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Abstract

The use of price instruments is o�en advocated by economists, based on their ability to
bring about marginal abatement cost equalisation, and hence to achieve targets at least cost.
We use the EU ETS as a case study and test this theoretical prediction. We parametrically es-
timate separate enhanced hyperbolic distance functions for various industries of the German
manufacturing sector and are therefore able to compute the shadow value of CO2 emissions.
We are the first to provide firm-level estimates of the marginal cost of CO2 emissions using con-
fidential administrative data for German manufacturing firms between 2005 and 2014. This
allows for an unprecedented insight into the cost of the EU flagship climate policy for manu-
facturing firms. We are able to describe the evolution of the abatement costs over time and
across industries, tracking the impact of changes in the policy design and its stringency on
the behaviour of the firms in our panel. Our findings provide valuable information for policy
makers in the European Union and beyond on the actual level of the costs imposed by climate
change policy, and its distributional impacts across firms and industries.
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COST-EFFECTIVENESS IN ETSS

1 Introduction

The di�usion of market-based instruments as the tool of choice for environmental regulation over

the past forty years is one of the great success stories in the sometimes turbulent relationship be-

tween economists and policy makers.1 Economists favour market-based instruments because –

so the theory suggests – if properly designed and implemented, they allow polluting emissions to

be reduced at least cost to society. This result is achieved by providing the right incentives to the

firms with the lowest cost of abatement to take on most of the clean-up activities (Stavins, 2003,

for example). Indeed, when firms are faced with a price on pollution, they adjust their emissions

to reach the point where, at the margin, the opportunity cost of emitting the next unit of pollution

equals the abatement cost. Thus – it is claimed – market-based instruments are cost e�ective in

that they bring about the equalization of the marginal cost of abatement across polluters.

The potential advantages of market-based instruments over alternative types of regulations are

expected to emerge most clearly, therefore, in situations where the slope of the abatement cost

curves di�er substantially across firms (Newell and Stavins, 2003). Thus, the heterogeneity of the

marginal abatement costs (MAC, henceforth) across sources underpins the claim that market-based

instruments dominate other types of regulation in the short run – the so-called static e�iciency.

Whether MACs converge or diverge over time, moreover, determines the cost-dominance of price

instruments in a dynamic sense, as well as giving insights into the e�ectiveness of trading in re-

ducing compliance costs over time.

While these considerations motivate much of the economists’ insistence on market-based instru-

ments, surprisingly little research has been devoted to date to gauging their empirical validity, at

least in part due to lack of adequate data. Most of the available empirical evidence to date has fo-

cussed on the U.S. experience with SO2 emissions trading during Phase I of the market established

under Title IV of the 1990 Clean Air Act Amendments (e.g. Coggins and Swinton, 1996; Swinton,

1998; Carlson et al., 2000; Swinton, 2002, 2004). As a consequence, the current evidence base is

limited to the behaviour of U.S. coal-fired power plants between 1995 and 2000. The results from

this literature broadly indicate that while there exists substantial heterogeneity in marginal abate-

ment costs, suggesting the existence of large potential gains from trade, ‘much of the cost savings

available is being le� on the table’ (Swinton, 2002, p.402).2

This paper contributes to the literature on the e�ectiveness of emissions trading schemes by pre-

senting evidence on both the level and the time path of the MAC for manufacturing firms under the
1According to the World Bank’s Carbon Pricing Dashboard (https://carbonpricingdashboard.worldbank.org), as of

2020, 64 carbon related emissions trading initiatives were either implemented or scheduled for implementation, repre-
senting 12 GtCO2e GHG emissions, or 22.3% of global emissions.

2Carlson et al. (2000) similarly note that ‘a comparison of potential cost savings in 1995 and 1996 with modeled
costs of actual emissions suggests that most trading gains were unrealized in the first two years of the program’.
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EU ETS. We use firm-level data on German manufacturing establishments over the period 2005-

2014 – the first ten years of operation of the European Union Emissions Trading Scheme (EU ETS)

– to estimate MACs at the firm level, across a range of industries. To the best of our knowledge we

are the first to provide such estimates for firms in the EU ETS, allowing an unprecedented insight

into the cost of the EU flagship climate policy. Armed with these estimates, we are able to describe

the evolution of the MACs over time and across several manufacturing sectors; we are also able

to directly address the claim that market-based instruments deliver cost-e�ective environmental

regulation, a claim that underpins much of the policy debate on this type of instruments. Besides

the academic interest of our results, our work is likely to provide invaluable information to pol-

icy makers in the European Union and beyond on the actual level of the costs implied by climate

change policy, and its distributional impacts across firms and industries.

In what follows, we build on recent advances in the environmental performance analysis literature

to estimate the shadow value of carbon dioxide (CO2) emissions (Cuesta et al., 2009; Mamardashvili

et al., 2016). The shadow values we compute measure the opportunity costs of reductions in CO2

emissions in terms of foregone output, and thus provide a theoretically appropriate measure of

the marginal cost of CO2 abatement. Using the rich, firm-level administrative data made available

by the German Statistical O�ice within the Amtlichen Firmendaten für Deutschland, or AFiD panel,

we are able to estimate MACs for over 16,000 German firms, including about 500 firms participat-

ing in the EU ETS between 2005 and 2014. These firms provide a significant cross-section of the

manufacturing sector in Germany, as they are drawn from such diverse industries as food, paper,

chemicals and non-metallic products. Having recovered this information, we are then able to map

the evolution of the cost of abatement across the German manufacturing sector over the first ten

years of operation of the EU ETS.

Besides fitting within the literature referred to above, our work is related to the growing literature

that aims to estimate the cost of market-based environmental policy. A significant portion of this

recent literature has applied methods from productivity analysis to Chinese data, with a focus on

the impact of the recent emissions trading schemes pilots. Due to a lack of micro-data of adequate

quality, however, most of these studies use aggregate, sectoral-level data for di�erent regions or

provinces. Lee and Zhang (2012), for example, use Shephard input distance functions to estimate

the MAC of CO2 emissions in a cross-section of 30 Chinese manufacturing industries in 2009. Zhou

et al. (2015) study a panel of manufacturing sectors in Shanghai for the period 2009-2011, covering

the Shanghai’s pilot ETS. Wang et al. (2017) use quadratic directional distance functions to estimate

firm-level abatement costs in the steel and iron industry for a cross-section of 49 enterprises in

2014. Finally, Wu and Ma (2019) study the convergence over time of carbon shadow prices using

a panel data-set of 286 cites between 2002 and 2013 and find no evidence of convergence across

MACs in the medium run. Relative to our work here, the major drawback of these studies is that
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their models either fail to capture di�erences in production technology across industries, or are

unable to provide a consistent picture of abatement costs over time.

The rest of the paper proceeds as follows, in Section 2 we provide a brief overview of the EU ETS

and its design features. Section 3 introduces a simple conceptual framework to guide our analy-

sis. There, we identify the key testable implications that follow from framing the firms’ decisions

as a compliance cost minimization decision in the presence of allowance trading among heteroge-

neous firms. In Section 4, we discuss the key methodological issues and our empirical implementa-

tion. From there, we move on to describe the data ( Section 5). We present our empirical in Section

6 and conclude with a discussion of the main insights and the policy implications in Section 7.

2 The European Union Emissions Trading Scheme

The EU ETS is the central instrument of the European Union’s (EU) climate policy and is one of

the world’s largest multi-national cap-and-trade schemes. It started operations in 2005 in accor-

dance with Directive 2003/87/EC3 and it currently regulates over 11,000 energy-intensive instal-

lations and airlines in 32 countries4, representing about 40% of these countries’ greenhouse gas

(GHG) emissions.5

In the EU ETS, a cap is set on the total amount of greenhouse gases that can be emitted by the reg-

ulated entities. The cap is reduced over time, so that the total allowed emissions fall. Within this

cap, firms receive emission allowances, known as EU Allowance Units (EUA), that are fully tradable

across participating firms. Each EUA confers to the owner the right to emit one metric tonne of CO2

equivalent. Regulated companies may also buy limited amounts of international credits from cer-

tified emission-saving projects around the world. As the total number of EUAs available is limited

by the cap, they represent valuable assets, which creates an opportunity cost for each ton of CO2

emitted by regulated installations. Participating installations are subject to a rigorous monitoring,

reporting and verification process for their permits allocation and trading.

Participation in the EU ETS is mandatory for all combustion installations with a rated thermal in-

put in excess of 20 MW. Industrial installations specializing in certain energy-intensive industrial

activities exceeding specific capacity thresholds are also regulated.6 We note that the inclusion

criteria for the EU ETS apply at the installation level, whereas our unit of analysis is the firm. This is

potentially problematic as there may be firms that do not own any regulated installation, and still
3European Parliament and Council (2003).
4At the time of writing these include all 27 EU member states, as well as Iceland, Lichtenstein, Norway, Switzerland

and the United Kingdom.
5This corresponds to about 4% of global GHG emissions.
6Details of the inclusion criteria can be found in European Parliament and Council (2003).
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have higher emissions than some firms treated under the EU ETS, as ‘treatment’ status is assigned

according to ownership of at least one included installation. Table 1 shows the total number of reg-

ulated firms in our data-set of German manufacturing firms across two-digit industries classified

using ISIC Rev.4. codes (see Appendix 7).

The EU ETS has so far gone through three compliance periods, or ‘Phases’. Phase I (2005-2007)

served as the pilot phase, Phase II (2008-2012) coincided with the compliance period of the Kyoto

Protocol, and the third Phase III is currently on-going and will continue until 2020. Having access

to data for the period 2003-2014, our analysis focuses on the first two compliance periods and the

beginning of the third phase. As noted by Ellerman et al. (2014), in its relatively short history the

EU ETS underwent many important developments, both in terms of its scope, as well as its alloca-

tion mechanisms. In the first two phases, the allocation of permits was decentralized, relying on

National Allocation Plans (NAP) and grandfathering. Firms are allowed to bank and borrow their

allowances across years within any given compliance period, but allowances could not be trans-

ferred between Phases I and II, while they could be carried forward from Phase II onward. For this

reason, Phase I can be perceived as completely decoupled from the following phases. Since the be-

ginning of Phase III, moreover, additional sectors and gases were included, and the default mode

of allocation changed to auctioning, while harmonized rules for free-allocation in specific sectors

are implemented through a centralized allocation system. A single EU-wide cap is set, which de-

creases each year by a linear reduction factor of 1.74% of the average total quantity of allowances

issued annually in Phase II (2008-2012). In line with the EU ETS 2030 target- i.e. 43% emissions

reduction target relative to 2005 – in Phase IV (2021-2030) the cap on emissions will decline at an

annual rate of 2.2%.

Figure 1: Daily EUA prices evolution in Phase I (2005-2007) and II-III (2008-2014); Source: Thomson
Reuters Eikon.

The multiple design changes undergone by the EU ETS may be seen reflected in the EUA spot price
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development shown in Figure 1. In 2005, EUA prices were above 25 eon average. Due to the vast

over-allocation of free allowances in Phase I, the EUA price approached zero in 2007. A�er the

start of Phase II, the price recovered to between 20 eand 30 e, but the massive over-supply of

allowances and the decline in economic activity due to the global financial crisis once again re-

sulted in a price collapse during the second half of 2008. At the time, prices were also a�ected by

the heavy use of certified emission reduction credits (CER). As banking was allowed from Phase II,

EUA prices did not converge to zero, remaining around 15euntil another price plunge to below 10

ein the second half of 2011.

From its inception, the EU ETS has been the subject of considerable academic research tying up the

various theoretical and empirical strands. Ellerman et al. (2016) provide a summary of the history

and structure of the EU ETS, and review its performance over its first ten years in terms of emis-

sions, allowance prices, and the use of o�sets. The authors recognize three prominent features in

the evolution of the scheme: a tendency towards greater centralization of functions, a move from

free-allocation of allowances to auctioning, and a reduced role for o�sets. Hintermann et al. (2015)

discuss the literature on EUA price formation in the second compliance period of the EU ETS. They

find that allowance prices were mainly a�ected by fuel prices, but that the cost of relevant abate-

ment technologies also played an important role. Martin et al. (2015) review the ex-post EU ETS

impact evaluation literature studying the behavior of regulated firms with respect to abatement,

competitiveness, and innovation. Overall, the available evidence on EU ETS impacts suggests that

the introduction of the scheme led to modest emission reductions, and to a small increases in in-

novation activity, while economic performance has been largely una�ected, with a few exception

in specific sectors in a limited number of countries.

3 Marginal abatement costs and emissions trading – some theory.

Since the seminal contributions of Dales (168) and Montgomery (1972), one of the main tenets held

by proponents of cap-and-trade schemes has been that they are able to deliver the required emis-

sions reductions at least cost. The economic rationale underpinning this view relies on the incen-

tives faced by emitting entities in the presence of a price on pollution. Once polluting emissions are

subject to a charge, rational economic agents compare the cost they need to incur to abate each

subsequent unit of pollution to the cost of releasing the pollutant in the environment. In other

words, they compare their marginal cost of abating emissions to the current price of emitting the

pollutant.

Focusing on the ‘uniformly mixing’ pollutant case – the relevant one in the case of CO2 emissions

– and limiting ourselves to a situation with just two emitters, the textbook case in favour of cap-
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and-trade is easily explained using a graph (see Figure 2).

Figure 2 plots the marginal abatement cost curves for two firms, firm A on the le�, and firm B on

the right. While they initially emit the same amount of pollution, e, firm A faces relatively lower

marginal costs of abatement. Assuming that a decision has been made to reduce emissions by

half, we start from a situation where both sources are mandated to halve their own emissions. This

situation is captured by points A andB in the figure where both firms emit 50% of their unregulated

pollution. Firm A’s marginal cost of abatement is denoted by MACA, whereas firm B’s is indicated

byMACB. The gray shaded areas AeAe and BeBemeasure the total cost of abatement facing each of

the two firms.

Figure 2: Emissions trading and the equi-marginal principle

Given that in the situation we just described the marginal abatement costs are not equalized across

the two sources, it is clear that the overall cost of abatement is not minimized and there exist out-

standing gains from trade.7

If the emissions reductions were pursued via an emissions trading scheme, each firms would need

to submit a su�icient number of permits to cover their emissions. If permits were initially grand-

fathered based on historical emissions, each firms would receive the same amount of permits,

eA = eB. Since eA + eB = e, the overall cap of this system is consistent with a 50% reduction

relative to the unregulated situation. Given that pollution permits are now freely tradable, Firm

A is willing to sell permits to Firm B as long as the price exceeds the cost of abating the following

unit of pollution. As Firm A takes on more abatement its marginal cost increases, whereas Firm B

accrues more permits, needs to abate less and moves down along the marginal abatement cost
7The gains from trade are a direct consequence of the convexity of abatement costs (i.e., increasing MACs), which

is a natural assumption given that firms will carry out the cheapest abatement options first. Suppose that we start
at the social optimum, in which the MACs are equalized across firms. Moving away from this point, while holding the
cap constant, implies that some firms will have to abate more, whereas others abate less. If the abatement curves are
convex, the cost increase for the former is necessarily greater than the cost savings for the latter.
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curve. Figure 3 shows that at a price equal to p∗, i.e. at points A′ and B′, the cost of abatement for

firm A has increased by the dashed area in le�-hand panel, and decreased for the other firm by the

shaded larger area in the le�-hand panel. Given that in this situation the marginal cost of abate-

ment is the same across the two sources, the total cost of abatement consistent with the cap has

been achieved, and all possible gains from trade have been exhausted.

This discussion illustrates the basic mechanism underlying the working of an emissions trading

scheme and suggests that following the introduction of a binding scheme, the permit price would

find an equilibrium at a positive level, somewhere in between the MACs of the low-cost and high-

cost sources. Based on this insight, one would thus expect to see the median MAC increase as the

regulation forces low-cost firms to move up their marginal abatement cost curves to allow the less

flexible sources to purchase their permits. This testable implication can be taken to the data.

Figure 3: Emissions trading and technical change

A second aspect of the theoretical debate on emission trading that has received a lot of attention

in the literature is the dynamic e�iciency, namely its ability to induce technological change that

would make the achievement of the target cheaper over time (Milliman and Prince, 1989; Goulder

and Schneider, 1999; Requate and Unold, 2003; Gans, 2012). If one is willing once again to accept

the textbook version of the events, it is easy to discuss the evolution of the MAC over time.8 Figure 3

illustrates the standard case, where technical change leads to a downward pivot of the MAC curve.

In the specific case described in the figure, Firm B manages to reduce its cost of abatement rela-

tively more than Firm A, and is therefore willing to take on relatively more abatement than before.

This is not necessarily the case, and the opposite might well happen. When the low-cost firm finds

it easier to reduce its costs than the other, it will take on even more of the abatement and sell a

larger amount of permits to the high-cost firm. Irrespective of the way in which the overall burden
8A rich literature argues that the changes induced to the MAC curve under endogenous technical change are much

more complex and interesting than the simple pivot downwards over time described here. See, for example, the dis-
cussions in Amir et al. (2008), Bauman et al. (2008), Perino and Requate (2012), and Di Maria and Smulders (2017).
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of abatement is shared, however, as long as the supply of permits is fixed, technical change leads to

a reduction in the average cost of abatement, and hence in the equilibrium price. As a consequence

of technology improving over time, one would therefore expect the average cost of abatement to

decrease over time, coeteris paribus. This is a second testable implication in this context.

Of course, reality is much more complex than suggested by this stylized discussion, and the be-

haviour of firms correspondingly richer. For example, one might want to keep in mind is the role of

grandfathering. When permits are allocated to firms by the regulator, rather than auctioned, it is

di�icult and politically unpalatable to set very stringent quotas, at least in the early phases of trad-

ing. If firms are given a generous allocation, the system might not felt stringent enough for them

to change their behaviour. Thus, an excessive allocation of permits might mean that the shadow

prices do not change, at least initially.

Even abstracting from the possibility of over-allocation, the model presented above assumes that

MAC curves be smooth objects. In reality, such objects are likely to be step-wise functions at the

level of the individual firm, with discontinuities occurring whenever further reductions in emis-

sions require changes in processes or technologies. As a result, from the point of view of the indi-

vidual firm, abatement might happen at constant, or slowly increasing, marginal cost until a point

of discontinuity is reached, at which point purchasing permits might be a cheaper option to contin-

uing abating. Therefore, empirically one might not observe the gradual, smooth changes dictated

by the theory.

Furthermore, given that decisions and trades occur over time, it is clear that in a real market the

permit price is a moving target and therefore the actual MACs for individual firms would arrange

themselves in a spread around any reference price rather than precisely converging to any specific

‘equilibrium level’.

Finally, any adjustment in the end depends on the firms learning how best to engage with the mar-

ket. As learning takes time, especially in the early days of a trading scheme, it is likely that the

MAC for di�erent firms would converge rather sluggishly towards any reference level. Addition-

ally, trading markets do not operate in a void and it is likely that they will be bu�eted by aggregate

shocks. These would lead to changes in the perceived stringency of the regulation, to di�erent

expectations and to di�erent market positions across firms and over time.

Overall, while stylized theoretical discussions like the one above lead to clear predictions as to

what one might expect to find in the data in the presence of functioning ETS, upon reflection it

is di�icult to expect that the theoretical predictions be realized as sharply in the empirical data.

We will need to keep these aspects in mind when interpreting the patterns that emerge from our

results below.
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4 Enhanced hyperbolic distance functions and the marginal cost of

abatement

Polluting emissions are usually modelled in economics as undesirable by-products of the produc-

tion of desirable outputs. Pollution reductions are thus seen as the result of the conscious e�orts

made by firms to reduce such by-products, the MAC may therefore usefully be defined as the op-

portunity cost – in terms of lost output – of preventing the next unit of pollution being released.

A number of di�erent approaches have been suggested in the literature to estimate the marginal

costs of abatement, each with its own advantages and limitations. Bottom-up approaches use en-

gineering estimates of the emissions reduction potential and the corresponding cost of di�erent

technical options to compose a curve by ranking these options from the least to the most expen-

sive.9 While informative as to the available technological portfolios, these analysis are clearly un-

satisfactory as they miss most of the interactions and feedback that are relevant to economists,

and they do not capture important transactions costs that keep firms from implementing some

abatement steps.

Model-derived MAC curve can be constructed using multiple runs of either partial or general equi-

librium models.10 These estimates provide an aggregate picture of the economy-wide cost of abate-

ment, but miss out on much of the nuances and details necessary to grasp the heterogeneous im-

pacts of environmental regulation across firms and industries.

A more econometric approach is sometimes adopted, and the researcher specifies and estimates

either the total cost function – to subsequently obtain the marginal costs by first order derivations

– or directly the marginal cost functions.11 The biggest issues with this type of approaches are that

cost information data are rarely available, the multiple outputs produced by a firm are di�icult to

aggregate, and undesirable byproducts are rarely marketed and priced anyway.

In practice, direct cost functions estimation is increasingly replaced by an approach o�en referred

to as environmental performance analysis. This approach relies on the primal representation of

the technology for the determination of the technological opportunity cost of reducing undesir-

able outputs. In the present study, we build on this approach, which has its roots in production

theory.
9A well-known example for this approach is the “McKinsey curve”; see https://www.mckinsey.com/

business-functions/sustainability/our-insights/greenhouse-gas-abatement-cost-curves.
10Intuitively, price-emission pairs may be calculated in two alternative ways. One may run the models assuming

di�erent emission caps and derive the corresponding CO2 prices, or run the model assuming a range of CO2 prices and
calculating the corresponding CO2 emission levels.

11For empirical examples of total cost function estimations, see Hartman et al. (1997), Carlson et al. (2000) and Das-
gupta et al. (2001). For direct marginal cost function estimations, see Wei and Rose (2009), De Cara and Jayet (2011) and
Zhou et al. (2013).

10

https://www.mckinsey.com/business-functions/sustainability/our-insights/greenhouse-gas-abatement-cost-curves
https://www.mckinsey.com/business-functions/sustainability/our-insights/greenhouse-gas-abatement-cost-curves


COST-EFFECTIVENESS IN ETSS

Our framework starts from the explicit recognition that undesirable outputs (e.g. emissions) arise

in most production processes as by-products of the production of the desirable ones. Keeping in

mind both technical and economic constraints, a production possibility set can be defined and es-

timated, which highlights all the relevant trade-o�s. Importantly, production units may have to

sacrifice some of their desirable outputs by reallocating their productive resources to emissions

abatement. Modelling polluting emissions as the undesirable output associated with the produc-

tion of the desirable one, we are immediately able to interpret the slope of the transformation

frontier as the opportunity cost of the undesirable output in terms of desirable output. Backing

out from this ratio the shadow price for the undesirable output, i.e. the shadow price of CO2 emis-

sions, and recalling the definition of the MAC given above, we directly obtain an estimate of the

marginal abatement costs of CO2 emissions.

One of the advantages of our approach is that it relies on the distance function framework, which

solely requires data on inputs and outputs (Shephard, 1953). The classical approaches to derive

shadow prices within a distance function framework are based on Shephard radial and directional

distance functions in either a parametric or a non-parametric framework (Shephard, 1970). The key

di�erence between the two classical approaches is in their relative flexibility. The radial distance

function expands good and bad outputs proportionally, whereas the directional distance function

specifies a particular direction along which each output may be expanded or contracted.12 Recent

contributions have pointed out, however, that the classical approaches are inappropriate for envi-

ronmental analysis, as they lack the necessary flexibility to allow for multiple abatement options

(e.g. Zofío and Prieto, 2001; Cuesta et al., 2009).

In this paper, we follow the recent literature and base our analysis on the hyperbolic distance func-

tion framework, originally introduced by Färe et al. (1985) and Färe et al. (1989), and expanded

upon by Cuesta et al. (2009). This framework is named a�er the hyperbolic path along which the

technical e�iciency is measured from the firm’s current position inside the production possibility

set, to the production possibility frontier, as shown in Figure 4.

Firm A is located inside the production possibility set and is thus technically ine�icient. It is pos-

sible to project the position of the firm to the frontier and derive a measure of its e�iciency in any

number of ways. For example, one may choose to project it onto A by increasing its level of out-

put while keeping the level of the input unchanged at XA. This corresponds to the output distance

function approach. Alternatively, the firm might be assumed to be able to contract its input use

to the frontier while maintaining the original level of production yA. One more possibility, which

is the one we focus on in what follows, is that the firm might be allowed to simultaneously ex-

pand output and contract input use. If the expansion/contraction happens that the same rate, the
12For more details, see Shephard (1970), Chung et al. (1997) and Du et al. (2015).
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projection to the frontier generates a hyperbolic path, and one gets a projection similar to A − A′′

in the Figure. This latter approach is therefore called the hyperbolic distance function approach.

Technical e�iciency is measured in this latter case by the ratio YA/YA′′ .13

Figure 4: Output distance vs. hyperbolic distance function.
Source: Cha�ai (2019)

In what follows, we use an enhanced hyperbolic distance function to measure the performance –

known as the enhanced hyperbolic e�iciency, θ ∈
(
0, 1

]
– of each firm.14 In this context, we mea-

sure e�iciency in terms of the firm’s technical ability to equi-proportionately and simultaneously

expand the desirable output vector (y), while contracting the undesirable output vector (b) and

the input vector (x), i.e.:

DEH
(
x, y,b

)
= min

θ

{
θ ∈

(
0, 1

]
:
(
xθ,

y
θ
,bθ

)
∈ T

}
, (1)

where T is the production possibility set,

T = {x can produce y ∩ b} .

This is the case represented in Figure 4 by the curved arrow. Similar to conventional distance func-
13It is worth noting that when adopting an hyperbolic distance function approach, any improvement in technical

ine�iciency by firm A results in an increase in profits due to both an expansion of its revenues and a decline in costs.
Conversely, within an output distance function framework firm A would only improve its revenue, holding inputs, and
therefore costs, constant, whereas profits improvement only arise from decreases in costs, when using an input distance
function approach. This reflects the fact that the hyperbolic distance function is dual to the profit function, whereas the
output (input) distance function is the dual of the revenue (cost, respectively) function, see Cuesta and Zofío (2005) for
a discussion.

14The distance function and the e�iciency measurement are enhanced as they allow both the inputs and the unde-
sirable outputs to be reduced at the same time as the output is expanded. This contrast with the hyperbolic distance
function framework where only inputs and desirable outputs are considered (Cuesta and Zofío, 2005).
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tions, hyperbolic distance functions can be estimated in either a parametric or a non-parametric ef-

ficiency framework. Non-parametric estimation relies on deterministic linear programming tech-

niques such as the Data Envelopment Analysis (DEA) method introduced by Charnes et al. (1978).15

This approach may be attractive in some applications as it does not require the imposition of any

specific functional form, but do not allow for statistical noise in the data, nor do they allow to model

and estimate the e�iciency score alongside the frontier estimation.

Here, we apply a parametric approach and postulate, along with most of the literature, that the

frontier has a translog specification, which provides a second order approximation to an arbi-

trary distance function. The translog specification is useful as it allows for the calculation of firm-

specific elasticities of substitution between each combination of individual inputs and outputs

(Christensen and Greene, 1971).16 We rely on the Stochastic Frontier Analysis (SFA) model intro-

duced by Aigner et al. (1977) and Meeusen and van Den Broeck (1977). The biggest advantage of

this model compared to the deterministic approach discussed above lies in the possibility to ex-

plicitly control for the stochastic processes that may a�ect the e�iciency frontier. This framework

also allows for the estimation of standard errors and confidence intervals and therefore enables

hypothesis testing. In what follows, we borrow extensively from Cuesta et al. (2009) and Mamar-

dashvili et al. (2016) as we use SFA to parametrically estimate our enhanced hyperbolic distance

functions.

We start by defining the enhanced hyperbolic e�iciency for firm i in year t as:

EHEit = DEH
(
xit, yit,bit

)
. (2)

If the technology satisfies the usual axioms, then the distance function satisfies a number of prop-

erties (See Färe et al., 1985; Cuesta and Zofío, 2005; Cuesta et al., 2009, for details). In particular,

it is non-decreasing in the desirable outputs, and non-increasing in the undesirable output and in

all the inputs as well as being almost homogeneous of degrees (-1, 1, -1, 1).17

The almost homogeneity property implies:

DEH
(
xit
λ
,λyit,

bit
λ

)
= λDEH

(
xit, yit,bit

)
[ λ > 0. (3)

15Färe et al. (1989) adapted non-parametric hyperbolic distance function for the purposes of environmental perfor-
mance analysis. This led to the rise of directional distance functions, which are essentially a special case of a hyperbolic
distance function. Examples of empirical applications of DEA in this context can be found in Boyd et al. (2002), Lee et al.
(2002), Maradan et al. (2005) Kaneko et al. (2010), Choi et al. (2012).

16The translog specification is also common in Shephard radial functions applications, whereas quadratic functional
forms are usually used for directional distance functions.

17Aczél (1979, Ch.7) defines a function Fx, y as almost homogenous of degrees (k1,k2,k3) if F
(
µk1x,µk2y

)
=

µk3F
(
x, y

)
, [µ > 0.
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Since equation (3) holds for any λ > 0, we may set λ = 1
ymit , where ymit stands for them-th output,

and obtain:

DH
(
xitymit,

yit
ymit

,bitymit
)
=

1
ymit

DH
(
xit, yit,bit

)
. (4)

Taking logarithms on both sides of (4) and rearranging, we get:

lnDEH
(
xit, yit,bit

)
= lnDEH

(
xitymit,

yit
ymit

,bitymit
)
+ ln ymit (5)

To derive an estimable form of the hyperbolic distance function, we first append an error term vit
to equation (5), and then substitute that expression into equation (2). Rearranging, we get:

− ln ymit = lnDEH
(
xitymit,

yit
ymit

,bitymit
)
− ln EHEit + vit (6)

where lnHEit is the familiar (in-)e�iciency term, and vit represents statistical noise.

Färe et al. (2002) show that the hyperbolic distance function is the dual of the profit function.18 This

duality is underpinned by the relation between hyperbolic distance function and the Georgescu-

Roegen’s notion of the ‘return to the dollar’ measure, defined as the ratio of revenue to expenditure

and costs. Since we are interested in the trade-o�s that emerge when trying to reduce polluting

emissions, we follow Cuesta et al. (2009) and define our profitability function

π
(
x,p,q

)
= max

y,b

{
py
qb
, : DEH

(
x, y,b

)
≤ 1

}
, (7)

where p and q stand for the vectors of desirable and undesirable output (shadow) prices, respec-

tively and x denotes inputs.

Following Färe et al. (1993), the shadow price for the j-th undesirable output bj in terms of them-th

desirable one can be expressed as

q = p
∂DEH

(
x, y,b

) /
∂bj

∂DEH
(
x, y,b

) /
∂ym

. (8)

The second term at the right-hand side corresponds to the slope of the distance function, i.e.− dym
/
dbj ,

and therefore measures the change in the amount of the good outcome, ym in this case, necessary

to reduce an additional unit of the bad output bj. Since this is the definition of the MAC for bj that

we started out with, it is clear that (8) gives us the tool we need to compute the MAC.
18Similar duality can be proven for other distance functions: the output distance function is dual to the revenue

function and the input distance function is dual to the cost function (Shephard, 1970; Färe et al., 1993; Hailu and Veeman,
2000). As the hyperbolic distance function measures the ability to expand desirable outputs (revenue) and contract
inputs and undesirable outputs (costs) and is essentially a hybrid of output and input distance functions, its duality to
profitability function is intuitive.
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To implement the methodology discussed above, we need to specify a functional form for the en-

hanced hyperbolic distance function. In what follows, we assume a translog specification with one

desirable output – the gross value of production – y1, one undesirable output – CO2 emissions – b,

and four inputs – expenditures for labour, capital, materials, and energy –, which we identify by xk
with k ∈ 1, 2, 3, 4 in the order.

The corresponding translog enhanced hyperbolic distance function (DEH) is therefore:

− ln y1it =α0 +
4∑
k=1

αk ln
(
xkity1it

)
+
1
2

4∑
k=1

4∑
l=1

αkl ln
(
xkity1it

)
ln

(
xlity1it

)
+ βb ln

(
bity1it

)
+
1
2
βbb

(
ln

(
bity1it

) )2
+

4∑
k=1

γkb ln
(
xkity1it

)
ln

(
bity1it

)
+ ψtdt + uit + vit,

(9)

where k and ldenote the di�erent inputs, i is the firm indicator, t reflects the time dimension, given

the panel structure of our data, anddt indicates time dummies. The composed error terms in equa-

tion (9) is comprised of a non-negative ine�iciency term, uit, and a random symmetric error term,

vit.

We estimate separate enhanced hyperbolic functions by industry, using a Stochastic Frontier Anal-

ysis (SFA) approach.19 To avoid convergence problems, we divide each output and all input vari-

ables by their geometric mean. The elasticities can therefore be evaluated at sample means. As

we have only one desirable output (y1), the almost homogeneity conditions are imposed using

the gross value of production. We estimate a stochastic half-normal model, which assumes a half-

normal distribution for uit and a normal distribution for vit. We follow Mamardashvili et al. (2016)

and allow for heteroskedasticity in both uit and vit, i.e.

σ2u,it = ez
′
i ρ

σ2v,it = ew
′
iτ

(10)

where zi and wi are variables that a�ect the variance of each component of the error term and ρ

and τ are vectors of parameters to be estimated.

As z variables we use dummies that control for the exporting and R&D status of our firms. Our w

variables, instead, are regional dummies – north, east or west –, keeping the south of Germany as

the reference region.

Finally, using the expression in (8) and the estimated technology parameters, we are able to cal-
19We estimate our distance functions using Maximum Likelihood Estimation methods. For our estimations we use

the statistical so�ware package Stata Version 15. We classify industries at the two-digit ISIC Rev. 4 code level, codes
10-33.
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culate firm-specific shadow prices of undesirable output (CO2 emissions) with respect to the desir-

able output (gross value of production).

5 Data

To estimate translog enhanced hyperbolic distance functions at the industry level, we use the ad-

ministrative, confidential panel dataset for German manufacturing firms (AFiD) spanning the ten

years between 2005 and 2014.20 Our desirable output is the gross value of production in euros, (y1),

the undesirable output is CO2 emissions in metric tons (b), and three inputs: material expenditure,

(x1), capital stock, (x2) and labor expenditure, (x3), all of which are once again measured in euros.

The AFiD data-set contains information on the firms’ annual general characteristics and their cost

structure, and is particularly detailed in terms of the use of fuels and electricity. We construct

this unique dataset by combining several microdatasets and modules: the AFiD Panel Industriebe-

triebe (AFiD Panel on Manufacturing Plants), the AFiD Module Energieverbrauch (AFiD Module on

Energy Use), the Kostenstrukturerhebung (Cost Structure Survey) and the Unternehmensregister

(Company Register). These modules are provided by the German Federal Statistical O�ice and the

Statistical O�ices of the German Federal States and the information disclosure is mandatory for

all surveyed firms and plants.21 We additionally combine data from the European Union Transac-

tion Log (EUTL) in order to identify German manufacturing firms regulated under the EU ETS. We

also use other external data to calculate CO2 emissions, and to estimate the capital stocks. The

data-sets are finally merged at the firm-level, using plant- and firm-level identifiers. All monetary

variables are deflated to 2010 euros. For additional information on the merger, see Appendix 7.22

The AFiD Panel Manufacturing Plants contains information on employment, foreign and domestic

sales, salaries and investments for all German manufacturing plants with more than 20 employ-

ees. We obtain gross value of production from this panel and we deflate it using two-digit ISIC

deflators.23 We follow Lutz (2016) and use the perpetual inventory method and investment infor-

mation to calculate capital stocks. This method also involves the use of external datasets. The

procedure is described in detail in Appendix 7. Having information on foreign sales, we define the

firm as an exporter if the sales are positive in at least two consecutive years. This plant-level panel
20Note that AFiD stands for Amtliche Firmendaten für Deutschland, in English: O�icial Firm Data for Germany.
21Detailed descriptions of the AFiD Panel Manufacturing Plants are provided by Koch and Migalk (2007) and Wagner

(2010). The Cost Structure Survey is explained in depth by Fritsch et al. (2004) and Lutz (2016). Additional information
on the Company Register can be found in Koch and Migalk (2007). Petrick et al. (2011) thoroughly inform on the AFiD
Module on Energy Use.

22The AFiD data has been previously used in the context of the EU ETS by Petrick and Wagner (2014), Lutz (2016),
Lutz et al. (2017), Richter and Schiersch (2017),Löschel et al. (2019).

23The deflators are retrieved from Destatis portal GENESIS at https://www-genesis.destatis.de/genesis/online.
Specifically we use the Producer Price Index 61241-0004.
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also includes information on the federal state in which the firm’s headquarters are located. We use

this information to allocate each firm into one of the regions- north, east, west and south.

The AFiD Module on Energy Use provides detailed information on the annual fuel and electricity

use at the plant-level. The data is provided in units of energy content (kWh), which allows us to

calculate firm-level energy use from 15 di�erent fuels including electricity, district heat and pri-

mary fuels. We subsequently calculate direct CO2 emissions by transforming each of the fuel in-

puts (without electricity) to CO2 emissions using fuel-specific emissions factors.24

The Cost Structure Survey reports annual information on various types of costs and inputs at the

firm-level. The participation in the survey is mandatory for all German manufacturing firms with

more than 500 employees. Information on smaller and medium firms (20 - 500 employees) are col-

lected from a large random sample, stratified at the two-digit industry level and size class level.

This random sample is redrawn every four years, and some SMEs are surveyed every time if they

operate in certain concentrated industries. We obtain information on R&D expenditures from this

survey, and define the firm as an R&D intensive firm if its expenditures are positive in two consec-

utive years. We obtain our materials and labor expenditures from the CSS and deflate them using

two-digit ISIC deflators.

Table 1: Summary Statistics

ISIC Rev.4 Capital
Expenditure

(1000 EUR)

Labour
Expenditure

(1000 EUR)

Materials
Expenditure

(1000 EUR)

Gross Value of
Production

(1000 EUR)

Direct Emissions
(tCO2)

#Firms

10 113285
128644

37706
49351

296892
430683

369905
431809

91393
167025

41

17 74348
116044

17215
16434

94710
111291

146263
164412

91063
110632

71

20 291604
615444

100087
273923

375796
793477

618008
1360860

632746
2235636

69

23 43949
54223

16545
26420

34601
46402

76716
100472

95714
186665

124

Sector 266674
963547

134104
620604

630272
2942850

817216
3762113

309698
1531106

478

Mean values of the main variables in our model. Source: RDC of the Federal Statistical O�ice and Statistical O�ices of the Länder,

[survey years 2003-2014], own calculations.

Table 1 presents the summary statistics for the EU ETS firms in our dataset. In our analysis, we focus

on four industries, namely Food Products (ISIC code 10), Paper and Paper Products (17), Chemical

and Chemical Products (20), and Non-metallic Mineral Products (23), for which we have a su�icient

number of ETS treated firms.25

24We use the CO2 emission factors o�icially published by the German Federal O�ice for the Environment, Umwelt-
bundesamt (2018).

25FDZ (2017) dictates the confidentiality rules that apply to the export of results based on the AFiD panel. In our
cases, we are constrained to a minimum sample size of around 20 EU ETS firms per year, resulting in the four sectors
mentioned in the main text.
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6 Results

Table 2 presents the results of our estimations of the distance function in (9). The first column refers

to the estimation of the distance function at the level of the Manufacturing sector as a whole, the

other four columns present estimates for each of the sectors individually. Overall, the the coe�i-

cients have broadly the expected sign and tend to be statistically significant.

Table 2: Frontier Estimates - (2003-2014)

All manufacturing 10 17 20 23

Variable Coe�icient p-value Coe�icient p-value Coe�icient p-value Coe�icient p-value Coe�icient p-value

βb 0.001** (0.009) -0.006** (0.002) -0.000 (0.990) 0.002 (0.320) 0.001 (0.547)
βbb 0.000 (0.971) -0.003* (0.026) 0.002 (0.074) -0.004*** (0.000) 0.001 (0.326)
α1 -0.224*** (0.000) -0.205*** (0.000) -0.175*** (0.000) -0.189*** (0.000) -0.242*** (0.000)
α11 -0.049*** (0.000) -0.070*** (0.000) -0.048*** (0.000) -0.028** (0.001) -0.118*** (0.000)
α2 -0.090*** (0.000) -0.091*** (0.000) -0.093*** (0.000) -0.103*** (0.000) -0.076*** (0.000)
α22 -0.0254*** (0.000) -0.0510*** (0.000) -0.060*** (0.000) -0.068*** (0.000) -0.049*** (0.000)
α3 -0.186*** (0.000) -0.198*** (0.000) -0.209*** (0.000) -0.215*** (0.000) -0.192*** (0.000)
α33 -0.068*** (0.000) -0.073*** (0.000) -0.097*** (0.000) -0.073*** (0.000) -0.077*** (0.000)
α4 -0.021*** (0.000) -0.022*** (0.000) -0.025*** (0.000) -0.019*** (0.000) -0.006 (0.081)
α44 -0.007*** (0.000) -0.004 (0.091) -0.031*** (0.000) -0.022*** (0.000) -0.025*** (0.000)
α12 0.006*** (0.000) 0.022*** (0.000) 0.027** (0.005) 0.021* (0.014) 0.039*** (0.000)
α13 0.040*** (0.000) 0.073*** (0.000) 0.023*** (0.000) 0.033*** (0.000) 0.059*** (0.000)
α14 0.021*** (0.000) -0.009* (0.021) 0.005 (0.366) -0.026*** (0.000) 0.022*** (0.000)
α23 0.019*** (0.000) -0.004 (0.061) 0.048*** (0.000) 0.032*** (0.000) 0.014*** (0.000)
α24 -0.013*** (0.000) 0.028*** (0.000) -0.012 (0.069) 0.024*** (0.000) 0.004 (0.394)
α34 0.004*** (0.000) -0.009*** (0.000) 0.029*** (0.000) 0.011*** (0.000) 0.002 (0.338)
γ1o -0.006*** (0.000) -0.011*** (0.000) -0.001 (0.657) 0.010*** (0.000) 0.003 (0.291)
γ2o 0.007*** (0.000) 0.006* (0.018) 0.002 (0.518) -0.011*** (0.000) -0.005* (0.039)
γ3o 0.001** (0.002) 0.014*** (0.000) -0.008*** (0.000) 0.002 (0.104) 0.002 (0.168)
γ4o -0.003*** (0.000) -0.008*** (0.000) 0.005** (0.009) 0.006*** (0.000) -0.002 (0.184)
α0 -0.466*** (0.000) -0.433*** (0.000) -0.364*** (0.000) -0.461*** (0.000) -0.431*** (0.000)

σ2u

Exporter 0.001 (0.903) -0.130*** (0.000) -0.292** (0.008) -0.706*** (0.000) -0.257*** (0.000)
R&D -0.569*** (0.000) -0.064* (0.015) 0.083 (0.256) 0.204*** (0.001) -0.057 (0.238)
Inv. mach. 0.023** (0.003) 0.227*** (0.000) 0.281*** (0.000) 0.427*** (0.000) 0.162*** (0.000)
Patents 0.139*** (0.000) -0.139*** (0.000) -0.116* (0.021) 0.185*** (0.000) 0.200*** (0.000)
Constant -2.001*** (0.000) -2.527*** (0.000) -3.557*** (0.000) -2.772*** (0.000) -2.658*** (0.000)

σ2v

South -0.459*** (0.000) -0.935*** (0.000) 0.071 (0.609) 0.565*** (0.000) -0.410*** (0.000)
East -0.547*** (0.000) -0.861*** (0.000) 0.408** (0.010) 0.341** (0.002) -0.581*** (0.000)
West -0.544*** (0.000) -1.164*** (0.000) 1.337*** (0.000) 0.517*** (0.000) -0.383*** (0.000)
Constant -4.197*** (0.000) -3.853*** (0.000) -5.881*** (0.000) -4.696*** (0.000) -4.557*** (0.000)

N.obs. 168,079 20,335 4,763 9,123 8,664

Notes: This table reports sector and industry-specific enhanced hyperbolic distance frontier esti-
mates. Year fixed e�ects are included in all estimations.
*, **, *** indicate 10%, 5% and 1% statistical significance, respectively.

Given our specification of the ine�iciency component of the error term, σ2u,it, in (10), a larger value

for the variance implies a lower level of e�iciency for the firm. Consequently, when interpreting

the coe�icients a negative one suggests that the variable it refers to contributes positively to the

firm’s e�iciency. For example, in line with the literature on exporting and productivity, we find that

for all the sectors we investigate, firms that are flagged as ‘exporters’ tend to have a higher level
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of e�iciency (Bernard et al., 1995; Bernard and Bradford Jensen, 1999; Aw et al., 2011; Atkin et al.,

2017). Interestingly, we also find that a higher level of investment in machinery is associated with

a lower level of e�iciency.

The estimates in Table 2 are used to compute the shadow price of carbon emissions in terms of

output, i.e. the marginal abatement cost, for each of the firms in our sample. Table 3 shows the

shadow price, for each year in our sample, in terms of the mean, median, 10th and 90th percentile.

Tables A.1-A.4 in the Appendix contain the corresponding results for 2-digit industries.

Table 3: Shadow prices for EU ETS firms - All Manufacturing
(2003-2014)

Year N.obs. Mean 10th perc. Median 90th perc.

2003 315 51.60 1.40 10.52 138.99
2004 323 46.12 1.26 9.49 111.49
2005 311 42.23 1.39 10.21 85.67
2006 307 138.30 1.40 12.03 134.79
2007 330 293.89 1.27 10.16 155.06
2008 362 209.85 1.40 9.31 97.11
2009 396 244.41 1.28 9.94 101.48
2010 396 92.72 1.26 10.61 103.54
2011 385 221.58 1.34 10.10 111.20
2012 397 319.32 0.86 9.22 92.86
2013 397 286.75 1.06 9.39 95.39
2014 400 197.15 1.23 8.60 115.28

Notes: This table reports shadow prices computed based on
the estimates for each industry’s frontier for ETS firms.

The first aspect that emerges from these results is that there is significant heterogeneity both across

and within industries. From the first point of view, both the Paper and Paper Products (ISIC 17) and

the Non-metallic Mineral Products (ISIC 23) industries have significantly lower shadow prices than

either the Food and Food Products (ISIC 10) and Chemical and Chemical Products (ISIC 20) ones.

While the median price ranges over time between 25 and 15e/ton in the former industries, a level

broadly in line with current and historical market prices, in the two other industries the median

values hover between 80-100 in most years.

The range of variation within each of the industries is also significant. The 10-90 percentile spread

is significant even for low-cost industries – among Paper and Paper Products firms, the spread is

over 250e/ton in 2005 – and positively staggering in high-cost ones – in Food and Food Products,

the spread exceeds 600e/ton in multiple years.

These estimates imply that compliance with the EU ETS might be very onerous indeed for some
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firms in the absence of emissions trading. They also point to a very skewed distribution of MACs

among firms and industries, suggesting that there exists significant scope for cost savings from

permit trading among German manufacturing firms.

Having estimated the enhanced hyperbolic distance function and derived the shadow prices for

CO2 emissions for each of the firms in the four industries we discuss here, we are now in a position

to turn to the main objective for this paper, i.e. to assess the claim that emission trading leads to

the equalization of the marginal cost of abatement across sources over time - see Section 3.

In Section 3, we put forward the suggestion that, following the introduction of emissions trading,

one would expect at least some firms to move up their MAC curve, both to comply with the new

restrictions and to take advantage of the possibility of selling surplus permits on the market. As a

consequence, the first piece of evidence that emissions trading changes the behaviour of firms in

ways consistent with the theory would be to find an increase in the MAC, especially at the lower

end of the MAC distribution.

To address this question, we graph our industry-specific results in Figure 5. The graphs plot the 10-

90 percentile spread of the MACs for EU ETS firms in the whole sector and in each industry, together

with the median (the continuous line in the graphs). For most of the industries and manufacturing

as a whole, the median increases over the first phase of the EU ETS, suggesting that in line with the

theory, and despite the generous allocation and the low permit prices, some degree of abatement

did take place in the EU ETS during phase I (Ellerman and Buchner, 2008; Anderson and Di Maria,

2008).

The second testable implication discussed above focussed on the role of technological change,

both in terms of innovation proper and adoption of best practices. Our discussion led us to con-

clude that over time, as new processes and technical solutions are developed and adopted, firms

should become more adept at abating their emissions, and the marginal costs should decrease,

coeteris paribus. Our graphs provide suggestive evidence that this is indeed happening. For all our

industries, and very markedly for manufacturing as a whole, the 10-90 percentile spread narrows

remarkably and the lower bound decreases over time.

This is work in progress. In a future update of this paper, we will econometrically test for conver-

gence. Furthermore, we will test whether firms with low abatement costs (as measured before

the start of the EU ETS) have lower emissions per unit of production than otherwise similar firms

that have a higher abatement cost. Such a shi� of abatement from low-cost to high-cost firms is

the source of the e�iciency gain of an ETS relative to a command-and-control regime that would

require equal (proportional) abatement across all firms.
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(a) All Manufacturing (ISIC 10-33)

(b) Food and Food Products (ISIC 10)

(c) Paper and Paper Products (ISIC 17)

(d) Chemical and Chemical Products (ISIC 20)

(e) Non-metallic Mineral Products (ISIC 23)

Figure 5: Evolution of the shadow price over time, for the manufacturing sector overall (top) and
for individual industries.
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7 Discussion and conclusions

In this paper we aimed to shed some empirical light on the theoretical prediction that emissions

trading allows the achievement of pollution reduction targets at least cost. We focussed on the EU

ETS as our case study and used a panel of confidential data on over 16,000 German manufacturing

firms between 2005 and 2014. Within an enhanced hyperbolic distance function approach, we are

able to construct estimates of the shadow price of CO2 emissions for each firms in each period.

Since these shadow prices represent the opportunity cost, in terms of foregone marketable output,

of reducing emissions by one tonne, they provide a direct estimate of the marginal cost of CO2

abatement.

The median marginal costs of abatement we estimate range from as low as 10 eto over 150 efor

the manufacturing sector as a whole, suggesting that there exist ample scope for trading among

manufacturing firms and much cost saving to be had.

Using the shadow prices, we compare their evolution of time to the theoretical priors derived from

a model of compliance cost minimization in the presence of emissions trading. The theory sug-

gests that the MAC should increase, following the introduction of the emission trading scheme, as

low cost firms move up their marginal abatement cost curves to comply with the regulation and

to benefit from the returns provided by trading their excess allowances. The second prediction

that we derive from our discussion of the theory is that, coeteris paribus, as new technologies are

brought to bear on the process of abatement over time, the marginal cost of abatement should

decline.

Despite the many confounding factors present in the data, our empirical estimates speak clearly

of (median) shadow prices that increase over the first few periods of the EU ETS, reflecting the

increased drive to reducing emissions; they also provide evidence of a narrowing in the spread of

shadow prices over time and a decline in both the lower bound of the distribution we focus on

and in the median. Both these patterns are consistent with the theoretical predictions and we take

them as suggestive evidence that emissions trading operates in practice like the theory suggests.

These findings ought to provide valuable information for policy makers in the European Union and

beyond on the actual level of the costs imposed by climate change policy, and its distributional

impacts across firms and industries within a crucial and politically sensitive sector like manufac-

turing.

Note: Parts of this is work are still in progress and as such subject to change. We kindly ask the

reader to refer to the most recent updates of our work by using the external link provided at the

beginning of the document.
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Appendix

Further Data Description

2-digit industry level classification:

In the period 2005-2008, the industry classification in our dataset ("Wirtscha�szweig") is based

on NACE Revision 1.1. A�er 2008, the classification has changed in accordance with the European

implementation NACE Revision 2 (Statistical Classification of Economic Activities in the European

Community) of the UN classification ISIC Revision 4. We reclassify the years before 2008 using of-

ficial reclassification guide of the German Statistical O�ices at the four-digit industry code level,

to be able to use the ISIC Rev.4 classification throughout.26 In the interest of having enough ob-

servations, we carry out the final analysis on the two-digit industry level and estimate separate

hyperbolic and enhanced hyperbolic distance functions for each two-digit industry.

Merging of AFiD and EUTL:

We combine di�erent modules of AFiD data set via plant and firm-level identifiers. Matching AFiD

data with EUTL requires a multi-step procedure. First it is combined with the German Company

Register using information on commercial register number, VAT number and the address in order

to obtain a unique company identification number. Using the latter, the external dataset can be

combined with the AFiD dataset. We were able to assign 83 percent (1117 firms) of the firms in the

EUTL a commercial register number and merge it with AFiD. The firms that are not matched mainly

belong to non-manufacturing sectors. We proceed by dropping all non-EU ETS firms from the final

dataset.

26For more details on reclassification codes, see Statistisches Bundesamt (2008).
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Additional Tables and figures

Table A.1: Shadow prices - Food products (2003-2014)

Year N.obs. Mean 10th perc. Median 90th perc.

2003 33 197.11 40.63 103.61 492.72
2004 33 218.13 45.72 103.05 551.97
2005 34 205.37 43.85 101.06 548.19
2006 34 199.85 40.22 101.82 546.88
2007 36 249.66 38.28 108.38 639.36
2008 41 320.92 42.98 104.55 682.06
2009 41 356.59 41.71 120.31 636.35
2010 43 299.32 34.57 105.80 600.41
2011 43 279.51 30.49 98.38 507.57
2012 45 209.00 33.90 103.30 537.77
2013 46 186.44 30.32 88.96 469.11
2014 45 182.49 30.65 89.90 498.81

Notes: This table reports shadow prices computed based on
the estimates for each industry’s frontier for ETS firms.

Table A.2: Shadow prices - Paper and paper products (2003-
2014)

Year N.obs. Mean 10th perc. Median 90th perc.

2003 47 49.64 2.02 19.22 100.82
2004 44 56.96 4.13 20.64 153.68
2005 45 147.42 2.75 25.60 259.86
2006 47 70.16 3.16 23.62 168.33
2007 48 61.14 2.72 21.57 163.98
2008 53 45.95 5.24 22.43 123.49
2009 52 44.05 3.56 20.20 128.45
2010 56 57.09 4.44 22.07 129.38
2011 57 47.18 4.65 24.77 97.09
2012 59 42.95 3.13 15.78 90.25
2013 56 35.73 3.47 17.58 57.97
2014 63 34.75 2.47 15.30 62.41

Notes: This table reports shadow prices computed based on
the estimates for the industry’s frontier for ETS firms.
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Table A.3: Shadow prices - Chemicals and chemical products
(2003-2014)

Year N.obs. Mean 10th perc. Median 90th perc.

2003 54 128.91 12.40 75.74 235.90
2004 56 154.15 15.65 87.15 509.00
2005 58 165.14 12.70 101.11 584.34
2006 59 211.28 14.38 75.64 523.84
2007 59 199.88 15.25 88.66 663.65
2008 68 421.40 9.77 81.03 440.98
2009 67 109.82 10.23 66.79 211.75
2010 71 129.71 11.18 75.82 201.29
2011 71 180.17 12.10 75.74 445.08
2012 77 252.91 7.64 56.39 294.12
2013 75 135.15 6.98 52.68 231.31
2014 76 140.29 7.78 59.74 284.24

Notes: This table reports shadow prices computed based on
the estimates for the industry’s frontier for ETS firms.

Table A.4: Shadow prices - Other Non-metallic products

Year N.obs. Mean 10th perc. Median 90th perc.

2003 84 70.39 2.32 20.99 160.76
2004 90 49.57 3.05 20.47 166.27
2005 90 47.80 3.02 20.58 135.50
2006 93 50.94 3.83 25.37 149.95
2007 96 60.95 3.36 26.66 152.33
2008 113 45.95 3.82 25.44 122.86
2009 113 35.82 3.39 22.57 85.66
2010 115 39.27 3.52 23.96 92.55
2011 117 42.85 3.35 24.36 98.13
2012 121 40.56 3.47 24.21 96.94
2013 120 40.66 4.33 22.87 82.28
2014 121 39.45 4.03 21.38 89.51

Notes: This table reports shadow prices computed based on
the estimates for the industry’s frontier for ETS firms.
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