
Cholesky-based experimental design for Gaussian

process and kernel-based emulation and calibration

H. Harbrecht, J.D. Jakeman, P. Zaspel

Departement Mathematik und Informatik

Fachbereich Mathematik

Universität Basel

CH-4051 Basel

Preprint No. 2020-05

November 2020

dmi.unibas.ch

https://dmi.unibas.ch/

Cholesky-based experimental design for Gaussian

process and kernel-based emulation and calibration

H. Harbrecht1,J.D. Jakeman2∗, and P. Zaspel3

1 Department of Mathematics and Computer Science, University of Basel, Basel,
Switzerland.
2 Optimization and Uncertainty Quantification, Sandia National Laboratories, Al-
buquerque, NM, USA.
3 Computer Science and Electrical Engineering, Jacobs University Bremen, Bremen,
Germany.

Abstract. Gaussian processes and other kernel-based methods are used extensively to
construct approximations of multivariate data sets. The accuracy of these approxima-
tions is dependent on the data used. This paper presents a computationally efficient
algorithm to greedily select training samples that minimize the weighted Lp error of
kernel-based approximations for a given number of data. The method successively
generates nested samples, with the goal of minimizing error in high probability re-
gions of densities specified by users. The algorithm presented is extremely simple and
can be implemented using existing pivoted Cholesky factorization methods. Training
samples are generated in batches which allows training data to be evaluated (labeled)
in parallel. For smooth kernels, the algorithm performs comparably with the greedy
integrated variance design but has significantly lower complexity. Numerical experi-
ments demonstrate the efficacy of the approach for bounded, unbounded, multi-modal
and non-tensor product densities. We also show how to use the proposed algorithm
to efficiently generate surrogates for inferring unknown model parameters from data
using Bayesian inference.

AMS subject classifications: 62F15, 62K20, 65D05

Key words: Experimental design, active learning, Gaussian process, radial basis function, uncer-
tainty quantification, Bayesian inference

1 Introduction

This article considers the approximation of a function u : Γ→R using kernel based inter-
polation. We are particularly interested in constructing approximations ΠV(u)∈V ⊂Vω

∗Corresponding author. Email addresses: helmut.harbrecht@unibas.ch (H. Harbrecht),
jdjakem@sandia.gov (J.D. Jakeman), p.zaspel@jacobs-university.de (P. Zaspel)

http://www.global-sci.com/ Global Science Preprint

2

of u, which have a small approximation error

ǫω(u,V,p) :=

(

∫

Γ
|u(y)−(ΠVu)(y)|pω(y)dy

)1/p

. (1.1)

when measured with respect to a measure ω : Γ→R, which introduces the weighting on
Vω. In other words, we aim to minimize the approximation error measured using the
ω-weighted Lp(Γ)-norm

‖e‖L
p
ω(Γ)

:=

(

∫

Γ
|e(y)|pω(y)dy

)1/p

.

While we are in principle not bound to a specific choice of p, we will consider p=2,4,6 in
this work.

Such weighted function approximation is often essential for uncertainty quantifica-
tion (UQ). In this setting, u usually corresponds to the parameter-to-solution map of
a numerical model – e.g. a partial differential equation (PDE) – the argument y is a
finite-dimensional random variable, and ω is its probability density function (PDF). Ap-
proximations are built to reduce the number of computationally expensive simulations
(i.e. point evaluations of u) needed to estimate statistics.

The techniques discussed in this paper are not limited to UQ of PDEs. The method
presented can be utilized to build approximations of any data generating information
source. Furthermore, ω need not be a probability measure. For example, ω can be the
unnormalized posterior of Bayesian inference, or a biasing measure used for importance
sampling that explores important regions of Γ.

Numerous techniques have been developed to build approximations of expensive in-
formation sources. Within the computational science and engineering community, some
of the most widely adopted methods for approximating models are those based on gen-
eralized polynomial chaos expansions [9, 39], sparse grid approximation [23, 38], Gaus-
sian process models [27, 44], low-rank tensor decompositions [12, 24] and neural net-
works [45, 46]. These methods can be very efficient when building approximations of
functions parameterized by independent random variables. However, there is a dearth
of algorithmic options for when the variables are dependent.

The objective of this article is to propose a methodology to efficiently generate nested
and greedy-pseudo-optimal sample designs that minimize the number of evaluations
of u needed to build an approximation with a pre-specified accuracy measured in the
L

p
ω norm. The algorithm is pseudo optimal because it minimizes an upper bound on

approximation error. The algorithm is greedy because it both selects from a candidate set
which discretizes the design space and chooses points one at a time.

Accurate approximations can be built without tailoring the sampling and approxi-
mation strategy to the measure ω. However such approaches, called domination meth-
ods [2,14], are sub-optimal and require a larger number of evaluations of u than methods
that consider ω [15]. Instead of building an approximation which minimizes the error

3

measured by the L
p
ω norm, domination methods build an approximation that minimizes

the error measured by another norm L
p
g , where g is a simpler measure. Typically g is

simply a constant, i.e. the PDF of independent bounded uniform variables on a bounded
domain. The use of the simpler incorrect measure g allows the use of existing unweighted
approximation methods, but comes at a cost [2, 14, 39].

The following lemma characterizes the accuracy in a ω-weighted norm given an ap-
proximation that is accurate in the g-weighted norm.

Theorem 1.1 (Strong convergence [2]). Let g : Γ̂→R and ω :Γ→R denote two densities which
satisfy

δ=1−
∫

Γ∩Γ̂
ω(y)dy

Now assume that the error of the approximation Πg(u) of u satisfies

ǫ :=‖u−Πgu‖L
p
g(Γ)

, p≥1, (1.2)

and that u is bounded with Cu =‖u‖L∞(Γ) Then, there holds

‖u−Πgu‖L
p
ω(Γ)

≤C
1/p
r ǫ+Cuδ1/p, provided Cr := max

y∈Γ∪Γ̂

ω(y)

g(y)
<∞. (1.3)

This theorem suggests that tailoring an approximation to the true measure ω can im-
prove approximation accuracy. The constant Cr is characterized as the maximum devia-
tion of g from the original measure ω. If Γ is unbounded, we can still apply approxima-
tion methods for bounded domains Γ̂. However, this induces an additional error which
is proportional to the probability δ (measured with respect to ω) of y falling outside the
bounded domain.

In mesh-free kernel-based approximation, it is common, see e.g. [7], to evaluate u at
samples drawn from quasi-random number sequences. However, these sequences were
primarily designed for unweighted function approximation, i.e. they are good samples
for Vg with g being a PDF of a uniformly distributed random variable. Theorem 1.1 sug-
gests that we can significantly reduce the approximation error if we instead use samples
optimized for the measure of interest ω.

In this article we present a ω-aware approximation technique based on nested greedy-
pseudo-optimal sampling using a weighted version of the so-called power function, i.e. the
worst case error functional in kernel-based approximation. The power function has been
used to construct efficient sampling schemes for unweighted approximation [29]. Our
new contribution is to employ a weighting in the sample allocation process, which adapts
the samples to the measure ω. We will show that this approach outperforms approxi-
mations constructed using power function based sampling [17] and quasi Monte Carlo
sampling. We also compare our approach with methods based upon Quasi Monte Carlo
sequences and integrated variance (IVAR) experimental design [11, 43], also known as
integrated mean squared error design, used by the Gaussian process community.

4

When ω is a tensor-product measure, our approach produces approximations with
accuracy comparable to approximations built using samples obtained from inverse trans-
form sampling [6, 16] applied to quasi Monte Carlo sequences. However, the latter ap-
proach can only be applied easily to tensor-product measures, while our approach is also
applicable to non-product measures, for example that occur in Bayesian inference prob-
lems. We also demonstrate that our approach produces approximations with similar
accuracy to those constructed using IVAR. However, the latter is much more computa-
tionally intensive and difficult to implement. Our approach only requires a simple linear
algebra task (i.e. the pivoted Cholesky factorization), while IVAR requires a more com-
plex and expensive procedure. Furthermore, unlike IVAR, we show Cholesky sampling
can be used to minimize L

p
ω norms with values other than p=2.

While beyond the scope of this paper, it is worth mentioning that nested-greedy pro-
cedures, similar to those discussed here for kernel based approximation, have also been
developed for other approximation methods. Discrete Leja sequences [15,41], often used
for polynomial approximation, are constructed by using partially pivoted LU factoriza-
tion to greedily select points from an ordered set of basis functions evaluated at a set of
candidate samples. Similarly, the Empirical Interpolation Method utilizes complete pivoting
to greedily select both basis functions and samples (Magic points) [42].

The rest of this article is organized as follows. In Section 2, we provide an overview of
kernel-based function approximation. Then, in Section 3, we introduce a new approach
for greedily generating samples for kernel based approximation based upon a weighted
modification of pivoted Cholesky factorization. A detailed discussion on the relation-
ships to existing strategies used for kernel based approximation is also provided. Finally,
in Section 4, we provide numerical results that highlight the strengths and performance
of our new approach.

2 Kernel-based function approximation

This section provides a summary of radial basis function approximation using scattered
data. Our exposition is similar to the discussion on function approximation in finite-
dimensional reproducing kernel Hilbert spaces found in [34]. We also discuss the connec-
tions between radial basis function and Gaussian process approximation.

2.1 Reproducing kernel Hilbert spaces

Definition 2.1 (Reproducing kernel Hilbert space). A reproducing kernel K for a general
Hilbert space V with inner product (·,·)V is a function K : Γ×Γ→R such that

1. K(·,y)∈V for all y∈Γ,

2. u(y)=(u,K(·,y))V for all u∈V and all y∈Γ.

5

A Hilbert space V with reproducing kernel K :Γ×Γ→R is called reproducing kernel Hilbert
space (RKHS).

A continuous kernel K :Γ×Γ→R is denoted positive semi-definite on Γ⊆R
d, if we have

N

∑
j=1

N

∑
j′=1

αjαj′K(yj,yj′)≥0 (2.1)

for all N∈N, all pairwise distinct X={y1,. . .,yN}⊂Γ, and all α=(α1 ···αN)
⊤∈R

N\{0}.
It becomes positive definite if the inequality in (2.1) holds strictly.

In this article, we use radial basis functions, i.e. radial kernels

K(y,y′) := ϕ(‖y−y′‖) (2.2)

with ϕ : [0,∞)→ R. A typical example of such a radial kernel is the Gaussian / squared
exponential kernel, with

ϕ(r)= e−ǫ2r2
. (2.3)

which is a special instance of the class of Matérn kernels given by

ϕ(r)=
Kν− d

2
(ǫ2r)(ǫ2r)ν− d

2

2ν−1Γ(ν)
, ν>

d

2
. (2.4)

Here Kν being the modified Bessel function of the second kind of order ν and Γ is the
gamma function. Note that the parameter ν dictates for the smoothness of the kernel
function. The analytic squared-exponential kernel can be obtained as ν→∞.

The first property of Definition 2.1 implies that V contains all functions of the form

u=
N

∑
j=1

αjK(·,yj) (2.5)

provided that the points {y1,. . .,yN} satisfy yj∈Γ. Vice versa, we can construct the native

space NK(Γ) for a given symmetric, positive definite kernel K by completion of the pre-
Hilbert space

FK(Γ) :=span{K(·,y) : y∈Γ}.

It is shown in [34] that NK(Γ) is a RHKS for K. For functions of the form (2.5), the native
space carries the norm induced from the inner product

(

N

∑
j=1

αjK(·,yj),
N

∑
j′=1

β j′K(·,yj′)

)

NK(Γ)

:=
N

∑
j=1

N

∑
j′=1

αjβ j′K(yj,yj′).

For example, the native space NK(Γ) of the Matérn kernel with ν>d/2 and Γ=R
d is the

well-known Sobolev space Hν(Rd).

6

2.2 Function approximation

The focus on this paper is the approximation of functions u that are elements of the native
space of a kernel K, i.e. u ∈NK(Γ). With this goal we introduce a finite-dimensional
approximation subspace of NK(Γ) by choosing a finite set of sampling points

X={y1,. . .,yN}⊂Γ,

resulting in the finite-dimensional subspace

V(X) :=span{K(·,y) : y∈X}⊂NK(Γ).

We are then interested in constructing a ‘good’ orthogonal projection ΠV(X)(u) of u ∈
NK(Γ) to V(X).

Interpolation. In reproducing kernel Hilbert spaces, the best approximation, given by
the orthogonal projection ΠV(X), and the interpolation of a function u∈NK(Γ) with given

data {(yi,u(yi))}
N
i=1 turns out to be identical [34]. That is, we observe for the interpolant

IV(X)u the equality

(IV(X)u)(y)=ΠV(X)(f)(y) :=
N

∑
j=1

αjK(y,yj) for all y∈Γ,

where the coefficients
{

αj

}N

j=1
,αj ∈R, are computed by solving a linear system of equa-

tions with
AXα=u, α :=(α1 ···αN)

⊤, u :=
(

u(y1)···u(yN)
)⊤

(2.6)

and the kernel matrix

AX :=

K(y1,y1) . . . K(y1,yN)
...

. . .
...

K(yN ,y1) . . . K(yN ,yN)

. (2.7)

For positive definite kernels, AX is symmetric, positive definite and regular.

Worst-case error. The power function [28, 36] or kriging variance [8] for a subspace V(X)
is the interpolation / approximation worst case error

PV(X)(y)= sup
f∈NK(Γ), f 6=0

| f (y)−(IV(X) f)(y)|

‖ f ‖NK(Γ)
. (2.8)

For more detail refer to [34]. The power function gives us a simple estimate for the inter-
polation error.

7

Theorem 2.1 (Power function interpolation error [7]). Let Γ, K, X be as before and we have
f ∈NK(Γ) with its interpolant IV(X)(f) on X. Then, there holds the error bound

| f (y)−IV(X)(y)|≤PV(X)(y)‖ f ‖NK(Γ)

for all y∈Γ.

The proof is trivial based on the above definition of the power function. Following
Theorem 2.1, the upper bound for the interpolation error decouples into a product of
the norm of the function and a term which only depends on the particular kernel and
the samples in X. The first term requires knowledge of the function, so we focus on
constructing designs that minimize the second term, that is the power function.

The power function can be evaluated easily using the following theorem.

Theorem 2.2 ([7]). For two sets X,X′ with elements yj and y′
j′ and sizes |X|=N, |X′|=N′, we

use the extended notation

AX,X′ :=

K(y1,y′
1) . . . K(y1,y′

N′)
...

. . .
...

K(yN ,y′
1) . . . K(yn,y′

N′)

. (2.9)

Then, the power function (2.8) can numerically be evaluated by

PV(X)(y)=
√

K(y,y)−A⊤
X,{y}A−1

X AX,{y}. (2.10)

Note that the problem of finding a point set X⊂Γ which minimizes the power function
corresponds to approximating a given matrix by a low-rank approximation. Finding
the best possible point set is therefore strongly related to the search for submatrices of
maximal volume, see [10], and to adaptive cross approximation [1, 13].

Remark 2.1. For large sets X, the evaluation of the power function by (2.10) can become
unstable. A stable evaluation becomes possible by using the Newton basis of V(X). We
will discuss this procedure in Section 3.

Regularized function approximation. For large N, AX often becomes ill-conditioned.
This is why we usually consider a regularized function approximation. In regularized
kernel-based approximation, which is sometimes also called kernel ridge regression, Tikhonov
regularization [32] is used. It replaces the original linear system of equations by a modi-
fied, but more stable one

(

AX+ǫreg I
)

α=u,

where I the identity matrix. Depending on the size of the regularization parameter ǫreg,
the matrix AX+ǫreg I can have a much smaller condition number. Nonetheless, regular-
ization introduces a small error of the order of the regularization parameter ǫreg.

8

2.3 Relation to Gaussian process regression

There is a strong connection between radial basis function (RBF) approximation and
Gaussian processes. RBF approximations are treated as deterministic, where as Gaus-
sian process (GP) regression uses Bayesian inference to provide probabilistic approxima-
tions [25,27,35]. Let us assume that for a given function u :Γ→R, we have a set of sample
locations X={y1,. . .,yN} and noisy evaluations ûi :=u(yi)+ξi, ξi ∼N (0,σ2), collected in
a vector û. Given a kernel K and mean function m(y), Gaussian process approximation
assumes that the joint prior distribution of u, conditional on kernel hyper-parameters θ,
e.g. r in (2.3), is multivariate normal such that

u(·) |θ∼N
(

m(·),K(·,·;θ)+σ2 I
)

The posterior distribution of this Gaussian process at a sample location y, conditioned on
the finite set of noisy observations û, is given by

u(·) |θ,û∼N (m⋆(·),K⋆(·,·;θ)),

where
m⋆(y)=m(y)+α⊤AX,{y}, α :=

(

AX+σ2 I
)−1(

û−m(y)
)

and
C(y)=K(y,y)−A⊤

X,{y}

(

AX+σ2I
)−1

AX,{y} . (2.11)

When m≡0 and the same kernel function K is used, the posterior mean of a Gaussian
process coincides with RBF function approximation obtained using Tikhonov regulariza-
tion with ǫreg =σ2.

In general, the kernel variance, and the noise variance and the hyper-parameters θ of
the kernel, such as the length-scale which is the inverse of r in (2.3), are unknown and
need to be inferred from the data. The Gaussian process community typically estimates
these hyper-parameter by maximizing log-marginal-likelihood

logp(û|X,θ)=−
1

2
û⊤(AX+σ2I)−1û−

1

2
log|AX+σ2 I|−

N

2
log2π . (2.12)

We will show in Section 4 that weighted Cholesky sampling can be used to construct
designs for RBF and GP approximation, while employing this optimization strategy to
learn the kernel hyper-parameters.

3 Sampling strategies

In this section, we present various sampling strategies for kernel-based approximation
and Gaussian process regression. We first present an existing approach for nested unweighted-
greedy pseudo-optimal sampling using the power function, cf. (2.8). We then extend this

9

approach to generate samples which minimize the weighted error functional (1.1) of the
resulting approximations. These two methods are then compared with popular sampling
strategies from the Gaussian process and radial basis function communities, based upon
integrated variance experimental design and low-discrepancy sequences, respectively.

3.1 Greedy nested sampling using the power function

Global optimization problem. From Theorem 2.1, we observe that we can reduce the
error of an approximation by finding a point set X such that the L∞ norm becomes small.
Given a large set of candidate points Xcand, the best possible subset of points X⋆ with
|X⋆|=m can be found by solving the following optimization problem:

X⋆=argmin
X⊂Xcand

∥

∥

∥PV(X)

∥

∥

∥

L∞(Γ)
subject to |X|≤m. (3.1)

Unfortunately, solving the global optimization problem in (3.1) is often intractable.
Consequently a number of greedy strategies have been introduced [7, 17, 34]. Note that
the specific choice of Xcand has a strong impact on the error reduction in interpolation. In
Section 4 we describe a procedure for for constructing a candidate set that represents the
domain Γ well.

Greedy-pseudo-optimal nested sample selection. The greedy version of the optimiza-
tion problem in (3.1) we consider uses two properties of the power function PV(X). The
first property is given by the following lemma.

Lemma 3.1 (Monotonicity [17]). With Γ satisfying an interior cone condition, K being positive
definite and X′,X′′⊆Γ being finite sets of samples with X′⊆X′′, it holds

PV(X′)(y)≥PV(X′′)(y) for all y∈Γ.

The proof of this lemma can be found in [30]. The interior cone condition is given by
the following definition and should be fulfilled in all discussed examples.

Definition 3.1 (Interior cone condition [34]). A set Γ⊂R
d satisfies an interior cone condition,

if there exists a radius r>0 and an angle θ∈ (0,π/2) such that for all y∈Γ a unit vector
ξ(y) exists such that

C(y,ξ,θ,r) :={y+λy′|y′∈R
d,‖y′‖2=1,y⊤ξ(y)≥cosθ,λ∈ [0,r]}

is contained in Γ.

Lemma 3.1 states that, as the number of samples in a nested sample set increases, the
power function PV(X)(y) decreases monotonically for all y ∈ Γ. This property guaran-
tees, that when using a greedy optimization strategy to select nested samples, the power-
function and approximation error will never increase.

The following property is also useful for constructing a greedy sampling scheme.

10

Lemma 3.2. With Γ and K as before and X={y1,. . .,yn}⊂Γ a finite set of samples, it holds

PV(X)(yj)=0 for all yj ∈X.

This lemma states that the power function PV(X) is zero for all elements of X. This
statement is obvious since the numerator in the definition of the power function becomes
zero at all samples y∈X because IV(X) is an interpolant.

The two aforementioned properties can be used to design the greedy sampling algo-
rithm summarized in Algorithm 1. Let Xcand ⊂ Γ be a large, but finite candidate set and
assume a set Xj−1⊂Xcand, with |Xj−1|=j−1, has already been selected. Because the power
function is zero at all samples Xj−1, we greedily choose the next sample yj∈Xcand\Xj−1 at

which ‖PV(Xj−1)‖ is maximal. If Xcand adequately covers the full domain Γ then yj will be

a reasonable approximation to the solution of ymax = argmaxy∈Γ PV(Xj−1)(y) in the sense

that PV(Xj−1∪{yj})
(ymax)≈0. This process is repeated until the desired number of samples

is reached.

Algorithm 1 Greedy sample selection by the power function [17].

1: function GETGREEDYSAMPLES(K, Xcand, m)
2: y1=argmaxy∈Xcand

PV({y})(y)

3: X1={y1}
4: for j=2,3,.. .,m do

5: yj =argmaxy∈Xcand\Xj−1
|PV(Xj−1)(y)|

6: Xj =Xj−1∪{yj}

7: return Xm

Efficient and stable implementation. As mentioned before, the evaluation of the power
function using equation (2.10) is not stable [29, 34]. To improve stability, [20] proposes
to iteratively build a Newton basis {N1,. . .,Nj} for V(Xj) during the greedy algorithm
(Algorithm 1). By using this Newton basis, the power function can be evaluated stably
using the expression

P2
V(Xj)

(y)=K(y,y)−
j

∑
i=1

N
2
i (y).

Moreover, it is discussed in [26] that greedy-pseudo-optimal sampling using the Newton
basis of a positive definite kernel K can be performed by the pivoted Cholesky factorization
[13].

Given the candidate set matrix AXcand
, the first j steps of the pivoted Cholesky factor-

ization given in Algorithm 2 compute the column matrix Lj∈R
Ncand×j and a permutation

vector p. Each column of Lj defines a Newton basis vector of V(Xj) evaluated on the can-
didate set Xcand. The first j pivots in p denote the indices of the points from the candidate
set that maximize the power-function, see [26].

11

The computational cost of the pivoted Cholesky factorization is dominated by the
calculation of the new vector ℓr in step 10 of Algorithm 2. Line 10 requires individually
O(r) operations. The inner loop of line 9 then requires O

(

∑
n
i=r+1r

)

=O(n·r) operations.

To compute the first j steps of the loop in line 5, we thus need O
(

∑
j
r=1 n·r

)

=O
(

n· j2
)

operations. Consequently selecting j from Ncand candidate points, requires O
(

Ncand · j
2
)

operations.
Note that, in practice, the entire matrix AXcand

needs not to be computed. Instead,
the entries K should only be evaluated when required. Also note, that this Cholesky
procedure produces a nested set of samples and can be used to enrich an existing set
of points. Given m samples we can add an additional sample from the candidate set
Xcand by performing another factorization step on the matrix A and adjusting the current
Cholesky factor using the steps associated with the inner loop of Algorithm 2.

Algorithm 2 Pivoted Cholesky factorization [13].

1: function PIVOTEDCHOLESKY(A) ⊲ A∈R
n×n s.p.d.

2: r=1 ⊲ current row
3: d=diag(A) ⊲ diagonal of A
4: p=(1,.. .,n) ⊲ initialization of permutation
5: while r≤n do

6: imax =argmaxj∈{r,r+1,...,n}dpj
⊲ find pivot

7: swap pr and pimax
⊲ exchange columns

8: ℓpr ,r =
√

dpr ⊲ compute diagonal entry
9: for i∈{r+1,.. .,n} do ⊲ comp. other entries

10: ℓpi ,r =
(

apr ,pi
−∑

r−1
ν=1ℓpr ,νℓpi ,ν

)/

ℓpr ,r

11: dpi
=dpi

−ℓ2
pi ,r

12: r= r+1 ⊲ go to next row
return

(

L=(ℓj,j′)j,j′ , p
)

3.2 Sampling using a weighted power function

In accordance with Theorem 2.1, the sampling strategy from the last subsection is tailored
to approximating the unweighted interpolant, i.e., it minimizes | f (y)−IV(X)(y)|. With

the goal of generating approximations that are accurate with respect to the weighted L
p
ω

norm (1.1), we aim to generate approximations that minimize
∣

∣

(

f (y)−(IV(X) f)(y)
)

g(y)
∣

∣

for the weight function g(y)=ω(y)
1
p . This choice is motivated by noting that

ǫω(u,V,p) :=

(

∫

Γ
|u(y)−(IVu)(y)|pω(y)dy

)1/p

=

(

∫

Γ

∣

∣

(

u(y)−(IVu)(y)
)

g(y)
∣

∣

p
dy

)1/p

.

12

With the goal of generating samples tailored to f g, instead of f , we define the weighted
kernel

K̃(y,y′) := g(y)K(y,y′)g(y′).

Then, given a function of the form

f (y)=
N

∑
j=1

αjK(y,yj),

we have

f (y)g(y)=
N

∑
j=1

α̃jK̃(y,yj), where α̃j =
αj

g(yj)

and

‖ f g‖NK(Γ)=‖ f ‖NK̃(Γ)
,

where NK̃ is the native space of the weighted kernel. If we further define the weighted
power function

Pg,V(X)(y)= sup
f∈NK(Γ), f 6=0

∣

∣

(

f (y)−(IV(X) f)(y)
)

g(y)
∣

∣

‖ f g‖NK(Γ)
, (3.2)

we immediately arrive at the error estimate

∣

∣

(

f (y)−(IV(X) f)(y)
)

g(y)
∣

∣≤Pg,V(X)(y)‖ f g‖NK(Γ).

In the weighted analogy to Theorem 2.2, the weighted power function (2.8) is equal
to

Pg,V(X)(y)=
√

g(y)K(y,y)g(y)− Ã
⊤
X,{y} Ã

−1
X,X ÃX,{y},

where

ÃX,X′ :=

g(y1)K(y1,y′
1)g(y′

1) . . . g(y1)K(y1,y′
N′)g(y′

N′)
...

. . .
...

g(yN)K(yN ,y′
1)g(y′

1) . . . g(yN)K(yN ,y′
N′)g(y′

N′)

for two sets X,X′ with elements yj and y′
j′ and sizes |X|=N, |X′|=N′. Hence, the pivoted

Cholesky factorization should be appropriately modified in order to find an optimal set
of points X which minimizes the L∞(Γ)-norm of the weighted power function.

In order to adapt Algorithm 2 for the weighted power function, we shall make first
the following considerations. Let A=(aj,j′)j,j′ ∈R

n×n be a symmetric and positive (semi-)
definite matrix and D=diag(d1,. . .,dn)∈R

n×n be a diagonal matrix with positive diagonal
entries dj >0. Then, the pivoted Cholesky factorization for the matrix

Ã=
(

ãj,j′
)

j,j′
=
(

djaj,j′dj′
)

j,j′
=DAD

13

yields a rank-m approximation L̃L̃
⊤

with L̃=(ℓ̃j,j′)j,j′ ∈R
n×m:

Ã=DAD≈ L̃L̃
⊤

.

The matrix L=(ℓj,j′)j,j′ :=D−1L̃ obviously results in a rank-m factorization A≈LL⊤, where
it is especially inferred that

ℓ̃j,j′ =djℓj,j′ for all j=1,.. .,n, j′=1,.. .,m.

The only difference between applying the pivoted Cholesky factorization for A and for
Ã is thus the different choice of the pivots. Therefore, by setting

A=
(

K(yj,yj′)
)

j,j′
, D=diag

(

g(y1),. . .,g(yNcand
)
)

,

we readily verify that the pivoted Cholesky factorization with respect to

Ã=
(

g(yj)K(yj,yj′)g(yj′)
)

j,j′

can be realized by Algorithm 3, where we directly compute the matrix L as output instead
of the matrix L̃.

Algorithm 3 Weighted pivoted Cholesky factorization for kernels.

1: function WEIGHTEDPIVOTEDCHOLESKY(Xcand, K, g, m)
2: r=1 ⊲ current row
3: Ncand = |Xcand|
4: d=diag

(

K(y1,y1),. . .,K(yNcand
,yNcand

)
)

5: p=(1,.. .,Ncand) ⊲ initialization of permutation
6: while r≤m do

7: imax =argmaxj∈{r,r+1,...,Ncand}

{

dpj
g2(ypj

)
}

⊲ find weighted pivot

8: swap pr and pimax
⊲ exchange columns

9: ℓpr ,r =
√

dpr ⊲ compute diagonal entry
10: for i∈{r+1,.. .,Ncand} do ⊲ comp. other entries
11: ℓpi ,r =

(

apr ,pi
−∑

r−1
ν=1ℓpr ,νℓpi ,ν

)/

ℓpr ,r

12: dpi
=dpi

−ℓ2
pi ,r

13: r= r+1 ⊲ go to next row
return

(

L=(ℓj,j′)j,j′ , p
)

Note that weighted pivoted Cholesky factorization can be implemented with existing
pivoted Cholesky algorithms. To do this one simply needs to factor the matrix DAD, but
this requires forming these matrices at initiation, which is not necessary with Algorithm
3.

14

3.3 Integrated variance experimental design

An experimental design strategy, motivated by goals similar to those discussed here, was
developed for Gaussian process regression in [43]. In this approach, optimal experimen-
tal designs, i.e. optimal samplings, are created by minimizing the a-posterior integrated
variance (IVAR).

The a-posteriori variance of a Gaussian process, cf. Subsection 2.3, conditioned on
input samples X is

c(y |X)=K(y,y)−A⊤
X,{y}

(

AX+σ2I
)−1

AX,{y}.

IVAR design finds a set of samples X⋆ ⊂U ⊂ Γ of size |X⋆|= m, from a set of feasible
experiments U , by solving the minimization problem

X⋆= argmin
X⊂U ,|X|=m

∫

Γ
c(y|X)ω(y)dy. (3.3)

In accordance with (2.10), the posterior variance c(y |X) in Gaussian process regression
for a noise variance of σ2=0 is just the square of the power function, i.e. we have

c(y|X)≡P2
V(X).

Hence, the minimization of (3.3) is in fact equivalent to the minimization

X⋆= argmin
X⊂U ,|X|=m

∫

Γ
P2

V(X)(y)ω(y)dy.

This means, instead of minimizing the L∞(Γ)-norm of the power function as proposed
in the last section, IVAR minimizes the (squared) weighted L2

ω(Γ)-norm of the power
function.

Computing IVAR designs is much more expensive than computing weighted power-
function designs using pivoted Cholesky factorization. The integrated variance of a
Gaussian process can be expressed as

∫

Γ
P2

V(X)(y)ω(y)dy=1−Trace
[

A−1
X P

]

, P=
∫

Γ
AX,{y}A⊤

X,{y}ω(y)dy,

which can by minimized by maximizing Trace
[

A−1
X P

]

.

When the kernel is separable, that is it can be represented as the product of univari-
ate kernels (e.g. the squared exponential kernel), and the density ω(y) is also the tensor
product of univariate marginals, then the matrix P∈R

m×m can be computed using the
product of 1D integrals. In this paper, we compute P using Monte Carlo quadrature, that
is sampling from the probability density ω(y) and computing the sample average of P.
Monte Carlo quadrature allows IVAR design to be used with many popular non-product

15

kernels, such as the Matérn kernel (2.4) with finite ν, and applied to densities of depen-
dent random variables. In the following we use 10000 samples to compute P. Increasing
the number of Monte Carlo samples did not significantly change the properties of the
resulting design.

The algorithm used to computed greedy IVAR designs is summarized in Algorithm 4.
The UPDATEIVARTRACE and UPDATEINVERSECHOLESKYFACTOR algorithms are sum-
marized in the Appendix. The loop at step 10 is the most computationally expensive part
of the algorithm. Each iteration of the loop involves computing the trace component of
the integrated variance at each of the remaining candidate points (step 11). This trace
can be computed naively by forming and inverting AXr−1∪y and computing P(Xr−1∪y),
where Xr−1 is the set previously selected training samples associated with the first r piv-
ots of p and y∈Xcand\Xr−1. This cost can be reduced by pre-computing these matrices and
extracting only the relevant elements at the rth step, however inverting AXr−1∪y requires

O(r3) operations. Once A−1
Xr−1∪y has been computed, the Trace

[

AXr−1∪yP(Xr−1∪y)
]

can

be computed in O(r2) operations using the identity Trace
[

BTC
]

=∑
r
i=1 ∑

r
j=1 BijCij.

Algorithm 4 Sample averaged integrated variance greedy design procedure.

1: function INTEGRATEDVARIANCEDESIGN(Xcand, K, Ymc, m)
2: r=1 ⊲ current row
3: Ncand = |Xcand|, Nmc = |Ymc|
4: p=(1,.. .,Ncand) ⊲ initialization of permutation
5: AXcand

=K(Xcand,Xcand) ⊲ Precompute kernel matrix
6: P= 1

Nmc
K(Xcand,Ymc)K(Xcand,Ymc)T ⊲ Precompute integrals of kernel basis

7: L0=[], L−1
0 =[] ⊲ Initialize Cholesky factors

8: vbest =0 ⊲ Initialize IVAR trace
9: while r≤m do

10: for i∈{r+1,.. .,Ncand} do ⊲ comp. IVAR for other points
11: vi = UPDATEIVARTRACE(AXcand

, p,P,L−1
r−1,vbest)

12: imax =argmaxj∈{r,r+1,...,Ncand}
vi ⊲ find pivot

13: Lr,L
−1
r = UPDATEINVERSECHOLESKYFACTOR(Lr−1,L−1

r−1)
14: vbest =vpimax

15: swap pr and pimax
⊲ exchange points

16: r= r+1
return [p1,. . .,pr] ⊲ Return the pivots of the selected candidate points

In this paper, we reduce the calculation of the trace to O(r2) operations by updating
the current Cholesky decomposition instead of recomputing it from scratch for each can-
didate sample. Using the Cholesky update (see the Appendix), the inner loop at step 10

requires O(∑
Ncand
i=r r2) operations. Thus, computing m samples using Algorithm 4 requires

O(Ncand ·m
3) operations. In contrast the naive procedure, which inverts AXr , requires

16

O(Ncand ·m
4) operations. To our knowledge the discussion in this section represents the

first discussion of using Cholesky updates to reduce the cost of computing IVAR designs.

3.4 Low discrepancy sequences

It is common in both the Gaussian process regression and radial basis function literature
to use low-discrepancy sequences as point sets for approximation [5,21,37]. Low discrep-
ancy sequences are typically used for approximation in unweighted spaces. However, if
the PDF ω has product structure, i.e.

ω(y)=ω1(y1)· . . .·ωd(yd),

then we can apply inverse transform sampling [6,16] to generate points sets that follow the
underlying distribution of ω. To this end, let

Fωj
(yj)=

∫

t≤yj

ωj(t)dt

denote the cumulative distribution function of the j-th variable yj. Given a set of samples
x⋆ drawn uniformly on [0,1], e.g. from an unweighted low-discrepancy sequence, we can
obtain a new set of samples

X :=
{(

F−1
ω1

(y1),. . .,F
−1
ωd

(yd)
)

: y∈X⋆
}

,

which can be used for weighted approximation. In this article, we will use Halton se-
quences for building RBF approximations.

Note that inverse transform sampling can be applied to non-product densities. How-
ever, doing so requires the use of non-linear transformations, such as the Rosenblatt
transformation which can be infeasible even in moderate dimensions and introduces
strong non-linearities which decrease the accuracy of approximations for fixed sample
sizes. A method for constructing low-discrepancy sequences for non-product measures,
which does not requires non-linear transformations was developed in [47], however such
attempts are rare. Consequently, unlike our weighted greedy strategy and weighted
IVAR, the vast majority of low-discrepancy sequences cannot be used for approximation
for PDFs of dependent variables. Nevertheless, we include the use of inverse transform
sampling in a numerical test case with tensor-product density in order to provide a more
complete method comparison.

4 Numerical examples

In this section, we demonstrate the efficacy of our proposed approach on a number of nu-
merical examples and compare its performance with the alternative sampling approaches

17

presented in Section 3. In all the following examples, we will measure the performance
of an approximation using the relative weighed L

p
ω(Γ)-norm, i.e.

ǫω,p

(

u,V(X)
)

:=

(

∫

Γ

∣

∣

∣u(y)−(ΠV(X)u)(y)
∣

∣

∣

p
ω(y)dy

)1/p

(

∫

Γ
|u(y)|p ω(y)dy

)1/p
. (4.1)

Unless otherwise stated, we set p= 2. In Section 4.5, we investigate the performance of
weighted Cholesky sampling for p 6=2.

For the examples considered here, we cannot compute the error (4.1) exactly. Conse-
quently, we approximate it by the Monte Carlo estimator

ǫ̃ω,p

(

u,V(X)
)

:=

(

∑
N
i=1

∣

∣

∣u(yi)−(ΠV(X)u)(yi)
∣

∣

∣

p)1/p

(

∑
N
i=1 |u(yi)|

p
)1/p

,

where the samples yi in the Monte Carlo estimator are drawn i.i.d. from the underly-
ing distribution of the PDF ω. In the following examples we use N = 1000 samples to
compute the error in approximations built using the Gaussian/squared exponential and
Matérn kernels from equations (2.3) and (2.4). We explore the the generation of samples
in two situations; when the hyper-parameters of the kernel are fixed and when they are
optimized with the procedure described in Subsection 2.3.

Unless otherwise stated we will build approximations of functions drawn from the
native space of the kernel K. Specifically we randomly construct functions

u(y)=K(y,Y)η (4.2)

where Y are is a set of NY =1000, d-dimensional, samples drawn uniformly on the com-
pact domain Γ̂ from Theorem 1.1 and the elements of the vector η∈R

NY are drawn inde-
pendently from a standard normal distribution. For bounded variables we Γ̂=Γ. We also
consider unbounded Gaussian variables, for which we set Γ̂ = [a,b]d, where we choose
the interval [a,b] to contain 99.9% of the probability of the univariate marginals centered
around the marginal mean. Note, this truncation is only used to construct random func-
tions. We do not truncate the unbounded density when constructing weighted Cholesky
designs.

Finally, for all greedy design methods we employ candidate sets Xcand that consist
of 5000 samples drawn from ω(y) and the first 5000 samples of the Halton sequence
defined over the domain Γ̂. All the methods considered in the following examples have
been made available in the software package PyApprox [49].

4.1 Impact of the dominating density

In Section 1 we argued, based upon Lemma 1.1, that incorporating knowledge of the
measure ω into the sampling process improves the convergence of the L

p
ω error of an

18

approximation by a (possibly large) constant factor. In this section, we provide numerical
evidence to support this claim. With this goal we apply weighted Cholesky design, using
the squared exponential (2.3), when ω(y) is the product

ωBeta(α,β)(y) :=
d

∏
j=1

ω
Beta(α,β)
j (yj)

of the PDFs of univariate Beta random variables

ω
Beta(α,β)
j (yj) :=

Γ(α+β)

Γ(α)Γ(β)
yα−1

j (1−yj)
β−1

with parameters α and β, where Γ is the gamma function.

In Figure 1, we compare the convergence in error for different dominating measures
g when d=2,4,10 and the parameters of the product-Beta density ω are α= β=20. Here
we set the length scale ℓ= 1

r of the kernel to be 0.1, 0.25 and 0.5 for d=2,4,10, respectively.
We define the dominating measures to also be product-Beta densities with parameters αg

and βg and compare errors for different values of these parameters αg = βg =τ. For each
choice of dominating measure we approximate the constant Cr from Lemma 1.1, using
10000 random samples from ω, as a measure of the distance between the densities g and
ω. For this example δ=0 (see Lemma 1.1). As the dominating measure approaches ω, i.e.
αg →α and βg → β which corresponds to Cr →1, the dominating measure approximation
becomes more efficient. The plot clearly shows that constructing an approximation from
sample designs targeting a density g, which is not ω, results in a degradation of accuracy,
and the penalty grows as the quantity Cr grows. Although using a dominating measure
only affects the constant of convergence and not the rate of convergence (see Lemma 1.1),
the change in the constant is significant.

Note the increase in error, for τ = 20 in the left plot, is due to the condition num-
ber of the kernel evaluated at the training samples becoming very large. The impact on
condition number on the design will be discussed in more detail in Section 4.2.

4.2 Comparison to existing sampling strategies

With the next numerical study, we compare the performance of the weighted Cholesky
sampling strategy to other existing approaches in the field, namely the unweighted Cholesky
sampling strategy, the IVAR approach, Halton sequences, and the inverse transform sam-
pling approach applied to Halton sequences, which we refer to as transformed Halton
designs. Note that the last approach is only feasible for product densities. Therefore, we
again consider random functions (4.2) with ωBeta(20,20).

The left of Figure 2 plots the error in the squared-exponential kernel approximation
for various sampling strategies as the number of samples is increased. We consider func-
tions of d=3 and d=6 variables for which we set the correlation length of the kernel l= 1

r

19

10
1

10
2

m

10
−8

10
−6

10
−4

10
−2

10
0

ǫ̃ ω
,2

τ = 1: Cr = 25.15

τ = 5: Cr = 4.15

τ = 10: Cr = 2.03

τ = 20: Cr = 1.00

10
1

10
2

10
3

m

10
−4

10
−3

10
−2

10
−1

10
0

ǫ̃ ω
,2

τ = 1: Cr = 36.33

τ = 2: Cr = 7.19

τ = 5: Cr = 1.00

10
1

10
2

10
3

m

10
−3

10
−2

10
−1

10
0

ǫ̃ ω
,2

τ = 1: Cr = 39584.35

τ = 2: Cr = 23473.52

τ = 20: Cr = 1.00

Figure 1: A comparison of the median error in approximations of 100 random functions (4.2), drawn from
the native space of the squared-exponential kernel, obtained by weighted Cholesky sampling using different
domination measures in (left) d=2, (middle) d=4 and (right) d=10 dimensions. Here, ω is a tensor product
of identical univariate Beta PDFs with parameters α= β= 20 and we vary the distribution parameters of the
domination measure αg = βg =τ. As predicted by Theorem 1.1 the error in the approximation increases as the
distance between the dominating and true measure increases.

to be 0.4 and 0.5 respectively. Transformed Halton, IVAR and Weighted Cholesky per-
form comparably in both dimensions and out perform the domination methods, which
do not leverage probability information.

The condition number of the kernel matrix evaluated at the training points can signif-
icantly affect the ability to compute large sample designs. When the condition number
becomes larger than O(1016) designs can no longer be enriched. The number of train-
ing points, at which this phenomenon occurs, depends on the sampling method, length
scale and dimensionality. When the dimension is small and correlation length is long
ill-conditioning occurs much sooner than when the dimension is high and/or the corre-
lation length of the kernel is small. The condition number κ=Cond[AX] of each sample
design is plotted in the right column of Figure 2. Weighted Cholesky sampling appears to
be the least effected by ill-conditioning of any method that uses information on the den-
sity ω. This is indicated by the fact that it can select more samples before ill-conditioning
terminates the algorithm. The dominating methods are better conditioned but have a
significantly larger error.

Note that computing the trace component of the objective used to compute IVAR de-
signs requires computing the inverse of the matrix AX at all candidate samples y not
selected in the current training set. Some of these points will produce very poorly con-
ditioned matrices AX∪y. We found that this can significantly degrade the performance
of IVAR designs but identified that adding a small ‘nugget’ of 10−8 to the diagonal of
AX∪y helped improve the designs significantly. Addition of a nugget is not necessary for
Cholesky based designs.

20

10
1

10
2

10
3

m

10
−13

10
−10

10
−7

10
−4

10
−1

ǫ̃
ω
,2

Halton

Transformed Halton

Cholesky

Weighted Cholesky

IVAR

10
1

10
2

10
3

m

10
2

10
5

10
8

10
11

10
14

10
17

κ

10
1

10
2

10
3

m

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ǫ̃
ω
,2

Halton

Transformed Halton

Cholesky

Weighted Cholesky

IVAR

10
1

10
2

10
3

m

10
2

10
5

10
8

10
11

10
14

10
17

κ

Figure 2: A comparison of the median error in approximations of 100 random functions (4.2), drawn from the
native space of the squared-exponential kernel, obtained using different sampling strategies in (top) d=3 and
(bottom) d=6 dimensions. The column on the right-and side shows the conditioning of the resulting designs

.

4.3 Sample designs for non-product PDFs

In this section we compare the performance of sampling strategies when used with non-
product densities. Specifically, we consider a correlated Gaussian density, a multi-modal
density and a non-product density with Beta marginals.

The first density we consider is a Gaussian distribution with mean zero and covari-
ance

(

RV
)

j,j′
=

{

1, if j= j′,

(−1)j+j′ 0.9, otherwise.
(4.3)

whose PDF we denote ωGauss. The second density we consider is a mixture of two tensor-
product Beta PDFs, that is

ωmix(y)=
1

2

(

ωBeta(10,2)(y)+ωBeta(5,10)(y)
)

We construct the third, and final, density using the Nataf transform [22] which assumes
that the dependencies between variables can be expressed using a Gaussian copula. Specif-
ically, we set

ωNat(y)=
ηRV (z)

∏
d
j=1 η(zj)

d

∏
j=1

ω̄j(yj), (4.4)

21

with

ηRV (z)=
1

√

(2π)ddet(RV)
exp

(

−
1

2
z⊤(RV)−1z

)

.

The ω̄j are the marginal probability distributions of ωNat and zj :=Φ−1
(

FωNat

j (yj)
)

, where

η and Φ are the univariate standard normal PDF and CDF and FωNat

j (yj) are the marginal

cumulative distributions of ωNat. Here we set the marginals to be the PDFs of univariate
Beta variables with parameters (α,β)=(2,5).

In the following we generate designs using the squared exponential kernel with cor-
relation length l= 1

r =0.1 for the bounded PDFs and 0.6 for the unbounded Gaussian PDF.
These values were chosen to ensure that the functions for all test cases had approximately
the same variability, relative to the size of the compact domain Γ̂ used to approximate Γ.
Figure 3 depicts each PDF for d = 2. The first 100 samples generated by the weighted
Cholesky design for the squared exponential kernel are also shown. The samples clearly
concentrate in regions of high-probability.

−2 0 2

y1

−3

−2

−1

0

1

2

3

y2

0.2 0.4 0.6 0.8

y1

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

y1

0.2

0.4

0.6

0.8

0.0000

0.0382

0.0763

0.1145

0.1527

0.1909

0.2290

0.2672

0.3054

0.3436

0.000

0.954

1.908

2.862

3.816

4.770

5.724

6.678

7.632

8.586

0.00

1.31

2.62

3.93

5.24

6.55

7.86

9.17

10.48

11.79

Figure 3: The first 100 samples generated by the weighted Cholesky design for the squared exponential kernel
with (left) a correlated Gaussian density, (middle) a multi-modal density and (right) a Gaussian copula with
Beta marginals. The coloring depicts the contours of each density.

For non-product PDFs, the inverse transform sampling approach is not applicable.
Consequently, in Figure 4, we compare the convergence in error of d = 2 dimensional
approximations built using designs from unweighted pivoted Cholesky factorization,
weighted pivoted Cholesky factorization and IVAR. Again IVAR and weighted Cholesky
sampling are comparable for small sample sizes. But unlike the previous examples, the
latter is more accurate for moderate to large sample sizes. The degradation in the perfor-
mance of IVAR designs is due to the error introduced inverting the kernel matrix AX∪y

when adding the candidate sample y results in a nearly singular matrix. See the discus-
sion in the previous section.

22

10
1

10
2

10
3

m

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ǫ̃ω,2

IVAR

Weighted Cholesky

Cholesky

10
1

10
2

10
3

m

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

m

10
−6

10
−4

10
−2

10
0

Figure 4: A comparison of the median error in approximations of 100 random functions (4.2), drawn from the
native space of the squared-exponential kernel using different sampling strategies for (left) a correlated Gaussian
density, (middle) a multi-modal density and (right) a Gaussian copula with Beta marginals.

4.4 Adaptive designs for unknown kernel hyper-parameters

In many situations, one does not know the hyper-parameters of a kernel that best rep-
resent the function being approximated. In this section we show that the kernel hyper-
parameters can be learned while constructing weighted Cholesky designs.

Adaptive learning of the kernel hyper-parameters can be implemented with a minor
modification of the pivoted Cholesky algorithm. Before any data is collected we assume
that the correlation length of the kernel is l = 1

r = 1. We then generate a sample design
with m0 points, evaluate u at these points and use the data obtained to estimate the kernel
hyper-parameters by maximizing the marginal log-likelihood (2.12). If the kernel hyper-
parameters are fixed we can enrich a sample design by simply storing and reusing the
internal state of the pivoted Cholesky algorithm. When we change the kernel hyper-
parameters we can no longer do this. Instead we must recompute the pivoted Cholesky
factorization with the new kernel and enforce the new design is nested by ensuring that
any pivots previously chosen are selected again before new pivots are identified.

In the following examples the kernel length scale is optimized when the number
of samples in X equals 1,2,.. .,10,15,20,25,50,75,100,300 and 500. We use the bound-
constrained limited memory BFGS, available in Scipy (https://www.scipy.org), to max-
imize the marginal log-likelihood. Because the marginal log-likelihood is non-convex,
we solve the optimization problem using 10 random initial guesses sampled uniformly
in the hypercube [10−3,1]d and select the solution with the smallest objective.

Figure 5 plots the median error in approximations, of 10 random functions from the
native space of the squared exponential kernel, constructed using weighted Cholesky
samples when the correlation length of the kernel is optimized each time a batch of sam-
ples is requested (Weighted-Adaptive). We consider ωgauss with d = 3 and d = 6 and
compare performance with unweighted Cholesky sampling (Unweighted-Oracle) and
weighted Cholesky sampling (Weighted-Oracle), which both use the true length scale of

https://www.scipy.org

23

the random functions which is set to 0.1 and 0.5 in each dimension respectively. For both
these examples, solving an optimization problem for the correlation length results in de-
signs with accuracy comparable to the oracle designs. The difference in performance
between the adaptive and oracle weighted designs is significantly smaller than the dif-
ference between using unweighted and weighted Cholesky sampling.

10
0

10
1

10
2

m

10
−3

10
−2

10
−1

10
0

ǫ̃
ω
,2

Weighted-Adaptive

Unweighted-Oracle

Weighted-Oracle

10
0

10
1

10
2

m

10
−4

10
−3

10
−2

10
−1

10
0

ǫ̃
ω
,2

Weighted-Adaptive

Unweighted-Oracle

Weighted-Oracle

Figure 5: A comparison of the median error in approximations of 10 random functions (4.2), drawn from the
(left) d=3 and (right) d=6 dimensional native spaces of the squared-exponential kernel using weighted-Cholesky
factorization when the correlation length is not-known a priori but is rather optimized as data is collected.

Note, that when adaptively constructing designs, the final design is sensitive to the
estimates of the kernel hyper-parameters during the early stages of point selection. We
found that re-optimizing the hyper-parameters each time a sample is collected, for the
first 10 samples, resulted in good designs. After this point samples can be collected in
larger batches allowing for increasing parallelism when labeling the training data, that is
evaluating the function at the new design samples.

4.5 Different weighted p-norms

In this section, we generate weighted Cholesky designs that target different values of q in
ǫω,q

(

u,V(X)
)

. Figure 6 plots the median error in approximations of 100 three-dimensional
random functions (4.2), drawn from the native space of the squared-exponential kernel
using different sampling strategies; the length scale of the kernel is set to 0.1. Specifically,
using ωBeta(20,20), we compare IVAR designs with weighted Cholesky designs targeting
values of q=4 and q=6. In both examples weighted Cholesky designs produce approxi-
mations which are more accurate than those produced using IVAR designs.

Figure 7 depicts the samples sets (m=100) generated, for ωNat, by the weighted and
the unweighted Cholesky sampling strategies when d=2. The weighted approach clearly
allocates more samples to regions of high-probability. However, as q is increased, more
samples are allocated to regions of lower probability. IVAR cannot be tailored to a partic-
ular choice of q.

24

10
1

10
2

10
3

m

10
−3

10
−2

10
−1

10
0

ǫ̃
ω
,4

Cholesky

IVAR

Weighted Cholesky

10
1

10
2

10
3

m

10
−3

10
−2

10
−1

10
0

ǫ̃
ω
,6

Cholesky

IVAR

Weighted Cholesky

Figure 6: A comparison of the median error in approximations of 100 3D random functions (4.2), drawn from
the native space of the squared-exponential kernel using weighted-Cholesky factorization minimizing (left) L4

ω

and (right) L6
ω errors.

Figure 7: Comparison of samples sets, for ωNat, generated by (left) the unweighted Cholesky sampling strategy
and (middle) the weighted strategy with q=2 and (right) q=6. The samples are plotted on top of the contours
of the non-product density (4.4) with correlation (4.3), d=2, and univariate Beta marginals each with parameters
(α,β)=(2,5).

4.6 Kernels of varying smoothness

This paper focuses on generating designs for the popular squared exponential kernel.
However, weighted Cholesky sampling can also be applied to other kernels. In this sec-
tion we investigate the performance of weighted Cholesky sampling for Matérn kernels
of varying smoothness. For ωBeta(20,20), Figure 8 compares the median accuracy of 3D ap-
proximations constructed using IVAR and weighted Cholesky designs for functions gen-
erated from the native space of the Matérn kernel with parameters ν=5/2 and ν=9/2.
IVAR designs produce approximations which are more accurate than weighted Cholesky
designs as the smoothness of the kernel decreases. Specifically IVAR produces more accu-
rate approximations of functions drawn from the Matérn kernel with ν=5/2 which have
continuous second derivatives (see left of Figure 8). However, the difference between
IVAR and weighted Cholesky is negligible for smoother functions with higher-order dif-
ferentiability, e.g. ν= 9/2 which is 3 times differentiable (see right of Figure 8) and the
squared exponential kernel which is analytic and obtained when ν→∞ (see top-left of
Figure 2). As ν, and thus smoothness decreases, unweighted Cholesky becomes more
competitive for large sample sizes.

5 Bayesian inference

In this section, we will use Cholesky sampling to construct posterior surrogates for effi-
cient Bayesian inference of model parameters from observational data, cf. [31]. To make

25

10
1

10
2

10
3

m

10
−4

10
−3

10
−2

10
−1

ǫ̃
ω
,2

Cholesky

Weighted Cholesky

IVAR

10
1

10
2

10
3

m

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ǫ̃
ω
,2

Cholesky

Weighted Cholesky

IVAR

Figure 8: A comparison of the median error in approximations of 100 3D random functions (4.2), drawn from
the native space of the Matérn kernel with (left) ν=5/2 and (right) ν=9/2.

this precise, let f (y) : R
d →R

n be a vector of n observable quantities, parameterized by d
random variables y. Bayes’ rule can be used to define the posterior density for the model
parameters y given observational data d:

π(y |d)=
π(d |y)π(y)

∫

Dπ(d |y)π(y)dy
,

where any prior knowledge on the model parameters is incorporated into the prior den-
sity π(y) and π(d |y) is the likelihood function which specifies the probability of observ-
ing data d given a realization of the model parameters.

5.1 Determining the likelihood

The form of the likelihood is determined by the statistical model that relates the data
to the simulation model. In the following, we will assume the following relationship
d = f (y)+ǫ, where the noise ǫ ∼N (0,Σ) is normally distributed with mean zero and
covariance Σ. Under this assumption, the likelihood takes the form

π(d |y)=exp

(

−
1

2

(

d− f (y)
)⊤

Σ
−1
(

d− f (y)
)

)

=exp
(

−u(y)
)

,

where u is often referred to as the negative log likelihood.
Often, when evaluating f , and thus u, is computationally expensive, a surrogate of

either f or u is built to avoid the expensive evaluation of the model. For example, [18]
proposes to replace the misfit u in the likelihood by an m-point approximation Πm,gu that
is used to compute an approximation of the posterior distribution, i.e.

πm,g(y |d)=
exp

(

−Πm,gu(y)
)

π(y)
∫

Dexp
(

−Πm,gu(y)
)

π(y)dy
. (5.1)

The authors of [18] construct a polynomial chaos expansion (PCE) which is tailored to

the prior distribution, i.e. g(y)=π(y)
1
2 . Using the prior as a dominating measure is inef-

ficient, as it has often a much larger non-zero support than the posterior. Attempts have

26

been made to increase the efficiency of Bayesian inference by using low-order localized
surrogates to facilitate sampling in regions of high probability [4,19]. The use of localized
surrogates results in small-rates of convergence. Recently, PCE tailored to the posterior
distribution have been used to obtain higher rates of convergence [15, 33] and extended
to use multiple models of varying cost and accuracy in [48].

5.2 Using weighted Cholesky sampling

In the following, we demonstrate that our weighted Cholesky sampling scheme can be
used to efficiently construct RBF/Gaussian process surrogates of the misfit u. The adap-
tive algorithm we use is summarized in Algorithm 5 and described here.

Algorithm 5 Adaptive Cholesky sampling for Bayesian inference.

1: function GETPOSTERIORAPPROX(K, Xcand, {∆mj}
s
j=1)

2: X0=∅, u0=∅, β0=0
3: for j=1,2,.. .,s do

4: gj =exp
(

−Πmj−1gj−1
u
)β j−1

π

5: ∆Xj =UPDATEWEIGHTEDPIVOTEDCHOLESKY(Xcand, K, Xj−1,gj, ∆mj)
6: Xj =Xj−1∪∆Xj

7: mj = |Xj|
8: uj =uj−1∪u(∆Xj) ⊲ evaluate model at new samples
9: Πmj,gj

u=APPROXIMATEFUNCTION(Xj,uj)
10: β j = UPDATETEMPERINGPARAMETER(β j−1,Πmj,gj

u)

11: return Xs, Πms,gs u

Because the true posterior density ω is unknown, we cannot directly use it to specify
g. Instead, we will use a series of intermediate unnormalized PDFs which converge to
the true distribution

gj(y)=exp
(

−Πmj−1,gj−1
u(y)

)β j−1

π(y), j=1,.. .,s, (5.2)

where 0= β0 < β1 < . . .< βs ≤ 1. A similar approach has been used to improve the per-
formance of Markov chain Monte Carlo (MCMC) when sampling multi-modal posteri-
ors [3]. Such methods are referred to as transitional MCMC.

Note that even when β=1 the measure in (5.2) is not the posterior measure of the sur-
rogate. The normalizing constant

∫

Dexp
(

−Πm,gu(y)
)

π(y)dy is missing. However this
constant does not effect the pivots chosen by the weighted Cholesky sampling procedure,
and so can be ignored.

Starting with an initial set of points X0 which is often the empty set, Algorithm 5

begins by setting the initial dominating measure to be the prior, i.e. g0(y) = π(y)
1
q . In

the following we set q = 2. This measure is then adapted as information (evaluations)

27

about u is obtained. Specifically, given an approximation Πmj−1,gj−1
u at iteration j ≥ 1

built with mj−1 samples Xj−1, we set gj(y) using (5.2). This domination measure is then
used to enrich the existing set of samples with another ∆mj samples ∆Xj, yielding Xj+1=
Xj∪∆Xj. This process continues until a sufficient accuracy in the posterior is reached or
a computational budget is exhausted. Note that unlike the examples in Section 4 when
the weighting density is known we cannot use samples from the unknown density in the
candidate set Xcand. We can use samples from the posterior drawn from the surrogate
using Markov Chain Monte Carlo sampling, however we found this unnecessary.

Our transitional approach has two advantages. Firstly, it can sample multi-model
and/or concentrated PDFs. Moreover, it allows us to build in a level of conservative-
ness to prevent our weighted sampling approach from being misled during the initial
stages of the algorithm when the approximate posterior is highly inaccurate. At the first
iteration when we have no knowledge of the posterior, we simply revert to sampling
from the prior π. However, as our approximation becomes more accurate, so does our
approximation of the posterior which allows us to place increasing trust in the surro-
gate for determining the weighting function used with our pivoted Cholesky procedure.
The level of trust is dictated by the value of β. The value chosen should be the largest
β j∈(β j−1,1] such that the ratio of the previous posterior, using β j−1 and the posterior ob-
tained using the new β are “close”. Following [3], we choose β j such that the coefficient
of variation of the densities is equal to a pre-defined threshold τ, i.e.

Var

[

exp
(

−Πmj,gj
u(y)

)β−β j−1

π(y)

] 1
2

E

[

exp
(

−Πmj,gj
u(y)

)β−β j−1

π(y)

] =τ.

Similar to [3], we found τ=1 to be a reasonable choice. To compute the expectation and
variance we use 1000 samples drawn uniformly from Γ. The cost of this step is negligible
as it only requires the evaluation of the surrogate.

5.3 Example: Rosenbrock function

This subsection demonstrates the benefit of using our transitional Cholesky sampling
algorithm to construct surrogates for Bayesian inference. In the following, assume that
the observational quantities are modeled by the function f :R2→R

2, where

f1(y)=4y1−2, f2(y)=4y2−2−(4y1−2)2.

In addition assume that the prior distribution π(y) is a uniform distribution on [0,1]2

and the observational data is d = (1,0)T. Using a Gaussian error model with covari-
ance Σ=diag(1,0.01) the negative log likelihood is an affine transformation of the two-
dimensional Rosenbrock function

u(y)=(1− ŷ1)
2+100(ŷ2− ŷ2

1)
2, ŷ=4y−2.

28

Figure 9 compares the accuracy of surrogates constructed using three sampling schemes.
The “Prior Weighted Cholesky” label in the legend refers to the weighted Cholesky sam-
pling with the prior as the dominating measure, the “Adaptive Weighted Cholesky”
refers to our transitional algorithm and “Halton” refers to simply using a untransformed
Halton sequence. In all cases we simultaneously select samples and optimize the corre-
lation lengths of the RBF/Gaussian process kernel.

10
1

10
2

10
3

m

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

ǫ̃ ω
,2

Prior Weighted Cholesky

Adapted Weighted Cholesky

Halton

10
1

10
2

10
3

m

10
−9

10
−7

10
−5

10
−3

10
−1

10
1

D
H

10
1

10
2

10
3

m

10
2

10
4

10
6

10
8

10
10

10
12

10
14

κ
Figure 9: Comparison of sampling strategies used to build surrogates for Bayesian inference. L2

ω error in the
surrogates as a function of the number of samples (left). Squared Hellinger divergence between the true posterior
and approximate posterior obtained using a surrogate (middle). Condition number of the kernel training matrix
K(Xj,Xj) at each iteration j (right).

The left plot of Figure 9 depicts the L2
ω error of each method, computed using 10000

samples drawn from the true posterior distribution using rejection sampling. The middle
plot depicts the squared Hellinger divergence

D2
H(πm,g(y |d),π(y |d))=1−

∫

Γ
πm,g(y |d)π(y |d)dy

between the approximate and true posteriors. The integral is evaluated using a high-
degree tensor-product Gaussian quadrature rule. By both the L2

ω and Hellinger diver-
gence metrics, our adaptive weighted Cholesky algorithm is significantly more efficient
than the alternatives. Notice that the convergence curves terminate at different sample
sizes for each sampling method. The curves terminate when the condition number of
the kernel matrix K(Xj,Xj) constructed using the training data Xj becomes highly ill-
conditioned.

The right plot of Figure 9 compares the condition number of each sampling strategy.
For a fixed sample size m, the condition number of our approach is largest. Using the
prior as the dominating measure improves the condition number, however the error is
much worse.

The performance of the adaptive algorithm is dependent on the transitional parame-
ter β j. In the left of Figure 10, we plot the evolution of β j at each iteration of the sampling
algorithm. For small sample sizes the approximate posterior changes significantly each

29

5 10 15

Iteration j

10
−2

10
−1

β
j

0.0 0.2 0.4 0.6 0.8 1.0
y1

0.0

0.2

0.4

0.6

0.8

1.0

y
2

0.0 0.2 0.4 0.6 0.8 1.0
y1

0.0

0.2

0.4

0.6

0.8

1.0

y
2

0.0000

0.1053

0.2105

0.3158

0.4211

0.5263

0.6316

0.7368

0.8421

0.9474

Figure 10: Transitional parameters β j at each iteration of the adaptive weighted Cholesky algorithm (left). The

training set and approximate unnormalized posterior at iteration 6 (middle) and at the final iteration (right).

time the training set is enriched. This causes β j to remain small. However, as the accuracy
of the surrogate of u improves, β also increases. The middle plot shows the approximate
posterior and training samples after 50 model evaluations and the right plot after 450
evaluations. The approximate posterior is ‘closer’ to the prior for small sample sizes.

6 Conclusion

In this article, we presented a greedy algorithm for generating samples with the goal of
minimizing the weighted Lp-error of kernel-based approximations. Most existing litera-
ture focuses on strategies for approximations that minimize the unweighted error. The
major contribution of our work to the existing literature is the construction of a com-
putationally simple and efficient algorithm based upon pivoted Cholesky factorization
for selecting samples for weighted approximation. We demonstrate through extensive
numerical examples that for smooth kernels the accuracy of approximations built using
our designs is comparable to the accuracy of those built upon designs from slower exist-
ing approaches. For non-tensor product densities our algorithm produced more accurate
approximations than the best alternative (IVAR), for moderate to large sampler sizes.

In addition to generating accurate interpolants, the algorithm presented has four use-
ful properties. Firstly, the sample sets are nested. Consequently, they can easily be en-
riched with additional samples if additional computational resources become available.
Secondly, the samples can be generated in batches which allows data to be labeled (eval-
uated) in parallel. Thirdly, although we focused on the use of the squared exponential
kernel, our algorithm can be used in conjunction with any other kernel. And finally the
sample sets remain stable even when the length scales of the kernel are changed each time
additional samples are added. This is extremely useful because the best length scales of
a function are not typically known a priori.

The first part of the article focuses on the weighted approximation of functions when

30

the weight-function is known. The article concludes with an example of how the pro-
posed algorithm can be used for efficiently generating surrogates for the purpose of in-
ferring unknown model parameters from data using Bayesian inference. In this setting
the true weight function is the posterior distribution of the model parameters, which is
unknown. The algorithm described iteratively builds up an approximation of the pos-
terior, starting from the prior, which is used as a weighting function in the weighted
Cholesky sampling procedure. For the example presented, the proposed approach pro-
duces approximations of the true posterior which are orders of magnitude more accurate
for a pre-specified budget.

7 Acknowledgments

J.D. Jakeman was supported by the Laboratory Directed Research Development (LDRD)
program at Sandia National Laboratories and the US Department of Energy, Office of Ad-
vanced Scientific Computing Research. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-
NA-0003525. The views expressed in the article do not necessarily represent the views of
the U.S. Department of Energy or the United States Government.

During his time of working for University of Basel, Switzerland, P. Zaspel was sup-
ported by the Swiss National Science foundation through 407540_167186 NFP 75 Big
Data.

References

[1] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86:565–589
(2000).

[2] X. Chen, E.-J. Park, and D. Xiu. A flexible numerical approach for quantification of epistemic
uncertainty. J. Comput. Phys., 240(1):211–224 (2013).

[3] J. Ching and Y.-C. Chen. Transitional Markov chain Monte Carlo method for Bayesian model
updating, model class selection, and model averaging. J. Eng. Mech., 133(7):816–832 (2007).

[4] P.R. Conrad, Y.M. Marzouk, N.S. Pillai, and A. Smith. Accelerating asymptotically exact
MCMC for computationally intensive models via local approximations. J. Amer. Statist. As-
soc., 111(516):1591–1607 (2016).

[5] H. Dette and A. Pepelyshev. Generalized Latin hypercube design for computer experiments.
Technometrics, 52(4):421–429 (2010).

[6] L. Devroye. Non-Uniform Random Variate Generation. Springer, New York, 1986.
[7] G.E. Fasshauer. Meshfree Approximation Methods with MATLAB. World Scientific Publishing,

River Edge, NJ, 2007.
[8] G.E. Fasshauer. Positive definite kernels: Past, present and future. Dolomite Res. Notes Ap-

prox., 4:21–63 (2011).

31

[9] R.G. Ghanem and P.D. Spanos. Stochastic finite elements: a spectral approach. Springer, New
York, Inc., 1991.

[10] S.A. Goreinov, N.L. Zamarashkin, and E.E. Tyrtyshnikov. Pseudo-skeleton approximations
by matrices of maximal volume. Math. Notes, 62(4):515–519 (1997).

[11] A. Gorodetsky and Y. Marzouk. Mercer kernels and integrated variance experimental de-
sign. Connections between Gaussian process regression and polynomial approximation.
SIAM/ASA J. Uncertain. Quantif., 4(1):796–828 (2016).

[12] A. Gorodetsky and J.D. Jakeman. Gradient-based optimization for regression in the func-
tional tensor-train format. J. Comput. Phys. 374: 219–1238 (2018).

[13] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted
Cholesky decomposition. Appl. Numer. Math., 62(4):428–440 (2012).

[14] J.D. Jakeman, M. Eldred, and D. Xiu. Numerical approach for quantification of epistemic
uncertainty. J. Comput. Phys., 229(12):4648–4663 (2010).

[15] J.D. Jakeman, F. Franzelin, A. Narayan, M. Eldred, and D. Pflüger. Polynomial chaos ex-
pansions for dependent random variables. Comput. Methods Appl. Mech. Engrg., 351:643–666
(2019).

[16] M. Kolonko. Stochastische Simulation. Grundlagen, Algorithmen und Anwendungen.
Vieweg+Teubner, Wiesbaden, 2008.

[17] S.D. Marchi, R. Schaback, and H. Wendland. Near-optimal data-independent point locations
for radial basis function interpolation. Adv. Comp. Math., 23:317–330 (2005).

[18] Y. M. Marzouk and D. Xiu. A stochastic collocation approach to Bayesian inference in inverse
problems. Commun. Comput. Phys. 6(1):826–847 (2009).

[19] S.A. Mattis and B. Wohlmuth. Goal-oriented adaptive surrogate construction for stochastic
inversion. Comput. Methods Appl. Mech. Engrg., 339:36–60 (2018).

[20] S. Müller and R. Schaback. A Newton basis for kernel spaces. J. Approx. Theory, 161:645–655
(2009).

[21] A.A. Mullur, and A. Messac. Metamodeling using extended radial basis functions: a com-
parative approach. Eng. Comput., 21:203 (2006).

[22] A. Nataf. Determination des distributions dont les marges sont donnees. C. R. Acad. Sci.
Paris, 225:42–43 (1962).

[23] F. Nobile, R. Tempone, and C.G. Webster. A sparse grid stochastic collocation method for
partial differential equations with random input data. SIAM J. Numer. Anal., 46(5):2309–2345
(2008).

[24] I.V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput., 33(5):2295–2317 (2011).
[25] A. O’Hagan and J.F.C. Kingman. Curve fitting and optimal design for prediction. J. Roy.

Statist. Soc. Ser. B, 40:1–42 (1978).
[26] M. Pazouki and R. Schaback. Bases for kernel-based spaces. J. Comput. Appl. Math., 236:575–

588 (2011).
[27] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. The MIT Press,

Cambridge, MA, 2006.
[28] R. Schaback. Error estimates and condition numbers for radial basis function interpolation.

Adv. Comp. Math., 3:251–264 (1995).
[29] R. Schaback and H. Wendland. Kernel techniques: From machine learning to meshless meth-

ods. Acta Numer., 15:543–639 (2006).
[30] R. Schaback and J. Werner. Linearly constrained reconstruction of functions by kernels with

applications to machine learning Adv. Comp. Math., 25:237 (2006).
[31] A.M. Stuart. Inverse problems: A Bayesian perspective. Acta Numer., 19:451–559 (2010).

32

[32] A.N. Tikhonov and V.Y. Arsenin. Solution of Ill-posed Problems. Winston & Sons, Washington,
D.C., 1977.

[33] L.M.M. van den Bos, B. Sanderse, W.A.A.M. Bierbooms, and G.J.W. van Bussel. Bayesian
model calibration with interpolating polynomials based on adaptively weighted Leja nodes.
Commun. Comput. Phys., 27(1):33–69 (2020).

[34] H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge, 2004.
[35] C.K.I. Williams. Prediction with Gaussian processes. From linear regression to linear predic-

tion and beyond. In: M.I. Jordan (eds) Learning in Graphical Models. NATO ASI Series (Series
D: Behavioural and Social Sciences), vol 89. Springer, Dordrecht, 1998.

[36] Z. Wu and R. Schaback. Local error estimates for radial basis function interpolation of scat-
tered data. IMA J. Numer. Anal., 13(1):13–27 (1993).

[37] Z. Wu, D. Wang, P. Okolo, F. Hu, and W. Zhang. Global sensitivity analysis using a Gaussian
Radial Basis Function metamodel. Reliab. Eng. Syst. Safe., 154:171–179 (2016).

[38] D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with
random inputs. SIAM J. Sci. Comput., 27(3):1118–1139 (2005).

[39] D. Xiu and G.E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential
equations. SIAM J. Sci. Comput., 24(2):619–644 (2002).

[40] M. Bebendorf, Y. Maday and B. Stamm, Comparison of Some Reduced Representation Ap-
proximations. In: A. Qarteroni, G. Rozza (eds) Reduced Order Methods for Modeling and Com-
putational Reduction, 67–100, Springer, Cham, 2014.

[41] L. Bos, S. De Marchi, A. Sommariva, and M. Vianello. Computing Multivariate Fekete and
Leja Points by Numerical Linear Algebra. SIAM J. Numer. Anal., 48(5): 1984–1999 (2010).

[42] Y Maday, N. Nguyen, A. Patera, S. Pau. A general multipurpose interpolation procedure:
the magic points. Communications on Pure & Applied Analysis 8(1):383–404 (2008).

[43] J. Sacks, W.J. Welch, T.J.Mitchell, H.P. Wynn Designs and analysis of computer experiments
(with discussion). Statistical Science, 4:409-435 (1989).

[44] J.E Oakley, A O’Hagan. Probabilistic sensitivity analysis of complex models: a Bayesian
approach. Journal of the Royal Statistical Society: Series B, 66(3):751-769 (2004).

[45] T. Qin, Z. Chen, J.D. Jakeman, D. Xiu. A neural network approach for uncertainty quan-
tification for time-dependent problems with random parameters, International Journal of
Uncertainty Quantification. To appear (2020).

[46] Y. Zhu, N. Zabaras. Bayesian deep convolutional encoder–decoder networks for surro-
gate modeling and uncertainty quantification, Journal of Computational Physics, 366: 415-447
(2018).

[47] V.R. Joseph, T. Dasgupta, R. Tuo, C.F.J. Wu. Sequential Exploration of Complex Surfaces
Using Minimum Energy Designs, Technometrics, 57:1, 64-74, (2015).

[48] L. Yan, T. Zhou. Adaptive multi-fidelity polynomial chaos approach to Bayesian inference
in inverse problems, Journal of Computational Physics, 381:110-128 (2019).

[49] J.D. Jakeman. PyApprox: Probabilistic analysis and approximation of data and simulation.
https://github.com/sandialabs/pyapprox.

Appendix

In this section we summarize how to update a Cholesky factor of a covariance matrix and
use this update to compute the trace involved in the computation of the integrated vari-
ance of a Gaussian process. Neither of these linear algebra steps are novel but we believe

https://github.com/sandialabs/pyapprox

33

their use for computing IVAR designs is and so present these steps here for completeness.

Cholesky update

In this section we summarize the UPDATEINVERSECHOLESKYFACTOR algorithm used in
Algorithm 4. Let L−1

11 be the inverse of the current Cholesky factorization of a matrix A11.
To compute the inverse of the new Cholesky factorization of the matrix

[

A11 A12

AT
12 A22

]

,

where A12 ∈ R
r×k, we must first update the Cholesky factor L11. The inverse of the

Cholesky factor of A is then given by

[

L11 0
LT

12 L22

]−1

=

[

L−1
11 0

−L−1
22 LT

12L−1
11 L−1

22

]

=

[

L−1
11 0

C L−1
22

]

where L22 = Chol
[

A22−LT
12L12

]

and L12 = L−1
11 A12 If k = 1 the Cholesky inverse can be

updated in O(r2) operations needed to compute L12.

Trace update

In this section we summarize the UPDATEIVARTRACE algorithm used in Algorithm 4.
Using the partitions of A and L introduced above

A−1=

[

L−T
11 L−1

11 +CTC CT L−1
22

L−T
22 C L−T

22 L−1
22

]

.

Thus

Trace
[

A−1P
]

=Trace

[[

L−T
11 L−1

11 +CTC CT L−1
22

L−T
22 C L−T

22 L−1
22

][

P11 P12

P21 P22

]]

=∑
i

∑
j

([

L−T
11 L−1

11 +CTC CT L−1
22

L−T
22 C L−T

22 L−1
22

]

◦

[

P11 P12

P21 P22

])

ij

=∑
i

∑
j

(

L−T
11 L−1

11 ◦P11

)

ij
+∑

i
∑

j

(

CTC◦P11

)

ij
+2∑

k
∑

l

(

CT L−1
22 ◦P12

)

kl

+∑
m

∑
n

(

L−T
22 L−1

22 ◦P22

)

mn

The first term is expensive to compute but this value can be stored each time the trace is
updated and re-used. Again if k= 1, then dominant cost of evaluating the trace comes
from evaluating the second term which can be computed in O(r2) operations.

	Introduction
	Kernel-based function approximation
	Reproducing kernel Hilbert spaces
	Function approximation
	Relation to Gaussian process regression

	Sampling strategies
	Greedy nested sampling using the power function
	Sampling using a weighted power function
	Integrated variance experimental design
	Low discrepancy sequences

	Numerical examples
	Impact of the dominating density
	Comparison to existing sampling strategies
	Sample designs for non-product PDFs
	Adaptive designs for unknown kernel hyper-parameters
	Different weighted p-norms
	Kernels of varying smoothness

	Bayesian inference
	Determining the likelihood
	Using weighted Cholesky sampling
	Example: Rosenbrock function

	Conclusion
	Acknowledgments

