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About a fast isogeometric boundary element method

Helmut Harbrecht

(joint work with Jürgen Dölz, Michael Multerer, Stefan Kurz, Sebastian Schöps,
and Felix Wolf)

1. Introduction

In the search of a method incorporating simulation techniques into the design
workflow of industrial development, [8] proposed the concept of Isogeometric Anal-
ysis (IGA) to unite Computer Aided Design (CAD) and Finite Element Analysis
(FEA). It enables to perform simulations directly on geometries described by volu-
metric NURBS parametrizations. Nonetheless, many CAD systems use boundary
representations only. Thus, volumetric parametrizations often have to be con-
structed solely for the purpose of simulation. The boundary parametrization,
however, can be easily exported from CAD. Therefore, an approach via isogeo-
metric boundary element methods seems to be natural.

2. Isogeometric boundary element methods

The utilization of parametric mappings in numerical implementations of the bound-
ary element method is not new, going back further than the introduction of the
isogeometric concept, see [6] for example. Parametric mappings avoid the problem
of a slow convergence of the geometry due to the limited polynomial approximation
of the geometry. Thus, they encourage the application of higher order Galerkin
schemes. Through the parametric mappings, a tensor product structure on the ge-
ometries is induced, making it possible to define patchwise tensor product B-spline
bases of high order and regularity.

One of the major downsides of the application of boundary element methods
is that the integral operators involved yield dense discrete systems. To counter-
act the dense matrices, so-called fast methods must be employed for compression
and efficiency. As shown in [3, 7], the tensor product structure induced by the
mappings can be exploited to achieve an efficient implementation of compression
techniques such as H-matrices or the fast multipole method [5]. An isogeomet-
ric boundary element method promises hence runtimes which can compete with
classical discretization methods.
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Therefore, we developed the software library Bembel, Boundary Element Me-
thod Based Engineering Library, which is written in C and C++ [1]. It solves
boundary value problems governed by the Laplace, Helmholtz or electric wave
equation within the isogeometric framework. The development of the software
started in the context of wavelet Galerkin methods on parametric surfaces, see
[6], where the integration routines for the Green’s function of the Laplacian have
been developed and implemented. It was then extended to hierarchical matrices
(H-matrices) in [7] and to H2-matrices and higher order B-splines in [3]. With
support of B-splines and NURBS for the geometry mappings, the Laplace and
Helmholtz code became isogeometric in [2]. Finally, in [4], it has been extended
to the electric field integral equation.

3. Numerical example

We shall present numerical results for the Laplace equation ∆U = 0 inside the
gear worm geometry Ω found in the left plot of Figure 1, whose surface Γ = ∂Ω
is represented by 290 patches. The harmonic polynomial U(x) = 4x2

1 − 3x2
2 − x2

3

is used to prescribe either Dirichlet boundary conditions f = U |Γ or Neumann
boundary conditions g = 〈∇U,n〉 on Γ.

Making the single layer potential ansatz

(1) U(x) =

∫

Γ

u(y)

4π‖x− y‖2
dσy, x ∈ Ω,

leads to a Fredholm integral equation of the first kind

(2) Su(x) =

∫

Γ

u(y)

4π‖x− y‖2
dσy = f(x), x ∈ Γ,

for the unknown density u in case of the Dirichlet problem. Whereas, making a
double layer potential ansatz

(3) U(x) =

∫

Γ

〈x− y,ny〉u(y)

4π‖x− y‖32
dσy, x ∈ Ω,

amounts to a Fredholm integral equation of the first kind

Wu(x) =
∂

∂nx

∫

Γ

〈x − y,ny〉u(y)

4π‖x− y‖32
dσy = g(x), x ∈ Γ,(4)

for the unknown density u in case of the Neumann problem.
Since the density u is unknown, the error of the potential U is measured on the

115’241 vertices of a grid of 83’437 cubes fitted inside the domain. A visualization
of these cubes together with the computed potential for the single layer ansatz can
be found in the right plot of Figure 1. In view of having only a Lipschitz continuous
boundary, the theoretical convergence rates are limited to at most h3 for the single
layer ansatz and to h1 for the hypersingular ansatz. Figure 2 illustrates that these
convergence rates are achieved for all polynomial degrees under consideration. In
fact, the higher order ansatz functions even seem to produce a convergence rate
of up to h5 for both, the single layer ansatz and the hypersingular ansatz. Note
that the dashed lines correspond to the convergence rates h3 and h5 while the
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Figure 1. The gear worm geometry and the approximate po-
tential in case of the Dirichlet problem for the Laplacian vs. level
of uniform refinement.

accompanying numbers are the polynomial degrees of the interpolation in the fast
multipole method.
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Figure 2. Relative errors of the potentials in case of the single
layer ansatz (left) and the hypersingular ansatz (right).
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[2] J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf, A fast isogeometric BEM for

the three dimensional Laplace- and Helmholtz problems, Computer Methods in Applied
Mechanics and Engineering 330, 83–101 (2018).

[3] J. Dölz, H. Harbrecht, and M. Peters, An interpolation-based fast multipole method for
higher order boundary elements on parametric surfaces, International Journal for Numerical
Methods in Engineering 108, 1705–1728 (2016).
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Mathematics of isogeometric analysis and applications: a status report

Thomas J.R. Hughes

I presented a sampling of the state-of-the-art in Isogeometric Analysis (IGA) with
emphasis on mathematical developments. The field has become so enormous and
broad based that it is impossible to even briefly mention all areas of activity. This
is our second Oberwolfach workshop on IGA. The first was held in February of 2016
and was smaller than the present one. In my talk I tried to identify progress that
has been made in the almost 3 1⁄2 years since the first workshop. During that time,
according to Web of Science, there have been approximately 1300 papers published
on IGA in archival research journals. I began my talk with a comparison of the
publication history of the first 30 years of the Finite Element Method (FEM) with
that of IGA, which began in 2005. It is striking how quickly publications and
citations in IGA have grown. In the first 10 years of IGA the numbers are much
larger than in the first 30 years of FEM.

I presented a few applications with the FEM, specifically, automobile crash
dynamics, full-body patient-specific, fluid-structure analysis of the cardiovascular
system, and a HeartFlow, Inc., analsysi of blood flow in human coronary arter-
ies. These illustrate the breadth and success of the FEM. I know a lot about all
the applications because I developed many of the technologies employed. I ob-
served that in each case the lowest order finite elements were utilized. Why not
higher-order finite elements? From the academic research literature one would
think the higher-order elements exhibit superior accuracy and efficiency. An aca-
demic answer might be that complex practical problems do not enjoy the solution
regularity necessary to obtain higher-order convergence rates, but that is only a
small part of the reason. The sad truth is that higher-order C0-continuous finite
elements are not robust and fail in many practical applications. Later in my talk,
I used spectral analysis to reveal why this is the case and at the same time why
spline-based approaches, such as IGA, do not suffer the same deficiencies. Indeed,
one can show that maximally smooth Cp−1-continuous smooth splines exhibit a
unique combination of accuracy and robustness. In fact, the higher the p, the
more robust, the exact opposite of C0-continuous finite elements.

Here are the main topics I covered in the rest of my talk: Basics technologies,
such as B-splines and NURBS; approximation estimates in Sobolev norms; error
analysis by spectral analysis techniques; Kolmogorov n-widths; efficient formation




