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Abstract

We demonstrate the synthesis of copper nanocolloids by the thermal decomposition

of copper formate in oleylamine under ambient conditions. By progressively increasing

the loading of copper formate in the reaction mixture and imposing sufficiently high

conversion rates, we demonstrate the formation of nanocrystals that are more than 97%

pure copper without using an inert atmosphere. We attribute this result to the excess of

copper formate relative to initially dissolved oxygen, and to the suppression of oxygen

influx in the reactor. By adjusting the precursor and ligand concentrations, we obtain

copper nanocrystals with sizes ranging from 10 to 200 nm. In view of applications,

we show that the reaction can be upscaled to a 1 L reaction volume to produce over
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50 grams of copper nanocrystals. Moreover, we formulate a conductive ink based on

the copper nanocolloids obtained here with which we printed copper films exhibiting

a resistivity of 23 µΩ · cm after thermal sintering under N2. We conclude that the

approach presented here consititutes a next step towards the cost-effective production

of metallic copper nanocrystals for printed electronics.

Introduction

Over the last decade, research interest in copper nanocrystals (Cu NCs) has increased due to

the broad application potential of these materials in fields such as catalysis, sensing, optics

and electronics.1–5 In particular, copper is an excellent conductor and Cu NCs could replace

silver NCs as the main constituent of conductive inks.6–8 Such inks are of high interest for the

printed electronics, which focuses on the fabrication of low-cost devices at high volumes, such

as RFID tags.8 While silver is a slightly better electrical conductor, copper is more abundant

and considerably cheaper.9 However, Cu is more prone to oxidation than silver, an issue that

is exacerbated for nanometer-sized crystallites.10 Since copper oxides are semiconductors

rather than metals, oxidation suppression is critical when utilizing Cu NCs in conductive

inks. Hence, the primary challenge to capitalize on the low cost of Cu for conductive inks

is to develop an inexpensive synthesis that yields metallic Cu NCs,11,12 and many literature

reports have focused on the synthesis of such Cu NCs. These studies involve a broad range

of synthesis methods, such as chemical reduction,11,13,14 thermal decomposition,15,16 micro-

emulsion,17,18 laser ablation,19,20 or wire explosion.21

Among the different approaches to form Cu NCs, wet-chemical synthesis methods in-

volving chemical reduction or thermal decomposition stand out due to their straightforward

implementation and their offering a good control over the physical and chemical properties

of the resulting NCs.4,8 In the case of chemical reduction, strong reducing agents such as

hydrazine,22–26 or sodium borohydrate13,27 are typically used to reduce copper salts, or the

reaction is carried out under a hydrogen containing atmosphere.28,29 The addition of such
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reducing agents to a reaction mixture can lead to the formation of Cu NCs with a good

control over the NC size and morphology, even at low temperature and under ambient con-

ditions.26,30,31 Moreover, by using surface active moieties such as oleic acid, Cu oxidation

can be markedly suppressed.32 However, the use of a hazardous reducing agent is a matter

of concern for the large scale production of Cu NCs.

The synthesis of Cu NCs by the thermal decomposition of a copper precursor can be a

convenient alternative to chemical reduction since no additional reducing agent is required.

For example, Sun et al. first reported the thermolysis of metal formates in the presence of

oleylamine and oleic acid to form metal and metal oxides NCs.33 Other precursors, such as

[bis(2-hydroxy-1-naphthaldehydato)copper(II)], [bis(salicylaldiminato)copper(II)] or copper

oxalate were successfully used by Salavati-Niasari and co-workers to synthesize Cu NCs of

different diameters.15,34,35 Similarly, copper(II) 2-ethylhexanoate was employed by Kim et al.

to form 70-80 nm Cu nanocolloids further shelled with copper formate to stall oxidation.12

Alternatively, other researchers first synthesized copper oleate, which can be thermally de-

composed into Cu NCs without adding extra stabilizers.36

In the above described syntheses, long alkylamines or carboxylic acids play a large role.

These compounds form complexes with the copper precursors with a reduced decomposition

temperature, and stabilize the resulting dispersion of Cu NCs in apolar solutions. Still, a

general concern with thermal decomposition is the need of an inert atmosphere that is used

to avoid oxidation during decomposition. Opposite from this general approach, Kim et al.

described the formation of Cu NCs by reacting CuCl2 with sodium oleate in aqueous solu-

tion.37 While these authors claim that no inert gases are needed to prevent oxidation of the

Cu NCs, the reaction described is carried out in sealed, evacuated pyrex tubes; conditions

that limit scalability. Alternatively, Bhattacharjee and co-workers highlight that Cu NCs

can be formded by decomposing copper malonate in the presence of oleylamine and triph-

enylphosphine, without using inert conditions.38 While interesting, the approach required

elevated temperature (240 ◦C) and long reaction times (1 hour), and no conclusive data on

3



the absence of oxides were provided. Next to these specific limitations, the described proce-

dures only yielded low amounts of material per reaction volume. These limited solid loadings

raise the production cost and limit the use of the otherwise promising thermal decomposition

pathway to Cu NC synthesis to laboratory scale.

In this study, we present a straightforward, low-cost and high solid-loading synthesis of

Cu NCs, based on the low-temperature decomposition of copper(II) formate in oleylamine

or oleylamine/dodecane mixtures. Oleylamine is used to dissolve copper(II) formate and

to stabilize the resulting copper nanocolloid. By saturating the reaction mixture with the

precursor and steering the synthesis by adjusting the temperature profile, we achieved two

significant benefits. First, we greatly increased the solid loading, i.e., the amount of Cu NCs

produced per volume of reaction, reaching levels exceeding 50 g/L. Second, we could avoid

using a protective atmosphere to perform the reaction and produce ¿97% pure metallic Cu

NCs under air. By adjusting the composition of the reaction mixture, the size of the Cu

NCs formed could be tuned from 10 to 200 nm. Furthermore, we demonstrated that the

method is scalable by performing a liter-scale demonstrator synthesis that effectively yields

>50 grams of Cu NCs. Finally, an ink containing Cu NCs was formulated and deposited on

a glass substrate. Sintering of the film at 400 ◦C for 1 hour resulted in Cu patterns featuring

a conductivity of 23 µΩ · cm, proving that the Cu NCs synthesized by this method can be

effectively utilized as fillers in conductive inks.

Experimental Section

Chemicals. Copper(II) formate tetrahydrate (Alfa Aesar, 98%), oleylamine (Acros Tech,

80-90%), n-dodecane (Merck Millipore, ≤99%), diacetone alcohol (Sigma-Aldrich, ≤99%),

disperbyk 180 (BYK), byk-333 (BYK).

Synthesis of Cu NCs. Copper nanocrystals were synthesized by revising a method orig-

inally introduced by Sun et al.33 and adapted in recent publications.39,40 A 10 mL solution
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of copper(II) formate in an oleylamine:dodecane mixture was formed by heating the mixture

at 60 ◦C until the copper(II) formate was fully dissolved. Unless mentioned otherwise, the

temperature was raised to 140 ◦C in a constant heating rate of 10 ◦C/min and kept at this

temperature for 10 minutes before cooling down. Cu NCs where extracted from the reaction

mixture and further purified by repetitive precipitation/resuspension cycles using toluene as

solvent and ethanol or methanol as non-solvent.

Structural Characterization. Transmission electron microscopy (TEM) images were

recorded on a Cs-corrected JEOL 2200-FS TEM operated at 200 kV. X-ray diffraction (XRD)

analysis was conducted on a Thermo Scientific ARL X’Tra diffractometer, operated at 40

kV/30 mA using Cu-Kα radiation (λ = 1.5406 Å) and a Peltier cooled Si(Li) solid-state

detector. Scanning electron microscopy (SEM) images were recorded on a JEOL JSM-7600F

Schottky Field Emission.

Rietveld refinement. The XRD data were collected on a Thermo Scientific ARL X’tra

Diffractometer equipped with a Peltier cooled detector. Samples were measured in θ-2θ

geometry over an angular range of 20 − 80◦ (2θ) (CuKα radiation) using a 0.02◦ 2θ step

size and 1 s/step counting time. The Rietveld method for whole-powder pattern fitting was

used and the Topas Academic V4.1 software was used for Rietveld refinement.41 The refined

parameters were the measurement specific or sample displacement error, a cosine Chebyshev

function of 10 polynomial terms for background correction, phase specific scale factors, unit

cell parameters and Lorentzian peak shape broadening parameters.

Ink formulation A washed and dry powder of Cu NCs was dispersed in diacetone alcohol

(50% mass Cu loading), 1% disperbyk 180 and 0.3% byk 333, then the solution was sonicated

for 1 hour to ensure full dispersion. The ink was deposited using a 6 µm wet thick film

thickness wire bar coater. The samples were sintered in an oven under N2 atmosphere at

400 ◦C for 1 hour. Thickness was determined by scratching a sample and measuring the step

5



Cu
2+

Cu
1+

Cu
0

>120 °CT

R=

Scheme 1: Schematic depiction of the synthesis of Cu Nanocrystals.

height between sample and coating with a Taylor-Hobson Talystep mechanical profilometer.

The square resistance was measured using a custom-build 4-point probe with equal spacing

between probes. The absolute resistivity of the layers was calculated by multiplying the

square resistance by the thickness and the correction factor.42

Results and discussion

Standard synthesis

As described in the Experimental Section, any synthesis described in this work starts with

the formation of a 10 mL solution of copper formate (Cu(HCO2)2) in oleylamine (OlNH2) and

dodecane (see 1). Here, OlNH2 is used as the complexing agent to bring the copper precursor

in solution. Moreover, OlNH2 is known to reduce the overall decomposition temperature

of the Cu(HCO2)2:OlNH2 complex, originally around 200 ◦C for pure Cu(HCO2)2, to only

120 ◦C.43,44 Different hypotheses have been presented to explain this decrease in reduction

temperature. Marchal et al. argued, for example, that the in-situ reduction mechanism of
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Figure 1: Low-resolution, brightfield TEM image of a: 2 g/L, 2:1 OlNH2:Cu(HCO2)2 syn-
thesis of Cu NCs under (a) ambient and (b) nitrogen atmosphere; (insets) Size histograms
determined based on the analysis of 200 NCs in TEM images. XRD pattern of pristine NCs
synthesized under (c) ambient and (d) nitrogen atmosphere. The mixture for the synthesis
under nitrogen was degassed prior to the reaction.

copper formate proceeds via a transient Cu(I) intermediate.45 Compared to other Cu(II)

complexes, it was inferred that the decrease on the Cu(HCO2)2 reduction temperature arose

from the low stability of the Cu(I) intermediate and the structural differences between Cu(II)

and Cu(I) species along the thermal decomposition route. Such a two step decomposition

has indeed been confirmed for the synthesis of Cu NCs from Cu(HCO2)2 used here,40 where

the reduction from Cu(II) to Cu(I) makes the originally blue reaction mixture turn pale

at 120 ◦C. By furthering increasing the reaction temperature, this step is followed by the

subsequent reduction of Cu(I) to Cu(0), which precipitates to form Cu NCs that yield a

dark-red/brown reaction mixture. The conversion yield of Cu(HCO2)2 to metallic Cu was

estimated before at ∼ 65%, and the resulting NCs were shown to feature a surface capping

of OlNH2, which stabilizes the nanocolloid by steric hindrance.

Figure 1 presents the main characteristics of the products obtained from the decompo-
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sition of a Cu(HCO2)2 solution containing 2 g/L of Cu and featuring a 2:1 molar ratio of

OlNH2 : Cu(HCO2)2, either synthesized under ambient (Figure 1a) or inert atmosphere (Fig-

ure 1b). As can be seen, these specific synthesis conditions lead to a polydisperse distribution

of NCs, with an average size of 240± 40 nm and 280± 150 nm, with no noticeable impact of

the synthesis environment on the morphology. One sees that in both cases, the NCs exhibit

a projected hexagonal shape, suggesting that the crystallites are cuboctahedrons.14,46 The

fact that such large NCs maintain a cuboctahedral shape points towards a similar growth

rate of both (100) and (111) facets, suggesting a non-preferential binding of OlNH2 to ei-

ther facet.47,48 Despite the similar morphology, a very different crystallographic structure is

obtained depending on the synthesis atmosphere. As can be seen in Figure 1c, the X-ray

diffraction pattern of NCs synthesized under ambient conditions corresponds to that of Cu2O

(JCPDS 05-0667) and features a diffraction peak characteristic of the (111) lattice plane of

CuO at 38.75° (JCPDS 80-1268). The formation of copper oxide is not unexpected since an

inert atmosphere is typically used to prevent oxidation during the formation of Cu NCs.16

On the other hand, the NCs obtained through a synthesis performed under inert conditions

exhibit the X-ray diffraction pattern of metallic Cu0 in its cubic structure (JCPDS 04-0836),

confirming that formate and OlNH2 can fully reduce Cu2+ to Cu0 under inert conditions

without the addition of an extra reducing agent.49

Oxidation Suppression During Cu Nanocrystal Synthesis: The Im-

pact of Initially Dissolved Oxygen

Inspired by reports on the enhanced stability of copper nanocrystals synthesized in the pres-

ence of alkylamines,,29 we aimed at defining synthesis conditions for which metallic Cu NCs

are formed under ambient. In principle, oxidation suppression would require us to strictly

avoid exposure to oxygen at all stages of the synthesis. As a first oxygen source, we consid-

ered all oxygen initially dissolved in the OlNH2-dodecane solvent mixture at the start of the

reaction. In chemical laboratories, it is common practice to protect oxygen-sensitive com-
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pounds during a reaction by degassing the initial reaction mixture under vacuum. However,

degassing is a time-consuming process that is impractical for large volumes. Moreover, if a

reaction under ambient atmosphere is envisaged, initial degassing seems futile since oxygen

can dissolve back into the solvent prior to the reaction.

To assess the impact of dissolved oxygen on the formation of Cu NCs, we estimated the

concentration of dissolved oxygen in the initial OlNH2-dodecane solvent mixture. According

to published data,50 the solubility of oxygen in n-dodecane amounts to 54.9 mg/L at 35 ◦C

and atmospheric pressure. Using that value, we calculated that for the 2 g/L synthesis

described in the previous section, the molar ratio between Cu formate and dissolved O2

amounts to ∼18. To interpret the consequence of such an equivalence, we considered the

formation of Cu2O from Cu and O2:

4Cu(s) + O2(sol) ⇀↽ 2Cu2O(s) (1)

According to Equation 1, 4 moles of Cu are oxidized by 1 mole of O2. Therefore, a sizable

fraction of about 20% of the reduced copper could be re-oxidized by the oxygen initially

dissolved in the reaction mixture of that 2 g/L synthesis. This suggests that further increas-

ing the Cu(HCO2)2 concentration in the reaction mixture could be an efficient strategy to

suppress oxidation. Indeed, such reaction mixtures would have an increased initial Cu/O2

ratio and, consequently, a smaller fraction of re-oxidized Cu as a final product. For example,

an increase of the Cu content to 40 g/L could decrease the expected fraction of re-oxidized

copper to less than 1% of the total amount of Cu formed. Using such an approach, the

initial oxidation of this small amount of Cu may lead to an oxygen-free reaction mixture; a

self-cleaning effect that creates the inert environment necessary for the formation of metallic

Cu NCs.

We tested the possible occurrence of this self-cleaning of the reaction mixture by running

the Cu(HCO2)2 decomposition under ambient conditions in reaction mixtures with a different
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Figure 2: XRD patterns of Cu NCs synthesized with different concentrations of Cu without
protective atmosphere. The molar ratio of OlNH2:Cu(HCO2)2 has been kept at 2:1 and the
heating rate at 20 ◦C/min for all syntheses. The NCs were purified and dried in ambient
conditions prior to measurement.

Table 1: Copper ratios extracted from Rietveld refinement analysis of the XRD data from
Figure 2.

[Cu] Cu (%) Cu2O(%)

2 g/L 8.8± 0.5 91.2± 0.5
5 g/L 43.9± 0.5 56.1± 0.5
10 g/L 73.5± 0.6 26.5± 0.6
20 g/L 92.7± 0.7 7.3± 0.7
40 g/L 97.3± 0.6 2.7± 0.6

solid loading. Figure 2 presents XRD patterns of NCs obtained by Cu(HCO2)2 decomposi-

tion, for Cu loadings increasing from 2 to 50 g/L. As can be seen, the initial concentration

of the copper precursor has a large impact on the extent of copper oxide formation. At low

precursor concentration, the NCs mainly consist of Cu2O. When using a solid loading of

2 g/L, the XRD pattern obtained closely resembles the one presented in 1c. However, as

the concentration of the initial precursor is increased, the crystallographic phases gradually

shift from Cu2O to Cu. Table 1 summarizes the results of a Rietveld refinement of these

diffractograms, which indicate that the metallic Cu content increases from 8.8% to 97.3% by

increasing the concentration from 2 g/L to 40 g/L. Note that an oxidized fraction of about

2% for the 40 g/L synthesis is close to the estimated value based on the room temperature

solubility of oxygen in n-dodecane. As an additional benefit, a larger concentration of pre-

cursor results in a higher amount of material produced per volume of reaction; synthesis
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conditions that reduce the overall cost of producing Cu NCs and limit the generated waste.

Oxidation Suppression During Cu Nanocrystal Synthesis: Oxygen

Intake During Synthesis

Apart from the initially dissolved oxygen, the influx of oxygen from the ambient surroundings

can be a second oxygen source in an open reaction vessel, which we succinctly describe as a

transition from gaseous to dissolved oxygen:

O2(g) ⇀↽ O2(sol) (2)

This process will counteract the removal of oxygen in the reaction mixture by the oxidation

of Cu0 as described by Eq 1. Hence, to prevent further formation of copper oxide, the

influx of oxygen in the reaction mixture should be restricted during the decomposition of

the precursor and the nucleation and growth of Cu NCs. However, the flask cannot simply be

sealed to block any gas inflow since the decomposition of Cu(HCO2)2 releases water, carbon

dioxide and hydrogen according to the net chemical reaction:43

Cu(HCO2)2 · 4H2O(sol) → Cu(s) + H2(g) + 2CO2(g) + 4H2O(g) (3)

Clearly, such gas evolution would result in a problematic pressure increase in a closed flask.

To evaluate the impact of oxygen intake on the reaction, we started from the idea that

the flow of gasses released from the reaction mixture by the decomposition of Cu(HCO2)2

can reduce or impede the influx of oxygen in the reaction vessel. Indeed, considering that

the reaction occurs in an open flask exposed to ambient atmosphere, the total pressure

in the headspace must remain constant. When the decomposition of Cu(HCO2)2 starts,

evaporation of water and the generation of hydrogen and carbon dioxide from the solution

increase the partial pressure of such gases above the liquid and decrease the oxygen partial

11



In
te

ns
ity

 (
a.

u.
)

80706050403020
2θ (°)

 2.5 ºC/min
 5 ºC/min
 10 ºC/min
 20 ºC/min
 Cu
 Cu2O

In
te

ns
ity

 (
a.

u.
)

80706050403020
2θ (°)

 120 °C
 140 °C
 160 °C
 Cu
 Cu2O

a

b

Figure 3: (a) XRD patterns of Cu NCs synthesized at different heating rates without protec-
tive atmosphere, to a final temperature of 140 ◦C. (b) XRD patterns of Cu NCs synthesized
without protective atmosphere, at 10 ◦C/min to different final temperatures and held at
these temperature for 10 min. The concentration of copper was set at 20 g/L and the molar
ratio of OlNH2:Cu(HCO2)2 2:1 for all syntheses. The NCs were purified and dried in ambient
conditions prior to characterization.

Table 2: Copper ratios extracted from Rietveld refinement analysis of the XRD data from
Figure 3a.

Heating rate ( ◦C/min) Cu (%) Cu2O(%)

2.5 43.5± 0.7 56.5± 0.7
5 77.6± 1.2 22.4± 1.2
10 82.5± 0.8 17.5± 0.8
20 92.4± 1.6 7.6± 1.6

pressure to keep the total pressure constant. Importantly, this analysis suggests that the

formation of such an oxygen-poor atmosphere in the reaction vessel will strongly depend on

the reaction rate, where slow reactions will have hardly any impact, whereas fast reactions

may strongly influence oxygen redissolution.

We evaluated the impact of the reaction rate on the formation of copper and copper

oxide during Cu(HCO2)2 decomposition by either changing the rate at which the a final
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Table 3: Copper ratios extracted from Rietveld refinement analysis of the XRD data from
Figure 3b.

Final temperature ( ◦C) Cu (%) Cu2O(%)

120 8.5± 0.7 91.5± 0.7
140 82.5± 0.8 17.5± 0.8
160 90.1± 4.4 9.9± 4.4

reaction temperature of 140 ◦C is reached, or by changing that reaction temperature. Figure 3

represents the X-ray diffractograms recorded on the reaction product obtained for these

different syntheses, which point towards an increased copper oxide content for slower heating

rates or lower reaction temperatures, i.e., conditions in which the overall reaction rate is

lower. This qualitative picture is confirmed by a Rietveld analysis, the results of which are

summarized in Tables 2 and 3. One sees that at the lowest heating rate used, a mixed

copper/copper oxide product is obtained whereas a heating rate of 20 ◦C/min leads to a NC

product consisting for ∼92% of Cu0. Note that the latter result is in close agreement with

the data listed in Table 1 for the same precursor concentration. Similarly, Table 3 indicates

that changing the reaction temperature from 120 ◦C to 160 ◦C induces a shift of the end

product composition from 90% copper oxide to 90% copper. Hence, we conclude that a

lower reaction rate strongly facilitates the formation of copper oxide, probably by enabling

influx and redissolution of oxygen from the surrounding atmosphere in the reaction mixture.

On the other hand, high reaction rates can effectively suppress the redissolution of oxygen,

which lead to an oxygen-poor reaction mixture in which Cu NCs can be formed, even under

ambient conditions.

Size-Tuning During Cu Nanocrystal Synthesis

The size of Cu NCs is an important characteristic of a conductive ink based on a copper

nanocolloid. For example, NCs with sizes larger than 50 nm can clog the nozzles of an ink-jet

printer. On the other hand, smaller NCs have a larger surface-to-volume ratio. As a result,
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Figure 4: Low-resolution, brightfield TEM images of Cu NCs synthesized by means of adap-
tation to the standard synthesis, involving (A-C) different concentrations of copper [(A) 10
g/L; (B) 20 g/L; (C) 40 g/L] and (1-3) different OlNH2:copper formate molar ratios [(1) 1:1;
(2) 2:1; (3) 3:1]. All reactions are carried out using the standard protocol described in the
Experimental Section, including a 10 mL reaction volume, a 10 ◦C/min heating rate, a final
reaction temperature of 140 ◦C and a reaction time of 10 min.

an increasing amount of organic ligands is needed to stabilize a conductive ink, which can

limit the solid loading.51 For these reasons, a synthesis method that enables the nanocrystal

size to be varied by minimal changes to the composition of the reaction mixtures is of high

interest. To obtain such a level of control, we explored the influence of the reagent ratios,
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Table 4: Particle size and standard deviation of the Cu NCs from Figure 4. Sizes are
determined based on the analysis of 200 NCs in the images.

[Cu]
OlNH2:Cu(HCO2)2

1:1 2:1 3:1

10 g/L 197.6± 182.8 nm 34.1± 16.9 nm 19.3± 2.9 nm
20 g/L 100.9± 54.4 nm 27.2± 9.2 nm 13.7± 1.3 nm
40 g/L 107.6± 85.3 nm 10.0± 1.4 nm 9.4± 1.4 nm

most notably the OlNH2:Cu(HCO2)2 equivalence and the Cu(HCO2)2 concentration, on the

reaction outcome while keeping other relevant parameters such as heating rate, synthesis

time and reaction temperature constant. This approach is inspired by literature results on

the synthesis of CdSe NCs, where both the reaction rate and the surfactant concentration

proved useful variables to tune the resulting nanocrystal size.52

Figure 4 and Table 4 present the different nanocrystal sizes we obtained in this study,

where we modified the OlNH2 equivalence (left to right) or changed the Cu(HCO2)2 concen-

tration (top to bottom) as compared to the standard synthesis as described in the Experi-

mental Section. As can be seen, a low concentration of OlNH2 concurs with the formation

of large NCs, whereas a high ligand concentration leads to small NCs. These results confirm

the observation made by Dai et al.39 In the case that the OlNH2 : Cu(HCO2)2 equiva-

lence is further increased to 8, the particle size is reduced down to 4 nm; a result in line

with results we published previously.40 Hence, we find that in the Cu NC synthesis used

here, higher OlNH2 concentrations induce a more pronounced nucleation event that leads

to more, yet smaller NCs at the end of the reaction. Such a trend is different from what

is often found in semiconductor NC synthesis, where larger ligand concentrations promote

nanocrystal growth, thereby limiting nucleation and resulting in larger NCs.53 Possibly, the

reverse effect of ligand concentration on NC size observed here reflects the impact of ligand

concentration on the size of Cu NCs reflects the lower growth rate of facets covered with a

high surface density of ligands. It is also noteworthy that lower ligand concentration yield

broader size distributions, a relation that complicates the determination of the average NC
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size. For instance, using 1 equivalent of OlNH2 yields an end product in which the NC

diameter varies between 20 and 400 nm. The difference in particle growth can be linked

to the solubility of Cu(HCO2)2, which only dissolves in non-polar solvents by complexation

with OlNH2. Since Cu2+ can be 6-fold coordinated, the 1 equivalent reaction mixture will

comprise Cu(HCO2)2 complexed by 0,1 or 2 OlNH2 ligands. Possibly, this diversity leads

to a heterogeneous mixture in which Cu(HCO2)2 reacts at different rates and NCs with a

broad range of sizes are formed.

Similarly, the initial concentration of Cu(HCO2)2 in the reaction mixture has an effect on

the nanocrystal size. In that case, we find that a lower concentration of copper precursor in

the reaction mixture leads to larger NCs, as can be seen in Figure 4 and Table 4 from top to

bottom. This relation between NC size and precursor concentration is in line with previous

results on the formation of CdSe NCs.52 In that study, the link between higher precursor

concentration and larger NCs was assigned to the underlying relation between the reaction

rate and the NC size, where more rapid reactions promote nucleation over growth and lead

to the formation of more, albeit smaller NCs.

Application Testing, Large Scale Synthesis and Electrical Resistiv-

ity of Printed Cu Films

To test the relevance of the proposed method to form Cu NCs, we carried out the reaction

as described in the Methods section at a 1 L scale. To achieve this, we loaded 1 L of a

one equivalent reaction mixture – containing 1 mole of Cu(HCO2)2 and 1 mole of OlNH2

in dodecane – in an open 3 L flask. Referring to Figure 4, we expect that such conditions

will yield 100 nm large Cu NCs, crystallite sizes well-suited for screen printing, while further

enhancing the solid loading to 63 g/L. After vigorously stirring this reaction mixture with a

mechanical stirrer at 50 ◦C, we raised the temperature to 140 ◦C to let Cu NCs form for 10

minutes. Afterwards, the reaction mixture was cooled down and purified using toluene as the

solvent and ethanol as the non-solvent and decanting the supernatant after centrifugation.
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Figure 5: (a) Initial solution mixture prior to large-scale synthesis. An open 3 L round-
bottom flask was used as vessel and a corresponding heating mantle was used as heat-
ing method. (b) Low resolution, brightfield TEM image of Cu NCs synthesized at 1M
Cu(HCO2)2 concentration and 1M OlNH2 in a 1 L volume. Average particle diameter was
determined by sizing of 100 different particles. (c) XRD diffractogram of a washed powder
sample, showing mainly presence of crystalline Cu and a minor presence of Cu2O.

The washed powder we thus obtained was characterized via TEM and XRD. As shown in

Figure 5b and 5c, this synthesis yielded NCs with an average diameter of 240 ± 39 nm,

a larger average size and a more narrow size distribution than the NCs synthesized under

similar conditions in a lab scale setup (see Figure 4). We attribute the difference in particle

size to the larger reaction volume, which caused a decrease in the heating rate of the solution

to approximately 3 ◦C/min. A slower heating rate induced a slower reaction, which implies

that nucleation is suppressed relative to growth events such that larger NCs are obtained.54

Also in this case, the XRD pattern of the reaction product shown in Figure 5c indicates that

the synthesis yields a mixture of Cu and Cu2O, albeit dominated by metallic copper. Based

on a Rietveld analysis, we estimate that the reaction product consists for 92% of Cu and 8%

of Cu2O. Note that this outcome is in line with the results shown in Table 1 and Table 1,

where the increased Cu2O formation caused by the lower heating rate is partially offset by

the higher copper loading.

In a second set of experiments, we synthesized Cu NCs by running a similar 1 equivalent,

1 M reaction as described above at a 100 mL scale. The reaction mixture was first stirred
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Figure 6: (a) XRD pattern of Cu NCs synthesized at 1M Cu(HCO2)2 concentration and 1M
OlNH2 in a 100 mL volume. Scanning electron microscope (SEM) image of Cu NCs films
(b) before and (c) after sintering at 400 ◦C. Insets: Optical pictures of the films before and
after sintering.

for 1 hour at 50 ◦C to dissolve Cu(HCO2)2, after which that reaction temperature was raised

to 140 ◦C at a rate of 10 ◦C/min in ambient atmosphere. The mixture was held at this

temperature for 10 min, cooled down and washed 3 times with toluene as the solvent and

ethanol as the non-solvent. This resulted in ∼ 6 g of reaction product, which corresponds

to a conversion yield of ∼ 95%. Figure 6a shows the x-ray diffractogram of the purified

reaction product, which corresponds according to Rietveld analysis to 98.5% pure Cu. In

a second step, a dried powder of these Cu NCs (50% in weight) was added to a solution

of diacetone alcohol, disperbyk 180 (1%) – a dispersing additive – and byk 333 (0.3%) - a

wetting agent - and sonicated for 1 hour to ensure full dispersion. The resulting paste was
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deposited on a substrate and uniformally spread using a wire bar coater. Afterwards, the

ink was dried under ambient atmosphere for 30 minutes before sintering. The dried layer

was placed in a nitrogen-filled oven at 400 ◦C for 1 hour. The heat treatment resulted in

the sintering of the Cu NCs as can be seen in the SEM images shown in Figure 6b (before)

and Figure 6c (after). The sintered layer had a thickness of 1.8± 0.2 µm (see Experimental

Section), a reasonable number given the copper loading in the ink and the wet layer thickness

of 6 µm, and an electrical resistivity as measured using a 4-point probe of 28 mΩ. Hence,

the resulting layer featured an absolute resistivity of 23 µΩ · cm, which corresponds to

∼ 7% of the conductivity of bulk Cu. While sintering at 400 ◦C seems prohibitively large

for printed electronics applications, more local heating methods with a significantly lower

thermal budget been proposed for sintering films of Cu NCs.55–57 Clearly, such methods

could be applied to the layers formed here as well.

Conclusion

Different reports in the literature showcased the possibility to synthesize copper metal

nanocolloids under ambient conditions.26,30,31 In view of applications in printed electronics,

these approaches focused on high concentration reaction mixtures, reporting copper loadings

in between 20 and 40 g/L,26,31 and reported the formation of copper films with conductiv-

ities in the range 15 − 30 µΩ · cm.26,31 The reduction of the initial Cu(II) salts to metallic

Cu(0), however, is achieved by means of strong reducing agents, such as hydrazine hydrate.

While hydrazine hydrate most likely helps suppressing the formation of copper oxide during

synthesis, the use of such a hazardous compound questions large scale production of copper

nanocolloids using such a reducing agent. Less hazardous approaches based on the thermal

decomposition of a copper precursor such as copper formate have been proposed recently,

yet solid loadings are smaller and oxidation is prevented by carrying out all reaction steps

under nitrogen.39
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Here, we showed that copper oxidation during a reaction based on the thermal decom-

position of a copper precursor can be kinetically suppressed. Enhancing the solid loading

to 40 g/L shifts the equivalence between copper and dissolved oxygen such that 97% pure

metallic copper can be obtained when the reaction is carried out at a rate that outpaces the

influx of oxygen in the reaction mixture from the surroundings. Interestingly, since the cop-

per/dissolved oxygen equivalence will be independent of reactor design or reaction volumes,

the reaction rates used here can be used as a benchmark when implementing the approach

in a different setup. Moreover, we find that straightforward adaptations of the reaction con-

ditions enable copper nanocrystals to be synthesized with sizes ranging from a few to a few

hundreds of nanometers, a tuning that is essential to adjust a conductive ink to the printing

method of choice. Finally, we showed that the same oxidation suppression approach can be

carried out at liter scale to produce 50 g/L of Cu nanocrystals and that conductive inks can

be formulated using Cu NCs formed by this method. After thermal synthesis, printed Cu

films are obtained with a resistivity of 23 µΩ ·cm. Being comparable to previously published

figures,58,59 including methods where copper nanocolloids were synthesized under ambient

with hydrazine hydrate,26,31 such a conductivity highlights the potential of utilizing copper

nanocolloids via the described method for printed electronics applications.
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