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Abstract 

The formation of ecotypes has been invoked as an important driver of postglacial 

biodiversity, because many species colonized heterogeneous habitats and experienced 

divergent selection. Ecotype formation has been predominantly studied in outcrossing 

taxa, while far less attention has been paid to the implications of mating system shifts. 
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Here we addressed whether substrate-related ecotypes exist in selfing and outcrossing 

populations of Arabidopsis lyrata subsp. lyrata and whether the genomic footprint 

differs between mating systems. The North American sub-species colonized both rocky 

and sandy habitats during postglacial range expansion, and shifted the mating system 

from predominantly outcrossing to predominantly selfing in a number of regions. We 

performed an association study on pooled whole-genome sequence data of 20 selfing or 

outcrossing populations, which suggested genes related to substrate adaptation. 

Motivated by enriched gene ontology terms, we compared root growth between plants 

from the two substrates in a common environment and found that plants originating 

from sand grew roots faster and produced more side-roots, independent of mating 

system. Furthermore, single nucleotide polymorphisms associated with substrate-

related ecotypes were more clustered among selfing populations. Our study provides 

evidence for substrate-related ecotypes in A. lyrata, and divergence in the genomic 

footprint between mating systems. The latter is the likely result of selfing populations 

having experienced divergent selection on larger genomic regions due to higher 

genome-wide linkage disequilibrium. 

 

Key words: Divergent natural selection, genome structure, ecological speciation, linkage 

disequilibrium, self-incompatibility, soil substrate. 

Introduction 

Ecological specialization as a result of divergent selection between environments has 

the potential to rapidly generate distinct ecotypes and eventually separate species 

(Schluter 2000; Nosil 2012; Seehausen et al. 2014). Ecotype formation has been 
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commonly reported in species that underwent postglacial range expansions following 

the last Pleistocene glaciation cycle, including species of vertebrates (Cutter & Gray 

2016), invertebrates (Forbes et al. 2017) and plants (Baack et al. 2015). In plants, 

ecotypes often evolve as a consequence of the colonization of and subsequent 

adaptation to different substrates (e.g. Turner et al. 2010; Andrew et al. 2013; Arnold et 

al. 2016; Gould et al. 2017). Recent research focused on understanding the genomic 

underpinning of such substrate-related ecotypes, with an emphasis on outcrossing taxa 

(Turner et al. 2010; Andrew et al. 2013; Arnold et al. 2016; Gould et al. 2017). However, 

mating system is predicted to have a strong impact on the genetics of ecotype formation 

as well as the rate of evolution (Hartfield et al. 2017). To understand the potential 

impact of the mating system on the evolution of ecotypes, we made use of a unique 

system in which postglacial range expansion was associated both with independent 

shifts in the mating system and as we found here – adaptation to different substrates. 

 Theory and empirical studies suggest that at an early stage, ecotypes are often 

distinct by only few adaptive alleles (Feder et al. 2012b; Seehausen et al. 2014). These 

may rise to high frequency or even become fixed. In contrast, at neutral regions of the 

genome, gene flow may still be abundant and genetic divergence therefore limited 

(Feder et al. 2012b; Seehausen et al. 2014). Because gene flow can break up genomic 

regions of adaptive genetic differentiation, mechanisms that shield part of the genome 

from recombination are important to further stabilize ecotypes (Butlin 2005; 

Kirkpatrick & Barton 2006). Changes in the genome structure such as inversions or the 

rearrangements of chromosomes often represent such mechanisms (Kirkpatrick & 

Barton 2006; Demuth et al. 2014; Hooper & Price 2017; Lucek 2018). A less frequently 

studied mechanism that can also reduce gene flow is the shift in mating system from 
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obligate outcrossing to self-compatibility and selfing (Hartfield et al. 2017). Self-

incompatibility is widespread among hermaphroditic flowering plants and prevents 

selfing, but self-compatibility has repeatedly evolved from outcrossing ancestors in 

many flowering plant families (Igic et al. 2008) as well as within species (Goodwillie et 

al. 2005; Willi & Määttänen 2010). 

 Selfing per se has a couple of implications for adaptation and thus the potential 

for ecotypes to evolve (Hartfield et al. 2017): Selfing decreases the drift-effective 

population size (Pollak 1987), and as a consequence leads to a reduction in genetic 

variation and an increase in the frequency of slightly deleterious alleles (Wright 1931), 

both of which may lower the adaptive potential within selfing populations. Another 

effect of selfing is that effective recombination declines and linkage disequilibrium 

generally increases across the genome (Nordborg 2000; Slatkin 2008). Because of 

increased linkage disequilibrium, directional selection in the area of a target region may 

affect a larger part of the genome for selfing than for outcrossing populations and may 

promote the buildup of regions under divergent selection (Gordo & Charlesworth 

2001). Under polygenic adaptation, initial responses to selection can moreover occur 

more rapidly in selfing compared to outcrossing populations because of the initial 

conversion of dominance and epistatic variation into additive genetic variation 

(Cockerham 1984; Hartfield et al. 2017). Long-term responses to selection might, 

however, be compromised by a lack of available genetic variation (Noël et al. 2017; 

Hartfield et al. 2017).  

 We tested here for substrate-related ecotypes in Arabidopsis lyrata subsp. lyrata 

by a comparison of outcrossing and selfing populations growing on sand and rock 

substrates. The species is a short-lived perennial and hermaphroditic plant, and it is 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

closely related to the model species A. thaliana (Hohmann et al. 2014). Following the 

retreat of the glaciers starting about ~20’000 years ago, A. lyrata underwent a range 

expansion in North America (Griffin & Willi 2014; Willi et al. 2018) and colonized 

distinct substrates that can be broadly categorized as rock and sand (Willi & Määttänen 

2011; Figure 1, Table S1). Rocky substrates comprise for example bare mountaintops of 

the Appalachians, bare rocky shores of larger lakes and bare cliffs along rivers, while 

sandy sites include sand dunes on lakes, sand deposits along rivers and eroded 

sandstone. Along the postglacial range expansion, mating system shifts towards selfing 

occurred independently in several regions (Mable et al. 2005; Willi & Määttänen 2010), 

but particularly at the edges of the geographic distribution (Griffin & Willi 2014). The 

mating system of our studied populations was mainly inferred by multi-locus 

outcrossing rates based on progeny arrays; populations were considered as selfing if 

the outcrossing rate was ≤0.2 and as outcrossing if the rate was >0.8 (Willi & Määttänen 

2010; Foxe et al. 2010; Griffin & Willi 2014). The trait of self-incompatibility seems 

quite stable throughout the life of a plant in A. lyrata (Willi & Määttänen 2010). While 

populations may have been well connected in the past, ongoing gene flow seems to be 

restricted even among populations separated by a few hundred meters (Willi & 

Määttänen 2010; Foxe et al. 2010; Griffin & Willi 2014; Tables S2 & S2). 

 Here we assessed whether populations growing on rock or sand showed a 

genomic signature consistent with separate ecotypes in A. lyrata, while also assessing 

the impact of mating system shifts onto the genomics of such adaptation. We first 

performed a genome-wide association study (GWAS) for substrate type separately for 

selfing and outcrossing populations. Similar to other cases of substrate-related ecotypes 

in Arabidopsis, we expected a genetic basis for adaptation as opposed to plasticity 
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(Alcázar et al. 2012; Flood & Hancock 2017). We then tested whether there is a common 

genomic basis for adaptation to different substrates, i.e. on the SNP, gene or gene 

ontology level between mating system. Given that populations occur on ecologically 

similar substrates, we expected an overlap in outliers or the genes affected by them. 

Based on the aforementioned theoretical predictions, we also expected genome-wide 

LD to be increased among selfing populations. As a consequence, substrate dependent 

divergent selection may act along a wider range of the genome (Gordo & Charlesworth 

2001), resulting in a clustering of tightly linked GWAS outliers in regions under 

selection (Rincent et al. 2014) – a pattern that we subsequently tested for. Lastly, 

because gene ontology terms identified by our association study suggested phenotypic 

differentiation in root growth (see Results), we tested for phenotypic differentiation 

between individuals from either substrate by a common garden study on seed material 

from selfing and outcrossing populations.  

 

Material & Methods 

Sample collection & sequencing 

We used a subset of a previously published genomic dataset of population-based pool-

sequences (Pool-seq) from Willi et al. (2018; European Nucleotide Archive accession 

number PRJEB8335). In short, 20 A. lyrata populations growing on distinct substrates, 

broadly categorized as rock and sand (Willi & Määttänen 2011), were sampled during 

the reproductive season in 2007, 2011 or 2014 (Figure 1; Table S1). Whereas rock-

dwelling populations were collected in rock crevices or on rocky ledges (often growing 

on moss and lichens), sand-dwelling populations occurred on the shores of lakes and 
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rivers, eroded sandstone ridges or inland sand deposits. At each site, 25 flowering 

individuals were collected over a surface area of comparable size (about 450 m2). 

Census size was shown to be smaller in populations on rock compared to those on sand, 

but this difference did not translate into reduced genetic diversity and effective 

population size (Willi & Määttänen 2011). We included all (N=8) available selfing 

populations described in a previous study (Griffin & Willi 2014). Outcrossing 

populations (N=12) were selected such that we had pairs of populations from different 

substrates that were geographically and phylogenetically close (Willi et al. 2018) in 

order to increase the chance to detect SNPs associated with environment-dependent 

selection (Hoban et al. 2016). For each population DNA for all individuals was pooled 

into a single library, which was then paired-end sequenced for 100 bases (PE100) on 

four Illumina HiSeq2000 lanes, using one quarter of each lane (see Fracassetti et al. 

2015 for details). 

 

Data preparation 

We first trimmed the raw sequences for each population using trim-fastq.pl, which is 

part of the POPOOLATION 1.2.2 software package (Kofler et al. 2011a). We used a minimal 

base quality threshold of 20 and kept only reads ≥ 84bp. We subsequently mapped all 

retained reads against the A. lyrata reference genome v1.0 (Hu et al. 2011), which 

included the plastid as well as mitochondrial genomes of A. thaliana (Genbank 

accessions NC_000932 and NC_001284, respectively) using BWA-MEM 0.7.13 (Li 2013). 

We masked the centromeric regions as well as two regions on scaffold 2 (position 

ranges: 8’746’475-8’835’273 and 9’128’838-9’212’301), which share very high 

similarity with the A. thaliana chloroplast genome, suggesting an assembly error in the 
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A. lyrata reference genome. Only reads that mapped to scaffolds I-VIII, representing the 

eight chromosomes of A. lyrata were retained. We next used PICARD 2.1.1 

(http://broadinstitute.github.io/picard) to remove duplicate reads and SAMTOOLS 1.3.1 

(Li et al. 2009) to retain only properly paired reads with mapping quality over 20. 

 Using SAMTOOLS, we generated mpileup files for (i) outcrossing and selfing 

populations separately in order to increase the number of SNPs available for our 

subsequent analyses (see below) and (ii) all 20 populations combined (Figure 1, Table 

S1). We called SNPs using VARSCAN 2.4.1 (Koboldt et al. 2012), requiring a minimal read 

depth of 100 at a given position to make a call. Following Willi et al. (2018), we used a 

minimal variant allele frequency threshold of 0.03. From each VCF file we removed 

previously identified repeat sites in the A. lyrata genome (Fracassetti et al. 2015) with 

BEDTOOLS 2.26.0 (Quinlan & Hall 2010). We further filtered each VCF file with VCFTOOLS 

0.1.14, removing indels and keeping only biallelic SNP positions that had a depth of 100-

500, a minimal genotype quality of 28 and a minor allele frequency of 0.03, allowing a 

maximum of 25% missing data in each dataset. Lastly, SNPs with a strand bias of more 

than 90% were filtered out. This procedure resulted in three datasets comprising 

500’877, 437’228 and 156’024 polymorphic SNPs for outcrossing, selfing or all 

populations combined, respectively. 

 

Genome-wide association study 

To identify SNPs associated with substrate-dependent segregation, we performed a 

genome-wide association study (GWAS) using BAYPASS 2.1 (Gautier 2015). BAYPASS 

extends the approach of Coop et al. (2010) and Günther & Coop (2013) by estimating 
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and accounting for the hierarchical structure of populations using the (scaled) 

covariance matrix of population allele frequencies (Gautier 2015). We ran BAYPASS 

separately for five SNP datasets, considering (i) only outcrossing populations, (ii) only 

selfing populations, (iii) all 20 populations combined, and this combined dataset was 

also separately analyzed for (iv) outcrossing and (v) selfing populations. The combined 

dataset was established to verify results produced by (i) and (ii). Substrate type was 

treated as a binary variable in the GWAS. We used the auxiliary covariate model with 

default parameters and 5000 burn-in iterations in the MCMC chain, followed by 25’000 

iterations. To reduce artifacts due to potential variability between runs, we performed 

10 independent BAYPASS runs for each SNP dataset. We then calculated the average 

Bayes Factor (BF), expressed in deciban units (dB), for each SNP as a quantification of 

the degree of relationship between substrate type and the standardized allele 

frequency. Following the suggestions of Gautier (2015), all SNPs were included for each 

dataset. Outlier SNPs were defined as being the 1% SNPs with the highest average BF 

across all runs (i.e. 5008, 4372, 1560 SNPs, respectively, for the datasets of outcrossing, 

selfing or all populations combined).  

Outlier SNPs were analyzed for the number of genes they were positioned in. The 

number of overlapping outlier genes between the outcrossing and selfing datasets was 

tested for being lower or higher than expected by chance. This was done by a 

resampling analysis based on 10’000 iterations, where each time the same number of 

genes that were affected by outliers were drawn from the total pool of covered genes, 

calculating each time the overlap. We further employed a gene ontology (GO) 

enrichment analysis to identify the biological processes that genes containing at least 

one of the top 1% outlier SNPs were involved in. Enrichment analyses were restricted 
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to exon region and based on 10’000 randomization steps in R 3.3.1 (R Core Team 2016) 

using SNP2GO (Szkiba et al. 2014). We used the most recent annotation of A. lyrata 

(Rawat et al. 2015) and set a false discovery rate (FDR) < 0.05 for the GO enrichment 

tests. 

 

Verification of outlier SNPs by population-structure analyses 

Genetic differentiation between populations from different substrates is predicted to be 

higher at SNPs under putative substrate-associated selection than elsewhere in the 

genome (Nosil & Feder 2012), overcoming patterns of isolation-by-distance (IBD; Nosil 

et al. 2008). We tested this prediction by calculating pairwise distance matrices on 

locus-based FST-values between all populations using either all SNPs or the top 1% 

outliers of the genomic dataset comprising all 20 populations in POPOOLATION2 (Kofler et 

al. 2011b). We then tested for a pattern of IBD by correlating the genomic distance 

matrices with pairwise geographic distances (km) using a Mantel test. We further 

employed partial Mantel tests to assess the correlation between genetic distance and 

difference in substrates while controlling for geographic distance. To further assess if 

outliers were affected by demography, i.e. shifts in mating system, we performed partial 

Mantel tests between genetic distance and difference in mating system, while 

controlling for geographic distance. Significance levels were established using 100’000 

permutation steps in the R package VEGAN 2.4-5 (Oksanen et al. 2017). We also 

calculated FSTs between population pairs from different substrates using the large 

outcrossing and selfing datasets. Average FSTs across all outlier SNPs were then 

compared with an FST distribution based on 1000 random resampling steps, where each 
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time the same number of SNPs as outlier SNPs was drawn from the pool of non-outlier 

SNPs. 

To further confirm habitat-dependent genetic differentiation among our outlier 

SNPs, we performed a principal component (PC) analysis with PCADAPT (Luu et al. 2017), 

respectively, for outcrossing, selfing or all populations combined. In each case, we 

generated 25 genotypes for each population based on binomial random draws. To test 

for segregation between populations from rock and sand substrates along any of the 

two leading PC axes we next employed a linear model using the average PC scores per 

population.  

 

Distribution of outlier SNPs across the genome and linkage disequilibrium 

To test if the distribution of the top 1% outlier SNPs differed from the 

distribution of non-outliers, we calculated the distance between adjacent outlier SNPs 

for outcrossing and selfing populations as well as the combined dataset analyzed 

separately for outcrossing and selfing populations. We subsequently assigned the 

pairwise distances to two distance classes across 360’000 bps. In the absence of a 

genome-wide estimate of LD for A. lyrata, we chose distance classes to reflect estimates 

of twice the average LD across the genome of A. thaliana, i.e. 20kb (Kim et al. 2007) and 

40kb (Nordborg et al. 2002), respectively. We then compared the distribution of 

frequencies per distance class for outcrossing and selfing populations with a G-test. We 

further contrasted the distribution of these distances with a random null distribution 

for each dataset by sampling 10’000 times the same number of SNPs as outliers from 

the pool of non-outlier positions and calculating the distance between adjacent SNPs. A 
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pattern of increased genomic clustering is suggested if the frequencies of SNPs in both 

the short and long distance classes exceed the frequencies observed for the random null 

distribution.  

 In a next step, we investigated the role of the mating system and linkage 

disequilibrium (LD). First, we tested whether LD differs between outcrossing and 

selfing populations. We calculated LD as r2, i.e., the square of the correlation between 

alleles of SNP pairs within the paired sequence reads of each population using the direct 

estimate method of LDX (Feder et al. 2012a). Because we worked with Pool-seq data, the 

range for estimating LD was short, i.e. across paired reads. We only considered sites 

with an intersecting read depth greater than 5 and a minor allele frequency at either 

locus > 0.15 (Feder et al. 2012a; Tuttle et al. 2016). We subsequently calculated the 

average LD for each pairwise distance and compared populations differing in mating 

system using paired t-tests, applying a FDR. 

 Finally, we tested how LD differs between top 1% outlier SNPs and SNPs that 

were not found to be outliers in the GWAS analyses. Using LDX, we calculated LD 

between pairs of outlier SNPs and pairs of non-outlier SNPs for each population. We 

weighted the average LD by the respective distances in base pairs between SNPs. We 

then tested for a difference in LD between outliers/non-outliers and mating system for 

both GWAS of the larger separate datasets and the combined dataset split by mating 

system using linear models in R. 
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Root growth 

Motivated by the GO term “root morphology” that was enriched among selfing 

populations and that occurred as annotation also among the outliers of the outcrossing 

dataset (see Results section), we experimentally tested for differences in root 

phenotype under common garden conditions. We had seeds available for 16 of the 20 

populations studied, produced by the same individuals that were used for the genomic 

Pool-seq analysis (Table S1). We performed the experiment in two replicates. Two 

sterilized seeds of nine individuals per population were stratified in sterile water at 4°C 

under dark conditions for two weeks (sample size: 16 populations x 9 seed families x 2 

replicates = 288). All seeds were randomly assigned to a position within one of 36 

sterile, 12x12 cm agar plates per replicate. Four seeds were put on each plate along a 

horizontal line 2 cm from the top and 1.5 cm away from each other. We used a 1.83 ‰ 

Murashige and Skoog medium mixed with 1 % phyto agar and adjusted the pH to 5.7. To 

account for border effects, the positions next to borders were filled with additional 

seeds that were not analyzed. We placed all agar plates upright in a Sanyo plant growth 

chamber (Sanyo, Moriguchi, Japan) with 12h light:12h dark conditions and 

temperatures of 20°C (day) and 18°C (night), respectively. The experiment was 

conducted between the 11th of May and the 26th of June 2017. Every 3-4 days all agar 

plates were scanned and root length and the number of primary side roots of each plant 

measured with IMAGEJ 1.45s (Abràmoff et al. 2004). We stopped measuring when a plant 

reached a length of 80mm to account for potential border effects on the base. We 

selected the best fitting growth model that described the increase in root length and the 

number of side roots by fitting seven alternative models separately for each plant: 1) 

linear, 2) exponential, 3) power function, 4) three-parameter logistic, 5) two-parameter 
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logistic, 6) Gompertz and 7) von Bertalanffy. Models were fit in R following Paccard et al. 

(2014). The best-fitting model was Gompertz for both measurements based on Akaike 

information criterion (AIC) values (Figure S1). We then used linear mixed models to test 

if the maximum relative growth rate parameter of the Gompertz model (i.e. kG , see 

Tjørve & Tjørve 2017) differed between individuals from different substrates and 

mating system using population and seed family as random effects.  

 

Results 

Genome-wide association study 

The top 1% outlier SNPs identified by BAYPASS for the outcrossing (NOutcrossing=5008) and 

selfing (NSelfing=4372) datasets were spread across the genome (Figure 2a&b). Of these, 

only 24 outliers overlapped between the two datasets (Figure 2c). However, among all 

outlier SNPs of both datasets, 99 genes were affected in common by at least one outlier 

SNP (Figure 2d). This overlap was higher than expected by chance as suggested by our 

resampling analysis (p=0.0001). Of the 99 shared genes, 45 were annotated with 90 GO 

terms, including root growth (Table S4). Outlier SNPs were associated with 1247 and 

582 GO terms for the outcrossing and selfing dataset, respectively. Of these, 506 GO 

terms overlapped between both datasets and included 9 terms linked to root 

morphology (Table S5). Twenty-three and 68 GO terms were significantly enriched for 

outcrossing and selfing populations, respectively (Figure 2e; Tables S6, S7). However, 

only one GO term –chromatin remodeling – was enriched in both datasets. For 

outcrossing populations, enriched GOs were mainly linked to response to iron and RNA 
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processing (Table S6), whereas for selfing populations, 13.4% of enriched GOs were 

linked to root morphology (Table S7). 

 Analyses were repeated based on the smaller SNP dataset comprising all 

populations. Figure S2 shows the distribution of the top 1% outlier SNPs as well as the 

intersection between outlier SNPs, genes with outlier SNPs, and gene ontology terms 

affected by outliers between the GWAS performed on outcrossing, selfing or all 

populations together. Four GO terms linked to RNA processing were enriched when all 

populations were included in the GWAS (Table S8). When analyzing the SNPs of the 

combined dataset separately for outcrossing and selfing populations, the proportions of 

overlapping top 1% outliers SNPs and genes containing outliers were similar to the 

ones observed between the larger datasets (i.e. Figure 2d, e). For the combined dataset 

but with analyses split by mating system, outlier SNPs, genes with such SNPs, GOs and 

enriched GO terms were not a complete subset of those revealed with the respective 

larger datasets (Figure S3). An interesting difference were the intersection of enriched 

GO terms between outcrossing (Table S9) and selfing populations (Table S10); while the 

overlap was low in outcrossing populations (6%, relative to those unique to GWAS on 

the combined data set; Figure S3), 80% overlapped for selfing populations. Of the 

enriched GO terms for selfing populations, 23.3% were associated with root 

morphology. 
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Verification of outlier SNPs by population-structure analyses 

For the SNP dataset including all 20 populations, Mantel tests suggested a pattern of 

isolation-by-distance (IBD) using all SNPs (r = 0.349, p < 0.001; Table S2) or only the top 

1% outliers (r = 0.277, p = 0.006; Table S3). When controlling for geographic distance, 

partial Mantel tests implied a strong association between genetic differentiation and 

substrate type for outlier SNPs (r = 0.502, p < 0.001) but not for the remaining SNPs (r = 

0.086, p = 0.060). Partial Mantel tests between genetic differentiation and mating 

system, again controlling for geographic distance, were significant for both outlier SNPs 

(r = 0.148, p = 0.035) and all other SNPs (r = 0.196, p = 0.006), suggesting higher 

differentiation when mating system differed. Using the large SNP datasets, pairwise 

outlier-based FST values between populations from different substrates were 

significantly higher than across the rest of the genome for outcrossing populations 

(Figure S4). But this was not true for selfing populations, potentially as a result of the 

overrepresentation of SNPs with high FSTs (>0.95) in all pairwise comparisons involving 

selfing populations as opposed to comparisons between outcrossing ones (Figure S5).  

 The principal component analysis using only outlier SNPs confirmed the GWAS 

outliers by separating populations from different substrates along the first PC axes 

(outcrossing: F1,10=49.29, p<0.001; selfing: F1,6=18.52, p=0.005; combined dataset: 

F1,18=33.59, p<0.001; Figures 3 & S5). This was however not true for the second PC axes 

(outcrossing: F1,10=0.01, p=0.999; selfing F1,6=0.14, p=0.717; combined dataset: 

F1,18=0.27, p=0.689). For non-outlier SNPs, no association with substrate was found, 

suggesting that the SNPs associated with different substrates were part of the top 1% 

outliers (PC1: outcrossing: F1,10=0.25, p=0.630; selfing F1,6=2.81, p=0.145; combined 
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dataset: F1,18=2.95, p=0.103; PC2: outcrossing: F1,10=0.17, p=0.691; selfing F1,6=0.54, 

p=0.492; combined dataset: F1,18=0.63, p=0.439). 

 

Distribution of outlier SNPs across the genome and linkage disequilibrium 

When calculating the distances among outlier SNPs and assigning them to distance 

classes, SNPs were differently distributed between outcrossing and selfing populations 

(40kb windows – separate datasets G = 281.6, d.f. = 8, p < 0.001; 40kb windows – 

combined dataset G = 15.8, d.f. = 8, p = 0.046 – Figure S7; 20kb windows: G = 637.6, d.f. = 

17, p < 0.001 – Figure S8). Consistent with a clustering of outlier SNPs we found an 

overrepresentation for SNPs at relative short and long distances for both outcrossing 

and selfing populations, but clustering was more pronounced among selfing compared 

to outcrossing populations.  

Short-distance LD (i.e. between SNPs on the same paired reads) was generally 

high in all of our studied populations (Figure S9; mean r2 – outcrossing: 0.604 ±0.034 

SD; mean – r2 selfing: 0.680 ±0.014 SD). LD was significantly higher (p<0.001 after FDR) 

in selfing compared to outcrossing populations in all but one comparison (MI6 vs. ON7, 

see Table S11), with LD being on average 11.9% (±5.9% SD) higher, but there was also 

considerable variance among population pairs. 

Pairwise LD between outlier SNPs was significantly higher than between pairs of 

non-outlier SNPs for both the large (ΔLD = 0.153, p < 0.001) and combined outcrossing 

dataset (ΔLD = 0.202, p < 0.001; Figure 4). For selfing populations the pairwise LD 

between pairs of outlier and non-outlier SNPs was consistently high and did not 

significantly differ, neither for the large (ΔLD = 0.026, p = 0.704) nor the combined 
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dataset (ΔLD = 0.024, p = 0.091). In outcrossing populations, we found a pronounced 

increase in LD from pairs of non-outliers to pairs of outliers, also reflected in the 

significant interaction term of mating system-by-SNP type (large dataset: F1,36= 13.9, p = 

0.001; combined dataset: F1,36= 106.8, p < 0.001). 

  

Root growth 

Following the removal of 102 individuals that failed to germinate and 32 individuals 

from eight agar plates that developed fungus, our experimental assay of root growth 

resulted in data for a total of 154 individuals (9.6 ± 4.8 SD per population). The 

maximum relative growth rate in root length and the number of primary side roots was 

higher in plants from sand than those from rock (root length: χ1 = 7.64, p = 0.006; 

primary side roots: χ1 = 4.71, p = 0.030; Figure 5). Individuals from sand grew roots 

faster and formed more side roots than individuals from rock under common-garden 

conditions. There was no significant interaction between mating system and substrate 

(Type II Wald χ2-test: root growth: χ1 = 0.04, p = 0.848; number of primary side roots: χ1 

= 0.16, p = 0.688) as well as no significant effect of mating system on the measured 

traits (root growth: χ1 = 1.73, p = 0.188; number of primary side roots: χ1 = 0.98, p = 

0.322).  
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Discussion 

Postglacial substrate-related ecotypes in A. lyrata 

In plants, ecotype formation is frequently triggered by the colonization and subsequent 

adaptation to different substrates (e.g. Turner et al. 2010; Andrew et al. 2013; Arnold et 

al. 2016; Gould et al. 2017). Our genome-wide association study identified SNPs, genes 

and gene ontology terms directly or indirectly associated with divergent adaptation to 

rock and sand substrates in A. lyrata. The gene ontology term analysis suggested 

differences in root morphology between populations from different substrates. And 

indeed, phenotypic and potentially adaptive differences between plants from the two 

substrate types were confirmed under experimental conditions, which is consistent 

with the evolution of substrate-related ecotypes. Plants from sand substrates also 

showed faster root growth than those from rock (Figure 5).  

 Within the genus Arabidopsis, substrate-driven ecotype formation has so far 

rarely been found (Alcázar et al. 2012; Flood & Hancock 2017). The best example is 

adaptation to serpentine soils and heavy-metal tolerance in outcrossing A. lyrata 

(Turner et al. 2010; Arnold et al. 2016). The latter evolved over a similar time scale as 

our studied populations – since the end of the last glaciation cycle and range expansion 

since then – and adaptation involves only few genomic regions that are linked to iron 

transport. As for other flowering plants, differences in soil water availability may be 

another important aspect of substrate that can impose divergent selection because 

water availability represents a significant limiting factor for photosynthesis (Andrew et 

al. 2013; Gould et al. 2017). The postglacial range expansion and colonization of rocky 

and sandy substrates in North American A. lyrata may be associated with divergent 

selective regimes that are linked to water availability. Our finding that plants from 
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sandy substrates show faster root growth in length and a higher number of primary 

side roots is consistent with physiological predictions that sand dwelling plants should 

grow faster and deeper roots to increase their water-extraction capability (Jackson et al. 

2000). Changes in root growth are likely to be polygenic with 399 genes in A. lyrata 

being annotated with GO terms linked to root morphology (Rawat et al. 2015). In 

addition to root morphology, GO terms were also associated with plant growth and 

stress responses in all datasets (Tables S4-S8). We suggest to further investigate 

differences in plant and/or leaf growth as well as to test for differences in responses to 

different stress factors, such as nematodes. 

Even though we could identify ecotypes, our study also illustrates some of the 

difficulties of GWAS when studying populations with different mating systems. Average 

Bayes Factors (BF) were uplifted, i.e. were higher than zero for each dataset (Figures 2 

& S2). Potential reasons for this include: the binary response variable for substrate, few 

populations studied, or because we dealt with a complex demographic history including 

mating system shifts and different glacial refugia, which may not be fully overcome by 

BAYPASS (Gautier 2015). We therefore used several additional verification approaches 

for outlier SNPs. Partial Mantel tests and principal component analyses both on outlier 

and non-outlier SNPs confirmed that genetic differentiation at outlier SNPs, but not at 

non-outliers, was strongly related with substrate (Figure 3). Furthermore, GWAS 

outliers showed increased genetic differentiation between outcrossing populations of 

the two substrate types compared to non-outliers loci (Figure S4). Other methods of 

finding outliers, such as those relying on divergence (FST) were unsuitable for our type 

of study because selfing populations had an excess of nearly fixed alleles across the 
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genome (Figure S4 & S5), which remains a key challenge in the study of adaptation in 

selfing taxa (Hartfield et al. 2017). 

While our study is an example how GWAS and subsequent gene ontology 

analysis can suggest traits that can be studied phenotypically, GO terms related to root 

morphology were only enriched among selfing populations. Although several outlier 

SNPs overlapped with genes annotated with root morphology for outcrossing 

populations, these were not enriched (Tables S4-S10). This could represent a technical 

artifact of GO enrichment analyses that compare a set of outliers against the background 

of non-outliers to test for overrepresentations. Consequently, the more GOs are 

involved, the less likely it is for GOs to be enriched (Tipney & Hunter 2010). This is the 

case for our outcrossing populations where four times as many genes contained outlier 

SNPs than for selfing populations (Figure 2d). To further pinpoint causative genes, 

further in-depth studies using more nearby ecotype pairs are needed, ideally combining 

experimental work together with gene expression analyses. 

 

Mating system shift & the evolution of ecotypes 

A shift to selfing is generally associated with increased genome-wide linkage 

disequilibrium (LD), that may be enhanced by past bottlenecks (Wright et al. 2013; 

Hartfield et al. 2017). Across the genome, LD may further vary punctually, e.g. through 

background or directional selection (Hartfield et al. 2017). We concordantly found that 

average genome-wide short-range LD was significantly elevated in selfing compared to 

outcrossing populations (Figure S9, Table S11). Independent of mating system, LD 

decayed only over the first fifty base pairs before stabilizing at a relatively high level 
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(Figure S9). This is consistent with findings from the close selfing relative A. thaliana 

(Nordborg et al. 2002).  

 Ecotypes are often ephemeral because isolating genomic mechanisms that 

prevent gene flow, recombination and thus the breakup of selected genomic regions are 

missing (Nosil et al. 2009; Nosil 2012; Seehausen et al. 2014). As selfing should reduce 

intraspecific gene flow (Willi & Määttänen 2011; Wright et al. 2013; Hartfield & Glémin 

2016), it may act as such an isolating mechanism and could help to stabilize ecotypes, 

allowing to maintain genomic regions of increased differentiation (Hu 2015). The 

analyses of GWAS outliers revealed significant clustering of outlier SNPs in populations 

of both mating systems when compared to a random null distribution and clustering 

was more pronounced among selfing populations (Figures 2 & S2). A clustering of 

putative outlier SNPs found by GWAS can be the result of tight linkage in regions under 

selection (Rincent et al. 2014). In line, we found that pairs of physically nearby outlier 

SNPs of outcrossing populations showed a sharp increase in average LD compared to 

pairs of non-outlier SNPs. In contrast, LD between pairs of outlier and between pairs of 

non-outlier SNPs was similarly high in selfing populations (Figure 4). The results of 

generally high LD and clustering of outliers in selfing populations (Figure 5) suggests 

that this reproductive mode may promote the buildup of regions under divergent 

selection (Gordo & Charlesworth 2001; Feder et al. 2012b). 

 The theoretical prediction of reduced response to selection in selfing populations 

seems less supported. Even though selfing has been considered as constraining adaptive 

evolution (Noël et al. 2017), we found that selfing and outcrossing did not differ in root 

characters related to rock or sand. This suggests that genetic variation to respond to 

selection must have been sufficient in the selfing populations, and that the response to 
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directional selection was not too constrained by genetic drift. We can presume that 

directional selection must have been strong because for the same populations studied, 

we found good evidence for decreased efficacy of purifying selection; selfing and long-

term small outcrossing populations had increased mutational load that translated in 

reduced population performance under common garden conditions (Willi 2013 

Evolution; Willi et al. 2013 Heredity; Willi et al. 2018). Selfing does not seem to preclude 

considerable adaptive change to environmental heterogeneity. 

 

Conclusions 

Our genome-wide association analysis provided evidence for habitat dependent 

differentiation in A. lyrata between two broadly defined substrate categories, i.e. rock 

and sand, in both selfing and outcrossing populations. Gene ontology analysis on outlier 

SNPs motivated a common garden study, which confirmed that populations from rock 

and sand differed, with seedlings from sandy substrates showing faster root growth 

(Figure 5). The colonization of different substrates during the range expansion of A. 

lyrata seems thus to have triggered substrate-related adaptation, independent of 

mating system. SNPs associated with substrate-related differentiation were more 

clustered across the genome for selfing populations (Figures 2 & S2). This seems to be 

the result of selection on some SNPs underlying the distinct ecotypes combined with 

increased genome-wide LD due to a selfing reproductive mode. Hence, the switch to 

selfing may initially boost the evolution of distinct ecotypes by increasing genomic 

regions of divergence (Via 2009; Feder et al. 2012b; Hartfield et al. 2017). Finally, 

selfing is a widespread phenomenon among plants (Igic et al. 2008). Similar processes 

may therefore be at play in other taxa that underwent postglacial range expansions and 
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established in different environments (Grundt et al. 2006; Birky & Barraclough 2009; 

Foxe et al. 2009; Hu 2015). 
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Figure Legends: 

Figure 1: Map of the Arabidopsis lyrata populations studied. The color of outer circles 

indicates the predominant mating system, outcrossing in green and selfing in orange, 

while the color of the inner circle indicates the substrate, sand in red and rock in blue 

(see Table S1 for detailed information). Population abbreviations use the official 

abbreviation for each US state and Canadian province followed by a sampling index 

number. The actual distances between populations ON5, ON6 and ON7 are inflated on 

the map (see Table S2 for distances between populations). 

 

Figure 2: The genomic signature of substrate-related A. lyrata ecotypes. Manhatten plots 

depict the distribution of average Bayes Factors of ten GWAS runs on the independent 

variable of substrate type for (a) 500’877 biallelic SNPs of outcrossing populations and 

(b) 437’228 SNPs of selfing populations. The 1% SNPs with the highest Bayes Factor are 

highlighted in color. Chromosomes are indicated by alternating black and grey shading. 

Venn diagrams show (c) the overlap in the 1% outlier SNPs of GWAS runs for 

outcrossing populations, selfing populations and all populations combined (based on 

combined SNP dataset), (d) the number of genes affected by outliers and (e) the number 
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of gene ontology (GO) terms affected by outliers. For GOs the numbers in brackets 

represent the number of significantly enriched GO terms. 

 

Figure 3: Principal component (PC) analyses using either the top 1% outlier SNPs 

identified by GWAS (a & c) or non-outlier SNPs (b & d), separately for outcrossing (a & 

b) and selfing (c & d) populations. The color of the inner circle indicates substrate type, 

rock in blue and sand in red; the color of the outer circle indicates the mating system, 

outcrossing in green and selfing in orange. 25 individuals were simulated for each 

population based on the population-based Pool-seq data using a binomial random 

distribution. The two leading PC axes are presented.  

 

Figure 4: Average linkage disequilibrium (LD), weighted for the distance between SNP 

pairs, between pairs of outlier or non-outlier SNPs, respectively, for outcrossing and 

selfing populations from rock (blue) or sand (red) substrate. (a) Analyses for the large 

SNP datasets, (b) analyses for the combined dataset split by mating system. P values are 

given for the difference in LD between outlier and non-outlier SNPs within mating 

system.  

 

Figure 5: Boxplots summarizing phenotypic differences between individuals from rock 

(blue) and sand (red) substrate in a common-garden lab experiment. Shown are the 

maximum relative Gompertz growth rate for (a) length of the main root and (b) the 

number of primary side roots. Sample sizes (N) are indicated. 
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Figure S1: Boxplots summarizing estimates of Akaike’s Information Criterion  AIC) for 

each experimental individual and the seven fitted growth models for (a) length of the 

main root and (b) the number of primary side roots. 

 

Figure S2: The genomic signature of substrate-related A. lyrata ecotypes based on the 

dataset of 156’024 polymorphic SNPs shared by all populations. Manhatten plots depict 

the distribution of average Bayes Factor of ten GWAS runs on the independent variable 

of substrate type when (a) all populations were included, or (b) only outcrossing or (c) 

only selfing populations. The 1% SNPs with the highest Bayes Factor are highlighted in 

color. Chromosomes are indicated by alternating black and grey shading. Venn 

diagrams show (d) the overlap in the 1% outlier SNPs of GWAS on the three datasets, 

(e) the number of genes affected by outliers and (f) the number of gene ontology (GO) 

terms affected by outliers. For GOs the numbers in brackets represent the number of 

significantly enriched GO terms. 

 

Figure S3: Venn diagrams showing the overlap between GWAS results of the large SNP 

datasets of outcrossing and selfing populations separately and the combined but 

smaller SNP dataset. Overlap is shown for (from left to right): the number of 1% outlier 

SNPs, the number of genes affected by outliers, and the number of gene ontology (GO) 

terms affected by outliers. For GOs the numbers in brackets represent the number of 

significantly enriched GO terms. 
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Figure S4: Pairwise FSTs between populations on rock and sand that are either (a) 

outcrossing or (b) selfing using only the top 1% GWAS outliers (green dots). Black 

boxplots depict observed FSTs between each population pair based on 1000 resampling 

events picking randomly each time the same number of SNPs as the top 1% outliers 

from all non-outlier SNPs in the dataset. In all but one cases (ON1 vs. ON11) FSTs was 

outside of the boxplot distribution, suggesting significant differentiation from a random 

genomic background. 

 

Figure S5: Matrix of distribution plots of pairwise FST-values between rock and sand 

populations that are either (a) outcrossing or (b) selfing.  

 

Figure S6: Principal component (PC) analyses using (a) the top 1% GWAS outliers or (b) 

the non-outlier SNPs. Analyses were performed on the combined SNP dataset for all 20 

populations, irrespective of mating system. The mating system and substrate type of 

populations is indicated. 

 

Figure S7: The clustering of GWAS outliers as calculated by the distance between 

adjacent outlier positions. The distribution of these distances is shown for the separate 

(a-c) and combined (d-f) datasets for outcrossing (a & d) and selfing (b & e) populations 

in 40kb bins. The blue polygon depicts the range of a null distribution obtained from 

10’000 resampling replicates. The deviation of the observed values for each distance 

class from the null distribution is further shown (c & f). The latter differed significantly 

between outcrossing (green) and selfing populations (orange) for both the separately 
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analyzed datasets (G = 281.6, d.f. = 8, p < 0.001) and the analyses on the combined 

dataset (G = 15.8, d.f. = 8, p = 0.046). 

 

Figure S8: The clustering of GWAS outliers as calculated by the distance between 

adjacent outlier positions in 20kb bins, for (a) outcrossing and (b) selfing populations, 

and (c) the deviation of the observed values for each distance class from the null 

distribution. GWAS was here performed on the large and separate SNP datasets. The 

blue polygon (a, b) depicts the range of a null distribution obtained from 10’000 

resampling replicates. The deviation between observed and expected (under a null 

distribution) values differed significantly between outcrossing (green) and selfing 

populations (orange) (G = 637.6, d.f. = 17, p < 0.001). 

 

Figure S9: Average linkage disequilibrium (LD [r2]) for up to 200 bp distance between 

SNPs for (a) outcrossing and (b) selfing populations. LD in populations on rock is 

highlighted in blue and that of populations on sand in red. 
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