S7). As we 

will show below (Figure S9A), our treatment depletes GRH-1 rapidly (< 1h) to levels below the normal 

trough level, revealing that this time window is not explained by the time it takes to deplete GRH-1 

sufficiently. Hence, GRH-1 is iteratively needed during larval development for progression through molts, 

but its activity is dispensable during part of each larval stage. In other words, and as we had hypothesized, 

GRH-1 exhibits rhythmic activity during larval development. 

 

Figure 4: Lethality is dependent on the time of GRH-1 depletion 

A, Heatmap showing trend-correct luminescence (Lum) of grh-1(xe135); peft-3::luc; peft-3::tir-1 animals (HW2434) 

treated with vehicle (0.25% ethanol, left panel) or 250 μM auxin (right panel) at 40 hours (white dashed line). Black 

corresponds to low luminescence occurring during lethargus (molt). Embryos of various stages were left to hatch and 

develop during the assay. Luminescence traces are sorted by entry into molt 3 (M3) so that traces of early hatched 

animals are on top and those of late hatched animals are at the bottom. Auxin-treated animals were categorized as 

“M3 phenotype” (blue bar) or “M4 phenotype” (red) depending on the last observed molt in the luminescence trace. 

B, Quantification of time at which animals enter molt 3 (M3 entry). Dots (jittered in y) represent individual animals 

and are colored according to phenotype determined in A. Dotted line indicates when auxin was added.  

 

Loss of GRH-1 reveals a long-molt phenotype 

Given that long-period and short-period mutants have been identified in other oscillators, we wondered 

whether loss of GRH-1 reveals such phenotypes. To this end, we quantified the molt durations in wild-type 

animals and degron::grh-1 expressing animals exposed to auxin during the L3 stage. We observed a 

lengthening of the molt in GRH-1-depleted relative to wild-type animals (Figure 5A), whereas the duration 

of the preceding intermolt was not affected (Figure S8A). This result was qualitatively similar in animals 

that were exposed to auxin early in L3, and thus exhibited an M3 phenotype, and those that received auxin 

only late in L3, and thus exhibited an M4 phenotype (Figure 5A, Figure S8A). We conclude that loss of 
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GRH-1 results in extensive lengthening of the molt. In fact, we may even underestimate this effect since 

cuticle rupturing, used as a proxy for molt exit in GRH-1-depleted animals, occurs before the completion 

of ecdysis. 

We wondered whether the extension of molt duration was connected to the lethality of GRH-1 depletion. 

To investigate this possibility, we took two approaches to attempt to uncouple the two phenotypes. First, 

we titrated the concentration of auxin and quantified the duration of larval stages. For animals that 

completed M1 normally, we quantified the duration of I1 and M1. We found that the period of molting was 

lengthened in an auxin dose-dependent manner (Figure 5B), whereas the duration of the intermolt did not 

change (Figure S8B). Even in the high auxin conditions where the phenotype was observed in M1, the 

length of I1 was not affected (Figure S8C). As numerous animals in the lowest concentrations (53 nM, 79 

nM and 119 nM) entered all four molts, we quantified the durations of M1-3 and I1-3 in these animals. (We 

omitted M4 from this analysis as it was not always clear whether M4 lethality occurred within the time 

window of the experiment). We observed the dose-dependent lengthening not only in M1, but also in M2 

and M3 (Figure 5C). In line with our observations in intermolt 1, effects appeared to be largely restricted 

to molt, with little or no extension of subsequent intermolts (Figure S8D).  

Second, we investigated how the time of GRH-1 depletion affected the molt duration. To this end, we 

selected animals in which depletion of GRH-1 was initiated before the molt but did not result in cuticle 

rupturing. We quantified the duration of M3 in M4 phenotype animals (Figure 4A) and observed a 

relationship between M3 lengthening and M3 entry, i.e. the earlier animals received auxin relative to M3 

entry, the longer the M3 period (Figure 5D). By contrast, in vehicle-treated animals, the M3 period did not 

change over time (Figure 5D). (M3 entry and duration of I3 were weakly correlated for both auxin- and 

vehicle-treated animals and similar correlations occurred in all stages (Figure S8E,F); hence, this effect 

was not linked to GRH-1 depletion.) We cannot, without further information about the dynamics of GRH-

1 depletion, distinguish between the effects of timely depletion and GRH-1 levels on molt lengthening. 

Nevertheless, and in contrast to the cut-off we observed for the lethality (Figure 4A), the effects we observe 

on molt extension are gradual. Moreover, the results we present here reveal a time window in which GRH-

1 is required for temporal control of the molt. In conclusion, depletion of GRH-1 caused lengthening of the 

molting period, which appears to persist throughout development. Thus, GRH-1 is repetitively required for 

normal duration of the molt.  
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Figure 5: GRH-1 depletion causes lengthening of the molt 

A, Quantification of molt duration for vehicle-treated animals (Veh) and auxin-treated animals (Aux). As cuticle 

rupturing occurs before completing ecdysis for auxin-treated animals, the molt duration might be under-estimated. 

Data for auxin-treated animals dying during M3 ecdysis and M4 ecdysis, respectively, (as explained in Figure 4) are 

shown separately. To resemble life history, vehicle-treated animals with M3 entry > 43h were selected for M3 

quantification and animals with M3 entry ≤ 43h were selected for M4 quantification. P-values are indicated. 

B, Boxplot showing the duration of the first molt of animals treated with indicated concentrations of auxin. Animals 

that died during M1 were excluded. Significant differences relative to 0 nM auxin are indicated. 

C, Boxplot showing the duration of M1, M2 and M3 of animals treated with indicated concentrations of auxin. Animals 

that revealed lethality at M1, M2 or M3 were excluded. Significant differences relative to 0 nM auxin are indicated. 

D, Quantification of durations of M3 over the time of entering M3 respectively. Data is shown for ‘M4 phenotype’ 

animals and all vehicle-treated animals from Figure 4. Dashed line indicates treatment with 250 μM auxin or vehicle 

at 40 hours after plating.  

P-values were determined by Welch two-sample, two-sided t-test. * p<0.05, ** p<0.01, *** p<0.001. 
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GRH-1 controls expression of a subset of ‘oscillating’ genes  

To gain insight into the molecular functions of GRH-1, we investigated the gene expression changes upon 

GRH-1 degradation. To this end, we cultured a population of synchronized animals in liquid medium at 

20°C. At 21 hours, when animals were in the early L2 stage, we added auxin (Figure 6A, Figure S9), to 

achieve a penetrant M2 defect. We sampled animals hourly from 22 hours until 32 hours, where after 

animals started dying (Figure S9B) and performed mRNA sequencing. We identified 725 genes (‘hits’) 

that differed significantly in their expression over time between vehicle and auxin conditions (Figure 

6B,C,D, methods). These included genes that were upregulated in auxin-treated relative to vehicle-treated 

animals (Figure 6C; cluster 2 and 4, n=273) and downregulated genes (Figure 6C; cluster 1 and 3, n=452).  

Strikingly, ‘oscillating’ genes were strongly enriched among the ‘hits’, i.e. 85% compared to 24% of all 

expressed genes, according to our previous annotation (Meeuse et al., 2019). To investigate whether 

‘oscillating hits’ share similar gene expression patterns, we sorted them by their previously determined peak 

phase (Meeuse et al., 2019) and plotted the gene expression fold changes (Figure 6E) and mean-normalized 

expression in both conditions (Figure 6F) in heatmaps. We observed that genes with similar peak phases 

also tended to show similar changes in expression levels with regard to directionality of the pattern, fold 

changes, and the pattern of change over time (Figure 6E,F). This suggested to us that GRH-1 depletion 

affects genes in a peak-phase specific manner. To investigate this relationship further, we used the annotated 

peak phases (Meeuse et al., 2019) to quantify peak phase enrichment of ‘oscillating hits’ over the total of 

oscillating genes in 20° bins.  We performed this analysis for upregulated (Figure 6G, red) and 

downregulated genes (Figure 6G, blue) separately. Strikingly, clear and opposing patterns emerged for the 

two groups: Downregulated genes were enriched for peak phases around molt entry (-30° to 70°), and 

depleted for opposite peak phases (130° to -90°) (Figure 6G). In contrast, upregulated genes were depleted 

for peak phases around molt entry (-50° to 70°) and enriched for opposite peak phases (150° to -90°) 

(Figure 6G). In other words, genes with expression peaks shortly before or during early stages of the molt 

failed to be upregulated upon GRH-1 depletion, whereas genes with expression troughs during the molt 

failed to be down-regulated during the molt. Although we cannot, at this point, discriminate primary from 

secondary targets, these phase-specific effects agree well with the phenotypic data and provide further 

evidence for the notion of a rhythmic GRH-1 activity.  

To further investigate the functional relevance of GRH-1, we sought to examine in which tissues the genes 

affected by GRH-1 depletion are expressed, using a recently published tissue annotation (Cao et al., 2017). 

In agreement with the molting phenotype, we found that genes expressed in the hypodermis were strongly 

enriched in our data set (Figure 6H).  
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Figure 6: Degradation of GRH-1 affects expression of 614 ‘oscillating’ genes in a phase-specific manner 

A, Schematic overview of experimental design. L1 synchronized grh-1(xe135); peft-3::luc; peft-3::tir-1 animals 

(HW2434) were cultured in liquid at 20°C. After 21 hours, when animals reached early L2 stage, 250 μM auxin or an 

equivalent amount of vehicle was added to the culture. We sampled hourly from 22 hours until 32 hours and performed 

mRNA-sequencing and Western blotting (Figure S9A). Extension of molt 2 (M2) and cessation of M3 and M4 was 

confirmed using the luciferase assay (Figure S9B). 

B, Expression of lips-6 in log2. Vehicle (black) and auxin (red) expression patterns are shown. 

C, Heatmap of fold change between gene expression in 250 μM auxin and in vehicle conditions. Expression fold 

change is hierarchically clustered for significantly changing genes (n=725), ordered by mean expression and plotted 

in log2. First vertical bar indicates four clusters obtained after hierarchical clustering. Cluster 2 (n=272) and cluster 4 

(n=1) consist of genes mostly upregulated over time following auxin addition. Cluster 1 (n=421) and cluster 3 (n=31) 

consist of genes mostly downregulated. A second vertical bar indicates whether a gene is ‘oscillating’ (‘osc’) or ‘not 

oscillating’ (‘not osc’) in its expression patterns according to a previous annotation (Meeuse et al., 2019). 

D, Gene expression heatmaps in auxin-treated (black) and control (grey) animals for significantly changing genes 

(n=725). Gene expression was mean-centered over both conditions, sorted according to C and plotted in log2. 

E, Heatmap of gene expression fold change for ‘oscillating’ genes (n=614) among significantly changing genes 

(n=725). Expression fold change is sorted by peak phase as previously determined (Meeuse et al., 2019) and plotted 

in log2. 

F, Gene expression heatmaps in auxin-treated (black) and control (grey) animals for ‘oscillating’ genes (n=614). Gene 

expression was mean-centered over both conditions, sorted as in E and plotted in log2. 

G, Barplot showing peak phase enrichment of ‘oscillating hits’ (this time course) over all ‘oscillating’ genes (Meeuse 

et al., 2019) for ‘upregulated’ genes (n=197) in red and ‘downregulated’ genes (n=417) in blue. Annotation of 

upregulated and downregulated genes according to C. Peak phases are sorted in 20° bins. The peak phase of grh-1 

mRNA is -90°(arrow) and the molt occurs roughly between 20° and 110° (grey box), as previously determined 

(Meeuse et al., 2019). 

H, Barplot showing enrichment of indicated tissues in ‘all hits’ over genes with tissue annotation according to (Cao et 

al., 2017). Fold enrichment was calculated using a pseudocount of 12.   

 

Cuticle rupturing results from loss of collagen expression 

Given the hypodermal enrichment in our dataset, we sought to examine the molecular function of these 

genes. Hence, we used the recently published annotation of the C. elegans extracellular matrix, or 

matrisome (Teuscher et al., 2019) to identify ‘matrisome’ genes in our dataset. We found moderate and 

strong enrichment for ‘ECM regulators’ and ‘cuticular collagens’ respectively (Figure 7A). Enrichment 
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was maintained when focusing only on the oscillating genes or the downregulated genes, whereas 

enrichment was lost in the non-oscillating genes and also in the upregulated genes (Figure 7A). In 

agreement with rupturing of the cuticle upon GRH-1 depletion, it seems likely that downregulation of 

‘oscillating’ matrisome genes accounts for this phenotype. 

Next, we sought to further investigate this class of genes in single animals. To this end, we expressed a 

destabilized gfp from different promoters and investigated their expression in L3 stage in vehicle and auxin-

treated single animals using time-lapse microscopy of single animals grown in micro-chambers as described 

previously (Meeuse et al., 2019). We investigated GFP levels driven by col-41 and col-146, two structural 

components of the cuticle. According to our RNA-seq data, they are expressed with different peak phases 

and their expression peak is reduced by loss of GRH-1 (Figure 7B,D). We also included qua-1 (Meeuse et 

al., 2019), whose mRNA accumulation appeared unaffected by GRH-1 degradation (Figure 7H).  

Consistent with the RNA sequencing data, we detected oscillations of all reporters in L3 stage in vehicle-

treated animals (Figure 7C,E,I). In auxin-treated animals that exhibited an M3 phenotype, we observed 

massive loss of peak expression for the col-41 and col-146 reporters (Figure 7C,E). GFP oscillations driven 

by the qua-1 reporter were not, or only minimally, affected by GRH-1 degradation (Figure 7I). Similar 

results were obtained in independent replicates (Figure S10, S11).Thus, extensive loss of oscillatory 

collagen expression is likely to contribute to the phenotype. 

 

GRH-1 controls its transcription via a negative feedback loop 

Given that a negative feedback loop is one of the requirements for biochemical oscillations (Novák and 

Tyson, 2008), we investigated whether GRH-1 exhibits this characteristic. To this end, we examined how 

GRH-1 levels affect its gene expression, using a pgrh-1::gfp-h2b-pest reporter. In contrast to vehicle-treated 

animals, where GFP levels peak before and decline during the molt, in auxin-treated animals, GFP levels 

failed to decrease during the molt and continued to increase almost linearly (Figure 7G). Similar results 

were observed in an independent replicate (Figure S11), and in the RNA sequencing data (Figure 7F), 

although the increase was less strong at the mRNA level. Thus, our results indicate that oscillatory 

accumulation of GRH-1 is controlled by a negative transcriptional feedback loop.  
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Figure 7: Depletion of GRH-1 results in downregulation of ‘oscillating’ components of the cuticle and 

upregulation of its own transcription 

A, Barplot showing fold enrichment of indicated matrisome gene classes. Fold enrichment is shown for ‘all’ genes 

affected by GRH-1 depletion or an indicated subset of those. Fold enrichment was calculated using a pseudocount of 

12.   

B,D,F,H, Expression changes of indicated genes (B: col-41, D: col-146, F: grh-1, H: qua-1) in vehicle (black) and 

auxin treated (red) animals, obtained from time course in Figure 6. 

C,E,G,I, Quantification of background subtracted GFP intensity of single animals over L3 stage, starting from M2 exit 

(t = 0h). Animals express gfp::h2b::pest::unc-54 3’utr from the indicated promoters (C: col-41, E: col-146, G: grh-1, 

I: qua-1) in the grh-1::degron background. Mean (black line) and SEM (grey lines) for time point with more than 5 

vehicle-treated animals are shown. Mean (red line) and SEM (pink lines) for time points with more than 5 auxin treated 

(250 μM) animals are shown. GFP intensities after the appearance of the phenotype in auxin-treated animals are not 

shown. GFP intensities ≤ 50, which reflect segmentation errors, were omitted from mean and SEM. Mean molt 3 entry 

and mean molt 3 exit in vehicle-treated (grey box) and mean molt 3 entry in auxin-treated (red dotted line) animals 

are indicated. Traces of individual animals are shown in Figure S10 and Figure S11. 
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Discussion 

C. elegans larvae exhibit large-scale mRNA level oscillations that appear coupled to molting (Hendriks et 

al., 2014; Kim et al., 2013; Meeuse et al., 2019). However, the relevant gene expression programs and the 

transcription factors that shape either process have remained largely elusive so that we do not understand 

their regulatory logic or mechanistic underpinnings, nor the extent and means by which they are coupled. 

Here, we have begun to fill this gap in our understanding of the fundamental biology of C. elegans by 

identifying and characterizing the transcription factor GRH-1 as a factor important for both oscillatory gene 

expression and molting.  

Our findings support a dual, and connected, role of GRH-1 in molting and gene expression oscillations: 

First, animals lacking GRH-1 fail to complete the molt and instead die by cuticular rupturing during ecdysis. 

Second, GRH-1 is required for every larval molt, but cuticular rupturing requires GRH-1 depletion at least 

3 h before molt entry. Together with rhythmic accumulation of both GRH-1 mRNA and protein, these data 

are consistent with an oscillatory activity of GRH-1. The inferred window of activity fits well with a peak 

of GRH-1 protein levels shortly (roughly 1-2 hours) before molt entry, particularly when considering that 

GRH-1 may be functional at levels below the peak concentration and that its depletion, although rapid (<1 

h to below trough levels) may yet take some time to occur. Third, GRH-1 depletion lengthens molting 

substantially. This occurs under conditions of extensive depletion, when animals burst during ecdysis but 

at a time much later than completion of ecdysis in wild-type animals. This is also true under more modest 

depletion, which avoids cuticle rupturing and yet delays ecdysis relative to wild-type animals. Fourth, 

depletion of GRH-1 predominantly affects the expression of oscillating genes, which account for >80 % of 

significantly mis-expressed genes. From these findings, we conclude that rhythmic GRH-1 activity is 

essential for oscillatory genes expression and molting. Moreover, the fact that oscillating genes 

dysregulated upon GRH-1 depletion are enriched for genes encoding structural components of the cuticle 

and ‘ECM regulators’ suggests that GRH-1 connects these two processes, i.e., that GRH-1 promotes 

oscillatory gene expression and thereby choreographs the complex molting process. 

Although GRH-1 depletion massively perturbs oscillatory gene expression, less than 20% of all annotated 

oscillating genes (Meeuse 2019) are significantly affected. Moreover, the affected subset is enriched for 

certain peak phases, epidermal expression, and specific, i.e., molting-related, functions. These features do 

not necessarily exclude a function of GRH-1 as part of a core oscillator, since it is currently unknown 

whether gene expression oscillations in C. elegans involve one or several oscillators. Indeed, a core 

oscillator function fits well with our finding that degradation of GRH-1 increases grh-1 mRNA levels as 

such a negative feedback is a key design principle of oscillator networks (Novák and Tyson, 2008). GRH-

1-depleted animals may then behave as long-molt mutants, similar to long-period mutants of core 
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components of the circadian oscillator (Takahashi, 2004). Nonetheless, an alternative, more parsimonious 

explanation is that GRH-1 is required for a specific output of a more general oscillator, e.g., by coupling a 

“molting module” to the oscillator. Irrespective of which scenario applies, our discovery of an essential 

function of GRH-1 for oscillatory gene expression of a large group of genes provides a starting point for a 

molecular dissection of the core oscillator, e.g., by enabling identification of oscillator components through  

genetic modifier screens. 

What is the cause of lethality in GRH-1 depleted animals? When combining the immediate phenotype, 

rupturing of the cuticle in the head, with the identity of the down-regulated genes as discussed above, it 

seems a consequence of a cuticle formation defect that impairs cuticular integrity. During ecdysis, the worm 

is transiently ensheathed by two cuticles, a newly formed one below the old one. In other words, rupturing 

occurs when a newly formed cuticle first becomes the outermost “shell” of the animal. This interpretation 

is in agreement with the fact that rupturing occurs during ecdysis but never before and that tissue extrusion 

occurred in-between the two cuticles. Although it remains possible that inappropriate proteolytic activities 

during ecdysis might additionally damage the newly formed cuticle, the interpretation that rupturing is a 

consequence of impaired cuticle formation is also consistent with cuticle defects in GRH-1-depleted C. 

elegans embryos, which do not undergo ecdysis (Venkatesan et al., 2003). 

Soft, thin and granular cuticles, prone to rupturing, are also a hallmark of Drosophila Grainyhead mutant 

animals (Bray and Kafatos, 1991; Nüsslein-Volhard et al., 1984). With roles of Grhl1-3 in development 

and maintenance of epithelial tissues in mammals, i.e. epithelial differentiation (Yu et al., 2006), wound 

healing, eye lid closure (Boglev et al., 2011), and formation of hair coat (Wilanowski et al., 2002), our 

findings agree with a fundamental, evolutionarily conserved role of Grainyhead proteins in epidermis and 

ECM development and remodeling. Although individual Grhl targets of relevance have been described for 

these processes, e.g. transglutaminase 1, the enzyme essential for cross-linking structural components of 

the epidermis (Ting et al., 2005), and Desmoglein-1, Cadherin-1, Claudin 4, among other epithelial cell 

interaction genes (Wilanowski et al., 2008, Varma et al., 2012; Werth et al., 2010), we propose that also in 

other animals Grainyhead proteins may have a broader function in orchestrating epidermal and ECM 

development and remodeling programs. Indeed, given the overt similarities of Grainyhead protein functions 

across animals it appears that C. elegans molting could serve as an powerful genetically accessible, model 

of animal skin and ECM development and remodeling.  

In summary, we propose that in this study we have identified and characterized a number of factors linked 

to a molting cycle oscillator that may have a functional correspondence in other animals, and that their 

further dissection provides a path to a molecular-mechanistic and systems understanding of gene expression 

oscillations in C. elegans. 
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Methods 

 

Transgenic animals 

HW1939: EG6699, xeSi296 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] II (Meeuse et al., 2019) 

HW1949: EG8080, xeSi301 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] III (this study) 

HW2665: rde-1(ne219) V (gift from Gasser Lab) 

HW2150: EG6699, xeSi296 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] II; rde-1(ne219) V (this study) 

CA1200: ieSi57 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] II (Zhang et al., 2015) 

HW1984: ieSi57 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] II; EG8080, xeSi301 [Peft-

3::luc::gfp::unc-54 3'UTR, unc-119(+)] III (this study) 

HW2079: EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (this study) 

HW2418: grh-1(xe135(grh-1::degron::3xFLAG)) I; EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 

3’UTR, cb-unc-119(+)] III (this study) 

HW2434: grh-1(xe135(grh-1::degron::3xFLAG)) I; EG6699, xeSi296 [Peft-3::luc::gfp::unc-54 3'UTR, 

unc-119(+)] II; EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (this study) 

SWI reporters: 

HW2814: EG6699, xeSi482 [Pgrh-1::pest-gfp-h2b::unc-54 3’UTR, unc-119(+)] II (this study) 

HW2824: grh-1(xe135(grh-1::degron::3xFLAG)) I; EG6699, xeSi482 [Pgrh-1::pest-gfp-h2b::unc-54 

3’UTR, unc-119(+)] II; EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (this 

study) 

HW2825: EG6699, xeSi483 [Pcol-41::pest-gfp-h2b::unc-54 3’UTR, unc-119(+)] II (this study) 

HW2854: grh-1(xe135(grh-1::degron::3xFLAG)) I; EG6699, xeSi483 [Pcol-41::pest-gfp-h2b::unc-54 

3’UTR, unc-119(+)] II; EG8080,  xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (this 

study) 

HW2826: EG6699, xeSi484 [Pcol-146::pest-gfp-h2b::unc-54 3’UTR, unc-119(+)] II (this study) 
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HW2855: grh-1(xe135(grh-1::degron::3xFLAG)) I; EG6699, xeSi484 [Pcol-146::pest-gfp-h2b::unc-54 

3’UTR, unc-119(+)] II; EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (this 

study) 

HW2523: EG6699, xeSi437 [Pqua-1::pest-gfp-h2b::unc-54 3’UTR, unc-119(+)] II (Yannick Hauser, 

unpublished) 

HW2856: grh-1(xe135(grh-1::degron::3xFLAG)) I; EG6699, xeSi437 [Pqua-1::pest-gfp-h2b::unc-54 

3’UTR, unc-119(+)] II; EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (this 

study) 

HW2603: grh-1(syb616(grh-1::GFP::3xFLAG)) I (PHX616, three times backcrossed) (this study; custom-

made by SunyBiotech) 

Generation of transgenic animals 

Endogenous degron-3XFLAG tagging grh-1 by CRISPR/Cas9-mediated editing was performed using the 

previously published dpy-10(cn64) co-conversion protocol (Arribere et al., 2014). For the sgRNA plasmid, 

we inserted the sgRNA sequence (5’ agaggtttactctcatgagt 3’) into NotI-digested pIK198 (Katic et al., 2015) 

by Gibson assembly (Gibson et al., 2009) with hybridized MM116 (5’ 

AATTGCAAATCTAAATGTTTagaggtttactctcatgagtGTTTAAGAGCTATGCTGGAA 3’) and MM117 

(5’ TTCCAGCATAGCTCTTAAACactcatgagagtaaacctctAAACATTTAGATTTGCAATT 3’). A degron-

linker-3XFLAG-linker cassette was synthesized as gBlocks® Gene Fragments (Integrated DNA 

Technologies) with 50 bp homology arms to the grh-1 locus before the stopcodon: 5’ 

CCACGTTAATCGAGGTGGCTCCCACCAATCCAAACTCGTATTCCAACTCAATGCCTAAAGAT

CCAGCCAAACCTCCGGCCAAGGCACAAGTTGTGGGATGGCCACCGGTGAGATCATACCGGA

AGAACGTGATGGTTTCCTGCCAAAAATCAAGCGGTGGCCCGGAGGCGGCGGCGTTCGTGAA

GAGTACCTCAGGCGGCTCGGGTGGTACTGGCGGCAGCGACTACAAAGACCATGACGGTGAT

TATAAAGATCATGACATCGATTACAAGGATGACGATGACAAGAGTACTAGCGGTGGCAGTG

GAGGTACCGGCGGAAGCTGAGAGTAAACCTCTTTAGGTTCTTGTCTTAATTCTCTTAAAGGA

GGACT 3’. Wildtype animals were injected with 10 ng/μL gBlock, 100 ng/μL sgRNA plasmid, 20 ng/μL 

AF-ZF-827 (Arribere et al., 2014), 50 ng/μL pIK155 (Katic et al., 2015) and 100 ng/μL pIK208 (Katic et 

al., 2015). Genome editing was confirmed by sequencing. 

HW2079 animals were obtained by single copy-integration of pLZ31 (Zhang et al., 2015) into the universal 

MosSCI ttTi5605 site on chromosome III in EG8080 animals, using the published MosSCI protocol 

(Frøkjær-Jensen et al., 2012). 
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GFP reporters were constructed by amplifying the promoter from genomic DNA using the primers listed 

below and inserting them into Nhe1-digested pYPH0.14 as previously described (Meeuse et al., 2019). 

Transgenic animals were obtained by single copy-integration of the transgene into the ttTi5605 locus 

(MosSCI site) on chromosome II in EG6699 animals, using the published MosSCI protocol (Frøkjær-

Jensen et al., 2012). 

AN153 CCATGGCTAAGTCTAGACATTCTGGAATGATAATTAATGATATAT

TATTG 

Pgrh-1 rv 

AN154 gcgtgtcaataatatcactcTGAAGGGGGGAGAAACC Pgrh-1 fw 

AN157 CCATGGCTAAGTCTAGACATtgctgagatgtgtcttcttc Pcol-146 fw 

AN158 gcgtgtcaataatatcactcttgtgtggatcaccacctc Pcol-146 rv 

AN169 CCATGGCTAAGTCTAGACATcgttgagaacaatgttgtgt Pcol-41 fw 

AN170 gcgtgtcaataatatcactcgtctcatttaattgtagtctatcg Pcol-41 rv 

 

RNAi screen 

To knock-down 92 ‘oscillating’ transcription factors, we used the RNAi feeding method. E. coli HT115 

bacteria carrying RNAi plasmids were obtained from either of the two libraries (Ahringer library (Fraser et 

al., 2000; Kamath et al., 2003), Vidal library (Rual et al., 2004)) or cloned (see generation of RNAi vectors). 

For luciferase assays, bacteria were grown in 5 mL auto-induction medium (2 mM MgSO4, 3.3 g/L 

(NH4)2SO4, 6.8 g/LKH2PO4, 7.1 g/L Na2HPO4, 5 g/L glycerol, 0.5 g/L glucose, 2 g/L α-lactose, 100 

ug/mL Amp in ZY medium (10 g/L tryptone, 5 g/L yeast extract)) at 37 °C. Bacteria were diluted in S-

Basal medium (OD600 = 0.45), with 100 uM Firefly D-luciferin (p.j.k., 102111) and 100 ug/mL Ampicillin. 

We used HW1939 animals that express luciferase from a constitutive and ubiquitous promoter, i.e. xeSi296 

transgene. As a control strain, we used HW2150 animals expressing xeSi296 in an rde-1(ne219) 

background, which are RNAi deficient. For each RNAi condition we used 2 adjacent columns, i.e. 32 wells 

with 90 uL culture medium each. To avoid plate effects, the first 8 wells of the first column and the last 8 

wells of the second column of the same RNAi condition were filled with an HW1939 animal and the 

remaining wells with an HW2150 animal. 

Generation of RNAi vectors 

For clones that were not available either of the two libraries, cDNA or genomic DNA was PCR amplified 

using the following primers: 
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locus vector 

transformed 

insert Primer Primer sequence 

nhr-5 pMM012_R Y73F8A.21a cDNA MM070 

MM071 

ccaccggttccatggctagcTTCTGGCGGTAACAGTTCAA 

ttgatatcgaattcctgcagGATGTGAGTATGGAATATTCGG 

dmd-8 pMM013_R T22H9.4 cDNA MM076 

MM077 

ccaccggttccatggctagcCCCTGTCATCTTCTTCAAATGC 

ttgatatcgaattcctgcagGTTTCAGCGCAGCTAATTGC 

bcl-11 pMM014_R F13H6.1a cDNA MM078 

MM079 

ccaccggttccatggctagcAATAGAAACGTCTTCGGCGG 

ttgatatcgaattcctgcagTTAACGGTTGGTGTGACTGC 

fkh-9 pMM015_R K03C7.2b cDNA MM080 

MM081 

ccaccggttccatggctagcGATTTGCTACGATCACCCAT 

ttgatatcgaattcctgcagGGCCTTGATTGGAGAAAGTG 

ztf-16 pMM016_R R08E3.4a cDNA MM082 

MM083 

ccaccggttccatggctagcCGACTACTGTATTTTCCGAGTT 

ttgatatcgaattcctgcagCAGTTAACGAAAGTGATGACTC 

sem-2 pMM017_R C32E12.5.1 cDNA MM084 

MM085 

ccaccggttccatggctagcGATCTCCAAAAACCGCCCAA 

ttgatatcgaattcctgcagTGCATCGCTCCATGGATAAT 

grh-1 pMM018_R Y48G8AR.1a cDNA MM086 

MM087 

ccaccggttccatggctagcGAAGAAGTCCGACGGTGAAT 

ttgatatcgaattcctgcagGAGTTTGGATTGGTGGGAGC 

dmd-9 pMM019_R Y67D8A.3 genomic DNA MM088 

MM089 

ccaccggttccatggctagcCTTTGTTCCAGTTCAAACCAC 

ttgatatcgaattcctgcagAGAGGGAAGGAACTGATAGAC 

tbx-7 pMM020_R ZK328.8.1 genomic DNA MM090 

MM091 

ccaccggttccatggctagcCCTCATGACAGACAACTACT 

ttgatatcgaattcctgcagCAACAACTCCAAATCCACTT 

M03D4.4b pMM021_R M03D4.4b cDNA MM092 

MM093 

ccaccggttccatggctagcTCGGACACAGATTCATCACAAC 

ttgatatcgaattcctgcagTCCGGTGTTGCTGTATTTGTC 

C08G9.2 pMM022_R C08G9.2 cDNA MM094 

MM095 

ccaccggttccatggctagcTACCGGCAAGTGTACCAAAT 

ttgatatcgaattcctgcagACCTTCACATGGATCTACACAA 

nhr-112 pMM023_R Y70C5C.6a cDNA MM096 

MM097 

ccaccggttccatggctagcTTTTCCGCAGATTCTATCACTC 

ttgatatcgaattcctgcagTATGATTCATCTCGCACACCA 

ets-4 pMM024_R F22A3.1a cDNA MM098 

MM099 

ccaccggttccatggctagcATGCAATCTTCCAATCCAACC 

ttgatatcgaattcctgcagAGGCAGGAATTTGTACACCA 

ztf-14 pMM025_R M163.2 genomic DNA MM102 

MM103 

ccaccggttccatggctagcGCCGTCCCTGCATAACTACTC 

ttgatatcgaattcctgcagAGAGAAGTGAGTTGCGGGAG 

ztf-29 pMM026_R Y66D12A.12 cDNA MM104 

MM105 

ccaccggttccatggctagcCGTCACCGGCTCAACTTCCA 

ttgatatcgaattcctgcagCATGTTCTCCTCCTTTCGCTCT 

 

PCR fragments were cloned into the RNAi feeding Pml1 and Sma1 digested L4440 vector (L4440 was a 

gift from Andrew Fire (Addgene plasmid # 1654 ; http://n2t.net/addgene:1654 ; RRID:Addgene_1654)) 

using Gibson assembly (Gibson et al., 2009)) and transfected into E. coli HT115 bacteria. 

Luciferase assays 

Luciferase assays were performed as described before (Meeuse et al., 2019). In short, embryos were 

obtained from gravid adults by bleaching. Single embryos were transferred into a well of a white, flat-

bottom, 384-well plate (Berthold Technologies, 32505) by pipetting. Animals were left to develop in 90 uL 

S-Basal medium containing E. coli OP50 (OD600 = 0.9) and 100 μM Firefly D-Luciferin (p.j.k., 102111). 
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Plates were sealed with Breathe Easier sealing membrane (Diversified Biotech, BERM-2000). 

Luminescence was measured using a luminometer (Berthold Technologies, Centro XS3 LB 960) every 10 

minutes for 0.5 sec for 72 hours in a temperature controlled incubator set to 20 degrees. 

For auxin experiments, a 400x stock solution of 3-indoleacetic acid (auxin, Sigma Aldrich, I2886) in 100% 

ethanol was prepared. 1x Auxin was added to the culture medium at the start each experiment or at specific 

time points and in concentrations as indicated.  

Luminescence data was analyzed using an automated algorithm to detect the hatch and the molts in 

MATLAB with the possibility to annotate molts manually, as described before (Meeuse et al., 2019). 

Completion of molts was scored by the presence of a drop in luminescence, followed by a period of stable 

and low luminescence and subsequent rise in luminescence.  

RNA-seq time course 

Synchronized L1 HW2434 worms were cultured in liquid culture (S-Basal supplemented with OP50, 

OD600=3, 1000 animals/mL) in a temperature controlled incubator at 20°C with 120 rpm. After 21 hours of 

cultivation, the culture was split in two separate cultures and 250 μM auxin or 0.25% ethanol (vehicle), was 

added. We harvested hourly from 22 hours until 32 hours. At each time point 3000 animals and 10.000 

animals were collected and washed three additional times with M9 buffer (42 mM Na2HPO4, 22 mM 

KH2PO4, 86 mM NaCl, 1 mM MgSO4) for RNA extraction and Western Blotting respectively. To monitor 

developmental progression, bioluminescence of roughly 10 animals per well, collected at 21.5 hours and 

25.5 hours, was recorded every 10 minutes for 0.5 sec in a temperature controlled incubator set to 20 

degrees.   

RNA extraction and sequencing library preparation 

Pelleted animals were resuspended in Tri Reagent (MRC, TR118) and RNA was extracted using 

conventional phenol extraction, as described previously (Hendriks et al., 2014). Total RNA was DNAse 

treated and libraries were prepared using the TruSeq Illumina mRNA-seq (stranded – high input) protocol. 

Libraries were sequenced using the Hiseq50 Cycle Single-end reads protocol on the HiSeq2500.  

Processing of RNA-seq data  

RNA-seq data was mapped to the C. elegans genome (ce10) using the qAlign function 

(splicedAlignment=TRUE, Rbowtie, version 1.22.0) from the QuasR package in R (Au et al., 2010; 

Gaidatzis et al., 2015) (version 1.22.0). Gene expression was quantified using qCount function from the 

QuasR package in R. Counts were scaled by total mapped library size for each sample. A pseudocount of 
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8 was added and counts were log2-transformed. Genes that were not expressed, i.e. rowMeans=3, were 

excluded. 

Differential expression analysis 

To identify genes that change significantly, we calculated the fold change (FC) in gene expression between 

auxin (A) treated and control (C) animals (FC = A - C). As we expect most genes to be unchanged in the 

beginning of the time course, we used FC at t=22 hours as our null distribution. Since the null distribution 

is not normally distributed, we calculated the empirical cumulative distribution function (𝐹𝑛̂(𝑥)) of the 

absolute FC at t=22 hours, using the function ecdf of the package ‘stats’ in R (Version 3.5.1). Hence, we 

assumed noise to be undirected. Given that 𝐹𝑛̂(𝑥) = 𝑃𝑛̂(𝑋 ≤ 𝑥), we calculated the probability of observing 

a FC at any given time point (X) larger than FC under the null distribution (x) as , 𝑃𝑛̂(𝑋 > 𝑥) = 1 -  𝑃𝑛̂(𝑋 ≤

𝑥). We classified genes as ‘hits’ if the probability of FC of at least three time points was less than 10-3. 

Expression data was hierarchically clustered using the function hclust of the package stats in R and plotted 

in heatmaps using the function aheatmap of the package NMF in R (Gaujoux and Seoighe, 2010) (version 

0.21.0). To generate the peak phase enrichment barplot, the fraction of ‘upregulated’ and ‘downregulated’ 

genes (according to Figure 6C) in each 20 degree phase bin was calculated by the number of genes in each 

20 degree phase bin divided by the total number of genes. We calculated the peak phase enrichment by 

subtracting the fraction of all ‘oscillating’ genes from the fraction of ‘upregulated’ and ‘downregulated’ 

genes respectively and dividing this by the fraction of all ‘oscillating’ genes.   

Western Blotting 

Lysates were made by disruption (FastPrep-24, MP Biomedicals, 5 cycles, 25 sec on, 90 sec off), sonication 

(Biorupter, Diagnode, 10 cycles, 30 sec on, 60 sec off) and subsequent boiling. Proteins were separated by 

SDS-page and transferred to by semi-dry blotting. Antibodies were used at the following dilutions: mouse 

anti-FLAG-HRP (1:1000, A8592, Sigma Aldrich), mouse anti-Actin, clone C4 (1:5000, MAB1501, 

Millipore), mouse IgG HRP linked (1:7500, NXA931V, GE Healthcare). We used ECL Western Blotting 

detection reagent (RPN2232 and RPN2209, GE healthcare) and ImageQuant LAS 4000 

chemilumunescence imager (GE Healthcare) for detection.  

Phenotype imaging 

For imaging phenotypes, HW2418 worms were mounted on a 2% (w/v) agarose pad with a drop of M9 

buffer (42 mM Na2HPO4, 22 mM KH2PO4, 86 mM NaCl, 1 mM MgSO4). grh-1:: degron animals were 

imaged on a Axio Imager Z1 (Zeiss) microscope. We acquired Differential Interference Contrast (DIC) 

images using a 100x/1.4 oil immersion objective) and a TL Halogen Lamp (3.00 Volt, 900 ms exposure). 
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Images (1388x1040 pixels, 142.1 μm x 106.48 μm pixel size, 12 Bit) were acquired every second from the 

moment that the cuticle became loose around the tip of the head until after the worm bursted through the 

head, which took roughly 5 to 10 minutes. N2 animals were imaged on an Axio Imager Z2 (Zeiss) 

microscope. We acquired Differential Interference Contrast (DIC) images using a 63x/1.4 oil immersion 

objective) and a TL Vis-LED Lamp (5.74 Volt, 17 ms (Figure S4A) or 19 ms (Figure S4B) exposure). 

Images (1388x1040 pixels, 225.56 μm x 169.01 μm pixel size, 12 Bit) were acquired with 20 seconds 

((Figure S4A) or 4 seconds (Figure S4B) intervals from the moment that the cuticle became loose around 

the tip of the head until the cuticle was shed. 

Single worm imaging 

Synchronized L1 animals expressing a transcriptional reporter in the HW2418 background (grh-

1(xe135(grh-1::degron::3xFLAG)) I; xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III) 

were grown on normal OP50-containing agar plates at 20°C for 26 hours until they reached late L2 stage. 

Single worm imaging chambers were prepared as previously described (Meeuse et al., 2019) with the 

adaptation that chambers were prepare from 4.5% agarose supplemented with 0.25% ethanol or 250 μM 

auxin while heating. L2 staged animals were placed in the chambers, covered with a glass cover slip and 

the imaging slides containing the chambers were prepared as described previously (Meeuse et al., 2019). 

We imaged the animals using a 2x sCMOS camera model (T2) CSU_W1 Yokogawa microscope with 20x 

air objective, NA = 0.8 in combination with a 50μm disk unit and a 488 nm laser. The laser power was set 

to 70% and binning was set to 2. We used a motorized z-drive with 2 μm step size and 23 images per z-

stack and took brightfield and fluorescent images in parallel with 10 min intervals in a ~21°C room.  

Single worm imaging data analysis 

GFP intensities were quantified using the previously published KNIME workflow (Meeuse et al., 2019). In 

short, worms are identified in the image by Illastik machine learning, straightened, and the GFP intensity 

of the worm was max projected to one pixel line for each time point. Background subtracted mean GFP 

intensities were determined from 20%-80% of the anterior-posterior axis for each time point and values 

were imported into R for further analysis. 

Using ImageJ, we determine the time of molt entry by the first image in which the worm stopped pumping 

and are quiescent and the time of molt exit was determined by the first image in which the worms resumed 

pumping in a timeframe close to where the cuticle was shed (Meeuse et al., 2019). Finally, the time of 

phenotypic onset was scored by the first image in which the pharynx of the worm was bend, after which it 

usually did not take long before the cuticle was ruptured. We scored bending of the pharynx as the time 

frame of imaging was sometimes limiting or cuticle rupturing did not occur.  
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For visualization, GFP intensities were set to t = 0 hours at molt 2 exit. GFP intensities from the moment 

when the phenotype was observed were omitted from plotting. The mean and the SEM were calculated for 

time points at which the GFP intensities of more than 5 animals were recorded. GFP intensities ≤ 50 were 

omitted from the calculation of the mean and SEM, as we considered them segmentation errors.  

Enrichment analysis 

For enrichment of matrisome genes, the online Matrisome Annotator (http://ec2-3-120-159-30.eu-central-

1.compute.amazonaws.com:3838/ubuntu/ecm_analyzer/) was used (access date: 18-09-2019). Fold 

enrichments were calculated in the following way: first, predicted number of ‘hits’ in a given category were 

calculated by: number of genes in a given category/total number of genes in the C. elegans genome * total 

number of ‘hits’. For simplicity we assume that the total number of genes is 20.000. Second a pseudocount 

of 12 was added to the predicted number of ‘hits’ and to the actual number of ‘hits’ in a given category. 

This was done to correct for large enrichments caused by categories with a small number of genes. Finally, 

the pseudocount corrected ‘hits’ was divided by the pseudocount corrected predicted ‘hits’.  

For tissue enrichment, the previously published tissue annotation of (Cao et al., 2017) was used. Genes that 

are enriched at least 5-fold in a specific tissue compared to the second tissue were selected (ratio ≥ 5 and 

q-value < 0.05, n=3926 genes). We calculated the enrichment of tissues in our ‘hits’ over the tissue-

annotated genes (n=3926), using a pseudocount of 12.  

Statistical analysis 

Welch two-sample, two-sided t-tests were performed using the function t.test (paired=TRUE) of the 

package ‘stats’ in R (version 3.5.1). 

 

 

 

 

 

 

 

 

http://ec2-3-120-159-30.eu-central-1.compute.amazonaws.com:3838/ubuntu/ecm_analyzer/
http://ec2-3-120-159-30.eu-central-1.compute.amazonaws.com:3838/ubuntu/ecm_analyzer/
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Supplementary figures 

 

 

Figure S1: Related to Figure 1 – grh-1 RNAi caused aberrant progression through development 

Representative raw luminescence trace of single animals grown at 20°C for 72 hours. Left column showing wildtype 

animals and right column RNAi-deficient animals (rde-1(ne219)). Animals in upper panel were grown in the presence 

of grh-1 RNAi and animals in the lower panel were grown in the presence of mock (empty vector) RNAi. Pre-hatch 

is indicated in red and molts in green. 
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Figure S2: Related to Figure 1 – Quantification of candidate mutants showing aberrant duration of 

developmental stages 

A, Quantification of molt durations in RNAi deficient (rde-1(ne219)) animals (light grey) and wildtype animals (dark 

grey) grown in the presence of mock, bed-3, blmp-1 or nhr-25 RNAi. Significant differences relative to rde-1(ne219) 

for each RNAi condition are indicated. 

B, Quantification of intermolt durations in RNAi deficient (rde-1(ne219)) animals (light grey) and wildtype animals 

(dark grey) grown in the presence of EV, bed-3, blmp-1 or nhr-25 RNAi. Significant differences relative to rde-

1(ne219) for each RNAi condition are indicated. 

C, Fold change of mean stage durations and p-value in brackets in wildtype over RNAi-deficient animals. 

ns: not significant, * p<0.05, ** p<0.01, *** p<0.001, Welch two-sample, two-sided t-test. 
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Figure S3: Related to Figure 2 – Lethality reveals dose-response effect on auxin and high auxin concentrations 

cause non-specific defects in strain without grh-1::degron 

A, Quantification of the percentage of grh-1(xe135); peft-3::luc; peft-3::tir-1 animals (HW2434) that enter each of 

four molts molt upon increasing indicated concentrations of auxin. Molts in single animals grown at 20 °C were 

determined as in Figure S1. For concentrations up to 250 μM, similar results as for 400 nM were observed (data not 

shown). 

B, Boxplots showing duration of each molt for indicated concentrations of auxin in peft-3::tir-1; peft-3::luc animals 

(HW1984). Differences relative to 0.25% ethanol (0 nM auxin) for 3.9 μM-1mM auxin and relative to 1% ethanol (0 

nM auxin) for 4 mM auxin are indicated (ns: not significant, * p<0.05, ** p<0.01, *** P<0.001, Welch two-sample, 

two-sided t-test). 

C, Boxplots showing duration of each intermolt for indicated concentrations of auxin in peft-3::tir-1; peft-3::luc 

animals (HW1984). Differences relative to 0.25% ethanol (0 nM auxin) for 3.9 μM-1mM auxin and relative to 1% 

ethanol (0 nM auxin) for 4 mM auxin are indicated (ns: not significant, * p<0.05, ** p<0.01, *** P<0.001, Welch 

two-sample, two-sided t-test). 
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Figure S4: Related to Figure 2 – Molting in wildtype animals 

Image sequence of N2 animal during M1.  Animals were transferred to an agar-pad containing microscopy slide and 

images were collected using DIC, 63x magnification, Z2 microscope. Selected images are shown. Two different 

sequences of events were observed. In A, the pharyngeal lining is removed prior to ecdysis. In B, Pharyngeal lining 

is expelled after crawling out of the cuticle. Dashed lines indicate loosened cuticle. Arrows indicate specific features 

of the molt: 

A, 1. Loosened cuticle, 2. Detachment of pharyngeal lining, 3. Crawling out of cuticle, 4. Final crawling out of cuticle   

B, 1. Loosened cuticle, 2. Back-and-forth movements, 3. Crawling out of cuticle with pharyngeal lining still attached, 

4. Pharyngeal lining expelled. 
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Figure S5: Related to Figure 3 – Determination of molt occurrence by luciferase assay 

Representative luminescence traces of a population of 5-10 HW2434 animals in duplicates. As a population of animals 

was used in this assay, note that the transitions between molt and intermolt are less sharp compared to single animal 

assays. As worms might develop differently in the luciferase assay compared to the liquid culture we used to obtain 

Western Blot samples (Figure 3), we consider only the first hours after starting the luciferase assay to be representative 

for developmental timing in the liquid culture. Hence, we sampled a small population of worms from the liquid culture 

at 15.5 hours (A), i.e. close to the first molt, and at 25.5 hours (B), i.e. close to the second molt, and left them to 

develop in the luminometer to detect the first molt and the second molt respectively. 
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Figure S6: Related to Figure 3 – Quantification of GFP intensities of hypodermal cells in three individual 

animals 

Quantification of GFP intensities in single animals expressing GRH-1::GFP (HW2603) grown in micro-chambers, 

shown in Figure 3C. GFP intensity was determined by manual selection of a hypodermal cell for each time point and 

quantification of the maximum intensity. T = 0h corresponds to the time of plating. Pre-hatch (red) and molts (blue) 

are indicated. 
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Figure S7: Related to Figure 4 - Lethality is dependent on the time of GRH-1 depletion  

A, Heatmap showing trend-correct luminescence (Lum) of grh-1(xe135); peft-3::luc; peft-3::tir-1 animals (HW2434) 

treated with vehicle (0.25% ethanol, left panel) or 250 μM auxin (right panel) at 29 hours (white dashed line). 

Luminescence traces are sorted by entry into M2. Black corresponds to low luminescence occurring during lethargus 

(molt). Embryos of various stages were left to hatch and develop during the assay. Note that early hatched animals are 

in top rows and late hatched animals are in bottom rows. Appearance of M3 phenotype (green bar) and M2 phenotype 

(blue bar) are indicated for auxin-treated animals. Animals were assigned to M2 phenotype when M2 was the last 

observed molt in the luminescence trace. 

B, Quantification of time at which animals enter molt 2 (M2 entry). Dots (jittered in y) represent individual animals 

and are colored according to phenotype determined in A. Dotted line indicates when auxin was added. 
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Figure S8: Related to Figure 4 and 5 – Intermolt is not affected by timing or extend of GRH-1 depletion 

A, Quantification of intermolt duration for vehicle treated animals (Veh) and auxin treated animals (Aux) from Figure 

4A,B and Figure 5A. To resemble life history, vehicle-treated animals with M3 entry > 43h were selected for I3 

quantification and animals with M3 entry ≤ 43h were selected for I4 quantification. P-values are indicated. 

B, Boxplot showing the duration of the first intermolt of animals treated with indicated concentrations of auxin (Figure 

5B). Animals that revealed lethality at M1 were excluded. Significant differences relative to 0 nM auxin are indicated. 

C, Boxplot showing duration of first intermolt for vehicle-treated animals and animals treated with 267 nM and 400 

nM auxin (Figure 5C). For auxin-treated animals, only those who showed a phenotype at M1 were selected. 

Significant differences relative to 0 nM auxin are indicated. 

D, Boxplot showing the duration of I1, I2 and I3 of animals treated with indicated concentrations of auxin (Figure 

5D). Animals that revealed lethality at M1, M2 or M3 were excluded. Significant differences relative to 0 nM auxin 

are indicated. 

E, Quantification of durations of I3 over the time of entering M3 respectively. Data is shown for ‘M4 phenotype’ 

animals and all vehicle-treated animals from Figure 4A and Figure 5D. Dashed line indicates treatment with 250 μM 

auxin or vehicle at 40 hours after plating.  

F, Quantification of durations of I4 over the time of entering M3 respectively. Data is shown for ‘M4 phenotype’ 

animals and all vehicle-treated animals from Figure 4A and Figure 5D. Dashed line indicates treatment with 250 μM 

auxin or vehicle at 40 hours after plating. 

P-values were determined by Welch two-sample, two-sided t-test. * p<0.05, ** p<0.01, *** p<0.001 
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Figure S9: Related to Figure 6 – Degradation of GRH-1 in L2 and manifestation of M2 phenotype 

A, Western blot analysis of HW2434 animals using anti-FLAG antibody. ACT-1 was used as loading control. Time 

points represent time of development of a synchronized population in liquid culture at 20°C with start of the culture 

at t=0 hours. After the first sample was taken at 21 hours, the culture was split and 250 μM auxin (+ auxin) or 0.25% 

ethanol (-auxin, vehicle control) was added. Time point 27 hours was loaded on both gels.  

B, Representative luminescence traces of a population of 5-10 HW2434 animals. As a population of animals was used 

in this assay, note that the transitions between molt and intermolt are less sharp compared to single animal assays. As 

worms might develop differently in the luciferase assay compared to the liquid culture we used to obtain sequencing 

samples (Figure 6) and Western blot samples (in A), we consider only the first hours after starting the luciferase assay 

to be representative for developmental timing in the liquid culture. Hence, we sampled a small population of worms 

from the liquid culture at 25.5 hours, i.e. close to the second molt, and left them to develop in the luminometer to 

detect the third molt respectively. We estimated the molt to occur between 29 and 31 hours of development. 
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Figure S10: Related to Figure 7 – GFP intensities col-41 and col-146 reporters 

Quantification of GFP intensity of single vehicle-treated (‘vehicle’) or 250 μM auxin-treated (‘auxin’) animals over 

L3 stage, starting from M2 exit (t = 0 hours). Animals express GFP::H2B::PEST::UNC-54 3’UTR driven from the 

indicated promoters (A, col-41; B, col-146) in the grh-1::aid background. GFP intensity traces of single animals 

(grey), M3-entry to M3-exit (blue), mean (black) and SEM (red) are indicated. The panel ‘combined’ shows the mean 

and SEM for vehicle-treated (black) and auxin-treated (red) animals. Mean molt 3 entry and mean molt 3 exit in 

vehicle-treated (grey box) and mean molt 3 entry in auxin-treated (red dotted line) animals are indicated. Mean and 

SEM for time points with more than 5 animals are shown. GFP intensities after the appearance of the phenotype in 

auxin-treated animals are not shown. GFP intensities ≤ 50 were omitted from mean and SEM.  
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Figure S11: Related to Figure 7 – GFP intensities qua-1 and grh-1 reporters 

Quantification of GFP intensity of single vehicle-treated (‘vehicle’) or 250 μM auxin-treated (‘auxin’) animals over 

L3 stage, starting from M2 exit (t = 0 hours). Animals express GFP::H2B::PEST::UNC-54 3’UTR driven from the 

indicated promoters (A, qua-1; B, grh-1) in the grh-1::aid background. GFP intensity traces of single animals (grey), 

M3-entry to M3-exit (blue), mean (black) and SEM (red) are indicated. The panel ‘combined’ shows the mean and 

SEM for vehicle-treated (black) and auxin-treated (red) animals. Mean molt 3 entry and mean molt 3 exit in vehicle-

treated (grey box) and mean molt 3 entry in auxin-treated (red dotted line) animals are indicated. Mean and SEM for 

time points with more than 5 animals are shown. GFP intensities after the appearance of the phenotype in auxin-treated 

animals are not shown. GFP intensities ≤ 50 were omitted from mean and SEM.  

 

 

 

 

 

 

 

 

 



161 
 

 

 

Figure S12: Uncropped Western blots 

A, Uncropped Western blot of Figure 3A. 

B, Uncropped Western blot of Figure S9A. 

 

 

 

 

 

 

[end of manuscript] 
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2.5 Characterization of myrf-1, nhr-25, and blmp-1 

Milou Meeuse and Helge Grosshans conceived the project. MM generated the strains, with help from Lan 

Xu and Iskra Katic with the microinjections. IK designed and generated the blmp-1::degron strain. MM 

performed the nhr-25 and blmp-1 luciferase experiments. Kathrin Braun performed the myrf-1 

experiments. The blmp-1::degron RNA-seq experiment was a joined effort of MM and Yannick Hauser. 

Dimos Gaidatzis performed the computational fusion of the blmp-1::degron time course which was 

sequenced in two batches. MM analyzed the experiments, under HG’s supervision.  

In addition to grh-1, we identified myrf-1, nhr-23, nhr-25, bed-3, blmp-1 and ztf-6 in our RNAi screen for 

aberrant progression or duration of developmental stages. These phenotypes may arise from stage-

specific or more general developmental defects, or, alternatively, it is possible that these transcription 

factors are required for recurring developmental events. Although these transcription factors oscillate on 

the mRNA level (Hendriks et al., 2014), whether their activity is rhythmic and important for their function 

remains to be established. Moreover, whether and how they control repetitive developmental processes 

is unclear. Here, I aimed to address these questions in further detail for myrf-1, nhr-25 and blmp-1. Hence, 

we performed experiments similar to those we have carried out for grh-1 (see GRH-1 manuscript). Thus, 

we investigated the phenotypes resulting from partial and timed degradation of MYRF-1, NHR-25 and 

BLMP-1, using the auxin-inducible degradation system (AID).  Whereas timed degradation may provide 

insight into whether and when the transcription factor is repetitively required, partial degradation may 

reveal additional phenotypes, which will help to better understand its functional relevance. 

2.5.1 Loss of MYRF-1 prevents shedding of the cuticle in L1 stage 

In our RNAi screen, we observed that RNAi against myrf-1, homolog of the transcription factor Myelin 

Regulatory Factor (Myrf), resulted in failure to complete larval development (GRH-1 manuscript, Figure 

1). Specifically, 50% of the animals arrested at L2 stage and an additional 20% at L3 stage. A similar 

phenotype has been observed previously, i.e. homozygous progeny of a balanced myrf-1(0) strain 

revealed a fully penetrant L1 arrest (Russel et al., 2011, named pqn-47, later renamed to myrf-1). We 

suspected that RNAi was not strong enough to fully recapitulate the phenotype of the null mutant. Hence, 

I aimed to validate our results from the screen and the previously published phenotype (Russel et al., 

2011) using an approach that allows the modulation of MYRF-1 levels. To this end, we degron-tagged 

myrf-1 endogenously, and investigated its phenotype after MYRF-1 degradation mediated by auxin. Using 

DIC, we imaged the first molt of synchronized animals grown on auxin-containing plates (Figure 2.6). 
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Similar to previous observations in myrf-1(0) mutants, depletion of MYRF-1 resulted in an L1 arrest, 

followed by lethality. Similar to wild-type animals (Figure S4 in GRH-1 manuscript), behavioral quiescence 

was observed and apolysis occurred, hence MYRF-1-depleted animals entered the molting process 

normally (data not shown). Next, the cuticle became completely disconnected from the underlying tissue 

in the head (black arrows) and tail region (white arrows), which suggested to us that ecdysis was initiated 

(Figure 2.6). However, the cuticle did not break and animals failed to dislodge the pharyngeal lining (Figure 

2.6, red arrows). Hence, they appear starved and eventually died from being trapped in the cuticle.   

 

 

Figure 2.6: MYRF-1 depletions prevents dislodgement of pharyngeal lining and shedding of the cuticle 

A, Image sequence of L1 synchronized myrf-1(xe161); peft-3::tir-1;peft-3::luc animal (HW2634) plated on 1 mM 
auxin-containing plates, grown at 20°C. Animals were transferred to an agar-pad containing microscopy slide and 
images were collected every 30 sec, using DIC, 63x magnification. Selected images are shown. Time min:sec is 
indicated.  

B-C, Images of myrf-1(xe161); peft-3::tir-1;peft-3::luc animals (HW2634) grown under same conditions as in A. 
Animals were imaged using DIC, 63x magnification (B) and 40x magnification (C).  

Black and white arrows indicate loose cuticle in head and tail region respectively. Red arrows indicate connected 
pharyngeal lining. 
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2.5.2 Activity of MYRF-1 is required in multiple larval stages 

Given the L1 lethality, we wondered, on the one hand, whether lethality can be observed in other larval 

stages, and on the other hand, whether other phenotypes would arise, when MYRF-1 is depleted to a 

lesser extent. Hence, we added different concentrations of auxin and monitored developmental 

progression using the luciferase assay. We observed two distinct luciferase traces for high auxin 

concentrations (Figure 2.7A). In the one luciferase trace, we detected a prolonged L1, followed by a spike 

in luminescence (hereafter called type I traces). In the other luciferase trace, we could not observe a molt 

but a ‘spiky’ L1 stage instead (hereafter called type II traces). On lower concentrations of auxin, we also 

observed type I and type II traces, not only in L1, but also in L2 or L3 stage. If type I or type II traces were 

observed in L2 or in L3, the preceding stages in same animal appeared normal (Figure 2.7A). As 

luminescence levels can increase by other means than resumption of feeding, e.g. when the cuticle 

becomes penetrant for auxin, the spikes in luminescence may reflect cuticle defects.  

Given that we observed high penetrance of the L1 arrest followed by lethality by visual inspection of 

animals grown on auxin-containing plates (Figure 2.6), we predict that both types of traces reflect dying 

worms, and we consider distinct phenotypes to be less likely. Hence, we quantified the lethality as the 

appearance of type I or type II traces upon different concentrations of auxin. We found that the 

appearance of the lethality was dependent on the concentration of auxin (Figure 2.7B). The fact that 

lethality appeared not only in L1, but also in L2 and L3 stages, suggests that MYRF-1 activity is not only 

required for the completion of L1 stage, but also for additional stages.  

2.5.3 Larval stage durations were not affected on low auxin concentrations in myrf-1::degron 

animals 

To investigate whether MYRF-1 depletion results in additional developmental phenotypes, we quantified 

the molt and intermolt durations in animals that did not arrested and died during any of the larval stages 

(Figure 2.7B, ‘not’). We observed that molt and intermolt durations seemed not, or at most minimally, 

affected by MYRF-1 depletion (Figure 2.7C,D). It remains possible that MYRF-1 depletion was not sufficient 

in these animals to reveal additional developmental phenotypes. Alternatively, MYRF-1 might not be 

required for normal duration of larval stages. (The durations of larval stages in which lethality was 

observed was difficult to assess, because phenotypic traces were spiky and we failed to identify the molt 

in these traces. Hence, future experiments should address the question of whether the duration of the 

stage in which lethality is observed is affected in MYRF-1-depleted animals.) 
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Figure 2.7: Lethality is dependent on the extent of MYRF-1 degradation  

A, Representative luciferase traces of myrf-1(xe161); peft-3::tir-1;peft-3::luc animal (HW2634) treated with indicated 
concentrations of auxin.  

B, Quantification of lethality on indicated auxin concentration range. Not: lethality is not observed, i.e. animals 
progressed through development completely. L3: normal development in L1 and L2 stage, followed by L3 lethality. 
L2: normal development in L1 stage, followed by L2 lethality. L1: L1 lethality. 

C-D, Quantification of molt (C) and intermolt (D) duration of animals in B for which no lethality was observed (‘not’ 
in B) was observed. P-values were determined by Welch two-sample, two-sided t-test. * p<0.05, ** p<0.01, *** 
p<0.001 
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2.5.4 Oscillatory MYRF-1 activity might be required for shedding the cuticle 

Given that myrf-1 oscillates on the mRNA level (Hendriks et al., 2014) and that MYRF-1 appears to be 

required not only for completion of L1, but also for other larval stages, I aimed to investigate whether its 

activity is also rhythmic. We expect that if activity of MYRF-1 were oscillating, MYRF-1 would be required 

for some and dispensable for other times within one larval stage. To this end, we used the myrf-1::degron 

strain to conditionally deplete MYRF-1. We initiated MYRF-1 degradation at variable times in L1 and L2 

(Figure 2.8A,B), or L2 and L3 (Figure 2.8D,E) by adding auxin. We used an auxin concentration, i.e. 250 

μM, for which we observed fully penetrant lethality in L1 stage (Figure 2.7B). Sorting animals by entry of 

molt 1, we observed that onset of lethality was dependent on the time of auxin addition (Figure 2.8A,D). 

If auxin was added later than three hours after M1 exit, we never observed L2 lethality (Figure 2.8C). If 

auxin was added earlier than three hours after M1 exit, we observed mostly, but not always L2 lethality 

(Figure 2.8C). Thus, initiation of MYRF-1 depletion earlier than 3 hours after M1 exit is required to induce 

L2 lethality, whereas initiation of MYRF-1 depletion later than 3 hours after M1 is not sufficient to induce 

L2 lethality. Similar results were obtained when comparing the time of M2 exit with the onset of lethality 

in L3 and L4 stage (Figure 2.8F). (We note that we observed more, but not exclusively, type I traces in 

Figure 2.8A, whereas animals in Figure 2.8D revealed more, but not exclusively, type II traces. How the 

two types of luminescence traces arise in MYRF-1-depleted animals is unclear.). We consider two possible 

explanations. First, it is possible that MYRF-1 activity is required during the period leading up to the molt 

(3h after exit of the previous molt), but the onset of MYRF-1 degradation during this window was not 

sufficient to induce lethality. Alternatively, MYRF-1 activity is not required during the period leading up to 

the molt, and hence its depletion does not result in a phenotype. Given that the AID systems has been 

shown to rapidly degrade proteins (Zhang et al., 2015), and myrf-1 accumulation peaks roughly at 2 hours 

after molt exit (Hendriks et al., 2014), our data is consistent with the first hypothesis. However, in the 

absence of further data, we can only speculate about a requirement for rhythmic activity of MYRF-1 in 

molting. Nevertheless, our results suggest that MYRF-1 is required during a specific time-window of 

multiple larval stages to prevent lethality in that specific stage, which is consistent with a model in which 

MYRF-1 is rhythmically active.  
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Figure 2.8: Time of MYRF-1 depletion determines the onset of lethality 

A,B,D,E, Heatmap showing trend-correct luminescence (Lum) of myrf-1(xe161); peft-3::tir-1;peft-3::luc animal 

(HW2634) treated with vehicle (0.25% ethanol, B, E) or 250 μM auxin (right panel, A,D) at 24 hours (A,B, white dashed 

line) or 31 hours (D,E, white dashed line). Luminescence traces are sorted by entry into molt 1. Black corresponds to 

low luminescence occurring during lethargus (molt). Embryos of various stages were left to hatch and develop during 

the assay. Note that early hatched animals are in top rows and late hatched animals are in bottom rows.  
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C,F, Quantification of the time at which auxin was added relative to M1 (C), or M2 (F) entry (time of auxin – time of 

M entry). Shown for appearance of lethality in L2 (blue), L3 (red), and L4 (yellow). Animals with phenotype in L1 (C, 

n=2) and L2 (F, n=11) were not included. Negative relative time indicates that auxin was added before M1 exit (C), 

or M2 exit (D). Positive relative time indicates that auxin was added after M1 exit (C), or M2 exit (D). 

 

2.5.5 NHR-25 is required for completion and normal duration of development 

nhr-25, ortholog of Drosophila Ftz-f1, revealed molting phenotypes (Asahina et al., 2000; Gissendanner 

and Sluder, 2000) and its mRNA expression peaks during the molt (Gissendanner et al., 2004; Hendriks et 

al., 2014). nhr-25(RNAi) animals showed lengthening of larval stages in our screen (Figure S2 in GRH-1 

manuscript), and hence, I aimed to validate this phenotype and further investigate its role in 

development. To examine whether and how lengthening of larval stages is dependent on extent and 

timing of NHR-25 depletion, we used a previously published nhr-25::degron strain (Zhang et al., 2015). We 

depleted NHR-25 by auxin and monitored developmental progression by the luciferase assay. When we 

inspected the luminescence traces, we observed that luminescence levels were elevated during the molt 

and intermolt in NHR-25-depleted animals (Figure 2.9A). Given that nhr-25(RNAi) animals previously 

revealed disturbed integrity of the cuticle (Asahina et al., 2000; Gissendanner and Sluder, 2000) and that 

luminescence levels can rise by increased permeability of the cuticle, among other reasons, we propose 

that elevated luminescence levels reflect a defective cuticle, which we will further quantify below (section 

2.5.7). 

When titrating the concentration of auxin, we found that some animals receiving high concentrations of 

auxin failed to reach adulthood (Figure 2.9B, Figure S1A (section 5)). The number of molts that animals 

completed and the number of animals that reached a certain molt were dependent on the concentration 

of auxin (Figure 2.9B, Figure S1A (section 5)). Thus, NHR-25 is required for the completion of larval 

development. Moreover, we found a concentration-dependent lengthening of the molt and the intermolt 

(Figure 2.9C, Figure S1B (section 5)). We could recapitulate the results of the screen, as extension of molts 

and intermolts was similar to or even higher as those of nhr-25(RNAi) animals, at concentrations ≥62.5 

μM (Figure 2.9C, Figure S1B (section 5)). We conclude that NHR-25 is needed not only for completion of 

larval development as such, but also for proper duration of the developmental stages.  
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2.5.6 Activity of NHR-25 is required in multiple larval stages 

Given that RNAi and AID were initiated in embryos, it remains unclear whether NHR-25 is required in every 

larval stage, or whether NHR-25 is required only in a particular larval stage and lengthening of subsequent 

larval stages appears as a secondary effect. Hence, I aimed to investigate whether the time point of NRH-

25 degradation is important for its function. To this end, we depleted NHR-25 by adding auxin at different 

times in L1 and L2 stage (Figure 2.10A) or in L2 and L3 stage (Figure 2.10B) and quantified the duration of 

molts and intermolts. When we added auxin in L2 stage, we observed a time-dependent lengthening of 

molt 2 and intermolt 3, i.e. the earlier NHR-25 degradation was initiated relative to M2 entry, the longer 

molt 2 and intermolt 3 (Figure 2.10C). In contrast, the duration of molt 3 was much less dependent on the 

onset of NHR-25 degradation (Figure 2.10C). Similar results were observed for molt 3, intermolt 4 and 

molt 4 respectively, when NHR-25 depletion was initiated in L3 stage (Figure S2A (section 5)). In the 

absence of further data on the dynamics of NHR-25 levels and activity, we cannot discriminate between 

a model in which NHR-25 is rhythmically active or constitutive active. Nevertheless, our results suggest 

NHR-25 is required in multiple larval stages to ensure their normal duration. Whether NHR-25 activity is 

rhythmic remains to be established.  

 

 



170 
 

 

 

 

 

 



171 
 

Figure 2.9: Completion of molts, lengthening of stage durations and cuticle defects is dependent on the extent of 
NHR-25 depletion  

A, Representative luminescence traces of a single peft-3::TIR1; peft-3::luc, nhr-25::degron (HW1981) animal treated 
with vehicle (0.25% ethanol) or 62.5 μM auxin.  

B, Quantification of the last observed molt in peft-3::luc (HW1949) animals treated with mock RNAi or nhr-25 RNAi, 
and HW1981 animals treated with the indicated auxin concentrations. 

C, Quantification of intermolt (top) and molt (bottom) durations in animals from B. Animals that did not complete 4 
molts were excluded. Significant differences for nhr-25(RNAi) are relative to mock RNAi. Significant differences for 
auxin concentrations are relative to vehicle.  

D, Quantification of median luminescence during the molt of animals in C. Significant differences for nhr-25(RNAi) 
are relative to mock RNAi. Significant differences for auxin concentrations are relative to vehicle.  

P-values were determined by Welch two-sample, two-sided t-test. * p<0.05, ** p<0.01, *** p<0.001 

 

2.5.7 Loss of NHR-25 leads to defects in cuticle integrity 

Given the increased luminescence in NHR-25-depleted compared to control animals (Figure 2.9A), we 

investigated whether and how luminescence levels were dependent on the extent and the time of NHR-

25 depletion. We specifically focused on the luminescence during the molt, as we expect that the levels 

during the molt are less prone to changes in luminescence for reasons other than increased cuticle 

penetrance, e.g. increased feeding. When we quantified the luminescence levels during the molts, we 

found that the increase of the median luminescence during the molt was dependent on the concentration 

of auxin (Figure 2.9D, S1C). Thus, we conclude that NHR-25 is required for the integrity of the cuticle. 

Accordingly, the increase in the median luminescence during the molt was also dependent on the onset 

of NHR-25 degradation in L2 stage (Figure 2.10D) and L3 stage (Figure S2B (section 5)). In contrast to molt 

2 extension, luminescence levels of molt 2 were not affected (Figure 2.10D). Increase in luminescence 

levels appeared for the first time in molt 3 and only when NHR-25 depletion was initiated long before 

entry into molt 2. The luminescence levels in molt 4 were mostly independent of the onset of NHR-25 

degradation and were generally elevated (Figure 2.10D). We observed similar results for depletion of 

NHR-25 in L3 stage (Figure S2B (section 5)). During molting, the newly synthesized cuticle remains 

protected until the old cuticle is shed. Hence, if lengthening of a molt were to reflect synthesis of a 

defective cuticle, we would expect that increased permeability only arises in the subsequent stage. Our 

results are consistent with this idea, i.e. first, larval stages are increased in duration and defects in cuticle 

integrity arise in the subsequent stage. We conclude that NHR-25 is required for cuticle integrity. 
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Figure 2.10: Lengthening of larval development and cuticle integrity are dependent on the onset of NHR-25 
degradation 

A,B, Heatmap showing trend-correct luminescence (Lum) of peft-3::TIR1; peft-3::luc, nhr-25::degron (HW1981) 

animals treated with vehicle (0.25% ethanol, right) or 250 μM auxin (left) at 23 hours (A, white dashed line) or 31 
hours (B, white dashed line). Luminescence traces are sorted by entry into molt 1 (A) or molt 2 (B). Black corresponds 
to low luminescence occurring during lethargus (molt). Embryos of various stages were left to hatch and develop 
during the assay. Note that early hatched animals are in top rows and late hatched animals are in bottom rows.  

C, Quantification of intermolt and molt durations over time of auxin or vehicle addition relative to time of M2 entry. 
Animals that receive auxin or vehicle in L2 stage from A and B were included, whereas animals that receive auxin or 
vehicle in other stages were excluded. Hence, negative values arise from receiving auxin or vehicle during molt 2. 

D, Quantification of median luminescence during the molt over time of auxin or vehicle addition relative to time of 
M2 entry. Animals from A and B that received auxin or vehicle in L2 stage were included, whereas animals that 
receive auxin or vehicle in other stages were excluded. Hence, negative values arise from receiving auxin or vehicle 
during molt 2. 

 

2.5.8 BLMP-1 controls the duration of molts 

In our RNAi screen, we observed lengthening of molts in blmp-1(RNAi) animals, and interestingly, 

intermolts appeared to be shortened (Figure S2 in GRH-1 manuscript). To validate these results, we first 

repeated the RNAi experiment using more animals. Consistent with the results of the screen, blmp-

1(RNAi) caused lengthening of molts (Figure 2.11A,B,C). In some of the RNAi experiments, and presumably 

depending on the extent of BLMP-1 depletion, overall larval stage durations remained largely unchanged, 

because lengthening of molts was accompanied by a shortening of intermolts (Figure 2.11D,E, Figure S3 

(section 5)).  

To further investigate whether the variability in our RNAi experiments resulted from differences in the 

extent of protein depletion by RNAi, we used the AID system to tune BLMP-1 levels. To this end, we 

degron-tagged blmp-1 endogenously to allow conditional degradation of BLMP-1 upon addition of auxin. 

When we investigated the effect of different concentrations of auxin, we found that molts were extended 

with increasing auxin concentration (Figure 2.11F). Moreover, consistent with the results from blmp-

1(RNAi), intermolt durations were decreased at low auxin concentrations (Figure 2.11G), suggesting that 

extension of molts was compensated by shortening of intermolts. Instead, at high auxin concentrations, 

intermolt durations were extended (Figure 2.11G). We speculate that intermolts are lengthened as a 

secondary effect of the molts being extensively lengthened. These observations suggest a function of 

BLMP-1 in assuring proper duration of the molts.  
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Figure 2.11: Lengthening of molts and cuticle defects are dependent on the extent of BLMP-1 depletion  

A-B, Representative luminescence trace of a single animal (HW1939) expressing the Peft-3::luciferase transgene. 
Worms were grown on mock RNAi (A) or blmp-1(RNAi) (B).  

C-E, Duration of molts (C), intermolts (D) and larval stages (E) for indicated RNAi conditions. Significant differences 
between mock RNAi and blmp-1(RNAi) are indicated (* P<0.05, ** P<0.01, *** P<0.001, two-sided two-sample t-
test) 

F-H, Duration of molts (F), intermolts (G) and larval stages (H) for blmp-1::degron; peft-3::luc, peft-3::TIR1 animals 
(HW2120) grown on indicated auxin concentrations. Dots represent outliers, and significant differences can be found 
in Table S1. 

I, Quantification of median luminescence levels in log10 during the molt for animals in F-H grown on indicated auxin 
concentrations. Dots represent outliers, and significant differences can be found in Table S2. 

 

2.5.9 BLMP-1 activity is required during multiple stages to ensure proper molt durations 

Similar to NHR-25, I aimed to investigate whether molt durations were dependent on the time of BLMP-1 

depletion. On the one hand, I aimed to examine whether BLMP-1 is required in every larval stage. On the 

other hand, it remained unclear whether oscillatory activity if BLMP-1 is important for its function. To this 

end, we added auxin at different times in L2 (Figure 2.12A) and L3 stage (Figure S4A (section 5)) using 

high concentrations of auxin. The duration of M2 and I3 increased with the onset of BLMP-1 degradation 

in L2 stage (Figure 2.12B). Exposure to auxin in L2 did not affect I2 duration (Figure 2.12B). (We note that 

long I2 durations correspond to animals which received auxin in L1 stage). The length of M3 was generally 

extended relative to animals treated with vehicle control and much less dependent on the onset of BLMP-

1 degradation in L2 (Figure 2.12B). We repeated this experiment by applying auxin in L3, and observed 

similar results (Figure S4B (section 5)). 

These results suggest a requirement of BLMP-1 in multiple larval stages to prevent extension of molt 

duration. Moreover and similar to NHR-25, we cannot exclude that BLMP-1 is constitutively active. 

However, it appears likely that BLMP-1 activity is rhythmic, as BLMP-1 levels oscillate (data not shown, 

Yannick Hauser, unpublished).  

2.5.10 BLMP-1 is required for cuticle integrity 

Luciferase traces of blmp-1(RNAi) animals revealed elevated luminescence levels (Figure 2.11B), similar 

to those observed in nhr-25(RNAi) animals. Hence, we quantified the median luminescence during the 

molt upon different concentrations of auxin. We observed that the increase in the luminescence during 

the molt is dependent on the concentration of auxin (Figure 2.11I), and on the onset of BLMP-1 depletion 

in L2 stage (Figure 2.12C). Luminescence appeared to be increased in molt 3 and molt 4 whereas molt 

extension was already observed in molt 2 (Figure 2.12C). We observed similar results when the onset of 
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BLMP-1 depletion occurred in L3 stage (Figure S4C (section 5)). In sum, and similar to NHR-25, lengthening 

of molt duration is followed by increased cuticle permeability in the subsequent stage, which is consistent 

with a model in which a defective cuticle is synthesized during the lengthened molt, but only becomes 

evident when the old cuticle is shed. We conclude that BLMP-1 is needed for cuticle integrity. 
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Figure 2.12: Lengthening of molts and cuticle defects are dependent on the onset of BLMP-1 depletion 

A, Heatmaps showing trend-corrected luminescence (Lum.) traces of blmp-1::degron; peft-3::luc, peft-3::TIR1 
animals (HW2120); one animal per horizontal line. Vehicle (0.25% ethanol, left) or 250 μM auxin (right) were added 
at t=24h (dashed line). t=0 hours corresponds to start of the assay. Embryos hatch at different time points and traces 
are sorted by entry into M2. 

B, Duration of I2, M2, I3 and M3 plotted over time at which single animals enter M2 in vehicle and auxin treated 
animals at t=24h (dashed line) shown in (A).  

C, Quantification of median luminescence during the molt in log10 over time of auxin addition relative to time of M2 
entry. Data for molt 2, molt 3 and molt 4 is shown.  

 

2.5.11 Identification of significantly changing genes using an Empirical Cumulative Distribution 

Function 

To investigate the molecular function of BLMP-1, we wondered about the gene expression changes 

resulting from loss of BLMP-1. We performed a RNA-seq experiment, similar to that for GRH-1 (GRH-1 

manuscript, Figure 6), i.e. we cultured a synchronized population of blmp-1::degron animals in liquid 

medium and initiated BLMP-1 degradation by addition of auxin at 20 hours, when animals were in early 

L2 stage. We selected auxin concentrations for which we observed lengthening of molts and intermolts 

(250 μM auxin, ++), and lengthening of molts, but shortening of intermolts (3.9 μM auxin, +) during the 

luciferase assay (Figure 2.11F,G). We harvested animals, every 30 minutes, from 20.5 until 49.5 hours, 

and performed mRNA sequencing. To identify differentially expressed genes, we used the same method 

as described in the GRH-1 manuscript, which we will explain in more detail here. 
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To identify genes whose expression changed in response to BLMP-1 degradation, we calculated the 

difference in expression for each gene at each time point between the conditions (the expression fold 

change). We expected gene expression to be unchanged, or at most minimally affected, at the first time 

point of harvesting (20.5 hours), shortly after auxin was added (20 hours). Scatter plots of – auxin over ++ 

auxin revealed that an increasing number of genes are changed in their expression over time (Figure S5A 

(section 5)). Moreover, the gene expression fold changes in the first two time points were not similarly 

distributed as observed in a quantile-quantile plot (Figure S5B (section 5)). Hence, we used the expression 

fold changes of the first time point (20.5 hours) as our null distribution. Although we did not collect 

replicates, this approach allowed us to investigate whether gene expression fold changes occurred over 

time, i.e. relative to the null distribution. Given that the expression fold changes at the first time point 

were not normally distributed (Figure 2.13A), we used an empirical cumulative distribution function 

(ECDF) as a probability model (Figure 2.13B). The ECDF is a non-parametric function which describes the 

distribution of empirical data (Cai, 2013), i.e. the probability distribution represents the observed data, 

not a predicted population. Given the total number of observations, n, each observation is given a 

probability of 1/n. Next, the observations are ordered based on their values, from the smallest to the 

largest. Hence, for each subsequent observation, the probability increases with 1/n, resulting in a step 

function. If n is sufficiently large, the ECDF describes the ‘true’ cumulative distribution function well. The 

ECDF is defined as:  

𝐹̂(𝑥) = 𝑃̂(𝑋 ≤ 𝑥).  

Thus, 𝑃̂(𝑋 > 𝑥) = 1 − 𝐹̂(𝑥).  

Given that the distribution function is empirical in its nature, the probability of an observation in the first 

time point under the null distribution is uniform by definition, i.e. the number of genes in each bin was 

the same (Figure 2.13C). We note that many genes remained unchanged, as exemplified by the jump in 

the fraction of genes at fold change equals 0 (Figure 2.13B), hence the bin at P = 1 was overrepresented 

(Figure 2.13C). Significant changes in subsequent time points arise when the number of observation in 

the bin close to P = 0 increase, as exemplified for t = 40h (Figure 2.13D, red bar).  
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Figure 2.13: Describing the expression fold change with an ECDF allows the identification of significantly changed 
genes 

A, QQ-plot showing the quantiles of the gene expression fold change (expr. FC) at the first time point (t = 20.5h) over 
quantiles of a theoretical normal distribution. If data were to be normally distributed, the quantiles would fall on the 
reference lines (red). Deviation from the reference line and histogram of the number of genes in each binned 
expression fold change value reveal that data is not normally distributed. 

B, Empirical cumulative distribution function (ECDF) showing the fraction of genes over the expression fold change 
at the first time point (t = 20.5h). 

C, Histogram plotting the number of genes over the probability at t = 20.5h. As the ECDF is empirical, the distribution 
is uniform per definition. 

D, Histogram plotting the number of genes over the probability at t = 40h. The distribution deviates from a uniform 
distribution. The increase in the number of genes at a low probability (red bin) indicates genes that change 
significantly in their expression. Note that we used P < 10-3 in at least 3 time points as selection criteria.  

 

2.5.12 Loss of BLMP-1 results in global shifts in the peak of oscillatory gene expression 

To identify significantly changing genes, we selected genes which revealed an expression fold change with 

a probability P < 10-3 in at least 3 time points. We found 422 genes to be changed significantly in their 

expression, among them 354 oscillating genes (84%) (Figure 2.14A). Interestingly, many of the oscillating 
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genes were not, or at most minimally upregulated, downregulated, or changed in amplitude, (Figure 2.14 

A,B, Figure S6A,B,E,F (section 5)) but instead, their expression fold change over time appeared to have a 

specific oscillatory pattern. This pattern became evident when we sorted the expression fold change by 

peak phase (Figure S6A,B (section 5)) according to our previous annotation (Meeuse et al., 2019). Given 

that amplitudes and mean expression levels remained largely unchanged in ++auxin compared to –auxin 

(Figure S6E,F (section 5)), one possible explanation of the oscillatory pattern in the expression fold change 

is a shift in the peak of gene expression between the different conditions. Indeed, we observed expression 

peaks for both + auxin and ++ auxin conditions to be shifted to earlier times, as exemplified for B0034.1, 

col-149, jud-4 and nlp-27, whereas the time of the trough appeared to be unaffected (Figure 2.14C). We 

note that, although these effects were observed for the majority of the affected oscillating genes, visual 

inspection of the significantly changing genes revealed that a few genes exhibited other changes in their 

dynamics, e.g. dampening of amplitude (data not shown). Interestingly, affected oscillating genes 

appeared to have a peak phase preference during the beginning of the molt (Figure 2.14D), i.e. these peak 

phases were enriched over those of all oscillating genes, according our previous annotation (Meeuse et 

al., 2019). In contrast, opposite peak phases were depleted (Figure 2.14D).   

Next, we wondered about the gene expression changes in the oscillating genes we did not identify as 

significantly changing. When we plotted their expression in heatmaps sorted by phase, according to our 

previous annotation (Meeuse et al., 2019), we found the patterns in the expression fold changes to be 

similar to those of the oscillating genes which we identified as significantly changing (compare Figure S6A 

with Figure S6C (section 5)). However and as expected, the expression fold changes were much smaller 

in magnitude in the ‘not-significantly changing oscillating’ genes (Figure S6C (section 5)). Moreover, when 

comparing the gene expression heatmaps of ‘significantly changing oscillating’ genes with those of ‘not-

significantly changing’ genes, we observed a strong enrichment for high amplitude genes in the 

‘significantly changing oscillating’ genes (compare Figure S6B with Figure S6D (section 5)). This is 

somewhat expected as a similar shift of the peak expression in time for a large amplitude gene and a small 

amplitude gene (which peak at the same time), would result in a larger expression fold change for the 

former. Given that not only the magnitude of the expression fold change, but also the extent of the shift 

could be biologically relevant, I aimed to quantify the shift in peak expression.  To this end, we used a 

different method, as described in further detail below. Nevertheless, we conclude that the oscillating 

genes affected by loss of BLMP-1 appeared to peak at earlier times, among other dynamics changes. 

Hence, these observations are inconsistent with a model in which BLMP-1 is required for oscillatory gene 

expression as such, but rather suggests a more complex regulatory function. 
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Figure 2.14: Expression fold change analysis reveals shifts in expression of oscillating genes upon loss of BLMP-1 

A, Heatmap of fold change between gene expression in ++ auxin (250 μM) and in - auxin (vehicle) conditions for 
significantly changing genes (n=422). Expression fold change is hierarchically clustered, ordered by mean expression 
and plotted in log2. Vertical bar indicates whether a gene is ‘oscillating’ (‘osc’, orange) or ‘not oscillating’ (‘not osc’, 
green) in its expression according to a previous annotation (Meeuse et al., 2019). 

B, Gene expression heatmaps in auxin-treated (++ auxin) and control (- auxin) animals for significantly changing 
genes (n=422). Gene expression was mean-centered over both conditions, sorted according to A and plotted in log2. 

C, Expression of B0034.1, col-149, jud-4 and nlp-27 in log2. Vehicle (-auxin, black), + auxin (blue) and ++ auxin (red) 
expression patterns are shown. 
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D, Barplot showing peak phase enrichment of oscillating genes among genes in A (=354) over all ‘oscillating’ genes 
(Meeuse et al., 2019). Peak phases are sorted in 20° bins. The peak phase of blmp-1 is -138°(dashed line) and the 
molt occurs roughly between 20° and 110° (blue box), as previously determined (Meeuse et al., 2019). 

 

2.5.13 Identification of significant shifts in peak phase using cosine fitting and error propagation 

To quantify the shift in peak phase between conditions, we applied cosine fitting on gene expression 

patterns of genes previously annotated as oscillating (Meeuse et al., 2019). Cosine fitting was performed 

as described in (Meeuse et al., 2019), which I will explain in more detail here. Cosine fitting is an extension 

of a linear model fit to the data, in which cos(ωt) and –sin(ωt) are used as regressors. ω is the angular 

frequency, which is equal to 
2𝜋

𝑝𝑒𝑟𝑖𝑜𝑑
. A cosine can be described by the combination of the two regressors 

in the following way: 

𝐶 ∙ cos(𝜔𝑡 +  𝜑) =  𝐶 ∙ cos(𝜑) ∙ cos(𝜔𝑡) −  𝐶 ∙ sin(𝜑) ∙ sin(𝜔𝑡) =  𝐴 ∙ cos(𝜔𝑡) − 𝐵 ∙ sin(𝜔𝑡) 

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 = 𝐶 =  √𝐴2 +  𝐵2  

𝑃ℎ𝑎𝑠𝑒 =  𝜑 = arctan(𝐴, 𝐵) 

By choosing a fixed ω, the regressors are only dependent on the time, t, and thus the model is linear.  The 

coefficients A and B can be identified by fitting the linear model to the data. To choose a fixed ω which 

describes the data best, we fitted different linear models to the gene expression data, each with a 

different ω. To quantify how well the models fits the expression of each gene, we used the squared error, 

i.e. the square of the difference between the fitted values and the observed values. We found the best fit 

to occur at a period of 10.5 hours (Figure 2.15A). (We note that the time course was performed at 20°C 

and hence the period of the oscillation was increased compared to previous time courses performed at 

25°C (Meeuse et al., 2019)). By fitting the linear model with 𝜔 =  
2𝜋

10.5ℎ
 to each gene individually, we 

determined the coefficients A and B and their standard errors. To identify genes that change significantly 

in peak phase between conditions, we calculated the confidence intervals of the phase shifts using error 

propagation on the standard errors of the coefficients. This because the uncertainties of the coefficients 

A and B are not linearly carried over to the phase shifts: 

phase shift        =  peak phase++aux −  peak phase−−aux 

 =  arctan(A++aux, B++aux) − arctan(A−aux, B−aux) 
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To illustrate this with a simple example:  

Let f be a linear combination of x and y, i.e.  f = x + y 

With standard deviations σx and σy 

Then σf = √𝜎𝑥
2 + 𝜎𝑦

2 

For non-linear combinations, such as the phase shift we describe here, the combined uncertainty cannot 

be calculated and must be approximated. Here, we used Taylor expansion as part of an existing error 

propagation algorithm (Methods) to determine the confidence interval of the phase-sift. Obviously, a 

phase shift of 0 indicates no change in the peak phases between conditions. Hence, a confidence interval 

that includes 0 is not significant, whereas a confidence interval which is bigger (positive) or smaller 

(negative) than zero represents a significant and positive or negative phase shift respectively (Figure 

2.15B).  

2.5.14 BLMP-1 ensures that a subset of ‘molting’ genes peak at the right time 

Using a 99% confidence interval (as determined by error propagation) and a phase shift of at least 36°, i.e. 

10% of the period, as cut-offs, we found the peak phases of 594 genes to be significantly different between 

conditions (Figure 2.15C,D). Notably, only 91 genes of the 354 genes identified using the ‘expression fold 

change’ method, were found among the 594 genes identified here. Hence, using cosine fitting and error 

propagation, we were able to identify an additional set of genes that were strongly shifted in the time of 

their peak expression compared to the control. We speculate that both sets of genes might be relevant 

for the phenotypes we observed. To provide insight into the functional relevance, we combined the 

datasets and performed GO term analysis. We found the GO terms ‘cuticle development’ and ‘molting 

cycle’ to be strongly enriched (Table S3). Accordingly, we observed specific peak phases to be enriched 

during the molt and opposite peak phases to be depleted in the 594 genes compared to all oscillating 

genes (Figure 2.15G). We note that the peak phase enrichment is most prominent during the molt, but 

slightly shifted to later times compared to the peak phase enrichment of the 354 genes we identified 

above (compare Figure 2.15G with Figure 2.14D). Nevertheless, these results are consistent with a 

function of BLMP-1 in molting, and with a model in which BLMP-1 is rhythmically active. Moreover, the 

observation that many of the affected genes peak at earlier times, but the time of the trough remained 

unchanged compared to control animals, suggests that BLMP-1 ensures that the oscillatory expression of 

sets of genes occur in synchrony. 
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Figure 2.15: Quantification of phase shifts in expression of oscillating genes upon loss of BLMP-1 using cosine 
fitting 

A, Boxplot showing the squared error (fitted – measured gene expression) in log10 for each gene as determined by 
cosine fitting. Cosine fitting was performed on the previously annotated oscillating genes (Meeuse, Hauser) using 
the indicated periods.  

B, Cartoon showing mean phase shifts (dots) with confidence intervals. A phase shift is considered significant if the 
confidence interval does not include 0. Note that confidence intervals of significant phase shifts can be larger than 
confidence intervals of non-significant phase shifts.  

C, Scatterplot showing the phase shift in rad over the lower boundary of the confidence interval (CI) (left) and the 
higher boundary of the CI (right). Genes with significant (red) and not-significant (black) phase shift according to B 
are indicated. 

D, Scatterplot showing the peak phase in degrees of ++ auxin (250 μM) over – auxin (vehicle). Significantly changing 
genes (left) and not-significantly changing (right) genes as determined in C are indicated. Genes for which the phase 
shift is > 36° (red) and ≤ 36° (black) are indicated.   

E, Heatmap of fold change between gene expression in ++ auxin (250 μM) and in - auxin (vehicle) conditions for 
significantly changing oscillating genes (n=594). Expression fold change is sorted by peak phase. 

F, Gene expression heatmaps in auxin-treated (++ auxin) and control (- auxin) animals for significantly changing genes 
(n=594). Gene expression was mean-centered over both conditions, sorted according to A and plotted in log2. 

G, Barplot showing peak phase enrichment of significantly changed oscillating genes (n=594) over all ‘oscillating’ 
genes (Meeuse et al., 2019) Peak phases are sorted in 20° bins. The peak phase of blmp-1 is -138°(dashed line) and 
the molt occurs roughly between 20° and 110° (blue box), as previously determined (Meeuse et al., 2019). 
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3. Discussion 

Gene expression oscillations are wide-spread in biological systems. Whereas the molecular architecture, 

the functional relevance, and the systems properties have been investigated for some, they remain 

unclear for other biological oscillators. Here, I propose the C. elegans oscillator as a powerful tool to study 

genetic oscillations and provide insight into features that are unique, as well as those that might be shared 

between biological oscillators. In this work, we have described the C. elegans oscillator and investigated 

its system properties. We have identified putative components of the oscillator and provided insight into 

its functional relevance. Here, I will discuss these findings. 

3.1 Identification of thousands of oscillating genes during C. elegans larval development  

Previous mRNA-seq time courses did not cover all stages of C. elegans development or were not sufficient 

in temporal resolution to fully and accurately describe the C. elegans oscillator (Hendriks et al., 2014; Kim 

et al., 2013). Here, we collected precisely those data. Consistent with previous studies (Hendriks et al., 

2014; Kim et al., 2013), we found that mRNA transcripts oscillate, peaking once every larval stage. We 

used these data to classify genes as ‘confidently oscillating’ or ‘not oscillating’. This expanded the number 

of oscillating genes from 2,718 (Hendriks et al., 2014) to 3,739 genes. We predict that the identification 

of oscillation genes improved by performing cosine fitting on L1-L3 stage, in which the oscillation period 

appeared stable. In our previous dataset covering L3 to young adult stages (Hendriks et al., 2014), the 

lengthening of the oscillation period in L4 and the genes which rise in their expression during late larval 

development might have hindered the detection of the additional 1240 genes we found here. For similar 

reasons, we expect that the 219 genes which we did not classify as ‘confidently oscillating’ here, are likely 

to be mis-classified before (Hendriks et al., 2014). We note that some of the 219 genes and other genes 

we classified as ‘not oscillating’ can show low amplitude or non-sinusoidal dynamics. Thus, the class of 

‘not oscillating’ genes includes not only genes that lack oscillatory expression as such, but also genes for 

which we failed to identify high-amplitude and sinusoidal oscillations with high confidence using cosine 

fitting. Methods such as the Hilbert transform and the Wavelet transform, widely used in signal 

processing, can be applied to quantitatively describe the non-sinusoidal dynamics in gene expression. As 

most of the dynamic genes could be identified with ‘high confidence’ through cosine fitting and thus 

exhibit considerable sinusoidal oscillations, I considered the identification of genes with non-sinusoidal 

oscillations less of a priority for this thesis. Low-amplitude oscillations might still be relevant for the 

function of the oscillator, particularly, but not necessarily, because rhythmicity may arise at the level of 

protein accumulation or activity. However, the dynamics of low-amplitude oscillations might be difficult 

to confidently quantify across experiments and especially in mutants. Hence, the comprehensive set of 
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genes we present here, which oscillate ‘confidently’ and with high amplitudes (>2-fold between peak and 

trough), will help to unravel the transcriptional network of the oscillator and its system properties.  

3.2 Developmental stage transitions reveal properties of the C. elegans oscillator 

In this work, we used the set of oscillating genes to investigate how the oscillator behaves during stages 

of the C. elegans life cycle.  We found the oscillation amplitudes to be stable during L2-L4 stage 

(amplitudes in L1 stage were difficult to assess, see (Meeuse et al., 2019)), and the period to be constant 

during L1-L3, but increased during L4. Moreover, our observation that oscillations are absent in newly 

hatched larvae, developmentally arrested dauer larvae and post-developmental adults, allowed us to 

characterize the behavior of the oscillator in response to its transition between oscillatory and stable 

states. This so-called bifurcation analysis has been performed extensively in systems which adopt 

oscillatory and stable behavior depending on input signals, such as electrical spiking in neurons (Izhikevich, 

2000; Saggio et al., 2017) and genetic dynamics in cellular circuits (Conrad et al., 2008; Guantes and 

Poyatos, 2006). However, bifurcations in oscillators that act at the organism level have remained difficult 

to investigate, especially those occurring naturally. Here, we revealed a quantitative characterization of 

the natural and induced bifurcations of the C. elegans oscillator. In newly hatched larva, dauer larvae and 

adults, the oscillator appeared to be arrested in a specific phase rather than adopting a different, 

completely unrelated state. Interestingly, the specific phase of the oscillator at the stable regime 

corresponded to molt exit. Given that freshly hatched larvae, dauer exit and molt exit are sensitive to 

feeding, we propose that food is informative for the state of the oscillator, a hypothesis I will address in 

different sections the discussion. However, first, I will discuss the system level properties that can be 

inferred from the characteristics of the oscillator during its oscillatory and stable states. 

3.2.1 The C. elegans oscillator emerges as a rigid oscillator 

Our findings are consistent with the characteristics of a rigid oscillator (Abraham et al., 2010), i.e. an 

oscillator that is robust to changes in amplitude when changing its period. Mathematical models revealed 

that rigidity is favored in oscillatory networks consisting of combined positive and negative feedback loops 

over networks that consist of a negative feedback loop only (Tsai et al., 2008). Moreover, rigidity was 

enhanced when oscillators were coupled to one another (Abraham et al., 2010). Although these design 

principles are not a prerequisite of rigid oscillators, we propose them to be important features to 

investigate when dissecting the C. elegans oscillator. The ability to allow variations in the oscillation 

period, but at the same time have robust amplitudes seems to be functionally relevant for developmental 

oscillators as they need to ensure faithful development across different conditions. Our findings are 
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consistent with a rigid oscillator under stable environmental conditions during which amplitudes 

remained stable and the period increased naturally during late larval development. Whether the 

amplitude of oscillations remains unchanged under changing environmental conditions, e.g. at lower 

temperatures when the duration of developmental stages and the oscillation period increase, remains to 

be established.  

3.2.2 State transitions of the C. elegans oscillator resemble a SNIC bifurcation    

The qualitative changes we observed in the dynamics of the oscillator during the transitions prompted us 

to investigate which type of bifurcation is consistent with our results. The stable amplitude, the increasing 

period and the arrest at a particular oscillator phase, which we observed here, are all in agreement with 

the characteristics of a SNIC bifurcation rather than a Hopf bifurcation. Although the type of bifurcation 

puts constraints on the design and the parameters of the network, SNIC bifurcations have been observed 

in different network designs (reviewed in Purcell et al., 2010). At the same time, a particular network 

design can reveal different types of bifurcations, depending on the parameters. In fact, network 

topologies consisting of positive and negative feedback loops revealed both Hopf and SNIC bifurcations 

(Conrad et al., 2008). Hence, we can only speculate about the architecture of the C. elegans oscillator, as 

it cannot be inferred directly from the notion that its transitions resemble a SNIC bifurcation. 

3.2.3 What is the status of the core oscillator during the stable regimes? 

The absence of oscillations in freshly hatched larva, dauer larvae and adults, allows to speculate about the 

status of the core oscillator. It is possible that the core oscillator is not functional, and hence, its output 

oscillations are absent in the stable regimes of the system. Alternatively, the core oscillator could still be 

active, but the output is not connected to the core oscillator. If the core oscillator would remain active 

through the C. elegans lifecycle, one would expect that oscillations can initiate at variable times depending 

on the phase of the oscillator when feeding is resumed. Although animals hatched at different times and 

are subsequently starved for different durations to synchronize L1 animals during our RNA-seq time 

courses, the onset of oscillations appeared synchronous among animals. On the one hand, it remains 

possible that the core oscillator is active, but resumption of feeding resets the phase of active oscillator, 

resulting in synchronous initiation of oscillations within a population. On the other hand, the core 

oscillator is initially quiescent, but becomes activated upon resumption of feeding. Identification of the 

core components of the C. elegans oscillator and their dynamics throughout the C. elegans life cycle will 

help to determine the status of the oscillator during the stable regimes.  
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3.2.4 Transition from a stable into an oscillatory regime during embryogenesis 

To complete our description of the C. elegans oscillator, here, I will discuss our findings on the properties 

of the oscillator during embryogenesis. In contrast to the sudden onset and termination of oscillations in 

larvae and adults, respectively, the system appeared to be in a different state and more slowly approach 

an oscillatory state during early embryogenesis, before it transitioned into an oscillatory state later during 

embryogenesis. In contrast to the transitions we discussed above, our observations during embryogenesis 

are inconsistent with a SNIC bifurcation. We note that the correlations were lower in embryos compared 

to larvae, which might reflect embryo-specific transcriptional programs. Moreover, the first cuticle is 

synthesized but not shed during embryogenesis, which could suggest that, in embryos, only part of the 

oscillator functions or only part of the output is coupled to the oscillator. However, as data was collected 

from single embryos, the quality and the depth of the data was lower than in larvae. Hence, we speculate 

that a highly resolved RNA-seq time course covering embryogenesis, hatching and the first larval stages 

will provide insight not only into the type of bifurcation, but also whether the oscillator as such, or only a 

subset of the genes start oscillating in embryos. Hence, these studies will further address the question of 

whether certain oscillatory modules can be split from others, facilitating the dissection of the architecture 

of the oscillator.  

3.3 A function of the C. elegans oscillator in repetitive developmental processes 

Gene expression oscillators are often considered time-keeping mechanisms as they can determine time 

depending on the phase of their oscillation (Rensing et al., 2001). If the C. elegans oscillator were to ensure 

correct timing of developmental events, we would at least expect developmental stages to coincide with 

the oscillation period, although that does not directly imply functional coupling. Up to date, quantification 

of developmental progression and transcript dynamics simultaneously and with high temporal resolution 

has been lacking. Here, we collected those data and showed that oscillations are phase-locked to the 

molts (Meeuse et al., 2019). Although it remains possible that oscillations and development are timed 

very precisely but regulated through independent mechanisms, our error propagation analysis suggests 

that oscillations and development are tightly coupled. Hence, we propose that the oscillator acts as a 

mechanism which controls timely execution of repetitive developmental events. Given that cuticular 

components of the cuticle were enriched among oscillating genes (Hendriks et al., 2014), and that our 

results here suggest that GRH-1 acts as a key factor for molting and a putative component of the oscillator, 

a role of the oscillator in regulation molting seems very likely.  
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However, the functions of the oscillator do not appear to be restricted to molting, as peak phases of the 

oscillations are wide-spread (Hendriks et al., 2014). We propose that animals require sufficient resources 

and coordination of multiple developmental processes to faithfully execute a molt. Hence, the oscillator 

might control those processes already before the molt. We consider epidermal remodeling one of those 

processes. Indeed, we showed that the transition from a stable into an oscillatory state of the system 

during embryogenesis coincided with epidermal morphogenesis, and elongation, long before the first 

cuticle was synthesized. Moreover, mutations in factors which connect the cuticle, epidermis, basement 

membrane and muscle cells revealed molting phenotypes, suggesting that cuticle renewal requires 

remodeling of the underlying tissues (reviewed in Lažetić and Fay, 2017). Finally, repetitive seam cell 

proliferation and molting are coupled processes, but appear to be regulated by different mechanisms 

(Ruaud and Bessereau, 2006). Hence, we speculate that the C. elegans oscillator generally controls 

epidermal programs, possibly among other repetitive events. 

Interestingly, recent studies showed that oscillations of lineage-specifying transcription factors keep stem 

cells in a proliferative and multipotent state, whereas constant expression coincided with cellular 

differentiation (Imayoshi et al., 2013; Kobayashi et al., 2009). It has been proposed that oscillations serve 

to give stem cells the opportunity to adopt different states, depending on the cues available at that time. 

Intriguingly, a function in cell differentiation appears to be shared by the homologs of the transcription 

factors we identified in this work. Myrf, the mammalian homolog of myrf-1, is a direct target of Sox10, 

which act together to activate the myelin-specific regulatory network during oligodendrocyte 

differentiation (Hornig et al., 2013). Blimp1, the mammalian homolog of blmp-1, is a master regulator of 

the B and T cell fates (reviewed in Nutt et al., 2007). Grainyhead and Grainy head like (Grhl) factors, the 

Drosophila and mammalian homologs of grh-1 respectively, play a role in development and maintenance 

of epithelial tissues (reviewed in Wang and Samakovlis, 2012). NHR-25 controls cell fates of vulva 

precursor cells in C. elegans (Ward et al., 2013) and its homolog SF-1, plays a role in the differentiation of 

adrenal glands and gonads (Schimmer and White, 2010).  Hence, it seems possible that the C. elegans 

oscillator can function to provide cells with a time-window in which specific developmental programs, e.g. 

cell fate choices and molting, can be executed. Consistent with this hypothesis, we found that oscillations 

ceased during the transition to post-developmental adults. The cues that could potentially define this 

time-window will be discussed in section 3.7.  



191 
 

3.4 Transcript oscillations arise from rhythmic transcription  

Gene expression oscillations can result from rhythmic production, rhythmic degradation or a combination 

of these two. We previously found that pre-mRNA levels are rhythmic (Hendriks et al., 2014). Moreover, 

several transcriptional reporters, in which the promoter of an oscillating gene is fused to nuclear and 

destabilized GFP, recapitulated not only the oscillation as such but also the phase and the amplitude of 

the endogenous oscillating transcript (Hauser et al, unpublished), indicating that promoters are sufficient 

for oscillatory gene expression. In this work, we investigated this notion further and specifically asked at 

which step of transcription oscillatory regulation occurs. Our finding that RNAPII occupancy at the TSS of 

oscillating genes is rhythmic suggests that recruitment of RNAPII to the promoter occurs in an oscillatory 

manner. However, some genes that oscillate on the mRNA level do not exhibit detectable rhythmic RNAPII 

occupancy, which might reflect a contribution of transcriptional processes after RNAPII recruitment or 

rhythmic post-transcriptional regulation. In the circadian oscillator, only about 20% of transcript 

oscillations resulted from rhythmic transcription (Koike et al., 2012), and post-transcriptional regulation, 

e.g.  transcription termination, alternative splicing, translation, miRNAs, polyadenylation and mRNA 

degradation, are known to modulate transcript oscillations in the circadian oscillator (reviewed in Lim and 

Allada, 2013). However, given that in our data RNAPII amplitudes appeared to be lower at a global level 

and specifically for the genes whose transcriptional reporter transgenes recapitulated the amplitude 

perfectly (Yannick Hauser, unpublished), we suspect the dynamic range of RNAPII-ChIP-seq to be lower 

than that of mRNA-seq. Although we cannot comment on the extent of rhythmic RNAPII occupancy for 

genes with insufficient ChIP-seq coverage and a contribution of post-transcriptional processes remains 

possible, we propose that the C. elegans gene expression oscillations emerge, to a large extent, from 

rhythmic transcription. 

3.5 Finding components of the C. elegans oscillator 

The work we present here provides evidence for rhythmic transcription in establishing mRNA level 

oscillations, suggesting a role of rhythmically active transcription factors. Although rhythmic activity of 

transcription factors can be achieved in various ways, e.g. subcellular localization, post-translational 

modifications, degradation, or accessibility of DNA-binding sites, the fact that 92 transcription factors 

oscillated on the mRNA level provided a good starting point to investigate the role of these transcription 

factors, with potentially rhythmic activity, in regulating transcript oscillations. Given the coupling to of 

oscillations to larval development (Meeuse et al., 2019), we screened the 92 ‘oscillating’ transcription 

factors for aberrant progression through development. We expected to find lengthening, shortening and 

irregular development, as similar phenotypes arise for core clock mutants of the circadian rhythm 



192 
 

(Takahashi, 2004). Interestingly, irregular molts have been observed for mutants of lin-42 (Monsalve et 

al., 2011). lin-42 is the homolog of the core component of the circadian clock, Period, which inhibits 

CLOCK-BMAL1 in their function as activators of period transcription (Figure 1.2). Given its conservation 

and the role of Period as a co-factor, lin-42 was not present in our screen. Although lin-42 mRNA levels 

peak once per larval stage (Jeon et al., 1999), a role as a core component of the C. elegans oscillator has 

not established.  

In our screen, we found lengthening of development (nhr-25, ztf-6, bed-3) and larval lethality (nhr-23, grh-

1, and myrf-1), but failed to find mutants with irregular development. We only observed shortening of 

intermolts which was accompanied by lengthening of molts (blmp-1). Although the phenotypic effects of 

mutants of oscillating genes are not easily predicted by intuition, it remains possible that short-period and 

arrhythmic mutants would only be observed when over- or mis-expressing these genes. 

Most transcription factors did not reveal any phenotype in our hands. We consider several explanations: 

i) Knock-down by RNAi was insufficient to reveal phenotypes. ii) Our assay is not sensitive enough to pick 

up very small changes. iii) The function of some factors might be redundant and hence only double 

mutants would show phenotypes. iv) Certain transcription factors might not act at the core, but more 

downstream, v) or act to couple oscillators. As the latter two types of transcription factors are not 

essential for generating oscillations as such or only control a small subset of oscillations respectively, they 

might not reveal strong phenotypes. Indeed, transcription factors that act in one of the feedback loops, 

or as input, or as output of the circadian clock have frequently shown mild or no phenotypes (reviewed in 

Takahashi, 2004). However, given their gene expression changes, and the strong phenotypes we find for 

grh-1 and blmp-1 depletion, indicate that such predictions do not always apply. vi) It is also plausible that 

transcription factors exhibit rhythmic activity without oscillations at the mRNA level, a class of 

transcription factors which were not included in our screen. vii) With the improved annotation of 

oscillating genes we presented here, the number of oscillating transcription factors increased from 92 

(Hendriks et al., 2014) to 154 (Meeuse et al., 2019). Hence, we might simply have missed some important 

factors. Finally, viii) as other mechanisms might contribute to generating oscillations, components of the 

oscillator might include proteins other than transcription factors.  

Nevertheless, the screen we performed here has been a great proof of principle and now provides us with 

a tool to more extensively screen the C. elegans genome for factors important for the functioning of the 

oscillator. In this work, we have identified a handful of interesting factors and we propose that they serve 

as a good starting point for dissecting the C. elegans oscillator (section 3.6).  
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3.6 Insights into the molecular architecture of the C. elegans oscillator 

Perturbation of the oscillator followed by phenotypic and genetic characterization, has provided major 

insights into the architecture of the circadian and segmentation oscillator. In this work, we have 

characterized nhr-25, blmp-1, myrf-1 and grh-1 as putative components of the C. elegans oscillator and I 

will further discuss them below. 

3.6.1 MYRF-1 and GRH-1 as putative components of the ‘molting oscillator’ 

Previously, myrf-1(0) mutants have been shown to die from being trapped in their cuticle in L1 stage, and 

hence, a role of myrf-1 in regulating molting has been suggested (Russel et al., 2011, here named pqn-47, 

later renamed to myrf-1). Here, we observed the same phenotype. Additionally, our data suggest that the 

rhythmic activity of MYRF-1 might be required for shedding of the cuticle during multiple larval stages. 

Although the molecular mechanisms through which MYRF-1 functions in molting remains to be 

established, we expect that the oscillatory activity of MYRF-1 ensures the timely expression of genes 

required to break and escape from the cuticle. RNA-seq time course experiments in MYRF-1 depleted and 

control experiments would facilitate the identification of such genes. Interesting candidates could be 

genes of the nekl-mlt kinase pathway, as some of the null mutants also resulted in encasement by the old 

cuticle. Moreover, the nekl-mlt kinase pathway has been implicated in endocytosis, which has been 

suggested to account at least partially for the shedding defects (Lažetić and Fay, 2017b; Yochem et al., 

2015). A role of endocytosis in molting has been proposed, as it may be important for the uptake and 

recycling of sterols and components of the cuticle (Lažetić and Fay, 2017a). Interestingly the C. elegans 

genome encodes myrf-2, the paralog of myrf-1. myrf-1 and myrf-2 act redundantly in synaptic rewiring of 

neurons, a L1-L2 stage specific function of myrf-1 (Meng et al., 2017). Although myrf-2 mRNA levels do 

not oscillate, at least not with fold-changes >2 (Meeuse et al., 2019), whether myrf-2 exhibits rhythmic 

activity and acts together with myrf-1 in ecdysis remains to be established.  

In this work, we present a functional characterization of GRH-1 as a putative component of the ‘molting 

oscillator’. As our findings are discussed in depth in the manuscript, here I will summarize them. We found 

that depletion of GRH-1 resulted in a long-molt phenotype, a phenotype we expect from an oscillator 

component and rupturing of the cuticle, a phenotype that appears to be conserved in Grainyhead mutants 

in Drosophila (Bray and Kafatos, 1991; Nüsslein-Volhard et al., 1984b). Moreover, our results indicate that 

rhythmic activity of GRH-1 is important for its function and that GRH-1 controls its expression via a 

negative feedback loop, features required for generating oscillations (Novák and Tyson, 2008). Finally, loss 

of GRH-1 affected the expression of a subset of oscillating genes, which were enriched for structural 

components of the cuticle, for the hypodermis and for particular peak phase. Thus, our insights on GRH-
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1 function are three-fold: i) although we cannot distinguish between it being a core component or acting 

more downstream of the (sub-) oscillator(s), GRH-1 appears to be an important factor of the C. elegans 

oscillator. ii) Given that the molecular mechanisms which regulate molting are not well understood, here 

we provide insight into those mechanisms and propose that GRH-1 acts to control molting in a timely 

manner. As the oscillating genes affected by GRH-1 depletion were also enriched for ‘ECM regulators’, we 

propose a broader role for GRH-1 in regulating epidermal remodeling. iii) Our data on GRH-1 provides 

further evidence for the hypothesis that the C. elegans oscillator and molting are functionally coupled. 

Hence, we propose that GRH-1 ensures temporal control of epidermal programs, a function which may 

be shared with Grainyhead proteins in other organisms. 

3.6.2 NHR-25 and NHR-23 as potential sterol sensors in the C. elegans oscillator 

In agreement with a proposed role of nhr-23 and nhr-25 in molting (Gissendanner and Sluder, 2000; 

Kostrouchova et al., 1998, 2001), we showed that NHR-25 depletion resulted in defects in cuticle integrity 

and a long-period phenotypes for molts and intermolts. We were able to induce these phenotypes in 

multiple developmental stages by conditional NHR-25 depletion. Similarly, NHR-23 is repetitively required 

for its function in molting (Kostrouchova et al., 2001). However, whether and how NHR-23 and NHR-25 

act as core components of the C. elegans oscillator is unknown. One possible function of NHR-23 and NHR-

25 could be sterol sensing, a function similar to that of their Drosophila orthologues Dhr3, an ecdysone-

responsive gene and its downstream target Ftz-f1 respectively (Gissendanner and Sluder, 2000; 

Kostrouchova et al., 1998). It sounds appealing that sensing of food controls or provides input for the 

oscillator to ensure that development occurs only when favorable conditions are met. Consistent with this 

idea, our findings revealed that re-feeding dauer diapause animals as well as synchronized L1 larvae 

resulted in resumption of oscillations at a specific phase of the oscillator, which coincided with molt exit. 

However, a ligand of nhr-23 or nhr-25 and a sterol that regulates molting in C. elegans has not been 

identified yet. 

3.6.3 BLMP-1 as a putative ‘coupling’ factor in the C. elegans oscillator 

Although blmp-1 mRNA levels oscillate, whether and how it functions in the C. elegans oscillator remained 

unclear. Our results suggest that BLMP-1 is required for proper duration of molts and for cuticle integrity. 

Surprisingly, loss of BLMP-1 did not result in loss of oscillatory gene expression as such, instead the 

dynamics of a subset of oscillations appears to be affected in diverse ways. Many, but not all, of the 

affected genes revealed a more rapid increase their expression upon loss of BLMP-1, such their peak 

expression appeared shifted to earlier times, but their trough occurred at the same time. Our observation 

that molts are lengthened and the expression of a subset of genes appear to peak earlier upon loss of 
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BLMP-1, are somewhat unexpected. Its remains possible that BLMP-1 was not fully degraded in the 

++auxin condition and hence extension of molts could be compensated by shortening of intermolts as 

observed in the +auxin condition. However, we validated the phase shifts of some genes by RT-qPCR (data 

not shown) and genome-wide using a blmp-1(0) mutant in a separate time-course (Yannick Hauser, data 

not shown, unpublished). Hence, we propose that molting and gene expression were uncoupled. 

Moreover, phase shifts did not become progressively worse over development, suggesting that BLMP-1 

is repetitively required for the expression of a subset of genes at the right time. Although to a lesser 

extent, we also observed other changes in the dynamics of gene expression in BLMP-1 depleted animals. 

Taken together, our results are consistent with a model in which BLMP-1 ensures that oscillations occur 

in synchrony by controlling their dynamics. Although it remains to be established whether BLMP-1 activity 

is rhythmic, the affected genes were enriched for a particular peak phase and unpublished data from our 

lab showed that BLMP-1 level oscillate (Yannick Hauser). Hence, we speculate that rhythmic activity of 

BLMP-1 ensures coupling between oscillatory gene expression and repetitive events such as molting. 

Given that a subset of genes appeared affected in their dynamics, it is possible that BLMP-1 couples 

different oscillators with each other, or alternatively different output modules of the core oscillator.  

Moreover, and in line with the hypothesis that the C. elegans oscillator acts to time and synchronize 

repetitive developmental events, development among blmp-1(0) animals appeared to become less 

synchronous (Yannick Hauser, unpublished), a phenotype that we predicted for components of the 

oscillator (section 3.5). We note that we did not observe this phenotype during the RNAi screen, 

supporting the notion that RNAi was weak in this case, and potentially also for other transcription factors 

tested. Thus, we propose BLMP-1 as a ‘coupling’ factor’ in the C. elegans oscillator.   

How is synchronization between oscillations achieved mechanistically? It seems likely that BLMP-1 should 

provide input for and at the same time receive input from the oscillations to be synchronized. The type of 

feedback between the synchronizer and the oscillations to be synchronized determines the properties of 

the coupling (Kim et al., 2010). For example, positive feedback loops appeared to result in more robust 

coupling with response to noise compared to negative feedback loops (Figure 3.1A). In contrast, coupling 

via positive feedback loops resulted in less robustness over a range of coupling strengths compared to 

coupling via negative feedback loops (Figure 3.1B). Synchronization of the zebrafish segmentation 

oscillator between cells has been proposed to occur by Delta-Notch signaling via positive feedback (as 

reviewed in Oates et al., 2012) (Figure 3.1A), ensuring robustness to noise (Kim et al., 2010), whereas 

coupling between neurons can occur via negative feedback (Figure 3.1B), ensuring robustness to varying 

signaling between the coupling factor and the oscillators (Kim et al., 2010). Although coupling of 
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oscillations has mostly been studied between different cells, we propose that similar network motifs may 

underlie the functioning of BLMP-1 in the C. elegans oscillator. However, whether and to what extent 

BLMP-1 synchronizes different oscillators, or outputs thereof and what the identity and function of these 

oscillators are, remains to be identified. 

 

Figure 3.1: Schematic overview of coupled oscillators 

Simplified cartoon of network motifs of coupled oscillators. A coupling factor (red) can synchronize two oscillators 
(purple) by positive feedback loops (A) or negative feedback loops (B). Based on (Kim et al., 2010). 

 

3.7 Outlook and open questions 

3.7.1 Do transcript oscillations arise solely from rhythmic transcription? 

Although our data revealed rhythmic RNAPII occupancy at the promoter of oscillating genes, it remains 

unclear whether rhythmic transcription is the only mechanisms from which mRNA level oscillations 

emerge. Hence, it is unknown whether and to what extent post-transcriptional processes modulate 

rhythmic transcript accumulation.  

Distinct modes of regulation can be inferred from differences in amplitudes and peak phases between 

mRNA production, and mRNA accumulation dynamics (Korenčič et al., 2012; Le Martelot et al., 2012). In 

principle, three different scenarios and their combinations exist: i) decreased amplitude in mRNA 

accumulation compared to mRNA production indicates stable and long-lived mRNAs. ii) Production and 

accumulation with similar amplitude and phases suggest short lived mRNA which are predominantly 

produced in a rhythmic manner. iii) Increased amplitude and often phase-shifted mRNA accumulation 

compared to production indicates a contribution of post-transcriptional processes. Hence, collecting 

temporally highly resolved mRNA production dynamics, e.g. RNAPII occupancy at the promoter, the gene 

body and the 3’end of the genes, together with mRNA accumulation dynamics across all larval stages will 

facilitate quantitative analysis of the amplitudes and peak phases. These datasets will not only provide 
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insight into the levels at which oscillations arise, but will also classify genes according to the different 

modes of regulation (discussed above), and hence, further facilitate the functional dissection of the C. 

elegans oscillator. 

3.7.2 What is the molecular mechanism of GRH-1? 

How exactly GRH-1 acts to control the expression of oscillatory genes remains unclear. The opposing 

phase enrichments for upregulated and downregulated oscillating genes upon GRH-1 depletion suggest 

that GRH-1 can act as a transcriptional activator and repressor. Interestingly, Grainyhead has been 

proposed as a pioneer transcription factor for epithelial genes in Drosophila (Jacobs et al., 2018), and its 

role as transcriptional activator and repressor may be explained by the fact that Grainyhead makes the 

DNA accessible for other transcription factors to bind. Whether GRH-1 acts as a pioneer transcription 

factor in C. elegans remains to be established. Studying chromatin accessibility and binding of GRH-1 to 

the DNA directly will help to distinguish primary from secondary targets of GRH-1 and provide insight into 

its mode of action.  

Although our data is consistent with a model in which GRH-1 is rhythmically active, our experiments in 

which we initiated GRH-1 depletion at different times did not test this notion directly. Moreover, as we 

were limited by the time animals die during ecdysis, we may have underestimated the number of genes 

affected, and perhaps overestimated their phase enrichments in GRH-1 depleted animals. We propose 

that we can address both issues with the following experiments: targeted modulation of amplitude, peak 

phase and expression levels, rather than depleting GRH-1 as such in RNA-seq experiments and reporter 

assays. These experiments will not only reveal whether rhythmic activity of GRH-1 is required for its 

function, but also provide further insight into its molecular function. Additionally, these experiments will 

allow quantitative characterization of GRH-1 and facilitate mathematical modeling, which will help to 

better understand the dynamic functions of GRH-1 and how GRH-1 dynamics are regulated. Finally, 

screening for suppression or enhancement of the GRH-1 phenotype upon genome-wide mutagenesis will 

further aid the identification of the network that regulates its gene expression and its protein level activity. 

3.7.3 Autonomous or forced oscillator? 

Our observation that oscillations are absent in freshly hatched L1 larvae, dauer larvae and adults, suggest 

that the oscillator is quiescent. As discussed above, food may serve to initiate the oscillator. However, it 

remains unclear what mechanism ensures that the oscillator keeps running during development. Is the C. 

elegans oscillator an autonomous oscillator, similar to the circadian clock?  Or is it a forced oscillator, i.e. 

does it require a trigger for each cycle? Given that the state of the oscillator at the moment of onset in L1 
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and dauer exit resembles that of the oscillator directly after molting, it seems possible that food not only 

acts to initiate, but also to trigger oscillations in each cycle. Interestingly, a recent study found that the 

absence of food in L3 and L4 stage directly after the molt resulted in developmental arrest. These time 

points appeared to act as developmental checkpoints and progression through them is regulated by 

hormone signaling (Schindler et al., 2014). These checkpoints ensure that development can only proceed 

when sufficient resources are available. Thus, a role of food-mediated hormone signaling in triggering the 

oscillator after molt exit, similar to the onset of oscillations in freshly hatched L1 and dauer animals seems 

likely. Alternatively, an autonomous oscillator might run continuously, and the absence of food might 

actively inhibit the oscillator. This mechanism would prevent that development continues when 

insufficient resources are available. Genetic perturbation, e.g. mis-expression, of the players in this 

pathway (Schindler et al., 2014), or induced starvation during the intermolt followed by mRNA sequencing 

will help to understand whether and how food triggers or inhibits the oscillator.  

3.7.4 What is the topology of the oscillator at the molecular level? 

Although our functional dissection of the C. elegans oscillator provides insight into its properties and 

putative components, the exact molecular architecture remains to be established. Our data on GRH-1 and 

BLMP-1 is consistent with the hypothesis that the oscillator controls different but synchronized 

developmental processes. On the one hand, the oscillator might comprise sub-oscillators, which are 

coupled but drive different processes. On the other hand, only one core oscillator might exist, which 

regulates well-separated but synchronized outputs. The topology of sub-oscillators we propose here 

shares similarities with that observed in somitogenesis, in which the oscillators of the Notch, FGF and Wnt 

signaling pathways are coupled. It is worth noting that it is unclear whether they represent the core 

oscillator or act as output of a core oscillator that remains to be identified (Dequéant and Pourquié, 2008). 

Although it may be difficult to directly infer the topology from mutants in which subsets of genes are 

affected, we propose GRH-1, for reasons mentioned in section 3.6.1, as a good starting point for dissecting 

the C. elegans oscillator. We expect that unraveling the molecular mechanisms important for the function 

of GRH-1 will also provide insight into the overall architecture of the oscillator.  

It is likely that the complexity of the oscillators’ architecture arises from the fact that multiple events need 

to be synchronized during C. elegans development. These events involve different repetitive processes, 

such as seam cell divisions and molting, which appear to be driven by different mechanisms (Ruaud and 

Bessereau, 2006), providing further support for the existence of coupled sub-oscillators or coupled 

outputs. Additionally, stage-specific events, such as the larval-to-adult transition, take place during C. 
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elegans development. The larval-to-adult transition in the skin of C. elegans is characterized by cessation 

of the molting cycle, seam cell exit of the cell cycle, terminal differentiation of the seam cells and synthesis 

of an adult instead of a larval cuticle (Sulston and Horvitz, 1977). To ensure that the repetitive 

developmental events cease upon adulthood, time-keeping mechanisms of rhythmic and linear processes 

need to be coordinated. At what level the linear timer interacts with the oscillator and how the linear 

timer ‘knows’ when to stop the activity of the oscillator is currently unknown.  

3.7.5 What is the topology of the oscillator at the tissue level? 

Above we focused on the molecular topology of the oscillator. However, the architecture of the oscillator 

at the tissue level also remains unclear. Given that mRNA-sequencing was performed on populations of 

whole animals, our sequencing data might not only be affected by population asynchrony, but also mask 

distinct dynamics between different tissues. We previously observed strong enrichment of the 

hypodermis for the expression of oscillating genes (Hendriks et al., 2014) and the transcriptional reporters 

we imaged so far are predominantly, but not exclusively expressed in the hypodermal cells (Meeuse et 

al., 2019, GRH-1 manuscript, Yannick Hauser unpublished). Hence, oscillations on the whole animal level 

might be dominated by hypodermal expression. Moreover, mRNA transcripts may oscillate with similar 

amplitudes but out of phase in different tissues, resulting in a composite phase at the whole animal level. 

Therefore, we might have misinterpreted the peak-phases and amplitudes. Finally, if oscillations were to 

oscillate in antiphase from one tissue to the other, the expression in different tissues could cancel each 

other out, and thus, we might have underestimated the extent of oscillations. Single cell sequencing will 

facilitate the identification of aberrant dynamics in tissues and provide insight into the tissue-level 

architecture of the oscillator. 

The core of the circadian oscillator is shared among tissues, but the output is tissue-specific (Zhang et al., 

2014). In C. elegans, it is unknown whether the same oscillator exists across different tissues and whether 

it drives the same or a tissue-specific output. Alternatively, it remains possible that different oscillators 

act in different tissues. Hence, tissue specific depletion of the components of the oscillator will provide 

insight into their relevance and functioning in different tissues. In any case, oscillations in different tissues 

must be synchronized to provide robust control over animal level processes, such as molting. In the 

circadian clock, entrainment of peripheral clocks involves neural control, hormonal control, temperature 

and local cues such as feeding and activity (Mohawk et al., 2012). Similarly and considering that they have 

been implicated in molting (reviewed in Lažetić and Fay, 2017a), nuclear hormone receptors and 

hedgehog signaling might be candidates for synchronizing oscillations across tissues in C. elegans.  
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4. Methods 

ChIP-seq  

For RNA polymerase II ChIP-sequencing, synchronized L1 wild-type (N2) worms were grown at 25°C on XL 

plates containing 2% NGM and concentrated OP50. Worms were collected hourly from 22 hrs (90.000 

worms) until 33 hrs (46.000 worms) after plating. RNA polymerase II ChIP was performed as previously 

described (Miki et al., 2017). In short, worms were incubated in M9 with 2% Formaldehyde for 30 minutes 

at room temperature with gentle agitation to allow protein-DNA crosslinking. Worms were lysed with 

beads using the FastPrep-24 5G machine (MP Biomedicals, settings: 8 m/sec, 30 sec on, 90 sec off, 5 

cycles). Lysates were sonicated using the Bioruptor Plus Sonication system (Diagenode, settings: 30 sec 

on, 30 sec off, 20 cycles). 250 μg sonicated chromatin was incubated with 10 μg mouse anti-RNA 

polymerase II CTD antibody (8WG16, Abcam) at 4°C for 2 hours with gentle agitation and subsequently 

with 45 μL Dynabeads Protein G (Thermo Fisher Scientific) at 4°C overnight with gentle agitation. Eluate 

was treated with 0.13 ug/uL RNase and 1 ug/uL Proteinase K. ChIP-seq libraries were prepared using 

NEBNext Ultra DNA Library Prep Kit for Illumina (New England Biolabs) and sequenced using the HiSeq 50 

cycle single-end reads protocol on the HiSeq 2500 system. 

Sequencing reads were mapped to the ce10 C. elegans genome using the qAlign function (default 

parameters, Rbowtie aligner version 1.12.0) from the QuasR package in R (Au et al., 2010; Gaidatzis et al., 

2015; Kim et al., 2015; Langmead et al., 2009) (version 1.12.0). ChIP-seq counts within 1-kb windows, i.e. 

-500 bp to +500 bp around the annotated TSS (using WS220/ce10 annotations), were scaled by total 

mapped library size per sample and log2-transformed after adding a pseudocount of 8. Genes with a mean 

scaled TSS window count of less than 8 across all samples were excluded. Log2-transformed counts were 

then quantile-normalized using the normalize.quantiles function from the preprocessCore library in R 

(Bolstad et al., 2003). Finally, quantile-normalized values were row-centered. 

For total RNA sequencing, worms were collected hourly from 22 hrs (10.000 worms) until 33 hrs (5.000 

worms) after plating from the same plates as for ChIP sequencing. RNA was extracted in Tri Reagent and 

DNase treated as described previously (Hendriks et al., 2014). Total RNA-seq libraries were prepared using 

Total RNA-seq ScriptSeq Library Prep Kit for Illumina (New England Biolabs) and sequenced using the HiSeq 

50 cycle single-end reads protocol on the HiSeq 2500 system. 

RNA-seq data were mapped to the C. elegans genome (ce10) using the qAlign function 

(splicedAlignment=TRUE, Rbowtie aligner version 1.16.0) from the QuasR package in R (Au et al., 2010; 

Gaidatzis et al., 2015; Kim et al., 2015; Langmead et al., 2009) (version 1.16.0). Exonic and intronic 
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expression was quantified using qCount function from the QuasR package in R. For exonic expression, the 

exon annotation of the ce10 assembly (version WS220) was used. Genomic positions of introns were 

determined by gene body position (start of the first exon until end of the last exon) minus position of 

exons, which were extended with 10 nucleotides to ensure that reads close to the boundaries were not 

included in intronic counts. Counts were scaled by total mapped library size for each sample. A 

pseudocount of 8 was added and counts were log2-transformed. Lowly expressed genes were excluded 

(maximum log2-transformed exonic expression - (log2(gene width) - mean(log2(gene width))) ≤ 6). Of the 

previously annotated ‘high-confidence-oscillating’ genes (n=3739) (Meeuse et al., 2019), 2106 genes were 

sufficiently expressed on the exonic level. A reduction in the number of oscillating genes is likely due to 

reduced number of mapped reads. Oscillating genes were sorted by phase and mean-normalized 

expression was plotted in heatmaps. 

Hidden Semi Markov Model 

To determine the positions of the molts in the luminescence traces, we constructed a hidden semi-Markov 

model (HSMM) using the R package mhsmm (O’Connell and Højsgaard, 2011) (version 0.4.16). Before 

applying the model, the raw time course traces were processed as follows: First, we log2 transformed the 

raw intensity values after adding a pseudocount of 16 (y=log2(x+16)). Then we determined the noise floor 

of each experiment by calculating the median intensity of the first 20 time points (before the hatching). 

This was used to extend every trace at the beginning by 20 time points to ensure the correct detection of 

the hatch. After this, we performed a lowess regression with a smoother span of 0.2 using the R function 

‘lowess’ from the package ‘gplots’ (Warnes et al.) to remove the overall trend of the traces. The resulting 

traces were used as an input to the HSMM. The HSMM was comprised of a total of 11 states connected 

in a linear fashion: B, I1, M1, I2, M2, I3, M3, I4, M4, A, T. B refers to the section before the hatch, I refers 

to intermolts, M refers to molts, A refers to adulthood and T refers to the termination state. T is a dummy 

state that ensures that the HSMM walks through the full time course until the end. This state is set to emit 

a very high value of 10, which is outside of the range of the data. By extending each trace by 100 time 

points with a value of 10, the HSMM is forced at the end to enter state 11 and emit the high values 

observed in T. The various parameters required by the HSMM were manually extracted from a set of 15 

wildtype traces. The wildtype traces were collected from 3 independent experiments and molts were 

manually annotated using a graphical user interphase in MATLAB (Meeuse et al., 2019). The means of the 

emission distributions were set to -0.5(B), 0.3(I), -2.0(M), 0.3(A) and 10(T). The standard deviations for the 

emission distributions were all set to 0.2. We used Poisson-shift as sojourn distributions with lambdas of 

50(B), 40(I1), 2(M), 30(I2-I4), 30(A), 70(T) and shifts of 21(B), 50(I1), 5(M), 30(I2-I4), 30(A), 30(T). We 
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determined the most likely sequence of states given the observed data using the viterbi algorithm 

implemented in the function predict from the package ‘raster’ (Hijmans, 2019) in R. To investigate 

whether the states were properly annotated, we interpolated the log2-transformed luminescence in 

annotated state for each worm to the corresponding state of a ‘perfect’ worm, i.e. a combination of state 

durations with the highest probability, using the function ‘approx’ from the package ‘stats’ (R Core Team) 

in R. We visualized alignment performance by plotting the interpolated log2-transformed luminescence in 

heatmaps. To quantify the state durations, we excluded conditions for which molts could not be reliably 

annotated by visual inspection of the heatmap and traces with mean log2-transformed luminescence ≤ 

5.8, referring to empty wells. Significant differences between WT and RNAi-deficient animals were 

calculated using t.test(paired=TRUE) from the package ‘stats’ (R Core Team) in R.   

Transgenic worm strains 

Luciferase strains 

HW1939: EG6699, xeSi296 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] II (Meeuse et al., 2019) 

HW2150: EG6699, xeSi296 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] II; rde-1(ne219) V (this study) 

HW1949: EG8080, xeSi301 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] III (this study) 

HW1993: EG8081, xeSi312 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] IV (this study) 

AID strains 

KRY85: ieSi57 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] II; nhr-25(nhr-25::degron-TEV-3xFLAG) 

X (Zhang et al., 2015) 

HW1981: ieSi57 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] II; EG8080, xeSi301 [Peft-

3::luc::gfp::unc-54 3'UTR, unc-119(+)] III; nhr-25(nhr-25::degron-TEV-3xFLAG) X (this study) 

HW2079: EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (GRH-1 manuscript) 

HW2566: myrf-1[(xe161)myrf-1::degron::3xFLAG] II (this study) 

HW2634: myrf-1[(xe161)myrf-1::degron::3xFLAG] II; EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, 

cb-unc-119(+)] III; EG8081, xeSi312 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] IV (this study) 

HW2078: blmp-1[xe80(blmp-1::degron)] I (this study) 
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HW2120: blmp-1[xe80(blmp-1::degron)] I; EG6699, xeSi296 [Peft-3::luc::gfp::unc-54 3'UTR, unc-119(+)] II; 

EG8080, xeSi376 [Peft-3::TIR1::mRuby::unc-54 3’UTR, cb-unc-119(+)] III (this study) 

Generation of transgenic worm strains 

Luciferase strains HW1949 and HW1993 were generated by single copy integration of the transgene into 

universal MosSCI sites in EG8080 and EG8081 animals respectively, by injecting pMM002 as previously 

described (Meeuse et al., 2019). 

HW2079 animals were generated as described in the GRH-1 manuscript.  

Endogenous degron-3XFLAG tagging of myrf-1 and blmp-1 by CRISPR/Cas9-mediated editing was 

performed as for grh-1 (GRH-1 manuscript).  

For myrf-1, we used the following hybridized primers for inserting the sgRNA sequence into pIK198 (Katic 

et al., 2015): 

MM124  5’ AATTGCAAATCTAAATGTTT GGATTGACTGCAGCAGTTCC GTTTAAGAGCTATGCTGGAA 3’ 

MM125  5’ TTCCAGCATAGCTCTTAAAC GGAACTGCTGCAGTCAATCC AAACATTTAGATTTGCAATT 3’ 

A degron-linker-3XFLAG-linker cassette was synthesized as gBlocks® Gene Fragments (Integrated DNA 

Technologies) with 50 bp homology arms to the myrf-1 locus right after aa171, similar to the position 

described before (Meng et al., 2017) :  

5’ 

AAATGCAAAACATGAATGCTCCACAATTCTGGAGCCAACCGGGAACTGCTatgcctaaagatccagccaaacctccggccaa

ggcacaagttgtgggatggccaccggtgagatcataccggaagaacgtgatggtttcctgccaaaaatcaagcggtggcccggaggcggcggcgttc

gtgaagAGTACCTCAGGCGGCTCGGGTGGTACTGGCGGCAGCGACTACAAAGACCATGACGGTGATTATAAAGATC

ATGACATCGATTACAAGGATGACGATGACAAGAGTACTAGCGGTGGCAGTGGAGGTACCGGCGGAAGCGCAGTC

AATCAACCTACAAACACCCTGGCTCAACTCAACCTTTTCAACAT 3’.  

For blmp-1, the sgRNA sequence: 5’ gccgaagagaacggtgccgg 3’ was cloned into pIK198 (by Iskra Katic). A 

degron cassette was synthesized as gBlocks® Gene Fragments (Integrated DNA Technologies) with 65 bp 

homology arms to the blmp-1 locus, 30 bp downstream of the ATG start codon. 

5’ 

ttcgatctcattttaaacaaaacctgtaaaaaatgGGTCAAGGAAGTGGGGATGACGGTGTTCCGatgcctaaagatccagccaaacc

tccggccaaggcacaagttgtgggatggccaccggtgagatcataccggaagaacgtgatggtttcctgccaaaaatcaagcggtggcccggaggcg
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gcggcgttcgtgaagCCGGCACCGTTCTCTTCGGCTGCTGCGGCAGCTCACTCACCACCTCATTCTCCCCTTTCTGTCGG 

3’ 

Wildtype animals were injected with constructs as described in the GRH-1 manuscript and genome editing 

was confirmed by sequencing. 

blmp-1::degron time course 

Synchronized L1 HW2120 animals were cultured in liquid medium (S-medium [1L S Basal [5.85 g NaCl, 1 g 

K2 HPO4, 6 g KH2PO4, 1 mL cholesterol (5 mg/ml in ethanol), in H2O to 1L] , 10 mL 1 M potassium citrate 

pH 6, 10 mL trace metals solution [1.86 g disodium EDTA, 0.69 g FeSO4 •7 H2O, 0.2 g MnCl2•4 H2O, 0.29 g 

ZnSO4 •7 H2O, 0.025 g CuSO4 •5 H2O, in H2O to 1L], 3 ml 1 M CaCl2, 3 ml 1 M MgSO4] supplemented with 

OP50, OD600 = 3.5, 1000 worms/mL). Animals were grown in a temperature controlled incubator at 20°C, 

shaking at 240 rpm. After 20 hours, we harvested ~500 animals for RNA-seq. Subsequently, the culture 

was split in three separate cultures and 3.9 μM auxin, 250 μM auxin, or 0.25% ethanol (vehicle) was added. 

~500 animals were harvested every 30 minutes from 20.5 hours until 49.5 hours. Animals were washed 

three times with M9 buffer and 200 μL Norgen lysis buffer (Norgen Single cell RNA purification kit, Cat. 

51800) was added, separated over two 1.5 mL Eppendorf tubes and stored at -80 degree for further 

processing. 

RNA isolation 

To extract RNA, 5 freeze-thaw cycles were performed. RNA was isolated using the Norgen Single cell RNA 

purification kit (Cat. 51800, starting from step 2). Extracted RNA was DNase treated on columns (according 

to Norgen kit) and libraries were prepared using the TruSeq Illumina mRNA-seq (stranded – high input) 

protocol. Libraries were sequenced using the Hiseq50 Cycle Single-end reads protocol on the HiSeq2500.  

Processing of RNA-seq data 

The RNA-seq samples were mapped to the C. elegans genome (ce10) with the R package QuasR (Au et al., 

2010; Gaidatzis et al., 2015; Kim et al., 2015; Langmead et al., 2009) using the spliced alignment algorithm 

SpliceMap (Au et al., 2010). The command used to perform the alignments was "proj <- 

qAlign("samples.txt","BSgenome.Celegans.UCSC.ce10",splicedAlignment=TRUE)". The command used to 

create the expression count table was qCount(proj,exons,orientation="opposite"). For gene 

quantification, gene annotation from WormBase was used (WS220). To normalize for sequencing depth, 

each sample was divided by the total number of reads and multiplied by 1/4th of the average library size. 

This reduction by 1/4 was done to account for over-amplification observed in the data. The data was 

produced in two batches, the first one containing time points 20h-35.5h and the second one containing 
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time points 34h-49.5h. The time points 34h, 34.5h, 35h and 35.h were profiled in both batches and were 

used to fuse the two datasets into a single one. To do so, we first calculated the average log2 expression 

level of those common time points in the three conditions as well as for the two batches separately. 

Comparing the results from the two batches (from common time points) allowed us to calculate gene 

specific fold-changes, representing the differences between the batches caused by technical biases. We 

then corrected the original expression levels by adding half or the correction amount on the first batch 

and the other half on the second batch. This resulted in a configuration where the average expression 

level for each gene of the common time points in the first batch was identical to average expression level 

for each gene in the second batch. This correction was performed for the three conditions separately. This 

resulted in a batch-corrected expression count table that was further log2 transformed after the addition 

of a pseudocount of 8 in order to minimize large changes in expression caused by low count numbers.  

The differential expression analysis was performed as described in the GRH-1 manuscript. In short, the 

fold change was calculated between conditions over time. The fold change at the first time point t=20.5h 

was used as null distribution and its empirical cumulative distribution function, 𝐹𝑛̂(𝑥), was calculated 

using the function ‘ecdf’ of the package ‘stats’ in R (version 3.6.1). The probability of observing a fold 

change at any given time larger than the fold change under the null distribution equals 1 − 𝐹𝑛̂(𝑥). We 

classified genes as significantly changing if the probability of the fold change of at least three time points 

was less than 10-3. 

Cosine fitting was performed using a linear model with cos(ωt) and sin(ωt) as regressors, as described in 

(Meeuse et al., 2019). The period of the cosine that fits the data best was determined by fitting a cosine 

to the data for each of the periods 9, 9.5, 10, 10.25, 10.5, 10.75, 11 and 11.5 hours. A minimum in the 

median squared error was found for 10.5 hours, and hence this period was used for cosine fitting. The 

coefficients of linear model with their corresponding standard errors were propagated using the function 

‘propagate’ of the package ‘propagate’ (Spiess, 2018) using the function atan2(B++aux,A++aux) – atan2(B-aux,A-

aux), which represents the phase shift between ++aux and –aux conditions. A and B are the coefficients of 

the cosine and the sine respectively. Genes were classified as significant if the obtained 99% confidence 

interval did not include 0 and the phase shift was bigger than 10% of the period (36°). 
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5. Supplement 

Table S1: p-values of molt, intermolt and larval stage durations (Figure 2.11F,G,H) 

 M1 M2 M3 M4 I1 I2 I3 I4 L1 L2 L3 L4 

61 nM auxin 5.86E-01 2.16E-01 9.28E-04 1.87E-01 1.92E-03 2.33E-01 1.07E-02 2.08E-01 1.59E-03 1.83E-01 1.46E-01 5.29E-01 

244 nM auxin 1.93E-01 8.09E-03 8.04E-03 1.47E-08 1.04E-01 7.19E-01 3.71E-05 3.77E-04 4.58E-02 2.28E-01 9.57E-03 6.04E-01 

977 nM auxin 1.99E-04 4.51E-07 7.02E-05 1.43E-05 3.54E-03 9.21E-01 1.65E-03 1.46E-05 1.14E-03 1.85E-01 5.97E-02 1.54E-02 

3.9 μM auxin 8.67E-05 1.41E-06 1.71E-06 1.25E-10 2.94E-01 4.32E-01 3.55E-03 6.03E-03 1.58E-01 4.92E-01 2.51E-01 2.49E-01 

15.6 μM auxin 3.23E-05 2.01E-08 1.47E-06 4.27E-18 5.84E-01 9.28E-01 5.09E-01 6.12E-04 2.28E-01 9.16E-02 5.17E-01 8.37E-02 

62.5 μM auxin 8.78E-08 1.64E-09 4.28E-11 4.95E-05 5.85E-02 9.71E-03 1.82E-01 5.80E-01 9.02E-03 4.53E-05 7.37E-04 3.54E-04 

250 μM auxin 8.35E-14 8.68E-16 2.70E-16 1.29E-12 1.70E-04 3.13E-04 1.40E-04 1.39E-02 2.19E-06 6.07E-07 1.30E-06 7.28E-07 

1 mM auxin 9.35E-18 2.43E-15 1.40E-17 2.58E-08 5.26E-03 1.15E-14 6.52E-11 6.81E-04 3.31E-06 3.93E-19 5.56E-17 1.13E-07 

 

Table S2: p-values of median luminescence intensity (Figure 2.11I) 

 M1 M2 M3 M4 

61 nM auxin 4.45E-02 9.14E-01 6.38E-03 4.07E-01 

244 nM auxin 3.48E-02 1.16E-01 3.20E-03 1.05E-02 

977 nM auxin 1.08E-01 3.45E-04 3.90E-06 1.76E-03 

3.9 μM auxin 6.14E-02 8.82E-05 9.53E-05 1.90E-09 

15.6 μM auxin 1.81E-01 2.69E-04 3.75E-08 1.78E-12 

62.5 μM auxin 9.88E-02 3.96E-05 2.93E-08 5.57E-17 

250 μM auxin 2.07E-01 2.08E-04 4.45E-08 1.75E-11 

1 mM auxin 7.70E-02 2.79E-06 4.62E-06 1.26E-13 
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Table S3: GO-term analysis of significantly changing oscillating genes identified by ‘expression fold 

change’ (Figure 2.14) and ‘cosine fitting’ (Figure 2.15) methods 

GO biological process complete 
total # 
genes in 
GO term 

# hits in 
GO term 

expected 
Fold 
Enrichment 

raw P 
value 

FDR 

cuticle development involved in collagen and cuticulin-based 
cuticle molting cycle 

34 10 1.43 6.98 7.91E-06 1.45E-03 

cuticle development 54 13 2.28 5.71 2.38E-06 5.31E-04 

collagen and cuticulin-based cuticle development 50 12 2.11 5.69 5.96E-06 1.16E-03 

molting cycle 113 27 4.76 5.67 1.17E-11 3.64E-08 

molting cycle, collagen and cuticulin-based cuticle 110 26 4.64 5.61 3.44E-11 7.17E-08 

extracellular matrix organization 61 14 2.57 5.44 1.60E-06 3.83E-04 

extracellular structure organization 63 14 2.66 5.27 2.22E-06 5.13E-04 

xenobiotic metabolic process 49 9 2.07 4.36 5.00E-04 4.46E-02 

cellular response to xenobiotic stimulus 49 9 2.07 4.36 5.00E-04 4.40E-02 

response to xenobiotic stimulus 50 9 2.11 4.27 5.69E-04 4.93E-02 

defense response to other organism 291 42 12.27 3.42 6.63E-11 1.04E-07 

response to external biotic stimulus 293 42 12.35 3.4 8.03E-11 1.00E-07 

response to other organism 293 42 12.35 3.4 8.03E-11 8.36E-08 

response to biotic stimulus 293 42 12.35 3.4 8.03E-11 7.16E-08 

defense response 296 42 12.48 3.37 1.07E-10 7.40E-08 

innate immune response 223 30 9.4 3.19 1.42E-07 4.23E-05 

immune response 225 30 9.49 3.16 1.69E-07 4.81E-05 

immune system process 230 30 9.7 3.09 2.59E-07 6.75E-05 

endoplasmic reticulum unfolded protein response 157 20 6.62 3.02 3.39E-05 5.17E-03 

response to unfolded protein 181 22 7.63 2.88 2.69E-05 4.43E-03 

cellular response to unfolded protein 177 21 7.46 2.81 5.59E-05 7.94E-03 

cellular response to topologically incorrect protein 188 21 7.93 2.65 1.22E-04 1.52E-02 

response to topologically incorrect protein 197 22 8.31 2.65 8.50E-05 1.11E-02 

response to endoplasmic reticulum stress 193 21 8.14 2.58 1.70E-04 2.04E-02 

response to stress 965 81 40.69 1.99 1.80E-08 7.49E-06 

response to external stimulus 573 46 24.16 1.9 7.11E-05 9.87E-03 

cellular response to chemical stimulus 495 39 20.87 1.87 4.76E-04 4.31E-02 

multi-organism process 589 45 24.84 1.81 2.92E-04 2.85E-02 

 

Analysis Type: PANTHER Overrepresentation Test (Released 20190711) 

Annotation Version and Release Date: GO Ontology database Released 2019-07-03 

GO biological process complete 
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Figure S1: Related to figure 2.9 – Completion of molts, lengthening of stage durations and cuticle defects in high 
auxin concentration range 

A, Quantification of the last observed molt in peft-3::luc (HW1949) animals treated with mock RNAi or nhr-25 RNAi, 
and peft-3::TIR1; peft-3::luc, nhr-25::degron (HW1981) animals treated with the indicated auxin concentrations. 

B, Quantification of intermolt (top) and molt (bottom) durations in animals from A. Animals that did not complete 4 
molts were excluded. Significant differences for nhr-25(RNAi) are relative to mock RNAi. Significant differences for 
auxin concentrations are relative to vehicle.  

C, Quantification of median luminescence in log10 during the molt of animals in C. Significant differences for nhr-
25(RNAi) are relative to mock RNAi. Significant differences for auxin concentrations are relative to vehicle.  

P-values were determined by Welch two-sample, two-sided t-test. * p<0.05, ** p<0.01, *** p<0.001 
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Figure S2: Related to figure 2.10 - Lengthening of larval development and cuticle integrity are dependent on the 
onset of NHR-25 degradation in L3 stage 

A, Quantification of intermolt and molt durations over time of auxin addition relative to time of M3 entry. Animals 
that receive auxin in L3 stage from Figure 2.10B are shown. 

B, Quantification of median luminescence during the molt over time of auxin addition relative to time of M3 entry. 
Animals that receive auxin in L3 stage from Figure 2.10B are shown. 
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Figure S3: Related to Figure 2.11 - Lengthening of molts in blmp-1(RNAi) animals  

Replicate experiments of the one shown in Figure 2.11A-E. Duration of molts (A,D), intermolts (B,E) and larval stages 
(C,F) for indicated RNAi conditions. Significant differences between mock RNAi and blmp-1(RNAi) are indicated (* 
P<0.05, ** P<0.01, *** P<0.001, two-sided two-sample t-test) 
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Figure S4: Related to figure 2.12 - Lengthening of molts and cuticle defects are dependent on the onset of BLMP-
1 depletion in L3 stage 

A, Heatmaps showing trend-corrected luminescence (Lum.) traces of blmp-1::degron; peft-3::luc, peft-3::TIR1 
animals (HW2120); one animal per horizontal line. Vehicle (0.25% ethanol, left) or 250 μM auxin (right) were added 
at t=32h (dashed line). t=0 hours corresponds to start of the assay. Embryos hatch at different time points and traces 
are sorted by entry into M3. 

B, Duration of I3, M3, I4 and M4 plotted over time at which single animals enter M3 in vehicle and auxin treated 
animals at t=32h (dashed line) shown in (A).  

C, Quantification of median luminescence during the molt in log10 over time of auxin addition relative to time of M3 
entry. Data for molt 3 and molt 4 is shown.  
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Figure S5: Related to figure 2.13 - Gene expression changes at different time points show distinct distributions 

A, Scatterplot showing gene expression of ++ auxin (250 μM) over – auxin (vehicle) for indicated time points. 

B, QQ-plot showing quantiles of expression fold change at t = 20.5 hours over t = 21 hours. Reference line (red) 
indicates equal distribution.    
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Figure S6: Related to Figure 2.14 - ‘Expression fold change’ method enriches for oscillating genes with high 
amplitudes 

A, Heatmap of fold change between gene expression in ++ auxin (250 μM) and in - auxin (vehicle) conditions for 
significantly changing oscillating genes (n=354). Genes are sorted by peak phase (Meeuse et al., 2019).  

B, Gene expression heatmaps in auxin-treated (++ auxin) and control (- auxin) animals for significantly changing 
oscillating genes (n=354). Gene expression was mean-centered over both conditions, sorted according to A and 
plotted in log2. 

C, Heatmap of fold change between gene expression in ++ auxin (250 μM) and in - auxin (vehicle) conditions for ‘not-
significantly’ changing oscillating genes (n=3385). Genes are sorted by peak phase (Meeuse et al., 2019). 

D, Gene expression heatmaps in auxin-treated (++ auxin) and control (- auxin) animals for ‘not-significantly’ changing 
oscillating genes (n=3385). Gene expression was mean-centered over both conditions, sorted according to C and 
plotted in log2. 

E, Scatterplot showing the amplitude of gene expression oscillations in auxin-treated (++ auxin) over control (-auxin) 
animals for significantly changing oscillating genes and not-significantly changing oscillating genes. Amplitudes were 
determined by cosine fitting in Figure 2.15. 

F, Scatterplot showing the gene expression in auxin-treated (++ auxin) over control (-auxin) animals for significantly 
changing oscillating genes and not-significantly changing oscillating genes.  
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