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Abstract:  

The protein kinase mammalian target of rapamycin (mTOR) is the central regulator of cell growth. 

Aberrant mTOR signaling is linked to cancer, diabetes and neurological disorders. mTOR exerts 

its functions in two distinct multiprotein complexes, mTORC1 and mTORC2. Here we report a 

3.2 Å resolution cryo-EM reconstruction of mTORC2. It reveals entangled folds of the defining 5 

Rictor and the substrate-binding SIN1 subunits, identifies the C-terminal domain of Rictor as the 

source of the rapamycin insensitivity of mTORC2, and resolves mechanisms for mTORC2 

regulation by complex destabilization.  Two novel small molecule binding sites are visualized, an 

inositol hexakisphosphate (InsP6) pocket in mTOR and an mTORC2-specific nucleotide binding 

site in Rictor which also forms a zinc finger. Structural and biochemical analyses suggest that 10 

InsP6 and nucleotide binding do not control mTORC2 activity directly but rather have roles in 

folding or ternary interactions. These insights provide a firm basis for studying mTORC2 signaling 

and for developing mTORC2-specific inhibitors.  
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Main Text:  

The serine/threonine kinase mTOR, a phosphatidylinositol 3-kinase-related kinase (PIKK) (1-3), 

controls cell growth by balancing anabolic and catabolic metabolism (1, 4). mTOR is found in two 

separate complexes: mTOR complex 1 (mTORC1) and mTORC2 (1, 5, 6). mTORC1 consists of 

mTOR, regulatory-associated protein of mTOR (Raptor), and mammalian homolog of protein 5 

lethal with sec thirteen protein 8 (mLST8) (5, 7-9). mTORC2 comprises mTOR, rapamycin-

insensitive companion of mTOR (Rictor) (10, 11), stress-activated map kinase-interacting protein 

1 (SIN1) (12, 13), and mLST8 (10, 11), and associates with the facultative subunit protein observed 

with Rictor-1/2 (Protor-1/2) (14, 15). mTORC2 is activated by insulin and phosphoinositide 3-

kinase (PI3K) signaling (6, 16) and acts on cell survival and proliferation (4) by phosphorylating 10 

the AGC family kinases: Akt, PKC and SGK (1, 4, 17-19). mTORC2 also promotes tumorigenesis 

via upregulation of lipid biosynthesis (20). 

mTOR inhibitors played a major role in the elucidation of mTOR signaling and are used in cancer 

treatment (21). The polyketide rapamycin specifically inhibits mTORC1 (7, 8) by forming a 

complex with the cellular protein FKBP12 that then binds the FKBP-rapamycin binding (FRB) 15 

domain in mTOR (Fig. 1) (22). ATP-like inhibitors target the ATP-binding site in the kinase 

catalytic domain of the mTORCs or the structurally related PI3K (23). Recently, mTORC2-

selective inhibitors were identified, but their mechanism of action remains unknown (24, 25). 

Several intermediate resolution reconstructions of (m)TOR complexes (26-30) and high-resolution 

reconstructions of human mTORC1(31) have been reported, but no high-resolution information 20 

on mTORC2 is available. Of the mTORC2 accessory proteins, only the isolated pleckstrin 

homology (PH) and CRIM domains of SIN1 have been structurally characterized (32-34). For 
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Rictor, fold- and secondary structure-based models have been proposed based on intermediate 

resolution cryo-electron microscopy (cryo-EM) reconstructions (28-30).  

To investigate the structure of mTORC2 and the mechanism of its regulation, we co-expressed 

recombinant components of human mTORC2 (mTOR, mLST8, Rictor and SIN1) in Spodoptera 

frugiperda cells. The assembled complex, purified using tag-directed antibody affinity followed 5 

by size exclusion chromatography, was analyzed by cryo-EM (Fig. 1B, and Figs. S1 and S2) in 

the presence of ATPγS and either the full-length substrate Akt1 (Fig. S3) or an Akt1 variant 

missing the PH domain (ΔPH-Akt1), or in the absence of Akt1 with and without ATPγS (Fig. S2). 

The sample prepared in the presence of ATPγS and ΔPH-Akt1 yielded the highest overall 

resolution of 3.2 Å (Density A in Fig. S2). 10 

mTORC2 forms a rhomboid-shaped dimer (Fig. 1C) as observed in lower resolution mTORC2 

reconstructions (28-30). The mTOR kinase forms the core of mTORC2 with mLST8 on the 

periphery, close to the active site cleft, similar to mTOR-mLST8 in mTORC1 (26, 31). In the 

overall reconstruction, as a consequence of EM refinement of a flexible molecule, one half of the 

dimer showed better local resolution (Fig. 1B and Figs. S4A-C and Movie S1). Therefore, focused 15 

refinement on a unique half of the assembly improved the resolution to 3.0 Å (Density C in 

Fig. S2), and these maps were used for structural modelling (Fig. S4D-F). Previous mTORC2 and 

yeast TORC2 reconstructions (28-30) revealed that the two mTOR FAT domains are in closer 

proximity to each other than observed in mTORC1 (26, 31, 35) and in the current structure, the 

distance between the mTOR FAT domains is further reduced (Fig. S5A). Irrespective of these 20 

structural differences between the two mTORCs, the catalytic site in mTORC2 closely resembles 

the catalytic site in mTORC1 without Rheb-mediated activation (31), suggesting that mTORC2 

may be activated by a yet to be defined mechanism.  
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Previous studies of mTORC2 subunits Rictor and SIN1 or their yeast orthologs were not of 

sufficient resolution to allow de novo model building, resulting in ambiguous or inconsistent 

interpretations (28, 30, 36). Here we unambiguously model all structured regions of Rictor and the 

N-terminal region of SIN1 (Fig. 2A-C), whereas the middle and C-terminal part of SIN1 retain 

high flexibility and are not resolved. The fold of Rictor differs substantially from previous 5 

interpretations (28) (Fig. S5B-C). Rictor is composed of three interacting stacks of α-helical 

repeats, here referred to as the ARM domain (AD), the HEAT-like domain (HD), and the C-

terminal domain (CD) (Fig. 2A-C and Fig. S6A). The N-terminal AD (residues 26-487) forms a 

large superhelical arrangement of nine ARM repeats (Fig. 2A-B) that structurally separates the 

HD and CD. The HD (residues 526-1007), interpreted as two separate domains in previous lower 10 

resolution studies (28, 30), is composed of ten HEAT-like repeats. In sequence space, the HD and 

CD of Rictor are separated by an extended stretch of residues (1008-1559) that are predicted to be 

disordered (37) and are not resolved in our reconstruction. We refer to this region as the 

phosphorylation-site region (PR) because it contains most of Rictor’s phosphorylation sites (38). 

The two ends of the PR are anchored by a two-stranded β-sheet at the top of the HD, which is thus 15 

termed the PR anchor (Fig. 2B-C and Fig. S6A). From here, a partially flexible linker wraps around 

the AD and the mTOR FRB domain extending toward the CD (Fig. 2B and Fig. S6C).  

The structured parts of the CD form a four-helix bundle and a zinc finger, with bound Zn2+, in the 

vicinity of the Rictor N-terminus (Fig. 2A and Fig. S6B). Residues coordinating the zinc ion are 

highly conserved in metazoan Rictor (Fig. S6F). In earlier work, this domain had been interpreted 20 

as representing the SIN1 domain (28). The complete CD is absent in sequences of fungal Rictor 

orthologs, but other large extensions in yeast Rictor and SIN1 sequences may occupy the 

equivalent location in yeast TORC2, as observed in an intermediate resolution reconstruction of 
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budding yeast TORC2(29) (Fig. S6D-E). Increased levels of Zn2+ have been reported to stimulate 

Akt S473 phosphorylation in cells (39-41), but no direct involvement of mTORC2 activation has 

been demonstrated.  

Contacts between Rictor and mTOR are made by the Rictor AD, which sits between the proximal 

mTOR central HEAT domain and the N-terminal HEAT repeat domain, of the distal mTOR 5 

subunit (Fig. 2B). Due to its positioning on top of the mTOR FRB domain, the CD of Rictor blocks 

binding of FKBP12-rapamycin to mTORC2, thereby explaining mTORC2’s insensitivity to 

rapamycin (5, 10, 11, 36) (Fig. 2D). 

 The SIN1 subunit of mTORC2 exhibits an unexpected structural organization. The N-

terminal region (residues 2-137), contrary to earlier interpretations, does not form an 10 

independently folding domain but interacts tightly with Rictor and mLST8 in an extended 

conformation (Fig. 2A-C and 3A-E). The CRIM, RBD and PH domains of SIN1, however, remain 

flexibly disposed. The N-terminus of SIN1 is inserted into a deep cleft at the interface of the AD 

and HD of Rictor. The N-terminal Ala2 with a structurally resolved acetylated N-terminus, and 

Phe3 of SIN1 are buried in a hydrophobic pocket of Rictor (Fig. 3C,D and Fig. S7A). The anchored 15 

N-terminal region of SIN1 forms two short helices (residues 6 to 33) inserted into grooves on the 

surface of the Rictor AD (Fig. 3D) and then continues with a flexible sequence segment toward 

the Rictor CD (Figs. 2B-C and 3C and Fig. S7B). Protruding from the Rictor CD, SIN1 forms a 

helical segment, referred to as the “traverse”, that spans the distance to mLST8 across the 

mTORC2 kinase cleft (Fig. 3C and Fig. S7B-C). The next region of SIN1 interacts with the fourth 20 

strand of the second blade of the mLST8 propeller by β-strand complementation, leading to 

displacement of an mLST8 loop relative to the structure of mLST8 in mTORC1 (Fig. 3C,E and 
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Fig. S7D). SIN1 then follows the surface of the mLST8 propeller, finally forming an α-helix 

anchored between the first and seventh blades of mLST8. 

 SIN1 integrates into the Rictor fold and connects Rictor with mLST8, suggesting a direct 

role in stabilizing mTORC2. To test the relevance of the anchoring of the N-terminus of SIN1 on 

Rictor, we extended the N-terminus of SIN1. Insertion of residues impairs critical interactions 5 

observed for the acetylated N-terminus of SIN1 and prevents Rictor integration into mTORC2, as 

observed in Baculovirus-mediated expression of mTOR components followed by pull-down 

assays (Fig. 3B and Fig. S8). Therefore, SIN1 acts as an integral part of the Rictor structure that 

critically stabilizes interdomain interactions, explaining the difficulties observed in purifying 

isolated Rictor (28).  10 

These observations are also consistent with the locations of post-translational modifications or 

mutations that affect mTORC2 activity. SIN1 phosphorylation at Thr86 and Thr398 has been 

reported to reduce mTORC2 integrity and kinase activity toward Akt Ser473 (42). Thr86 in SIN1, 

which is a target for phosphorylation by S6 kinase (42), is bound to a negatively charged pocket 

of the Rictor CD (Fig. 3C and Fig. S7C). Phosphorylation of Thr86 would lead to repulsion from 15 

this pocket, destabilizing the interaction between Rictor and mTOR-mLST8 and presumably the 

entire mTORC2 assembly, in agreement with earlier in vivo and in vitro observations (42). The 

importance of SIN1 in connecting Rictor to mLST8 and, therefore also indirectly to mTOR, is also 

consistent with the requirement of mLST8 for mTORC2 integrity (43, 44). 

A poorly resolved density linked to the SIN1 helix anchored to mLST8 is observed in all 20 

reconstructions. In previous structural studies of yeast TORC2, a similar region of density was 

associated with the CRIM domain of Avo1, the yeast SIN1 ortholog (29, 36). Most likely, it 

represents the mobile substrate-binding CRIM domain that directly follows the helix in the SIN1 
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sequence and has a matching shape based on the solution structure of the S. pombe SIN1 CRIM 

domain (33, 34) (Fig. 3C-F and Fig. S9A,C). The positions of the SIN1 RBD and PH domains 

remain unresolved. In the dataset collected for samples with added full-length Akt1 (Dataset 2 in 

Fig. S2), we observed additional low-resolution density (Fig. 3F and Fig. S9B-C) between the 

hypothetic CRIM domain and Rictor AD and CD in the vicinity of the mTOR active site. This 5 

density, not of sufficient resolution to assign specific interactions, may represent parts of bound 

Akt1 or SIN1 domains (Fig. S9C). 

A proposed regulatory mechanism for mTORC2 involves ubiquitylation of mLST8 on Lys305 and 

Lys313 (45). Loss of ubiquitylation by K305R and/or K313R mutation, or truncation of mLST8 

at Tyr297, leads to mTORC2 hyperactivation and increased Akt phosphorylation (45). Indeed, 10 

mLST8 Lys305 is proximal to the SIN1 helix anchoring the CRIM domain. Ubiquitylation of 

Lys305 would prevent association of the SIN1 helix, leading to dislocation of the SIN1 CRIM 

domain required for substrate recruitment (Figs. 3C and 4C). Ubiquitylation of Lys313, which is 

found on the lower face of mLST8 (Figs. 3C and 4C), presumably also interferes with positioning 

of the CRIM domain (Fig. S9).  15 

 We observed two novel, small molecule binding sites outside the mTOR catalytic site, 

which is itself occupied by ATPγS. The first (A-site) (Fig. 4A and Fig. S10B) is located in the HD 

of Rictor and is thus specific to mTORC2. The second (I-site) (Fig. 4B and Fig. S10C) is located 

in the FAT domain of mTOR and is thus common to mTORC1 and mTORC2.  

The density of the small molecule in the A-site matched that of an ATP molecule and was 20 

confirmed to be ATP (or ATPγS) through a comparison of cryoEM reconstructions of mTORC2 

with and without ATPγS added at a near physiological concentration of 2mM (Datasets 1 and 4, 

Fig. S2 and S10A). The A-site does not resemble any known ATP binding site. Positively charged 
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amino acids (Lys541, Arg575, Arg576, Arg572) of the A-site are conserved in Rictor orthologs 

from yeast to human (Figs. S6E and S11). Other residues are not conserved, hinting at the 

possibility for interactions with alternative negatively charged ligands. The A-site is located 

approximately 100 Å from the mTOR catalytic site. Ligand binding to the A-site caused neither 

long-range allosteric change affecting the kinase site nor local structural perturbations (Fig. S12).  5 

To investigate the effect of ligand binding to the A-site, we generated a series of Rictor variants 

with a mutated A-site (Table S1). Variants with three or four mutated residues (A3 and A4) 

assembled into mTORC2 (Fig. S13B) while variant A5 was defective in assembly (Fig. S13B-D). 

Cryo-EM reconstructions of variants A3 and A4 in the presence of ATPyS (Fig. S12I-J,K-L) 

confirmed that the chosen mutations abolish ligand binding under near physiological conditions 10 

(Figs. S10A and S12J,L). Purified mTORC2 containing Rictor variants A3 or A4 exhibited thermal 

stability and kinase activity, in an Akt1 in vitro phosphorylation assay, comparable to wild-type 

mTORC2. (Figs. S14B and S15A,B). Complementation of a Rictor knockout (KO) in HEK293T 

cells by transfected Rictor-WT, or Rictor variant A3 yielded comparable levels of AKT-S473 

phosphorylation (Table S1 and Fig. S16). Altogether, the above analyses indicate that ligand 15 

binding to the A-site does not directly influence mTORC2 kinase activity, suggesting rather a role 

in the interaction with other, yet unidentified, partner proteins of mTORC2. 

The I-site is formed entirely by the FAT domain of mTOR, where a large, positively charged, 

pocket is lined by six lysine and two arginine residues to bind an extended ligand (Fig. 4B and Fig. 

S10C). The I-site was still partially occupied in our reconstruction of mTORC2 prepared without 20 

addition of exogeneous ATPγS or other relevant ligands (Data Fig. S10A). The co-purified 

molecule was identified by map appearance and by ion mobility spectrometry-mass spectrometry 

(IMS-MS) as inositol hexakisphosphate (InsP6) (Figs. S17 and S18A-F). InsP6 binds in a region, 
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which is incomplete in related PI3Ks (46), but generally conserved in members of the PIKK family 

of kinases (47). Indeed, InsP6 was previously reported to associate with DNA-PKcs (48). Recently, 

structure determination of the PIKK family pseudo-kinase SMG1 revealed InsP6 binding in a 

region corresponding to the I-site and led the authors to postulate a corresponding binding site in 

mTOR but involving both the kinase domain and FAT domain (47). InsP6 has previously been 5 

observed as a structural component of multi-subunit assemblies, including the splicesome (49) and 

proteasome activator complex (50), and helical repeat regions have been identified as InsP6 

interaction sites (51). 

To investigate the function of Ins6P interaction, we purified recombinant mTORC2 containing 

mTOR I-site mutations (Table S1). mTOR variants with two and three mutations, I2 and I3, yielded 10 

intact mTORC2 complexes (Fig. S13A), while a variant with five mutations, I5, failed to assemble 

into mTORC2 (Fig. S13A,C). mTORC2 containing mTOR variants I2 and I3 displayed normal 

kinase activity toward Akt1 in vitro (Fig. S14A). Notably, the mutations in I2 are equivalent to 

those reported previously to abolish completely the kinase activity of an N-terminally truncated 

‘naked’ mTOR fragment toward a C-terminal peptide of Akt1 (47). A possible explanation for this 15 

apparent discrepancy is provided by a reduced stability of mTORC2 assembled using the I2 variant 

(but not the I3 variant) (Fig. S15A). This destabilizing effect might be more pronounced in an 

mTOR fragment than in the context of an assembled mTORC2 (Fig. S15A).  

To investigate a possible role of InsP6 metabolism on mTORC2 activity in HEK293T cells, we 

knocked down (KD) and knocked out (KO) Inositol-pentakisphosphate 2-kinase (IPPK) and 20 

Multiple inositol polyphosphate phosphatase 1 (MINPP1), respectively. The former enzyme 

generates InsP6 whereas the latter degrades it (Fig. S19). These manipulations of InsP6 

metabolizing enzymes did not alter mTORC2 kinase activity in non-stimulated cells or in cells 
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stimulated with FCS and insulin (Fig. S19A-H). These biochemical results are consistent with the 

observed stable binding of InsP6 to mTORC2 and suggest a role of InsP6 in mTOR folding or 

mTOR complex assembly, rather than as an acute transient metabolic input signal to mTORC1 or 

mTORC2.  

Here, we describe a bona fide structure of mTORC2. We visualized how SIN1 stabilizes and 5 

tethers Rictor to the mTOR-mLST8 core. SIN1 further uses mLST8 as a platform for positioning 

its substrate recruiting CRIM domain, revealing a new functional role for mLST8 and rationalizing 

the impact of SIN1 and mLST8 modifications on mTORC2 activity. We also provide the structural 

basis for how the Rictor CD determines mTORC2’s rapamycin insensitivity, by a mechanism 

different from those inferred from previous structural data (28, 30). We identified and functionally 10 

characterized two ligand binding sites in mTORC2. The I-site in mTOR is common to mTORC1 

and 2, binds InsP6 and presumably functions in mTOR folding or assembly rather than acting as 

a sensor site for acute changes in cellular InsP6 concentration. The mTORC2 specific A-site of 

Rictor binds ATP. It doesn’t affect mTORC2 activity by allostery but may be involved in linking 

partner protein interactions to cellular nucleotide triphosphate concentrations. Altogether, the data 15 

presented here provide a firm basis for further analysis of the function of mTORC2 and its interplay 

with partner proteins for controlling subcellular localization (52) and regulation of activity (1, 4, 

10, 20). Interaction sites of Rictor and mLST8 with SIN1 provide an opportunity for the 

development of inhibitors specific for mTORC2.   

 20 
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Fig. 1. Structure of mTOR complex 2 (A) Sequence-level domain organization of mTOR. 

Modelled and unresolved regions are indicated as dotted lines. Interactions with other proteins in 

the complex are highlighted below the sequences. (B) Density of the overall cryo-EM 

reconstruction of mTORC2 colored according to protein subunits and mTOR domains as indicated. 5 

The top half is better resolved than the lower one, most likely due to conformational flexibility. 
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(C) Cartoon representation of mTORC2 in three different orientations. The proteins Rictor 

(magenta) and SIN1(green) are unique to mTORC2, while mTOR (colored by domain) and 

mLST8 (orange) are common to both mTORC1 and mTORC2. Bound ligands are represented as 

cyan spheres. 

  5 
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Fig. 2. The architecture of Rictor (A) Sequence-level domain organization of Rictor. Flexible 

and unresolved regions are indicated as dotted lines. Interactions with other proteins in the complex 

are highlighted below the sequences. Asterisks indicate residues interacting with the N-terminal 

region of SIN1. (B) Two views of Rictor, colored by domains. The structured part of Rictor forms 5 

three domains: an N-terminal Armadillo repeat domain (AD, magenta), a HEAT-like repeat 
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domain (HD, dark magenta), and a C-terminal domain (CD, light red), the phosphorylation site 

region (PR) remains disordered. The sequences flanking the non-resolved PR are highlighted in 

red, the PR anchor is colored in gold. Bound ligands are shown as cyan spheres. (C) Schematic 

representation of Rictor and SIN1 domain topology. (D) The Rictor CD occupies the FRB domain 

and sterically blocks FKBP-rapamycin binding(26). 5 
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Fig. 3. The SIN1 N-terminal region is an integral component of mTORC2 (A) Sequence-level 

domain organization of SIN1. Flexible and unresolved regions are shown above each domain 

representation as dotted lines in two colors as indicated. Interactions with other proteins in the 

complex are indicated below the domain representation. (B) Extension of the processed SIN1 N-5 

terminus disrupts assembly of Rictor and SIN1 with mTOR/mLST8 into mTORC2. SDS-
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polyacrylamide gel of a FLAG bead pulldown from lysates of insect cells expressing mTORC2 

comprising SIN1 variants. Levels of Rictor are drastically reduced in the mTOR-based pulldown 

for mTORC2 carrying variants of SIN1 N-terminally extended by a tryptophan (mTORC2 

SIN1_W), two consecutive arginines (mTORC2 SIN1_2R) and three consecutive arginines 

(mTORC2 SIN1_3R) (C) Surface representation of mTORC2. SIN1 (shown as green cartoon) 5 

interacts via two N-terminal helices with Rictor, winds around Rictor, traverses the catalytic site 

cleft and winds around mLST8. The field of view of subpanel C is indicated. (D) Close-up view 

of the SIN1 N-terminal residues, which are deeply inserted between Rictor AD and HD. Acetylated 

Ala2 and Phe3 are bound in a hydrophobic pocket, while Asp5 interacts via salt bridges (yellow 

dashes). (E) Top view of mLST8 β-propeller (orange) and the interaction regions with SIN1 10 

(green). The nomenclature for WD40 β-propeller repeats is indicated. (F) Top view of the catalytic 

site with the structure shown as surface together with the density of a subclass (light grey). The 

lower resolution extra density is consistent with a placement of the SIN1 CRIM domain, here 

shown in dark green (PDB: 2RVK). Unassigned extra density protrudes from the CRIM domain 

to the mTOR active site and Rictor. 15 

  

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted April 10, 2020. . https://doi.org/10.1101/2020.04.10.029835doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.10.029835
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 
 

 

Fig. 4. Small molecule binding sites of mTORC2 outside the active site region (A). Close-up 

view of the A-site on the periphery of the Rictor HD with bound ATPγS. A hydrogen bond between 

ATPγS and Asn543is shown as dashed yellow lines. (B) Close-up view of the I-site in the FAT 

domain of mTOR. InsP6 is surrounded by a cluster of positively charged amino acids. It only 5 

directly interacts with residues of the FAT domain. (C) Overview of mTORC2 architecture and 
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ligand interaction sites. Each half of the dimeric mTORC2 has three small molecule binding sites. 

The kinase active site and the A-site, which is located in the peripheral region of Rictor, bind to 

ATP (or ATP analogues). The I-site in the middle of the FAT domain of mTOR binds InsP6. The 

indicated modifications on SIN1 and mLST8 affect mTORC2 assembly. Extra-density region 

following the CRIM domain is indicated as a grey outline.  5 
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