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Introduction

The transport equation
)tu + b ⋅ ∇u = 0 (0.0.1)

is one of the basic building blocks for several (often nonlinear) partial differential equations (PDEs)
from mathematical physics, most notably from fluid dynamics, conservation laws, and kinetic theory.
In (0.0.1) the vector field b = b(t, x) ∶ (0, T ) × ℝN → ℝN is assumed to be given, hence (0.0.1)
is a linear equation for the unknown u = u(t, x) ∶ (0, T ) × ℝN → ℝ, with a prescribed initial
datum u(0, x) = ū(x). Physically, the solution u is advected by the vector field b. In most appli-
cations (0.0.1) is coupled to other PDEs, and moreover the vector field is often not prescribed, but
rather depends on the other physical quantities present in the problem. Nevertheless, a thorough un-
derstanding of the linear equation (0.0.1) is often the basic step for the treatment of such nonlinear
cases.

If the vector field is regular enough (Lipschitz in the space variable, uniformly with respect to
time) the well-posedness of (0.0.1) is classically well-understood and is based on the theory of char-
acteristics and on the connection with the ordinary differential equation (ODE)

⎧

⎪

⎨

⎪

⎩

d
dt
X(s, x) = b(s,X(s, x))

X(0, x) = x .
(0.0.2)

The map X = X(t, x) ∶ (0, T ) ×ℝN → ℝN is the (classical) flow associated to the vector field b.
When dealing with problems originating from mathematical physics, however, the regularity

available on the advecting vector field is often much lower than Lipschitz, and this prevents the ap-
plication of the classical theory. The low regularity of the vector field usually accounts for “chaotic”
and “turbulent” behaviours of the system. This is the reason why in the last few decades a systematic
study of (0.0.1) and (0.0.2) out of the Lipschitz regularity setting has been carried out. We mention
in particular the seminal papers by DiPerna and Lions [29] and Ambrosio [4], where respectively
Sobolev and bounded variation regularity have been assumed on the vector field, together with as-
sumptions of boundedness of the (distributional) spatial divergence and on the growth of the vector
field. We will now (briefly and informally) describe the main points of the theory, and we refer for
instance to the survey article [7] for more details.

The approach in [29, 4] is based on the notion of renormalized solution of (0.0.1). Formally
at least, a strategy to prove uniqueness for (0.0.1) consists in deriving energy estimates: multiply-
ing (0.0.1) by 2u, integrating in space, and integrating by parts, one obtains

d
dt ∫ℝN

u(t, x)2 dx ≤ ‖divb‖∞ ∫ℝN
u(t, x)2 dx . (0.0.3)

If the divergence of the vector field is bounded, Grönwall lemma together with the linearity of (0.0.1)
implies uniqueness. However, the formal computations leading to (0.0.3) cannot be made rigorous

5



6 CONTENTS

without any regularity assumptions: when dealing with weak solutions of (0.0.1), which do not enjoy
any regularity beyond integrability, it is not justified to apply the chain rule in order to get the identities

2u)tu = )tu2 and 2u∇u = ∇u2 .

Following [29], we say that a bounded weak solution u of (0.0.1) is a renormalized solution if
)t�(u) + b ⋅ ∇�(u) = 0 (0.0.4)

holds in the sense of distributions for every smooth function � ∶ ℝ → ℝ. Roughly speaking, renor-
malized solutions are the class inside which the energy estimate (0.0.3) can be made rigorous. The
problem is then switched to proving that all weak solutions are renormalized. To achieve this, one
can regularize (0.0.1) by convolving with a regularization kernel �"(x), obtaining

)tu" + b ⋅ ∇u" = b ⋅ ∇u" − (b ⋅ ∇u) ∗ �" =∶ R" ,

where we denote u" = u ∗ �" and the right hand side R" is called commutator. Multiplying this
equation by �′(u") we obtain

)t�(u") + b ⋅ ∇�(u") = R" �′(u") , (0.0.5)
which implies (0.0.4) provided the commutator R" converges to zero strongly. Such a convergence
holds under Sobolev regularity assumptions on the vector field b, as can be proved by rewriting the
commutator as an integral involving difference quotients of the vector field. This strategy has been
pursued in [29] to show uniqueness and stability of weak solutions of (0.0.1) in the case of Sobolev
vector fields, and extended (with several nontrivial modifications) by Ambrosio [4] to the case of
vector fields with bounded variation. The convergence to zero of the right hand side of (0.0.5) is
more complex in this last setting, and the convolution kernel �" has to be properly chosen in a way
which depends on the vector field itself.

An alternative approach has been developed in [24], working at the level of the ODE (0.0.2) and
deriving a priori estimates for the flow which rely only on the Sobolev regularity and growth of b
(without assumptions on the divergence). Out of the smooth contest, the notion of classical flow is
replaced with that of an almost-everywhere map solving (0.0.2) in a suitable weak sense. This is
called regular Lagrangian flow and is measure-preserving in the sense that it does not concentrate
trajectories. Equivalently there is a constant L such that

d(X(t, ⋅)−1(B)) ≤ Ld(B), for every Borel B ⊂ ℝd ,

a condition which holds for instance for vector fields with bounded divergence. In [24] the authors
obtain an upper bound for the difference between two flows, which eventually leads to uniqueness,
stability and compactness (and therefore existence) of Lagrangian flows, as well as wellposdness
of Lagrangian solutions to the transport equation. This estimate is derived exploiting a functional
measuring a “logarithmic distance” between two flows associated to the same vector field, namely

Φ�(s) = ∫ log
(

1 +
|X(s, x) − X̄(s, x)|

�

)

dx , (0.0.6)

where � > 0 is a small parameter which is optimized in the course of the argument. When X and X̄
are both flows associated to the same vector field b, differentiating the functional Φ� in time one can
estimate

Φ′�(s) ≲ ∫
|b(s,X(s, x)) − b(s, X̄(s, x))|

|X(s, x) − X̄(s, x)|
dx ≲ ∫

[

MDb(s,X(s, x)) +MDb(s, X̄(s, x))
]

dx ,
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where in the second inequality we have estimated the difference quotients of b with the maximal
function of Db. Changing variable along the flows X and X̄ (which are assumed to have controlled
compressibility), and recalling that the maximal function satisfies the so-called strong inequality
‖Mf‖Lp ≲ ‖f‖Lp when 1 < p ≤ ∞ (see Lemma 5.2.6), we find that Φ� is uniformly bounded
in s and in � if b ∈ W 1,p with 1 < p ≤∞. Together with the estimate

N
({

|X(s, x) − X̄(s, x)| > 
})

≤
Φ�(s)

log
(

1 + 
�

) ∀ > 0 , (0.0.7)

letting � → 0 implies that X = X̄ almost everywhere.
The main advantage of this approach lies in its quantitative character. Let us mention that the

same approach can also be used in some regularity settings not covered by the approach of [29, 4].
In particular, using more sophisticated harmonic analysis tools, the case when the derivative of the
vector field is a singular integral of an L1 function has been considered in [15]. This has been further
developed in [11], allowing for singular integrals of a measure, under a suitable condition on splitting
of the space in two groups of variables, modeled on the situation for the Vlasov-Poisson characteristics
(3.1.5). In order to treat flows associated to such vector fields, the authors of [11] define a new
functional

Φ�1,�2(s) = ∫ log
(

1 +
|X1 − X̄1|

�1
+
|X2 − X̄2|

�2

)

dx ,

which will be used also to prove the main results of this thesis, summarized below.

Lagrangian solutions for the Vlasov-Poisson equation with point-charge

In [26] we consider the Cauchy problem for the repulsive Vlasov-Poisson system in the three dimen-
sional space, where the initial datum is the sum of a diffuse density, assumed to be bounded and
integrable, and a point charge. Under some decay assumptions for the diffuse density close to the
point charge, under bounds on the total energy, and assuming that the initial total diffuse charge is
strictly less than one, we prove existence of global Lagrangian solutions. Our result extends the Eule-
rian theory of [28], proving that solutions are transported by the flow trajectories. The proof is based
on the ODE theory developed in [11] in the setting of vector fields with anisotropic regularity, where
some components of the gradient of the vector field is a singular integral of a measure.

Flows of partially regular vector field

In [25] we derive quantitative estimates for the Lagrangian flow associated to a partially regular vector
field of the form

b(t, x1, x2) = (b1(t, x1), b2(t, x1, x2)) ∈ ℝn1 ×ℝn2 , (x1, x2) ∈ ℝn1 ×ℝn2 .

Weassume that the first component b1 does not depend on the second variable x2, and has SobolevW 1,p

regularity in the variable x1, for some p > 1. On the other hand, the second component b2 has Sobolev
W 1,p regularity in the variable x2, but only fractional SobolevW �,1 regularity in the variable x1, for
some � > 1∕2. These estimates imply well-posedness, compactness, and quantitative stability for the
Lagrangian flow associated to such a vector field.

Plan of the thesis

The plan of the thesis is the following. In Chapter 1 we will recall the Cauchy-Lipschitz theory
for ODEs and the theory of characteristics in the classical setting. In addition, we will review the
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DiPerna-Lions ([29]) theory of renormalization and wellposedness of bounded weak solutions to
the transport equation, and the extension of this theory to partially regular vector fields ([35]). In
Chapter 2 we will present the ODE approach initiated in [24] based on quantitative estimates, which
leads to wellposedness results for regular Lagrangian flows. First we will focus in the case of Sobolev
vector fields, then on vector fields whose derivative is a singular integral of an L1 function ([15]) and
finally on vector fields with different regularity in different directions. In Chapter 3 we describe the
initial value problem for theVlasov-Poisson equation and present some results regarding, in particular,
global existence of a solution. In Chapter 4 and Chapter 5 we present, in order, the first and second
result of this thesis ([26] and [25]).
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Chapter 1

The transport equation with non-smooth
vector field

In Section 1.1 we recall some known results on the ordinary differential equation and its link with the
transport equation in the smooth framework. In Section 1.2 we illustrate the theory of renormalized
solutions, due by DiPerna and Lions, which allows to prove well-posedness of solutions to the trans-
port equation in the case of Sobolev vector field. In Section 1.3 we show an extension of the previous
theory to the case of only partially Sobolev vector field (see [35]).

1.1 Recalls on the smooth setting

1.1.1 The ordinary differential equation

Let Ω ⊂ ℝ ×ℝd be an open set and let b ∶ Ω → ℝd be a vector field. We want to study the ordinary
differential equation (ODE)

̇(t) = b(t, (t)). (1.1.1)
A (classical) solution of (1.1.1) consists of an interval I ⊂ ℝ and a function  ∈ C1(I ;ℝd) which
satisfies (1.1.1) for every t ∈ I . In particular (t, (t)) ∈ Ω for every t ∈ I . The solution  is also called
integral curve or characteristic curve of the vector field b. If we fix (t0, x0) ∈ Ω, we can consider the
Cauchy problem

{

̇(t) = b(t, (t))
(t0) = x0,

(1.1.2)

and we notice that  is a solution to this problem if and only if  ∈ C0(I ;ℝd) and satisfies

(t) = x0 + ∫

t

t0
b(s, (s)) ds for every t ∈ I.

When b enjoys suitable regularity assumptions, mainly in the space variable, the Cauchy-Lipschitz
theory ensures well-posedness for the solution to the Cauchy problem. In particular the following
theorem provides local existence and uniqueness.
Theorem 1.1.1 (Picard Lindelöf-Cauchy Lipschitz). Let b ∶ Ω→ ℝd be continuous and bounded on
some region

D = {(t, x) ∶ |t − t0| ≤ �, |x − x0| ≤ �}.

Assume that b is Lipschitz continuous with respect to x, uniformly in time, on D, i.e.

|b(t, x) − b(t, y)| ≤ L|x − y| for every (t, x), (t, y) ∈ D. (1.1.3)

9



10 CHAPTER 1. THE TRANSPORT EQUATION WITH NON-SMOOTH VECTOR FIELD

Then there exists � > 0 and a function  belonging to C1([t0 − �, t0 + �];ℝd) which is the unique
solution to (1.1.2).
Proof. LetM be such that |b(t, x)| ≤ M on D. We choose � < min

{

�, �
M
, 1
L

}

and we will show
that there exists a unique  ∈ C0(I ;ℝd) such that

(t) = x0 + ∫

t

t0
b(s, (s)) ds for every t ∈ I� = [t0 − �, t0 + �].

Wewant to use Banach fixed point theorem and construct a solution by iteration. To do this we define
a complete metric space X on which the operator

T [](t) = x0 + ∫

t

t0
b(s, (s, (s)) ds

is a contraction. The space X is defined as
X = { ∈ C0(I�;ℝd) ∶ (t0) = x0 and |(t) − x0| ≤ � for every t ∈ I�}.

It is easy to see that it is complete, since it is a closed subset of the Banach space C0(I�;ℝd).
Moreover, T takes values in X. Indeed, for each  ∈ X, T [] is a continuous function satisfying
T [](t0) = x0, and

|T [](t) − x0| ≤
|

|

|

|

|

∫

t

t0
|b(s, (s))|ds

|

|

|

|

|

≤M|t − t0| ≤M� < �.

Finally, T is a contraction. Take 1 and 2 in X. Then

|T [1](t) − T [2](t)| ≤
|

|

|

|

|

∫

t

t0
|b(s, 1(s)) − b(s, 2(s))|ds

|

|

|

|

|

≤ L
|

|

|

|

|

∫

t

t0
|1(s) − 2(s)|ds

|

|

|

|

|

≤ L|t − t0|‖1 − 2‖L∞(I�) ≤ L�‖1 − 2‖L∞(I�).

This implies that
‖T [1] − T [2]‖L∞(I�) ≤ L�‖1 − 2‖L∞(I�),

where L� < 1. Hence, we apply Banach fixed point theorem ad we get the existence of a unique fixed
point for T , which is indeed the unique solution to (1.1.2).

Still in the classical framework, we have two more general conditions which are sufficient to get
uniqueness. These are stated in the following two propositions.
Proposition 1.1.2 (One-sided Lipschitz condition). Uniqueness forward in time for (1.1.2) holds if
the Lipschitz continuity condition (1.1.3) in Theorem 1.1.1 is replaced by the following one-sided
Lipschitz condition:

(b(t, x) − b(t, y)) ⋅ (x − y) ≤ L|x − y|2 for every (t, x), (t, y) ∈ D.

Proposition 1.1.3 (Osgood condition). Uniqueness for (1.1.2) holds if the Lipschitz continuity con-
dition (1.1.3) in Theorem 1.1.1 is replaced by the following Osgood condition:

|b(t, x) − b(t, y)| ≤ !(|x − y|) for every (t, x), (t, y) ∈ D,



1.1. RECALLS ON THE SMOOTH SETTING 11

where ! ∶ ℝ+ → ℝ+ is an increasing function satisfying !(0) = 0, !(z) > 0 for every z > 0 and

∫

1

0

1
!(z)

dz = ∞. (1.1.4)

Remark 1. The integral which appears in (1.1.4) can be interpreted as the amount of time a trajectory
takes to enter or exit the origin.
Remark 2. In case b is Lipschitz, then !(z) ∽ z and the Osgood condition is trivially verified.

For vector fields with less regularity then those considered above, there are examples that show
non-uniqueness of solutions to (1.1.2).
Examples 1.1.1 (The square root example). Let b(x) ∶= √

|x| be a continuous vector field defined
on ℝ. Notice that b does not satisfy the Lipschitz continuity condition or the Osgood condition
(!(z) ∽√

z, hence the integral in (1.1.4) converges). It is easy to check that the Cauchy problem
{

̇(t) =
√

|(t)|
(0) = 0

(1.1.5)

has infinitely many solutions, given by

c(t) =
{

0 if t ≤ c
1
4 (t − c)

2 if t ≥ c,

for every c ∈ [0,∞). Heuristically, this means that the solution can ”stay at rest” in the origin for an
arbitrary long time.

The following theorem, however, guarantees local existence of solutions when the vector field is
only continuous.
Theorem 1.1.4 (Peano). Let b ∶ Ω→ ℝd be continuous and bounded on some region

D = {(t, y) ∶ |t − t0| ≤ �, |x − x0| ≤ �}.

Then there exists a local solution to (1.1.2).
At this point we want to discuss the maximal interval of existence of the solution to (1.1.2). The

solution that we constructed in the previous theorems is in fact local in time. We notice that, in
order to obtain a global solution (i.e. defined for all t ∈ ℝ), it is sufficient, for instance, to require
that b is bounded on the whole domain Ω. In this way, every local solution  ∶ (t1, t2) → ℝd is
Lipschitz continuous, therefore it can be extended to the closed interval [t1, t2]. Indeed, for every
t1 < t < t′ < t2 we have

|(t′) − (t)| ≤ ∫

t′

t
|b(s, (s))|ds ≤M|t′ − t|, (1.1.6)

where M is an upper bound for |b| on Ω. Hence we can define (ti) = limt→ti (t) for i = 1, 2. If,
for instance, (t2, (t2)) is not on the boundary of Ω, we can apply again Theorem 1.1.1 to the the
ODE coupled with the initial condition (t2, (t2)) and iterate until the extended solution touches the
boundary.

Combining this argument on the global existence and Theorem 1.1.1, we obtain global existence
and uniqueness of solutions to (1.1.2), under the assumption that b is continuous, (globally) bounded
in both variables and locally Lipschitz with respect to the spatial variable, uniformly with respect to
the time.
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1.1.2 The classical flow

Let  be a solution to the Cauchy problemwith initial condition (t0) = x. If we look at  as a function
of time and initial point, we can define the classical flow of a vector field.
Definition 1.1.5. Let b ∶ I ×ℝd → ℝd be a continuous and bounded vector field, where I ⊂ ℝ is an
interval. Let t0 ∈ I . The (classical) flow of the vector field b starting at time t0 is a map

X(t, x) ∶ I ×ℝd → ℝd

which satisfies
{ )X

)t
(t, x) = b(t, X(t, x))

X(t0, x) = x.
(1.1.7)

If b is bounded and locally Lipschitz with respect to x, we can immediately deduce existence and
uniqueness of the flow from previous arguments. Moreover, the regularity of the vector field in the
spatial variable transfers into analogous regularity of the flow (in the spatial variable). The following
theorems specify the last statement.
Theorem 1.1.6. Let b ∶ I ×ℝd → ℝd be a continuous and bounded vector field, where I ⊂ ℝ is an
interval. Assume that b is locally Lipschitz continuous with respect to the spatial variable, uniformly
with respect to the time. Then for every t0 ∈ I there exists a unique classical flow of b starting at
time t0. Moreover, the flow is Lipschitz continuous in t and locally Lipschitz in x.

Proof. We have already deduced existence and uniqueness of the flow. Recalling (1.1.6), we have the
Lipschitz continuity in time of the flow. We are left to show the regularity in space. Take a rectangle
subset D = [t1, t2] × Br ⊂ I ×ℝd . For each (t, x) ∈ D we have

|X(t, x)| ≤ x + ∫

t2

t1
|b(s,X(s, x))|ds ≤ r + |t1 − t2|‖b‖L∞ ∶= R.

From the hypotheses we know that b is Lipschitz continuous in the space variable, uniformly in time,
on [t1, t2] × BR, with Lipschitz constant L. Hence, for any (t, x), (t, y) ∈ D, we get

d
dt
|X(t, x) −X(t, y)|2 = 2 ⟨b(t, X(t, x)) − b(t, X(t, y)), X(t, x) −X(t, y)⟩

≤ 2L|X(t, x) −X(t, y)|2,
(1.1.8)

Applying Gronwall’s Lemma and the square root to (1.1.8) , we obtain

|X(t, x) −X(t, y)| ≤ |x − y| exp(Lmax{|t1|, |t2|}). (1.1.9)
Hence, on every rectangular set D ⊂ I × ℝd , the flow is Lipschitz continuous in x, uniformly in t,
i.e. X is locally Lipschitz in x, uniformly in t.
Remark 3. Theorem 1.1.6 obviously still holds if we substitute ”locally” with ”globally” Lipschitz.
Theorem 1.1.7. Let b ∶ I × ℝd → ℝd be a smooth and bounded vector field, where I ⊂ ℝ is an
interval. Then for every t0 ∈ I there exists a unique classical flow of b starting at time t0, which is
smooth with respect to t and x.

Proof. We just give a sketch of the proof. We first assume that b isC1 to the spatial variable, uniformly
in time. Let e be a unit vector in ℝd . We observe that differentiating formally (1.1.7) with respect to
x in the direction e we obtain the following ordinary differential equation for DxX(t, x)e:
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)
)t
DxX(t, x)e = (Dxb)(t, X(t, x))DxX(t, x)e. (1.1.10)

Motivated by this, we define we(t, x) to be the solution of
{

)we
)t
(t, x) = (Dxb)(t, X(t, x))we(t, x)

we(t0, x) = e.
(1.1.11)

It is easy to check that for every x ∈ ℝd there exists a unique solution we and that it depends contin-
uously on the parameter x ∈ ℝd . It can be proved that

X(t, x + ℎe) −X(t, x)
ℎ

→ we(t, x) as ℎ→ 0.

This gives DxX(t, x)e = we(t, x) and, since we(t, x) is continuous in x, we can conclude that the
flowX(t, x) is differentiable with respect to x with continuous differential. By induction we can then
deduce that, if b is Ck with respect to the spatial variable, the flow X is Ck with respect to x.

As regards the regularity in the time variable, by induction, it is trivial to show that, if b is Ck,
then X is Ck+1 with respect to t.

Finally, notice that, as a consequence of the uniqueness of the flow, the map
X(t, ⋅) ∶ ℝd → ℝd

is bijective, for every t ∈ I . Moreover, denoting by X(t, s, x) the flow of b starting at time s ∈ I , the
following semigroup property holds:

X(t2, t0, x) = X(t2, t1, X(t1, t0, x)) for every t0, t1, t2 ∈ I . (1.1.12)

1.1.3 The transport equation

The ODE is strictly related to the following linear partial differential equation, known as transport
equation. We consider here the Cauchy problem:

{

)tu(t, x) + b(t, x) ⋅ ∇u(t, x) = 0
u(0, x) = ū(x) (1.1.13)

where u ∶ [0, T ] ×ℝd → ℝ is the unknown and ū ∶ ℝd → ℝ. In the smooth framework, the relation
between the Lagrangian problem (ODE) and the Eulerian problem (PDE) is due to the theory of
characteristics. Let X(t, x) be a characteristic curve of b, starting at point x at time t = 0, and let
u(t, x) be a smooth solution of (1.1.13). If we compute the time derivative of u(t, X(t, x)), we get

d
dt
u(t, X(t, x)) = )u

)t
(t, X(t, x)) + ∇xu(t, X(t, x)) ⋅

d
dt
X(t, x)

= )u
)t
(t, X(t, x)) + b(t, X(t, x)) ⋅ ∇xu(t, X(t, x)) = 0,

(1.1.14)

whichmeans that u is constant along the characteristics of b. Hence, we have a formula for the solution
to (1.1.13) in terms of the flow of b:

u(t, x) = ū(X(t, ⋅)−1(x)). (1.1.15)
This means in particular that a smooth solution to (1.1.13), in case it exists, is unique. In order to
check that u, as defined in (1.1.15), is a solution to the transport equation, we observe that the flow
X(t, s, x) satisfies the equation

)X
)s
(t, s, x) + b(s, x) ⋅ ∇xX(t, s, x) = 0. (1.1.16)
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Indeed, exploiting the semigroup property of the flow, we have d
ds
X(t, s, X(s, t, y)) = d

ds
x = 0, which

implies (1.1.16), after setting x = X(s, t, y). Therefore, if ū is C1, u(t, x) = ū(X(0, t, x)) satisfies the
transport equation, as we can compute
)
)s
ū(X(0, s, x))+(b(s, x)⋅∇x)ū(X(0, s, x)) = ū′(X(0, s, x))⋅

()X
)s
(0, s, x) + b(s, x) ⋅ ∇xX(0, s, x)

)

= 0.
(1.1.17)

1.2 The transport equation in the Sobolev setting

In this Section we describe a strategy, which goes back to DiPerna and Lions (see [29]), that allows
to obtain well-posedness for a solution to the transport equation, when the vector field b(t, x) is not
Lipschitz continuous in the space variable, but rather has Sobolev regularity.

1.2.1 Weak solutions

We first introduce the weak formulation of the transport equation (1.1.13). Let b ∶ [0, T ] ×ℝd → ℝd

be a locally integrable vector field and denote by divb the divergence of b (with respect to the spatial
coordinates) in the sense of distributions.
Definition 1.2.1. Let b, divb and ū be locally integrable functions. Then a locally bounded function
u ∶ [0, T ] × ℝd → ℝ is a weak solution of (1.1.13) if the following identity holds for every function
' ∈ C∞c ([0, T ) ×ℝd):

∫

T

0 ∫ℝd
u
[

)t' + 'divb + b ⋅ ∇'
]

dx dt = −∫ℝd
ū(0)'(0, x)dx. (1.2.1)

This is the standard notion of weak solution of a PDE and it can be deduced for regular solu-
tions from (1.1.13) multiplying it by ' and integrating by parts. Noticing that functions of the form
'(t, x) = '1(t)'2(x) are dense in the space of test functions C∞c ((0, T ) × ℝd), we are able to give a
second equivalent definition of weak solution:
Definition 1.2.2. Let b, divb and ū be locally integrable functions. We say that a locally bounded
function u ∶ [0, T ] × ℝd → ℝ is a weak solution of (1.1.13) if, for every t ∈ [0, T ] and for every
' ∈ C∞c (ℝ

d), we have

∫ u(t, x)'(x)dx = ∫ ū(x)'(x)dx

+ ∫

t

0 ∫ u(s, x)'(x)divb(s, x)dx ds + ∫

t

0 ∫ u(s, x)b(s, x) ⋅ ∇'(x)dx ds.

(1.2.2)
For completeness, we present a third definition, equivalent to the first two. Notice that, if u is

merely bounded, the term )tu has a meaning as a distribution, but b ⋅ ∇u is not well defined. Never-
theless, if divb ∈ L1loc, we can define the product b ⋅ ∇u as a distribution via the equality

⟨b ⋅ ∇u, �⟩ ∶= −⟨bu,∇�⟩ − ⟨udivb, �⟩ ∀� ∈ C∞c ((0, T ) ×ℝd). (1.2.3)
This allows us to give directly a distributional meaning to the transport equation and therefore we
have the following
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Definition 1.2.3. Suppose b and divb be locally integrable. Then we say that a locally bounded
function u ∶ [0, T ] ×ℝd → ℝ is a weak solution of the transport equation if

)tu + div(ub) − udivb = 0 in ′((0, T ) ×ℝd).

Concerning the Cauchy problem, it can be proved (see [23]) that, if u is a solution in the sense
of Definition 1.2.3, there exists a unique ũ, which is the weak⋆ − L∞ continuous representative,
which means that t ↦ ũ(t, ⋅) is weakly⋆ continuous from [0, T ] into L∞(ℝd). Thus, we can couple
the transport equation with u(0, x) = ū(x) (for a given ū ∶ ℝd → ℝ), by simply requiring that
ũ(0, x) = ū(x). This gives sense to the initial data at t = 0.

We remark again that Definition 1.2.1 and Definition 1.2.3 (with initial condition interpreted as
in the argument above) are equivalent.

Existence of weak solutions Existence of weak solutions to (1.1.13) is rather easy to prove.
A smooth regularization of the vector field and of the initial data enables to construct a sequence of
smooth solutions. We then pass to the limit and get a solution thanks to the linearity of the equation.
Theorem 1.2.4. Let b, divb ∈ L1loc([0, T ] × ℝd) and let ū ∈ L∞(ℝd). Then there exists a weak
solution u ∈ L∞([0, T ] ×ℝd) to (1.1.13).
Proof. Let �" be a standard mollifier on ℝd and let �" be a mollifier on ℝd+1. Denote by ū" = ū ∗ �"
and b" = b ∗ �". Since b" and ū" are smooth, there is a unique solution u" to the Cauchy problem

{

)tu + b" ⋅ ∇u = 0
u(0, ⋅) = ū". (1.2.4)

From the explicit formula for the solution to the transport equation with smooth vector field, we
get that {u"} is equi-bounded in L∞([0, T ] × ℝd). Hence, up to a subsequence, we have that u" is
weakly⋆ convergent to a limit u in L∞([0, T ] ×ℝd) which is, clearly, by linearity, a weak solution to
(1.1.13).

1.2.2 A strategy for uniqueness

In the following we want to present a general strategy to show well-posedness of the transport equa-
tion. In order to motivate the concept of renormalized solutions, introduced by DiPerna and Lions,
we present some formal computations. We start from multiplying both sides of

)tu + b ⋅ ∇u = 0

by �′(u), being � ∶ ℝ → ℝ a C1 function such that �(y) > 0 for every y ≠ 0 and �(0) = 0. We get
�′(u))tu + �′(u)b ⋅ ∇u = 0. (1.2.5)

If b and u were smooth, we could apply the ordinary chain rule and rewrite the last equation as
)t�(u) + b ⋅ ∇�(u) = 0. (1.2.6)

The last passage is justified only under regularity assumptions on b and u, and in general is false.
Integrating on ℝd , we get

∫ℝd
)t�(u(t, x))dx + ∫ℝd

b(t, x) ⋅ ∇�(u(t, x))dx = 0, (1.2.7)
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and, applying the divergence theorem, we obtain
d
dt ∫ℝd

�(u(t, x))dx = ∫ℝd
�(u(t, x))divb(t, x)dx. (1.2.8)

Assuming that ‖divb‖L∞ ≤ C , for some C > 0, we get
d
dt ∫ℝd

�(u(t, x))dx ≤ C ∫ℝd
�(u(t, x))dx.

Using Gronwall’s Lemma we obtain

∫ℝd
�(u(t, x))dx ≤ eCt ∫ℝd

�(u(0, x))dx

This implies that, if the initial data is ū = 0, then the only solution is u ≡ 0. Since the transport
equation is linear, this is enough to conclude the uniqueness.

1.2.3 Renormalization

We observe that, in case u and b are not C1, the computation in the previous Section still holds if we
have the following equality (which is "almost a chain rule"):

)t�(u) + b ⋅ ∇�(u) = �′(u)[)tu + b ⋅ ∇u],

or, alternatively, if
)tu + b ⋅ ∇u = 0⟹ )t�(u) + b ⋅ ∇�(u) = 0.

This informal argument leads us to introduce a class of weak solutions which satisfy such a rule, in
the sense of distributions.
Definition 1.2.5 (Renormalized solutions). Let b and divb be locally integrable functions, and ū be
bounded. We say that a function u ∈ L∞([0, T ] × ℝd) is a renormalized solution to (1.1.13) if it is
indeed a weak solution and, for every � ∈ C1(ℝ), �(u) is a weak solution with initial data �(ū).

When the renormalization property is satisfied by all bounded weak solutions, it can be transferred
to a property of the vector field itself.
Definition 1.2.6 (Renormalization property). Let b, divb ∈ L1loc([0, T ] × ℝd). We say that b has the
renormalization property if every bounded solution of the transport equation with vector field b is a
renormalized solution.

It turns out that this property is intrinsically tied to the well-posedness problem: in particular,
renormalization implies well-posedness. Under certain additional assumptions (such as divb ∈ L∞)
renormalization also implies stability of solutions. The precise statement is the following theorem,
which is a minor simplification of Corollary II.1 in [29].
Theorem 1.2.7. Let b ∶ [0, T ]×ℝd → ℝd be a vector field with divb ∈ L1([0, T ];L∞(ℝd)) and such
that

b
1 + |x|

= b̃1 + b̃2 ∈ L1([0, T ];L1(ℝd)) + L1([0, T ];L∞(ℝd)). (1.2.9)
Let ū ∈ L∞(ℝd). If b has the renormalization property, then there exists a unique weak solution
to the transport equation with initial condition ū. Moreover, solutions are stable. By stability we
mean that, if bk and ūk are smooth approximating sequences converging strongly in L1loc to b and ū
respectively, with ‖ūk‖L∞ uniformly bounded, then the solutions uk of the corresponding transport
equations converge strongly in L1loc to the solution u of (1.1.13).
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Proof. UNIQUENESS. From the linearity of the equation, it is sufficient to show that u ≡ 0 when
ū = 0.

Wewill prove uniqueness for solutions inL∞([0, T ];L∞∩L1(ℝd)). The general case, that is when
u is only bounded, is done using a duality argument, exploiting the previous case. We take ' ∈ C∞c
such that supp' ⊂ B2 and ' ≡ 1 on B1. We consider the smooth cut-off functions 'R = '

(

⋅
R

)

for
R ≥ 1. Since b has the renormalized property, we have that, for every � ∈ C1(ℝ), �(u) is a weak
solution with initial data �(ū). In particular, let us take � such that � > 0, �(0) = 0 and test function
'R. From Definition 1.2.2, we get

∫ �(u(t, x))'R(x)dx = ∫

t

0 ∫ �(u(s, x))'R(x)divb(s, x)dxds+∫
t

0 ∫ �(u(s, x))b(s, x)⋅∇'R(x)dxds.

(1.2.10)
For the last integral we can estimate
|

|

|

|

|

∫

t

0 ∫ �(u(s, x))b(s, x) ⋅ ∇'R(x)dxds
|

|

|

|

|

≤ ∫

t

0 ∫
|

|

|

|

�(u(s, x))
b(s, x)
1 + |x|

(1 + |x|) ⋅ ∇'R(x)
|

|

|

|

dxds

≤ ‖�(u)‖L∞(1 + 2R)‖∇'R‖L∞ ∫

t

0 ∫
|x|>R

|b̃1|dxds + (1 + 2R)‖∇'R‖L∞ ∫

t

0
‖b̃2(s, x)‖L∞x ∫

|x|>R
|�(us)|dxds

≤ ‖�(u)‖L∞
1 + 2R
R

‖∇'‖L∞‖b̃1‖L1s (L1
|x|>R)

+ 1 + 2R
R

‖∇'‖L∞ ∫

t

0
f (s)∫

|x|>R
|�(us)|dxds

≤ C‖b̃1‖L1s (L1
|x|>R)

+ C ∫

t

0
f (s)∫

|x|>R
|�(us)|dxds = �R(t),

(1.2.11)

with f (s) ∈ L1([0, T ]). Hence we combine (1.2.10) and (1.2.11), and we get
|

|

|

|

∫ �(ut)'Rdx
|

|

|

|

≤ ∫

t

0
‖divb(s, x)‖L∞x

|

|

|

|

∫ �(us)'Rdx
|

|

|

|

ds + �R(t). (1.2.12)

Choosing � such that �(u) ≤ |u| and thereby exploiting the summability of u, we have that �R(t)→ 0
as R→∞. Therefore, passing to the limit for R→∞ in (1.2.12) we obtain

|

|

|

|

∫ �(ut)dx
|

|

|

|

≤ ∫

t

0
‖divb(s, x)‖L∞x

|

|

|

|

∫ �(us)dx
|

|

|

|

ds. (1.2.13)

Finally Gronwall’s Lemma yields to

∫ �(ut)dx = 0,

which implies ut ≡ 0 for every t ∈ [0, T ].
STABILITY. Arguing as in Theorem 1.2.4, we easily deduce that, up to subsequences, uk converges

weakly⋆ in L∞([0, T ] × ℝd) to a weak solution. Since the solution is unique, the whole sequence
converges to u. Since bk and uk are both smooth, uk is a renormalized solution, therefore u2k solves thetransport equation with initial data ū2k. Arguing as before, u2k must converge weakly⋆ in L∞([0, T ] ×
ℝd) to the unique solution of (1.1.13) with initial data ū2. But by the renormalization property, this
solution is u2. Since uk ⇀⋆ u and u2k ⇀⋆ u2 in L∞([0, T ] ×ℝd), we deduce by Radon-Riesz theorem
that uk → u strongly in L1loc([0, T ] ×ℝd).
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1.2.4 Commutator estimates

From Theorem 1.2.7 we deduce that the renormalization property for a vector field b is enough to
prove uniqueness of weak solutions to the relative transport equation. We now come to the seminal
result of DiPerna and Lions, in which it is proven that every vector field with Sobolev regularity
satisfies the renormalization property.
Proposition 1.2.8. Let b ∈ L1loc([0, T ];W

1,1
loc (ℝ

d)), divb ∈ L1loc([0, T ]×ℝ
d) and let u ∈ L∞loc([0, T ]×

ℝd) be a weak solution of the transport equation. Then u is a renormalized solution.

Proof. Let {�"}" be a family of even convolution kernels in ℝd . Denote u" = u ∗ �". Convolving
the transport equation with �", and adding and subtracting the term b ⋅ ∇u", we get that u" is a weak
solution to the following PDE:

)tu" + b ⋅ ∇u" = b ⋅ ∇u" − (b ⋅ ∇u) ∗ �". (1.2.14)
We then define the commutator r" as the error term in the right hand side of (1.2.14):

r" ∶= [b ⋅ ∇, �"](u) = b ⋅ ∇u" − (b ⋅ ∇u) ∗ �", (1.2.15)
where b ⋅ ∇u is the distribution defined in (1.2.3). The name commutator comes from the fact that
this term measures the difference in exchanging the operations of convolution and differentiating
in the direction of b. Notice that u" is, trivially, smooth in the space variable and W 1,1

loc ([0, T ]), as
)tu" = −(b ⋅ ∇u) ∗ �" = (ub) ∗ ∇�" + (udivb) ∗ �" belongs to L1loc in time. Thus we can apply
Stampacchia’s chain rule for Sobolev spaces, to get

)t�(u") + b ⋅ ∇�(u") = �′(u")r". (1.2.16)
In order to recover the renormalization property, we would like to pass to the limit, as "→ 0, showing
the convergence to zero of the quantity �′(u")r". The convergence in distribution of the left hand side
of the identity above to (1.2.6) is trivial. The convergence of r" to 0, in the distributional sense,
is also easy to check. However, since �′(u") is locally equibounded, we only need that r" → 0 in
L1loc, in order to ensure distributional convergence of the product �′(u")r". Thanks to the following
Proposition, this is indeed the case, if b has Sobolev regularity.
Lemma 1.2.9 (Strong convergence of the commutator). Let b ∈ L1loc([0, T ];W

1,1
loc (ℝ

d)) and let u ∈
L∞loc([0, T ] ×ℝd). Then r" → 0 strongly in L1loc([0, T ] ×ℝd), as "→ 0.

Proof. From the definition of b ⋅ ∇u we have
r" = b ⋅ ∇u" − (b ⋅ ∇u) ∗ �"
= b ⋅ ∇u" + (ub) ∗ ∇�" + (udivb) ∗ �".

(1.2.17)

Recalling some properties of the convolution of a distribution with a C∞c function, we get

r"(t, x) = −bt(x) ⋅ ∫ ut(y)∇�"(x − y)dy + ∫ ut(y)bt(y)∇�"(x − y)dy + (utdivbt) ∗ �"
= ∫ ut(y)[bt(y) − bt(x)] ⋅ ∇�"(x − y)dy + (utdivbt) ∗ �"
= 1
"d ∫ ut(y)[bt(y) − bt(x)] ⋅ ∇�

(x − y
"

) 1
"
dy + (utdivbt) ∗ �"

= ∫ ut(x + "z)
[

bt(x + "z) − bt(x)
"

]

⋅ ∇�(z)dz + (utdivbt) ∗ �",

(1.2.18)
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where in the last passage we have used the change of variables y = x+ "z and the fact that ∇� is odd.
Next, it is a standard fact in the theory of Sobolev spaces ([16], Prop. 9.3) that, as "→ 0,

bt(x + "z) − bt(x)
"

→ Dbt(x) ⋅ z strongly in L1loc. (1.2.19)
Moreover, from the continuity of translations in Lp-spaces, we know that ut(x+ "z)→ ut(x) strongly
in Lploc ∀p. Therefore, using an Egorov-like argument, we deduce that the commutator converges
strongly in L1loc([0, T ] ×ℝd) to

ut(x)∫ (Dbt(x) ⋅ z)∇�(z)dz + utdivbt.
Now we observe that

ut(x)∫ (Dbt(x) ⋅ z)∇�(z)dz = ut(x)∫

d
∑

i,j=1

)bi
)xj

(t, x)zj
)�
)zi

(z)dz

= ut(x)
d
∑

i,j=1

)bi
)xj

(t, x)∫ zj
)�
)zi

(z)dz

= −ut(x)divbt(x)
since, from the divergence theorem, it holds

∫ zj
)�
)zi

(z)dz = −�ij .

This concludes the proof.
We stress the fact that the Sobolev regularity of b only enters in the step (1.2.19) of the commutator

proposition. Therefore, the renormalization strategy of Theorem (1.2.7) can be used to prove well-
posedness of the transport equation in other contexts. Below we sketch the main idea of paper ([4]),
in which Ambrosio extended the DiPerna-Lions theory and showed the renormalization property for
vector fields of bounded variation. The main difference is that for BV vector fields we don’t have
Db ∈ L1loc. However, we can decompose the spatial derivative of b as follows:

Db = Dab +Dsb,

where Dab and Dsb denote the absolutely continuous and singular part of Db respectively. The
difference quotient (1.2.19) does not converge strongly in L1loc due to the part of the derivative whichis the singular part of the measure. One has instead

b(t + "z) − b(t, x)
"

= b1",z(t, x) + b
2
",z(t, x),

where
b1",z(t, x)→ Dab(t, x) ⋅ z, strongly in L1loc(ℝd),

lim sup
"→0 ∫K

|b2",z(t, x)|dx ≤ |Dsb(t, ⋅) ⋅ z|(K) ∀K ⋐ ℝd .

Hence the commutator r" can be divided into two integrals, the first involving b1",z(t, x), and the other
with b2",z(t, x). Under suitable bounds on the divergence, the first part converges strongly in L1locas in the previous proof. The second part however is more complex and relies on an anisotropic
regularization procedure on the derivative of b. We state the precise result without proof.
Theorem 1.2.10 (Ambrosio). Let b be a bounded vector field in L1loc([0, T ];BV (ℝ

d)), such that
divb ∈ L1([0, T ];L1(ℝd)). Then b has the renormalization property.
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1.3 Renormalization for partially regular vector fields

In this Section we shortly present another extension of the theory of renormalized solutions to the
transport equation introduced by DiPerna and Lions. This extension, due to Le Bris and Lions, con-
siders the case when some coordinates bi of the vector field b are notW 1,1 with respect to some space
variables xj . In particular b is in a form such as

b(x1, x2) = (b1(x1), b2(x1, x2)) with b1 ∈ W 1,1
x1

and b2 ∈ L1x1(W 1,1
x2
). (1.3.1)

Hence the linear transport equation
)tu + b ⋅ ∇u = 0

can be rewritten as
)tu + b1(x1) ⋅ ∇x1u + b2(x1, x2) ⋅ ∇x2u = 0. (1.3.2)

The space variable x is partitioned into x = (x1, x2) with x1 ∈ ℝn1 , x2 ∈ ℝn2 , N = n1 + n2.
Accordingly, the vector field b = (b1, b2) is such that bi ∶ ℝN → ℝni , and the differential operators
gradient and divergence are decomposed as ∇ = (∇x1 ,∇x2), divx =divx1+divx2 .The precise setting of [35] includes other technical assumptions which follow the line of those in
DiPerna-Lions. The complete assumptions on the vector field are:
(H1) b1 = b1(t, x1) ∈ L1

(

[0, T ];W 1,1
x1,loc

) (it does not depend on x2)

(H2) b1
1+|x1|

∈ L1
(

[0, T ];L1x1(ℝ
n1) + L∞x1(ℝ

n2)
)

(H3) divx1 b1 ∈ L1
(

[0, T ];L∞x1(ℝ
n1)

)

(H4) b2 = b2(x1, x2) ∈ L1
(

[0, T ];L1x1,loc
(

ℝn1 ;W 1,1
x2,loc

)

)

(H5) b2
1+|x2|

∈ L1
(

[0, T ];L1x1,loc
(

ℝn1 ;L1x2(ℝ
n2) + L∞x2(ℝ

n2)
)

)

(H6) divx2 b2 ∈ L1
(

[0, T ];L∞(ℝN )
)

Compared to the theory in [29], the main difference is that regularity of b2 in the variable x1 is not
required (we require only summability). However, a positive result on the well-posedeness problem
is made possible, mainly, by assumption (H1). The authors rely on the renormalization theory, but
use two different regularization kernels for x1 and x2, namely �"1(x1) and �"2(x2), and eventually theysend "1 → 0 first, and then "2 → 0. Roughly speaking, this gives rise to commutators "in x1 only"
for b1 and "in x2 only" for b2.

We can now state the first result, which is the analog of Proposition 1.2.8.
Remark 4. For the sake of simplicity in the following proofs we present the case in which b is not
time-dependent and divx1b = divx2b = 0.
Proposition 1.3.1. We assume (H1) and (H4). Let u ∈ L∞([0, T ];L1 ∩L∞(ℝN )) be a weak solution
of (1.3.2). Then u is a renormalized solution.

Proof. Let �"1 and �"2 be two even regularization kernels in C∞c , respectively in the variable x1 and
x2. We first convolve (1.3.2) with �"2 , obtaining

)t(u ∗ �"2) + b1 ⋅ ∇x1(u ∗ �"2) + (b2 ⋅ ∇x2u) ∗ �"2 = 0,
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where we have used the fact that, in view of (H1), b1 does not depend on x2. Denoting by
r"2 = [b2 ⋅ ∇x2 , �"2](u) = b2 ⋅ ∇x2(u ∗ �"2) − �"2 ∗ (b2 ⋅ ∇x2u), (1.3.3)

this can be written
)t(u ∗ �"2) + b1 ⋅ ∇x1(u ∗ �"2) + b2 ⋅ ∇x2(u ∗ �"2) = r"2 .

Therefore, denoting by u"2 = u ∗ �"2 , we have
)tu"2 + b1 ⋅ ∇x1u"2 + b2 ⋅ ∇x2u"2 = r"2 . (1.3.4)

Next we regularize in the x1 variable by convolving (1.3.4) with �"1 , obtaining
)t(u"2 ∗ �"1) + b1 ⋅ ∇x1(u"2 ∗ �"1) + b2 ⋅ ∇x2(u"2 ∗ �"1) =

[b1 ⋅ ∇x1 , �"1](u"2) + [b ⋅ ∇x2 , �"1](u"2) + r"2 ∗ �"1 .
(1.3.5)

Then, if we define u"1,"2 as the regularization of u with �"1 and �"2 , i.e.
u"1,"2 = (u ∗ �"1) ∗ �"2 ,

we get that u"1,"2 satisfies the PDE
)tu"1,"2 + b ⋅ ∇u"1,"2 = r"1,"2 , (1.3.6)

where
r"1,"2 = [b1 ⋅ ∇x1 , �"1](u"2) + [b2 ⋅ ∇x2 , �"1](u"2) + r"2 ∗ �"1 . (1.3.7)

We can observe that u"1,"2 is smooth in the space variable andW 1,1
loc in time. In fact )tu"1,"2 ∈ L1loc(ℝN )

since
)tu"2 = −(b1 ⋅ ∇x1u) ∗ �"2 − (b2 ⋅ ∇x2u) ∗ �"2

= (ub1) ∗ ∇x1�"2 + (udivx1b1) ∗ �"2 + (ub2) ∗ ∇x2�"2 + (udivx2b2) ∗ �"2
(1.3.8)

belongs to L1loc(ℝN ). Therefore, it follows from Stampacchia’s chain rule for Sobolev spaces that, for
every � ∈ C1(ℝN )

)t�(u"1,"2) + b ⋅ ∇�(u"1,"2) = r"1,"2�
′(u"1,"2). (1.3.9)

In order to prove the renormalization property, we want to perform the limit in (1.3.9), as "1 and "2 go
to zero. We notice that the left hand side trivially converges in distribution to the same term not reg-
ularized. Hence, it remains to show distributional convergence to zero of the product r"1,"2�′(u"1,"2).Since �′(u"1,"2) is bounded, it is sufficient to show that r"1,"2 → 0 in L1loc(ℝN ). This is done in the
following Lemma.
Lemma 1.3.2. We assume (H1) and (H4). Let u ∈ L∞([0, T ];L1∩L∞(ℝN )) be a solution of (1.3.2).
Then

lim
"2→0

lim
"1→0

r"1,"2 = 0 inL1loc(ℝ
N ).

Proof. All the functional spaces here considered are local, but we skip the subscript loc in order to
lighten the notation. It is a standard fact from [29] (see Lemma 1.2.9) that

r"2 = [b2 ⋅ ∇x2 , �"2](u)→ 0 as "2 → 0, inL1. (1.3.10)
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We recall the definition of r"1,"2 :
r"1,"2 = [b1 ⋅ ∇x1 , �"1](u"2) + [b2 ⋅ ∇x2 , �"1](u"2) + r"2 ∗ �"1 . (1.3.11)

The first term is the standard error term for the regularization on the variable x1 of the function
u"2 ∈ L

∞
x1,x2

. Therefore, from analog computations to those in Lemma 1.2.9, we have, for fixed "2,
lim
"1→0

[b1 ⋅ ∇x1 , �"1](u"2) = 0, (1.3.12)

in L1x1,x2 , where we used also that b1 does not depend on x2. Let us now turn to the second term of
(1.3.11). We have

[b2 ⋅ ∇x2 , �"1](u"2) = b2 ⋅ ∇x2(�"1 ∗ u"2) − �"1 ∗ (b2 ⋅ ∇x2u"2)

= b2 ⋅ ((∇x2u"2) ∗ �∗1) − �"1 ∗ (b2 ⋅ ∇x2u"2) = [b2, �"1](∇x2u"2)

= ∫ℝn1
(b2(x1, x2) − b2(y1, x2)) ⋅ ∇x2u"2(y1, x2)�

(

x1 − y1
"1

)

dy1

= ∫ℝn1
(b2(x1, x2) − b2(x1 + "1z1, x2)) ⋅ ∇x2u"2(x1 + "1z1, x2)�(z1)"

n1
1 dz1,

(1.3.13)
where in the last passage we perform the change of variables y1 = x1 + "1z1. The continuity of
translations in Lp−spaces gives us that b2(x1, x2) − b2(x1 + "1z1, x2) → 0 in L1x1,x2 , as "1 → 0. In
the same way, since ∇x2u"2 belongs to L∞x1,x2 , we have that ∇x2u"2(x1 + "1z1, x2) → ∇x2u"2(x1, x2)in L∞x1,x2 . These arguments allow us to deduce that

lim
"1→0

[b2 ⋅ ∇x2 , �"1](u"2) = 0 (1.3.14)

in L1x1,x2 , as "2 is kept fixed. There remains to treat the third term of (1.3.11) which is the easiest one.
Indeed, "2 being fixed, it is clear that

lim
"1→0

r"2 ∗ �"1 = r"2 (1.3.15)

in L1. We are now able to complete the proof. We fix "2. In view of the convergences (1.3.12) and
(1.3.14), the first two terms of (1.3.11) go to zero in L1x1.x2 , while the third one behaves accordingly
to (1.3.15). It follows that

lim
"1→0

r"1,"2 = r"2

in L1. Finally, we let "2 → 0 and use (1.3.10) to get the thesis.
We are now in the position to state the main result.

Theorem 1.3.3. We assume (H1) to (H6). Let

ū ∈
(

L1 ∩ L∞(ℝN )
)

∩ L∞x1
(

ℝn1 ;L1x2(ℝ
n2)

)

. (1.3.16)
Then there exists a unique solution

u(t, x) ∈ L∞
(

[0, T ];L1 ∩ L∞(ℝN )
)

∩ L∞
(

[0, T ];L∞x1
(

ℝn1 ;L1x2(ℝ
n2)

)

)

(1.3.17)

to (1.3.2) with initial condition ū.
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Proof. UNIQUENESS: The proof of uniqueness follows exactly the same arguments than the one in
1.2.7: it exploits the fact that, thanks to Proposition 1.3.1, �(u) is a solution, if u is such. The only
addition is to consider two different cut-off functions, namely'R1(x1) and R2(x2), when multiplying
for �(u). As a result we obtain, as before, ∫ �(u) = 0, which implies u = 0 when ū = 0 and � is
positive. This yields to uniqueness, from the linearity of the transport equation.

EXISTENCE: The proof of existence of a solution is analog to the one in Theorem 1.2.4. The
only non-standard thing it remains to prove is the fact that the solution in Theorem 1.2.4 necessarily
belongs to L∞([0, T ];L∞(ℝn1 ;L1(ℝn2))). We will skip this simple check.
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Chapter 2

Flow of non smooth vector fields

Both DiPerna-Lions (in [29]) and Ambrosio (in [4]) derive wellposedness of the ODE from the well-
posedness of the transport or continuity equation, in the non smooth setting. Ambrosio, in particular,
does that through an extended theory of characteristics, in which he establishes a direct connection
between the ODE and the PDE. Roughly speaking, he shows that every non-negative solution of the
PDE can be written as a superposition of trajectories. He also introduces a new notion of solution
to the ODE, that is the one of regular Lagrangian flow, which has the property that trajectories do
not concentrate in small sets. In this Chapter we will see a new approach to the wellposedness of the
ODE, based on quantitative a priori estimates derived directly at the ODE level, with no mention to
the PDE theory. This approch has been introduced by Crippa and De Lellis in [24], where they re-
cover, through these estimates, results of existence, uniqueness, stability and compactness of regular
Lagrangian flows, when the vector field is W 1,p in the space variable, with p > 1. An overview of
[24] is presented in Section 2.1. In Section 2.2 we recall some useful estimates regarding singular
integrals. In Section 2.3 we review a paper by Bouchut and Crippa ([15]), where they recover similar
wellposedness results, in the case of vector fields whose gradients are singular integrals of L1 func-
tions (which includes the case W 1,1). Finally, in Section 2.4 we consider [11], in which the vector
field has different regularity according to different directions.

2.1 Quantitative estimates in theW 1,p case, with p > 1

We consider the Cauchy problem for the ODE:
{ dX(t,x)

dt
= b(t, X(t, x))

X(0, x) = x.
(2.1.1)

We underline the fact that in [24] (as well as in [15] and [11]), we do not obtain uniqueness of the
flow for "almost every" initial datum x. We consider as admissible solutions only the flows that, in
some sense, preserve themeasure of sets. We recall the notion of regular Lagrangian flows introduced
by Ambrosio ([4]). This notion turns out to be the right one in the study of the ordinary differential
equation with weakly differentiable vector fields.
Definition 2.1.1. Let b ∶ [0, T ] × ℝd → ℝd be a vector field. We say that X ∶ [0, T ] × ℝd → ℝd is
a regular Lagrangian flow of (2.1.1) if

(i) For a.e. x ∈ ℝd , the function t↦ X(t, x) is a solution of the ODE in the integral sense;
(ii) There exists a constant L > 0 (indipendent of t) such that

d(X(t, ⋅)−1(A)) ≤ Ld(A)

for every Borel set A ⊂ ℝd . The constant L is called compressibility constant of X.

25
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Remark 5. Condition (ii) in Definition 2.1.1 is equivalent to

∫ℝd
'(X(t, x))dx ≤ L∫ℝd

'(x)dx

for all measurable non-negative '.
For simplicity in this Section we only consider globally bounded vector fields. The extension to

more general growth conditions is not a problem, but makes the computations much longer. Therefore
we assume b ∈ W 1,p ∩ L∞, with p > 1. Moreover, we will omit to write sometimes the time
dependence; the complete assumption would be b ∈ L1tW 1,p

x ∩L∞t,x. Wewill consider these extensions
in the next sections. Finally, we remark that, differently from [29] and [4], we will require bounds on
the spatial divergence only to prove existence.

2.1.1 A strategy for uniqueness: the new integral quantity

When b(t, x) is Lipschitz continuous in x, uniformly in t, a simple way to get uniqueness is to apply
Gronwall’s Lemma to the estimate

d
dt
|X1(t, x) −X2(t, x)| ≤ |b(s,X1(s, x)) − b(s,X2(s, x))| ≤ L|X1(s, x) −X2(s, x)|, (2.1.2)

so that we have X1 = X2, for any X1, X2 solutions of the ODE with vector field b.
If b is only weakly differentiable in space, we need a different strategy. Let X1 and X2 be two

regular Lagrangian flows, associated to the vector fields b1 and b2. Given a small parameter � > 0
and a truncation radius r > 0, we can define the following (time dependent) quantity, which measures
the integral distance between the flows:

��(t) = ∫Br
log

(

1 +
|X1(t, x) −X2(t, x)|

�

)

dx. (2.1.3)

The truncation is necessary in order to make this integral convergent. We observe that, if X1 and
X2 are distinct regular Lagrangian flows, then there is non negligible set A ⊂ ℝd , such |X1(t, x) −
X2(t, x)| ≥  > 0 for some t ∈ [0, T ] and for all x ∈ A. Therefore

��(t) ≥ ∫Br∩A
log

(

1 +

�

)

dx = d(A ∩ Br) log
(

1 +

�

)

,

which yields
d

(

{x ∈ Br ∶ |X1(t, x) −X2(t, x)| ≥ }
)

≤
��(t)

log
(

1 + 
�

) . (2.1.4)

If the ratio on the right hand side goes to zero as � → 0, then we must have that X1 = X2 almost
everywhere. This is achieved if �� grows slower than log(1∕�) as � → 0. This is immediate if,
for instance, �� ≤ C . More in general from (2.1.4) we understand that a good strategy to prove
uniqueness is to provide upper estimates on the functional ��.

2.1.2 Upper bound for the integral quantity

The natural computation starts with a time differentiation, aimed at making the difference quotients
of the velocity appear. We observe that, if x ∈ Br, then Xi(t, x) ∈ Br+T ‖bi‖L∞ , which implies they
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are L1loc([0, T ] ×ℝd) and absolutely continuous in time (ACt). Hence we can differentiate as follows:

�′�(t) ≤ ∫Br

|b1(X1) − b2(X2)|
� + |X1 −X2|

dx

≤ ∫Br

|b1(X2) − b2(X2)|
� + |X1 −X2|

dx + ∫Br

|b1(X1) − b1(X2)|
� + |X1 −X2|

dx

≤ 1
� ∫Br

|b1(X2) − b2(X2)|dx + ∫Br
min

{

2‖b1‖L∞
�

;
|b1(X1) − b1(X2)|

|X1 −X2|

}

dx.

(2.1.5)

To this point, we have not used any regularity assumptions on the vector fields. Notice that, if b1 is
Lipschitz, uniqueness can be recovered bounding the difference quotient with the Lipschitz constant
and setting b1 = b2. However, we have a bound on the different quotient also in the case b1 ∈ W 1,p.
This is due by Theorem 5.34 of [8], which states that, for every b ∈ BV (ℝd) and for a.e. x, y ∈ ℝd ,
we have

|b(x) − b(y)| ≤ Cd|x − y| (MDb(x) +MDb(y)) , (2.1.6)
whereMf is the classical maximal function of a function f . Given f ∈ L1loc(ℝd ;ℝm), we define its
maximal function as

Mf (x) = sup
r>0

1
d(Br(x)) ∫Br(x)

|f (y)|dy, x ∈ ℝd . (2.1.7)

Similarly, when � is a ℝm-valued measure in ℝd with locally finite total variation, we define

M�(x) = sup
r>0

|�|(Br(x))
d(Br(x))

, x ∈ ℝd . (2.1.8)

Clearly the two definitions are consistent. Since Sobolev functions have the bounded variation prop-
erty, from (2.1.5) and (2.1.6) we understand that we need a bound on the L1 norm ofMDb, on the
ball Br. It is immediate to see that

‖Mf‖L∞ ≤ ‖f‖L∞ , (2.1.9)
whereas the analogue property involving L1, unfortunately, does not hold. Only the weak estimate

|||Mf |||M1 ≤ Cd,1‖f‖L1 (2.1.10)
holds, where the weak Lebesgue spaceM1(ℝd) is defined as the space of all measurable functions g
on ℝd such that

|||g|||M1 = sup
�>0

{

�d ({x ∶ |g(x)| > �})
}

<∞. (2.1.11)
Notice that ||| ⋅ |||M1 is not a norm, as it lacks the subadditivity, hence the notation with the three
bars. By interpolating (2.1.9) and (2.1.10) we can obtain the strong estimate

‖Mf‖Lp ≤ Cd,p‖f‖Lp , (2.1.12)
for every p > 1 (see Theorem 1 of [48] for a proof). We stress the fact that the strong estimate does
not holds for p = 1.

We now have the tools to create an upper bound on the the derivative of ��. Let Li be the com-
pressibility constant of the flow Xi. From (2.1.5) we get

�′�(t) ≤
L2
�
‖b1 − b2‖L1(Br+T ‖b̄‖L∞ ) + ∫Br

min
{

2‖b1‖L∞
�

;C
(

MDb1(X1) +MDb1(X2)
)

}

dx,

(2.1.13)
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and from (2.1.12) we estimate

∫Br
MDb(X1)dx ≤ Li ∫Br+T ‖b̄i‖L∞

MDb1(x)dx

≤ C‖MDb1‖Lp ≤ C‖Db1‖Lp .
(2.1.14)

Hens, for b1 ∈ W 1,p with p > 1 we deduce

�′�(t) ≤
C
�
‖b1 − b2‖L1x + C‖Db1‖Lpx , (2.1.15)

and so, since ��(0) = 0, we have

��(t) ≤
C
�
‖b1 − b2‖L1t (L1x) + C‖Db1‖L1t (Lpx), (2.1.16)

where the constant C depends on Li, p, ‖bi‖L∞ , R and T . Putting together this with (2.1.4) we
conclude

d
(

Br∩{|X1(t, ⋅) −X2(t, ⋅)| ≥ }
)

≤ C

� log
(

1 + 
�

)‖b1 − b2‖L1t (L1x) +
C

log
(

1 + 
�

)‖Db1‖L1t (Lpx).
(2.1.17)

This is the fundamental estimate from which many of the wellposedness results descend.

Uniqueness. Setting b1 = b2 in (2.1.17) we have, for every � > 0 and r > 0,

d
(

Br ∩ {|X1(t, ⋅) −X2(t, ⋅)| ≥ }
)

≤ C

log
(

1 + 
�

)‖Db1‖L1t (Lpx).

It suffices to let � → 0.

Stability. Consider b ∈ L1t (W 1,p
x ) and a sequence {bn} convergent to b inL1loc, equibounded inL∞.Assume that the regular Lagrangian flows X and Xn have equibounded compressibility constants.

Then we get
d

(

Br∩{|Xn(t, ⋅) −X(t, ⋅)| ≥ }
)

≤ C

� log
(

1 + 
�

)‖bn − b‖L1t (L1x,loc) +
C

log
(

1 + 
�

)‖Db‖L1t (Lpx) = I + II.

Given  , � > 0, we choose � > 0 so small that II ≤ �∕2. This fixes the quantity C
log(1+∕�) in I .Therefore we can find n̄ so large that I ≤ �∕2 for all n ≥ n̄. Hence we get that, given  > 0 and r > 0,

for every � > 0 we can find n̄ such that
d

(

Br ∩ {|Xn(t, ⋅) −X(t, ⋅)| ≥ }
)

≤ � ∀n ≥ n̄.

Thereby Xn converges to X locally in measure in ℝd . Since the flows are locally equibounded, it is
easy to check that Xn converges to X in L1loc.
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Compactness. Consider a sequence {bn} which is equibounded in L∞ ∩ L1t (W 1,p
x ). Assume that

there exist associated regular Lagrangian flowsXn with equibounded compressibility constants. Then
d

(

Br∩{|Xn(t, ⋅) −Xm(t, ⋅)| ≥ }
)

≤ C

� log
(

1 + 
�

)‖bn − bm‖L1t (L1x) +
C

log
(

1 + 
�

) = I + II,

where the constant C in II also depends on the equibounds on ‖Dbn‖L1t (Lpx). Proceeding as before,
for any � > 0 there is a � > 0 such that II ≤ �∕2, and for that � we find a n̄ such that I ≤ �∕2
for every n, m ≥ n̄. This implies that {Xn} is precompact locally in measure. Since Xn are locally
equibounded, we obtain also precompactness in L1loc.

Existence. Consider b ∈ L1t (W
1,p
x ) ∩ L∞. We need, for the existence, to assume bounds on the

divergence. For simplicity we take divb ∈ L∞. We want to use the compactness result, therefore
we regularize b by convolution in order to get a sequence bn of smooth vector fields, which are equi-
bounded in L1t (W 1,p

x ) ∩ L∞ with bounded divergence. In addition the classical flows Xn associated
to bn have equibounded compressibility constants, since we have the estimate

exp
[

−∫

t

0
‖[divbn]−‖L∞ds

]

≤ JXn(t, x) ≤ exp
[

∫

t

0
‖[divbn]+‖L∞ds

]

,

thanks to the following remark.
Remark 6. If b is regular, we have

d
dt
JX(t, x) = divbt(X(t, x))JX(t, x),

and this can be proved from the ODE
d
dt
DX = Dbt(X)DX.

2.2 Singular integrals and a new maximal function

2.2.1 Singular integrals

In the Section 2.3 we want to deal with vector fields whose gradient is a singular integral of an L1
function, in the space variable. In order to do this we need to give some definitions and present some
properties. Let  ′(ℝd) be the space of tempered distributions on ℝd and (ℝd) the Schwartz space.
Definition 2.2.1 (Singular kernel). We say that K is a singular kernel on ℝd if

(i) K ∈  ′(ℝd) and K̂ ∈ L∞;
(ii) K|ℝd⧵{0} ∈ L1loc(ℝ

d ⧵ {0}) and there exists a constant A ≥ 0 such that

∫
|x|>2|y|

|K(x − y) −K(x)|dx ≤ A

for every y ∈ ℝd .
We next give a sufficient cancellation, growth and regularity condition for kernelsK ∈ L1loc(ℝ

d⧵ {0})
so that the associated distribution is a singular kernel.
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Proposition 2.2.2. Consider a function K ∈ L1loc(ℝ
d ⧵ {0}) satisfying the following conditions:

(i) There exists a constant A ≥ 0 such that

∫
|x|>2|y|

|K(x − y) −K(x)|dx ≤ A for every y ∈ ℝd ;

(ii) There exists a constant A0 ≥ 0 such that

∫
|x|≤R

|x||K(x)|dx ≤ A0R for every R > 0;

(iii) There exists a constant A2 ≥ 0 such that
|

|

|

|

|

∫R1<x<R2
K(x)dx

|

|

|

|

|

≤ A2 for every 0 < R1 < R2 <∞.

Then K can be extended to a tempered distribution on ℝd which is a singular kernel, unique up to a
constant times a Dirac mass at the origin. Conversely, any singular kernel on ℝd has a restriction
on ℝd ⧵ {0} that satisfies conditions (i), (ii), (iii).

For our purpose we introduce a more regular class of kernels.
Definition 2.2.3. A kernel K is a singular kernel of fundamental type inℝd if the following properties
hold:

(i) K|ℝd⧵{0} ∈ C1(ℝd ⧵ {0});
(ii) There exists a constant C0 ≥ 0 such that

|K(x)| ≤
C0
|x|d

x ∈ ℝd ⧵ {0};

(iii) There exists a constant C1 ≥ 0 such that
|∇K(x)| ≤

C1
|x|d+1

x ∈ ℝd ⧵ {0};

(iv) There exists a constant A1 ≥ 0 such that
|

|

|

|

|

∫R1<|x|<R2
K(x)dx

|

|

|

|

|

≤ A1 for every 0 < R1 < R2 <∞.

These conditions imply in particular those of Proposition 2.2.2. Since K̂ ∈ L∞(ℝd) we may
consider the action of a singular kernel on L2 in Fourier variables. We state the following theorem,
the proof can be found in [48].
Theorem 2.2.4 (Calderón Zygmund). Let K be a singular kernel and define

Su = K ∗ u for u ∈ L2(ℝd),

in the sense of multiplication in the Fourier variable. Then for every 1 < p < ∞ we have the strong
estimate

‖Su‖Lp
(ℝd )

≤ Cd,p(A + ‖K̂‖L∞)‖u‖Lp(ℝd ), u ∈ Lp ∩ L2(ℝd), (2.2.1)
and for p = 1 the weak estimate

|||Su|||M1(ℝd ) ≤ Cd(A + ‖K̂‖L∞)‖u‖L1(ℝd ), u ∈ L1 ∩ L2(ℝd). (2.2.2)
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Corollary 2.2.5. The operator S can be extended to the wholeLp(ℝd) for any 1 < p <∞, with values
inLp(ℝd), and estimate (2.2.1) holds for every u ∈ Lp(ℝd). Moreover, the operator S can be extended
to the whole L1(ℝd), with values inM1(ℝd), and estimate (2.2.4) holds for every u ∈ L1(ℝd).

Definition 2.2.6. The operator S constructed in Corollary 2.2.5 is called the singular integral operator
associated to the singular kernel K.

When p = 1 the extension SM1 defined on L1 with values inM1 can induce some confusion, due
to the fact that a function inM1 is not generally integrable and hence it cannot define a distribution.
We can, however, define a tempered distribution SDu ∈  ′(ℝd) via the formula

⟨SDu, '⟩ = ⟨u, S̃'⟩ (2.2.3)
for every ' ∈ (ℝd). This is well defined, since for ' ∈ (ℝd), S̃' ∈ Hq(ℝd) ⊂ C0(ℝd), for
q > d∕2. Since SM1u is not locally integrable, one cannot identify the values of SDu as a distribution
and SM1u as anM1 function. Observe also that SDu ∈  ′(ℝd) can likewise be defined for u finite
measure on ℝd . Notice also that the definition in (2.2.3) is equivalent to the definition in Fourier
variables

ŜDu = K̂û

where we use that K̂ ∈ L∞ and û ∈ L∞.

2.2.2 Cancellations in maximal functions and singular integrals

We recall that the case W 1,1 was not covered by the analysis of the Section 2.1, due to the lack of
strong estimates for p = 1 for the maximal function. Indeed, (2.1.12) does not hold and only the
weak estimate (2.1.10) is available. We observe that a function in W 1,1 belongs also to the space
of functions whose gradient is a singular integral of an L1 function (simply taking the Dirac delta as
kernel), therefore even for this class of functions we do not have the strong estimate. Moreover, for this
class we have an additional problem, that is, we cannot even give meaning to the composition between
the (classical) maximal function and the gradient of b, since the last one is not locally integrable. As
a consequence, a "milder" maximal function is used in [15], called smooth maximal function, which
will allow such composition.

Given two singular kernels of fundamental type K1 and K2 with associated operators S1 and
S2, we can consider the composition S2S1 = S, where S is associated to the kernel defined by
K̂ = K̂1K̂2. The cancellations in the convolution K2 ∗ K1 allow S2S1 to be a well defined singular
operator. Therefore, S2S1 also satisfies the weak estimate (2.1.10). Notice that it is not possible to
get this estimate directly by composition, as S1u fails to be L1.

The next theorem states that such cancellations also occur in the composition of a maximal func-
tion with a singular integral operator. However, the classical maximal function is too "rough" for such
compositions, therefore we consider the smooth maximal function.
Definition 2.2.7. Given a family of functions {��}� ⊂ L∞c (ℝd), for every function u ∈ L1loc(ℝd) we
define the {��}-maximal function of u as

M{��}(u)(x) = sup
�
sup
">0

|

|

|

|

∫ℝd
��"(x − y)u(y)dy

|

|

|

|

= sup
�
sup
">0

|(��" ∗ u)(x)|. (2.2.4)

where
��"(x) =

1
"d
��

(x
"

)

.

In the case when u is a measure, we take {��}� ⊂ C∞c (ℝd) and define in the distributional sense
M{��}(u)(x) = sup

�
sup
">0

|⟨u, ��"(x − ⋅)⟩|.
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The smooth averages and the absence of the absolute value within the integral allows cancellations
that take place in the composition ofM{��} with operator S. This gives rise to a bounded composition
operatorM{��}S ∶ L1 →M1.
Theorem 2.2.8. Let K be a singular kernel of fundamental type, and let Su = K ∗ u, for every
u ∈ L2(ℝd). Let {��}� ⊂ C∞c (ℝ

d) be a family of kernels such that

spt�� ⊂ B1 and ‖��‖L1(ℝd ) ≤ Q1 for every �.

Then we have the following estimates.

(i) (a) There exists a constant Cd , depending on the dimension only, such that

|||M�� (Su)|||M1(ℝd ) ≤ CdQ1(C0 + C1 + ‖K̂‖∞)‖u‖L1(ℝd ) (2.2.5)
for every u ∈ L1 ∩ L2(ℝd).

(b) The estimate (2.2.5) holds also for all finite measures u ∈ (ℝd), where Su is defined
as a distribution

(ii) If Q2 = sup� ‖��‖L∞(ℝd ) is finite, then there exists Cd such that

‖M�� (Su)‖L2(ℝd ) ≤ CdQ2‖K̂‖∞‖u‖L2(ℝd ).

2.3 Quantitative estimates inW 1,1 and for vector fields whose gradient
is singular integral of an L1 function

We present an extension of the wellposedness result of Section 2.1 to the case of vector fields whose
derivative is a singular integral of anL1 function. As previously observed, this class contains trivially
W 1,1. This extension is due to Bouchut and Crippa in [15].

Differently from Section 2.1, where we chose to perform the computations in the simpliest case
b ∈ L∞, here we consider more general growth conditions. We recall that, one of the main advantages
of taking a bounded vector field was that the flow was locally bounded (x ∈ Br implies |X(t, x)| ≤
r + T ‖b‖∞) and absolutely continuous in time (ACt) for a.e. x. This in turn implies that the integral
quantity �� was well defined and we could differentiate in time inside the integral exploiting the weak
chain rule. In order to be able to perform similar computations when b is not globally bounded, we
need to consider sets where the trajectories of the flows are bounded and integrate only over these
sets.
Definition 2.3.1 (Sublevels). Let X ∶ [t, T ] × ℝd → ℝd be a measurable map. For every � > 0 we
define the sublevels

G� =
{

x ∈ ℝd ∶ |X(s, x)| ≤ � for almost all s ∈ [t, T ]} . (2.3.1)
Therefore, if we redefine the functional �� as

��(s) = ∫Br∩G�∩Ḡ�
log

(

1 +
|X(s, x) − X̄(s, x)|

�

)

dx,

we have that ��(s) is finite for all s and we can apply the chain rule when we differentiate inside the
integral. Clarified this point, we observe that from this truncation comes another problem. Even in
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the case that we are able to find proper bounds on ��, we need to ensure that the complement of the
sublevels (called accordingly superlevels) become smaller, as �→ ∞. Indeed, (2.1.4) becomes

d
(

{x ∈ Br ∶ |X(t, x) − X̄(t, x)| ≥ }
)

≤
��(t)

log
(

1 + 
�

) + d(Br ⧵ G�) + d(Br ⧵ Ḡ�). (2.3.2)

In Lemma 2.3.3 we will see thatd(Br⧵G�) converges to 0, if we consider, for instance, the following
growth condition.

(R1) b(s, x) can be decomposed as
b(s, x)
1 + |x|

= b̃1(s, x) + b̃2(s, x),

with
b̃1 ∈ L1((0, T );L1(ℝd)) and b̃2 ∈ L1((0, T );L∞(ℝd)).

We want to give a new definition of flow of an ODE, which makes sense and allows computations, in
the contest of (R1). Indeed, notice that the general Definition 2.1.1 we do not know how to differenti-
ate the flow. When bwas bounded however, we could differentiate in a classical way, for almost every
x, since X was ACt. If b is not bounded, we do not even have that X is locally integrable, therefore
the standard notion of distributional solution would not make sense. We introduce then the notion of
regular Lagrangian flows, in the renormalized sense.

We denote by L0(ℝd) the space of real-valued measurable functions on ℝd , defined a.e. with
respect to the Lebesgue measure, endowed with the convergence in measure. We denote by L0loc(ℝd)
the same space, when we mean that it is endowed with the local convergence in measure. We denote
also by(E, F ) the space of bounded functions fromE to F . In addition, we denote by logL(ℝd) the
space ofmeasurable functions such that ∫ℝd log(1+|u(x)|)dx is finite, and the local space logLloc(ℝd)
is defined accordingly.
Definition 2.3.2 (Regular Lagrangian flow). If b is a vector field satisfying (R1), then for fixed t ∈
[0, T ), a map

X ∈ C([t, T ];L0loc(ℝ
d)) ∩ ([t, T ]; logLloc(ℝd)) (2.3.3)

is a regular Lagrangian flow in the renormalized sense relative to b starting at time t if we have the
following:

(i) The equation
)s(�(X(s, x))) = �′(X(s, x))b(s,X(s, x)) (2.3.4)

holds in′((t, T )×ℝd), for every function � ∈ C1(ℝd ;ℝ) that satisfies |�(z)| ≤ C(1+log(1+
|z|)) and |�′(z)| ≤ C

1+|z| for all z ∈ ℝd ;
(ii) X(t, x) = x for d-a.e. x ∈ ℝd ;
(iii) There exists a constant L ≥ 0 such that ∫ℝd '(X(s, x))dx ≤ L ∫ℝd '(x)dx for all measurable

' ∶ ℝd → [0,∞).
Remark 7. Note that (R1) enables the right hand side of (2.3.4) to be in L1((t, T );L1loc(ℝd)). Inte-
grating (2.3.4) in s, this guarantees a bound on X(s, x) in logLloc(ℝd) (as stated in (2.3.3)).

We remark that by now this is the usual definition of flows for weakly differentiable vector fields
satisfying the general growth condition (R1).

The following lemma gives an estimate for the decay of the superlevels of a regular Lagrangian
flow.
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Lemma 2.3.3 (Estimate of the superlevels). Let b ∶ (0, T ) × ℝd → ℝd be a vector field satisfying
(R1) and letX ∶ [t, T ] ×ℝd → ℝd be a regular Lagrangian flow relative to b starting at time t. with
compressibility constant L. Then for all r, � > 0

d(Br ⧵ G�) ≤ g(r, �),

where the function g depends only on L, ‖b̃1‖L1((0,T );L1(ℝd )) and ‖b̃2‖L1((0,T );L∞(ℝd )) and satisfies
g(r, �)→ 0 for r fixed and �→∞.

Proof. The proof can be found [15] or [23], but we write it for completeness.
Step 1. Consider �(z) = log(1 + |z|) and the C1 approximations �"(z) = log(1 +

√

|z|2 + "2),
which verify the bounds in condition (i) of Definition 2.3.2.

Step 2. Conditions (i) and (ii) of Definition 2.3.2 imply that �"(X) is an integral solution of the
ODE, for a.e. x, that is

�"(X(s, x)) = �"(X(t, x)) + ∫

s

t
�′"(X(�, x))b(�,X(�, x))d� for all s ∈ [t, T ], for a.e. x ∈ ℝd .

(2.3.5)
Step 3. From (2.3.5) follows

�"(X(s, x)) ≤ �"(X(t, x)) + ∫

s

t

|b(�,X(�, x))|
1 + |X(�, x)|

d�.

Letting "→ 0 we have that, for all s ∈ [t, T ] and a.e. x ∈ ℝd ,

log(1 + |X(s, x)|) ≤ log(1 + |x|) + ∫

s

t

|b(�,X(�, x))|
1 + |X(�, x)|

d�. (2.3.6)

Step 4. Integrating over x ∈ Br we get that, for all s ∈ [t, T ],

∫Br
log

(

1 + |X(s, x)|
1 + r

)

dx ≤ L‖b̃1‖L1((0,T );L1(ℝd )) + d(Br)‖b̃2‖L1((0,T );L∞(ℝd )), (2.3.7)

from which trivially follows

∫Br
ess sup
t≤s≤T

log
(

1 + |X(s, x)|
1 + r

)

dx ≤ L‖b̃1‖L1((0,T );L1(ℝd )) + d(Br)‖b̃2‖L1((0,T );L∞(ℝd )).

Step 5. Easily we get

∫Br
ess sup
t≤s≤T

log
(

1 + |X(s, x)|
1 + r

)

dx ≥ d(Br ⧵ G�) log(1 + �) − d(Br) log(1 + r),

proving the thesis with

g(r, �) =
L‖b̃1‖L1((0,T );L1(ℝd )) + d(Br)‖b̃2‖L1((0,T );L∞(ℝd )) + d(Br) log(1 + r)

log(1 + �)
.

As announced before, we are interested in the case when the space derivatives of the vector field
can be expressed as singular integrals of L1 functions, with singular kernel of fundamental type as in
Definition 2.2.3. We thus assume that in addition to (R1) b satisfies the following assumption.
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(R2)

)jb =
m
∑

k=1
Sjkgjk in ′((0, T ) ×ℝd)

where Sjk are singular integral operators of fundamental type in ℝd and the functions gjk are
in L1((0, T ) ×ℝd) for every j = 1, ..., d and k = 1, ..., m.

We additionally assume that
(R3)

b ∈ Lploc((0, T ) ×ℝd) for some p > 1.
We recall that in Section 2.2, in order to bound ��(t), we need an estimate of the difference

quotient which is given by the classical maximal function of Db. It tuns out that the same estimate
hols true also with the smooth maximal function in the regularity of (R2).
Proposition 2.3.4 (Estimate of difference quotients). Let f ∈ L1loc(ℝ

d) and assume that for every
j = 1, ..., d we have

)jf =
m
∑

k=1
Rjkgjk

in the sense of distributions, where Rjk are singular integrals operators of fundamental type in ℝd

and gjk ∈ (ℝd) for j = 1, ..., d and k = 1, ..., m, and where Rjkgjk is defined in the sense of
tempered distributions. Then there exists a nonnegative function V ∈ M1(ℝd) such that, for almost
every x, y ∈ ℝd , there holds

|f (x) − f (y)| ≤ |x − y|
(

V (x) + V (y)
)

,

where V is given by

V ∶= (R, g) =
d
∑

j=1

m
∑

k=1
M{Υ�,j ,�∈Sd−1}(Rjkgjk) (2.3.8)

and Υ�,j , for � ∈ Sd−1 and j = 1, ..., d, is a family of smooth functions explicitly constructed within
the proof.

With the idea of creating an upper bound for��(t), we need function V (x) of the previous proposi-
tion to be locally integrable. This, however, is not true. Point (i)(a) of Theorem 2.2.8 tells us only that
V belongs to the weak Lebesgue spaceM1(ℝd). For this issue, the following interpolation Lemma
will be useful.

We have defined already, in (2.1.11), the spaceM1. More in general we can defineMp, for p > 1.
Definition 2.3.5. Let u be a measurable function defined on an open setΩ ⊂ ℝd . For any 1 ≤ p <∞
we set

|||u|||pMp(Ω) = sup�>0

{

�pd({x ∈ Ω ∶ |u(x)| > �})
}

,

and we define theweak Lebesgue spaceMp(Ω) as the space consisting of all u such that |||u|||pMp(Ω) <
∞. By convention, for p = ∞ we setM∞(Ω) = L∞(Ω).

The Lemma below allows to get an upper bound on the L1 norm of a function u, provided that it
belongs toM1 ∩Mp for some p > 1. It also shows that this bound depends only logarithmically on
theMp pseudonorm. This implies that functions inM1 are not "too far" from being in L1. Indeed
we have in general only the inclusion L1 ⊂ M1, but not the viceversa.
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Lemma 2.3.6 (Interpolation Lemma). Let u ∶ Ω → [0,∞) be a nonnegative measurable function,
where Ω ⊂ ℝd has finite measure. Then for every 1 < p <∞, we have the interpolation estimate

‖u‖L1(Ω) ≤
p

p − 1
|||u|||M1(Ω)

[

1 + log
(

|||u|||Mp(Ω)

|||u|||M1(Ω)
d(Ω)1−

1
p

)]

.

Proof. See [15].
We also state a crucial lemma on the characterization of a uniformly integrable family of functions.

It says that, up to a reminder in L2, uniformly equiintegrable sequences of functions have arbitrarily
small norms in L1.
Lemma 2.3.7 (Equi-integrability). Consider a family {'}i∈I ⊂ L1(Ω) which is bounded in L1(Ω).
Then this family is equi-integrable if and only if for every " > 0, there exists a constant C" and a
Borel set A" ⊂ Ω with finite measure such that for every i ∈ I one can write

'i = '1i + '
2
i ,

‖'1i ‖L1(Ω) ≤ " supp('2i ) ⊂ A", ‖'2i ‖ ≤ C".
(2.3.9)

We are now ready to state the main Theorem of [15].
Theorem 2.3.8. [Fundamenta estimate for flows] Let b and b̄ be two vector fields satisfying assump-
tion (R1), and assume that b also satisfies assumptions (R2) and (R3). Fix t ∈ [0, T ) and letX and X̄
be regular Lagrangian flows starting at time t associated to b and b̄ respectively, with compressibility
constants L and L̄. Then the following holds. For every  > 0, r > 0 and for every � > 0 there exists
� > 0 and C,r,� > 0 such that

d
(

Br ∩ {|X(s, ⋅) − X̄(s, ⋅)| > }
)

≤ C,r,�‖b − b̄‖L1((0,T )×B� + � (2.3.10)
for all s ∈ [t, T ]. The constants � and C,r,� also depend on:

• The equi-integrability in L1((0, T );L1(ℝd)) of the functions gjk associated to b as in (R2),

• The norms of the singular integral operators S ijk, associated to b as in (R2) (i.e. the constants
C0 + C1 + ‖K̂‖∞),

• The norm in Lp((0, T ) × B�) of b,

• TheL1((0, T );L1(ℝd))+L1((0, T );L∞(ℝd)) norms of the decomposition of b and b̄ as in (R1),

• The compressibility constants L and L̄.

Remark 8. As for the corollaries concerning wellposedness of the flow, they follow directly from the
fundamental estimate (2.3.10) as in Section 2.1.

In order to improve the readability of the following estimates, we will use the notation "≲" to
denote an estimate up to a constant only depending on absolute constants and on bounds assumed in
Theorem 2.3.8, and the notation "≲�" to mean that the constant could also depend on the truncation
parameter �.
Proof. For any �, � > 0, s ∈ [t, T ], let

��(s) = ∫Br∩G�∩Ḡ�
log

(

1 +
|X(s, x) − X̄(s, x)|

�

)

dx, (2.3.11)
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where G� and Ḡ� are the sublevels of X and X̄. Following the line of computation (2.1.5) we have

�′�(s) ≤
L̄
�
‖b(s, ⋅) − b̄(s, ⋅)‖L1(B�)

+ ∫Br∩G�∩Ḡ�
min

{

|b(s,X(s, x))| + |b(s, X̄(s, x))|
�

;
|b(s,X(s, x)) − b(s, b̄(X̄(s, x))|

|X(s, x) − X̄(s, x)|

}

dx.

Integrating over s ∈ (t, �) and applying Proposition 2.3.4 for almost every s, we have existence of a
function (S, g) ∶= V ∈M1(ℝd) (defined as in (2.3.8)) so that

��(�) ≤
L̄
�
‖b − b̄‖L1((t,�)×B�)

+ ∫

�

t ∫Br∩G�∩Ḡ�
min

{

|b(s,X(s, x))| + |b(s, X̄(s, x))|
�

;V (s,X(s, x)) + V (s, X̄(s, x))
}

dxds.

Fix " > 0. We apply Lemma 2.3.7 to the finite family gjk ∈ L1((0, T ) × ℝd). this gives a constant
C" and a set of finite measure A" such that for each j = 1, ..., d and k = 1, ..., m,

gjk(s, x) = g1jk(s, x) + g
2
jk(s, x),

with
‖g1jk‖L1((0,T )×ℝd ) ≤ ", supp(g2jk) ⊂ A", ‖g2jk‖L2((0,T )×ℝd ) ≤ C". (2.3.12)

Then we exploit subadditivity of V to get
V = (S, g) = (S, g1 + g2) ≤ (S, g1) + (S, g2) = V 1 + V 2.

Plugging this into the integral gives

��(�) ≤
L̄
�
‖b − b̄‖L1((t,�)×B�)

+ ∫

�

t ∫Br∩G�∩Ḡ�
min

{

|b(s,X(s, x))| + |b(s, X̄(s, x))|
�

;V 1(s,X(s, x)) + V 1(s, X̄(s, x))
}

dxds

+ ∫

�

t ∫Br∩G�∩Ḡ�
min

{

|b(s,X(s, x))| + |b(s, X̄(s, x))|
�

;V 2(s,X(s, x)) + V 2(s, X̄(s, x))
}

dxds

= L̄
�
‖b − b̄‖L1((t,�)×B�) + I1 + I2.

(2.3.13)
We can disregard the first element of the minimum, change variable and estimate the second integral
by

I2 ≤ (L + L̄)∫

�

t
ds∫Br∩G�∩Ḡ�

V 2(s, x)dx ≤ (L + L̄)[(� − t)d(B�)]1∕2‖V 2
‖L2((t,�)×ℝd )

≤ (L + L̄)P2[(� − t)d(B�)]1∕2‖g2‖L2((t,�)×ℝd ) ≲� C",
(2.3.14)

where in the last line we have applied Theorem 2.2.8 to the operator V 2 and the equiintegrability
bound (2.3.12) to g2. Applying Theorem 2.2.8 to V 1 and (2.3.12) to g1 we get

|||V 1
|||M1((t,�)×ℝd ≤ P1‖g

1
‖L1((t,�)×ℝd ) ≲ ". (2.3.15)

We apply now the Interpolation Lemma 2.3.6 to the function

'(s, x) = min
{

|b(s,X(s, x))| + |b(s, X̄(s, x))|
�

;V 1(s,X(s, x)) + V 1(s, X̄(s, x))
}
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to estimate I1. After changing variable X(s, x)↦ x, we get

I1 = ‖'‖L1((t,�)×(Br∩G�∩Ḡ�)) ≲d,p ‖g
1
‖L1((t,�)×ℝd )

[

1 + log

(

‖b‖Lp((t,�)×B�)
‖g1‖L1((t,�)×ℝd )�

)]

.

Plugging this into (2.3.13) and using (2.3.14) and (2.3.15), we deduce that

��(�) ≲�,d,p
L̄
�
‖b − b̄‖L1((t,�)×B�) + C" + "

[

1 + log
(

‖b‖Lp((t,�)×B�)
"�

)]

. (2.3.16)

Arguing as in (2.1.4) we derive the upper bound

d
(

{x ∈ Br ∶ |X(�, x) − X̄(�, x)| ≥ }
)

≤
��(�)

log
(

1 + 
�

) + d(Br ⧵ G�) + d(Br ⧵ Ḡ�). (2.3.17)

Combining this with (2.3.16) we obtain

d
(

{x ∈ Br ∶ |X(�, x) − X̄(�, x)| ≥ }
)

≲�,d,p
L̄

� log
(

1 + 
�

)‖b − b̄‖L1((t,�)×B�)

+
C"

log
(

1 + 
�

) +
"
[

1 + log
(

‖b‖Lp((t,�)×B�)
"�

)]

log
(

1 + 
�

) + d(Br ⧵ G�) + d(Br ⧵ Ḡ�)

= 1) + 2) + 3) + 4) + 5).

(2.3.18)

We fix � > 0. To conclude we chose � > 0 large so that by Lemma 2.3.3 4)+ 5) ≤ �∕2. Then we can
find " > 0 small enough so that 3) ≤ �∕4 for every 0 < � ≤  (notice that 3) is uniformly bounded as
� → 0). Since at this point � and " (and thus C") are fixed, we choose � > 0 small enough in such a
way that 2) ≤ �∕4. By setting

C,r,� =
L̄

� log
(

1 + 
�

) ,

where � has been chosen according to the above discussion, the proof is completed.

2.4 Quantitative estimates in the anisotropic case

In this Section we will describe the main idea of paper [11], where wellposedness of a regular La-
grangian flow is proved under a specific anisotropic regularity of the vector field, which means that
the (weak) regularity has a different character with respect to different directions in space. We split
ℝN asℝN = ℝn1×ℝn2 with variables x1 ∈ ℝn1 and x2 ∈ ℝn2 . We denote byD1 = Dx1 the derivativewith respect to the first n1 variables x1, and by D2 = Dx2 the derivative with respect to the last n2
variables x2. Accordingly, we denote b = (b1, b2)(s, x1, x2). For X(s, x1, x2) a regular Lagrangian
flow associated to b we denote X = (X1, X2)(s, x1, x2).

We are going to assume thatD1b2 is "less regular" thanD1b1,D2b1,D2b2: the derivativeD1b2 is
a singular integral of a measure, whereas the other derivatives are singular integrals of L1 functions.
This is made precise as follows:
(R2) Assume that

Db =
(

D1b1 D2b1
D1b2 D2b2

)

=
(

1S1p 2S2q
3S3m 4S4p

)

,
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where the submatrices have the representation
i, j ∈ {1, ..., n1} ∶ i ∈ {1, ..., n1}, j ∈ {n1 + 1, ..., N} ∶
(D1b1)ij =

∑m
k=1 

1i
jk(s, x2)S

1i
jkp

i
jk(s, x1) (D2b1)ij =

∑m
k=1 

2i
jk(s, x2)S

2i
jkq

i
jk(s, x1)

i ∈ {n1 + 1, ..., N}, j ∈ {1, ..., n1} ∶ i ∈ {n1 + 1, ..., N} ∶
(D1b2)ij =

∑m
k=1 

3i
jk(s, x2)S

3i
jkm

i
jk(s, x1) (D2b2)ij =

∑m
k=1 

4i
jk(s, x2)S

4i
jkr

i
jk(s, x1).

In the above assumption we have that:
- S1ijk, S2ijk, S3ijk, S4ijk are singular integrals operators associated to singular kernels of fundamental
type in ℝn1 ,

- the functions pijk, qijk, rijk belong to L1((0, T );L1(ℝn1)),
- mijk ∈ L

1((0, T );(ℝn1)),
- the functions 1ijk, 2ijk, 3ijk, 4ijk belong to L∞((0, T );Lq(ℝn2)) for some q > 1.

We have denote byL1((0, T );(ℝn1)) the space of all functions t↦ �(t, ⋅) taking values in the space
(ℝn1) of finite signed measures on ℝn1 such that

∫

T

0
‖�(t, ⋅)‖(ℝn1 )dt <∞.

We can shorten the notation of (R2) as follows:

Db ∈

(

(Sx ∗ L1x)L
q
loc,y (Sx ∗ L1x)L

q
loc,y

(Sx ∗x)L
q
loc,y (Sx ∗ L1x)L

q
loc,y

)

. (2.4.1)

Remark 9. We anticipate now that the Vlasov-Poisson equation, which we will present in the follow-
ing Chapter, has a similar structure to the one of assumption (R2). This equation indeed motivates
the setting of paper [11].

We recall shortly the main steps to prove uniqueness in the frameworks of Section 2.1 and 2.3.
The key point is to derive upper bounds on the functional ��(s), such that they blow up in � slower
than log(1∕�) as � → 0 (see (2.1.4)). Differentiating in time the functional we get

�′�(s) ≤ ∫
|b(X) − b(X̄)|
� + |X − X̄|

dx ≤ ∫ min
{

2‖b‖∞
�

;
|b(X) − b(X̄)|

|X − X̄|

}

dx.

Hence, when b isW 1,p with p > 1, the estimate of the difference quotient as
|b(X) − b(X̄)|

|X − X̄|

≲ MDb(X) +MDb(X̄),

toghether with the strong estimate for the maximal function, imply an upper bound on ��(s) indipen-
dent on �. The case p = 1 has the issue that only a weak estimate for the maximal function holds.
However, the Interpolation Lemma allows us to interpolate this weak estimate and the L∞ estimate
on the first term in the minimum to get an upper bound for ��(s), This bound unfortunately is of the
order of log(1∕�), which is not sufficient to conclude (see (2.1.4)). Therefore we have to play with
parameters: up to an L2-remainder, the L1-norm of Db can be assumed to be arbitrarily small (we
exploit here equiintegrability bounds on Db ∈ L1). This allows to conclude, noticing that the L2
part can be treated as in the case W 1,p (p > 1). Considering smooth maximal function and more
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sophisticated tools of harmonic analysis, it is possible also to treat the case Db ∈ S ∗ L1 with the
same strategy.

As already mentioned, we are not able to include the case when Db is a singular integral of a
measure, due to the lack of equiintegrability. However, ifDb has only a component which is singular
integral of a measure, the idea of [11] is to define an anisotropic functional, which can "weight"
differently the two (groups of) directions according to the different degree of regularity. This can be
done by considering, instead of ��, a functional depending on two parameters �1 and �2, namely

��1,�2(s) = ∫ log

(

1 +
|

|

|

|

|

(

|X1(s, x) − X̄1(s, x)|
�1

,
|X2(s, x) − X̄2(s, x)|

�2

)

|

|

|

|

|

)

dx. (2.4.2)

Following the same strategy as before (estimate of the difference quotients and interpolation in the
minimum in ��(s)), we derive the following bound, which replaces (2.3.16) in this context:

��1,�2(s) ≲
[

�1
�2
‖D1b2‖ +

�2
�1
‖D2b1‖L1 + ‖D1b1‖L1 + ‖D2b2‖L1

]

log
(

1
�2

)

.

Observe that ‖D2b1‖L1 , ‖D1b1‖L1 and ‖D2b2‖L1 can be assumed to be small, by the equiintegrability
argument as in [15]. This is however not the case for ‖D1b2‖. But we can exploit the presence of
the coefficient �1∕�2 multiplying this term: both �1 and �2 have to be sent to zero, but we can do it
with �1 ≪ �2, so to have ��1,�2 small enough.

We state the main Theorem of [11] without proof. Indeed, the proof involves many technical
difficulties, which require, for instance, a definition of an anisotropic smooth maximal function, an
anisotropic estimate of the difference quotient and appropriate bounds on this new maximal function.
Moreover, the thing that interests the author the most, is the idea of anisotropic functional ��1,�2 ,which we have introduced in the argument above. In the papers presented in Chapter 4 and 5 we
exploit indeed the same functional. There, we will explain in details how to "play" with �1, �2 and all
the other parameters involved in the fundamental estimate for flows, in order to gain wellposedness.

Theorem 2.4.1. Let b and b̄ be two vector fields satisfying assumption (R1), and assume that b also
satisfies assumptions (R2) and (R3). Fit t ∈ [0, T ) and let X and X̄ be regular Lagrangian flows
starting at time t associated to b and b̄ respectively, with compression constants L and L̄. Then the
following holds. For every  > 0, r > 0 and for every � > 0 there exists � > 0 and C,r,� > 0 such
that

d
(

Br ∩ {|X(s, ⋅) − X̄(s, ⋅)| > }
)

≤ C,r,�‖b − b̄‖L1((0,T )×B� + �

for all s ∈ [t, T ]. The constants � and C,r,� also depend on:

• The equi-integrability in L1((0, T );L1(ℝd)) of the functions p, q, r, as well as the norm in
L1((0, T );(ℝn1)) of m (where p, q, r and m are associated to b as in (R2),

• The norms of the singular integral operators S ijk, as well as the norms in L
∞((0, T );Lq(ℝn2))

of  ijk (associated to b as in (R2)),

• The norm in Lp((0, T ) × B�) of b,

• TheL1((0, T );L1(ℝd))+L1((0, T );L∞(ℝd)) norms of the decomposition of b and b̄ as in (R1),

• The compressibility constants L and L̄.
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Corollaries and transport equation. We underline the fact that, in all three regularity settings
analyzed in this Chapter, we have wellposedness of the regular Lagrangian flow and of the Lagrangian
solution to the continuity and transport equations follow. The proofs can be found in [15] for the
specific setting, and can be adopted easily to the other two cases. In particular we obtain:

• Uniqueness of the regular Lagrangian flow associated to a vector field satisfying (R1), (R2)
and (R3,

• Stability (with an esplicit rate) for a sequence Xn of regular Lagrangian flows associated to
vector fields bn, that converge inL1([0, T ]×ℝd) to a vector field satisfying (R1), (R2) and (R3),
under the assumption that the decompositions of bn in (R1) and the compressibility constants
of Xn satisfy uniform bounds,

• Compactness for a sequence Xn of regular Lagrangian flows associated to vector fields bn sat-
isfying (R1), (R2) and (R3) with suitable uniform bounds,

• Existence of a regular Lagrangian flow associated to a vector field satisfying (R1), (R2) and
(R3) and such that [div]− ∈ L1((0, T );L∞(ℝd)),

• Lagrangian solutions to the continuity and transport equations with a vector field b satisfy-
ing (R1), (R2) and (R3) and divb ∈ L1((0, T );L∞(ℝd)) are well defined and stable. These
solutions are in particular solutions in the renormalized sense.

The last item is somehow the analog of the main result in DiPerna-Lion, but for Lagrangian
solutions. We notice that wellposedness results for the flow can be used to prove wellposedness of
the PDE. Lagrangian solutions of the transport equation are defined as superposition of the initial
data with the regular Lagrangian flow:

u(t, x) = u0(X(0, t, x)).

This is of course equal to the classical solution in the case of smooth data.
Note that it is not possible in general to exclude non-uniqueness for renormalized or distributional

solutions. It may happen that several weak solutions exist, with only one associated to the Lagrangian
flow.
Remark 10. In Chapter 4wewill prove existence of Lagrangian solutions to theVlasov-Poisson equa-
tion in a particular anisotropic setting. Uniqueness, unfortunately, does not follow from the corollary
above, because of the non-linearity of Vlasov-Poisson.
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Chapter 3

Vlasov-Poisson system

3.1 Introduction and physical meaning

The Vlasov-Poisson system belongs to a class of partial differential equations known as kinetic equa-
tions. The purpose of kinetic equations is to model a dilute particle gas at an intermediate scale
between the microscopic scale and the hydrodynamic scale. With dilute particle gas we mean any
system made of a large number of particles (like a gas or a plasma), so that it can be trated as a con-
tinuum. Therefore, a description of the position and of the velocity of each particle is irrelevant, but
the description cannot be reduced to the computation of an average velocity at any time t ∈ ℝ and
any position x ∈ ℝd . Kinetic equations take into account more than one possible velocity at each
point, and the description is done at a level of the phase space (at a statistical level) by a distribution
function f (t, x, v). A minimal assumption that one can make on the distribution function is

f (t, ⋅, ⋅) ∈ L1loc
(

ℝd
x;L

1(ℝd
v
))

,

or at least that f (t, ⋅, ⋅) is a finite measure on K ×ℝd
v , for any compact set K ⊂ ℝd . This assumption

means that a bounded domain in physical space contains only a finite amount of matter. Notice that
f can be seen as an approximation of the true density of the gas in phase space (on a scale which is
much larger than the typical distance between particles), or it can reflects our lack of knowledge of
the true positions of particles, i.e. f (t, x, v)dxdv is the probability of finding particles in an element
of volume dxdv.

When the collisions between particles are negligible, f has to be constant along the characteristcs
(X(t), V (t)) in the phase space given by Newton’s law:

Ẋ = dX
dt

= V , V̇ = dV
dt

= F (t, X(t)),

where F is the force that moves the particles, so that we have
0 = d

dt
f (t, X(t), V (t)) = )tf + V (t) ⋅ ∇xf + F (t, X(t)) ⋅ ∇vf.

Therefore we can say that a collision-less system of particles can be modeled by the transport equation
)tf + v ⋅ ∇xf + F (t, x) ⋅ ∇vf = 0.

In addition, the force F can derive from an internal interaction potential, namely F = ∇xU . This is
the case of the Vlasov-Poisson system, representing a collision-less plasma, where the force F is self
induced, depending on an electric potential which in turn depends on the solution itself:

F = ∇xU, −ΔU = �, where � = ∫ fdv (3.1.1)

43
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and  ∈ {−1, 1} is a parameter which models the repulsive ( = 1) or attractive ( = −1) nature of
particles. The second equation in (3.1.1) is the Poisson equation (hence the name Vlasov-Poisson),
whose solution is U = 1

|⋅|
∗ �, for d = 3, and U = − log |x| ∗ �, for d = 2. Thus, for d = 2, 3, the

Vlasov-Poisson system can be written as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

)tf + v ⋅ ∇xf + E ⋅ ∇vf = 0 ,

E(t, x) =  ∫ x−y
|x−y|d �(t, y) dy

�(t, x) = ∫ f (t, x, v) dv ,

(3.1.2)

where f ∶ ℝ+ × ℝd × ℝd → ℝ+ stands for the non-negative density of particles in a plasma under
the effect of a self-induced field E, while � ∶ ℝ+ × ℝd → ℝ+ is the spatial density. From a physical
viewpoint, the repulsive case represents the evolution of charged particles in presence of their self-
consistent electric field and it is used in plasma physics or in semi-conductor devices. The attractive
case describes the motion of galaxy clusters under the gravitational field with many applications in
astrophysics. In this and in the next chapters we consider mainly the repulsive case, by fixing  = 1
in (3.1.2).

In the last decades the Vlasov-Poisson system (3.1.2) has been largely investigated. Our focus is
in particular on the Cauchy problem. Existence of classical solutions under regularity assumptions on
the initial data goes back to Iordanski [34] in dimension one and to Okabe and Ukai [43] in dimension
two. The three dimensional case has been addressed first by Bardos and Degond [10] for small initial
data, and then extended to a more general class of initial plasma densities by Pfaffelmoser [45] and
by Lions and Perthame [36]. Improvements in three dimensions have been obtained in [47, 50, 19,
39, 21]. Global existence of weak solutions has been studied by Arsenev [9] for bounded initial data
with finite kinetic energy, while the global existence of renormalized solutions is due to Di Perna and
Lions [29], assuming finite total energy and f0 ∈ L logL(ℝ3 ×ℝ3). The latter assumption has been
recently relaxed to f0 ∈ L1(ℝ3 ×ℝ3) in [6] and [12].

One might wonder what happens when f0 ∉ L1(ℝd ×ℝd). We can assume for instance f0 to be
the sum of an integrable bounded plasma density and a Dirac mass. This is equivalent to studying the
Cauchy problem associated with the following system:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

)tf + v ⋅ ∇xf + (E + F ) ⋅ ∇vf = 0 ,

E(t, x) = ∫ x−y
|x−y|d

�(t, y) dy ,

�(t, x) = ∫ f (t, x, v) dv ,

F (t, x) = x−�(t)
|x−�(t)|d

,

(3.1.3)

where the singular electric field F ∶= F (t, x) is induced by a point charge located at a point �(t),
whose evolution is given by the Newton equations:

⎧

⎪

⎨

⎪

⎩

�̇(t) = �(t) ,

�̇(t) = E(t, �(t)) .
(3.1.4)

For every (x, v) ∈ ℝd × ℝd , we denote by f0(x, v) = f (0, x, v) and by (�0, �0) = (�(0), �(0))
respectively the initial density and initial state of the point charge in the phase space ℝd × ℝd . The
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system (3.1.3)-(3.1.4) can be formally rewritten in the form (3.1.2) for the total density f (t) + ��(t)⊗
��(t).

The model (3.1.3)–(3.1.4) has been recently introduced by Caprino and Marchioro in [17], where
they have shown global existence and uniqueness of classical solutions in two dimensions. This result
has been extended to the three dimensional case in [40] by Marchioro, Miot and Pulvirenti. Both [17]
and [40] require that the initial plasma density does not overlap the point charge. This assumption
has been relaxed in [28], where weak solutions of the system (3.1.3)–(3.1.4) have been obtained for
initial data which may overlap the point charge, but do have to decay close to it. The price to pay is
that the solution is no longer known to be unique and Lagrangian.

Let us make precise what we mean by weak solution and Lagrangian (or classical) solution. For
the Vlasov-Poisson system without point charge a weak solution is defined, as usual, in the sense
of distributions. In the system with point charge we call weak solution a couple (f, �) such that the
first equation in (3.1.3) is satisfied in the sense of distributions and such that (3.1.4) holds in the
classical sense. In the following the notions of classical and Lagrangian solution often overlap. We
call Lagrangian solution a plasma density f and a trajectory (�, �) of the Dirac mass, both defined
for t ∈ ℝ+, such that f is transported by the Lagrangian flow (X, V ), solution to the ODE-system

⎧

⎪

⎨

⎪

⎩

Ẋ(t, x, v) = V (t, x, v)
V̇ (t, x, v) = E(t, X(t, x, v)) + F (t, X(t, x, v))
(

X(0, x, v), V (0, x, v)
)

= (x, v) ,
(3.1.5)

more precisely
f (t, x, v) = f0

(

X−1(t, ⋅, ⋅)(x, v) , V −1(t, ⋅, ⋅)(x, v)
)

.

In the case without point charge, a Lagrangian solution is defined likewise, setting F = 0 in (3.1.5).
The notion of classical solution is slightly stronger: the flow, solution to the characteristic system
(3.1.5), is meant in the classical sense.

In Section 3.2 we present some estimates on physical quantities related to the Vlasov-Poisson
equation, which will be useful below. In Section 3.3 we explain the idea of controlling large velocities
to prove global existence. In Section 3.4 we sketch some results for the problem without point charge.
In particular we focus on [45] and [36]. In Section 3.5 we present a selection of results regarding the
plasma-charge problem ([17], [40], [28]).

3.2 Conservation laws and a priori bounds

In this Section we want to recall some properties related to the VP system (with or without charge)
which will be used in the following to prove existence and uniqueness results.

Notice first of all that the vector field of the transport equation in (3.1.2) or (3.1.3) is divergence
free. In fact

b(t, x, v) = (v, E(t, x) + F (t, x)) leads to divb = 0.
This means that, if a flow of b exists, it preserves the measure, hence we can easily perform change
of variables.
Proposition 3.2.1 (Mass conservation). Let f (or (f, �)), be a Lagrangian solution to (3.1.2) (or
(3.1.3)). Then

‖f (t)‖Lp(ℝd×ℝd )

is conserved in time. In particular the mass

M(t) = ∬ f (t, x, v) dxdv
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is conserved in time.

Proof. The conservation of the Lp norms is an immediate consequence of the fact that, if f is La-
grangian, it must be constant along the trajectories of a Lebesgue’s measure preserving flow.
Remark 11. For p = 1 the conservation of mass can also be viewed as a consequence of the local
mass conservation law

)t� + divxj = 0, (3.2.1)
where the mass current j is defined as

j(t, x) = ∫ vf (t, x, v) dv.

Indeed, integrating (3.2.1) w.r.t x we get
d
dt ∬

f (t, x, v)dxdv = d
dt ∫

�(t, x)dx = 0.

Eqn. (3.2.1) follows by formally integrating the VP equation w.r.t v, observing that E(+F ) ⋅ ∇vf =
divv(fE(+F )) vanishes upon integration. Hence we observe that the mass conservation applies re-
gardless of whether f is Lagrangian.
Proposition 3.2.2 (Energy conservation). Let (f, �) be a solution of (3.1.3)-(3.1.4) (in a weak or
classical sense). Then the total energy

H(t) = ∬
|v|2

2
f (t, x, v)dxdv +

|�(t)|2

2
+ 1
2 ∬

�(t, x)�(t, y)
|x − y|

dxdy + ∫
�(t, x)

|x − �(t)|
dx

is conserved in time.

Proof. We compute

Ḣ(t) = d
dt

{

∬
|v|2

2
fdxdv +

|�|2

2
+ 1
2 ∬

�(x)�(y)
|x − y|

dxdy + ∫
�(x)

|x − �|
dx

}

=∬ v ⋅ (E + F )fdxdv + � ⋅ E(�) −∬
∇x ⋅ (∫ vfdv)

|x − y|
�(y)dxdy

− ∫
∇x ⋅ ∫ vfdv

|x − �|
dx − ∫ �(x)� ⋅

� − x
|� − x|3

dx = 0.

Remark 12. Notice that the energy conservation holds trivially also in the simpler case without point
charge, withH(t) = ∬ |v|2

2
f (t, x, v)dxdv + 1

2
∬ �(t,x)�(t,y)

|x−y|
dxdy.

In the next sections and in Chapter 4 we will see that, in order to control large velocities, we
need some a priori estimates on the spatial density and on the electric field. Notice indeed that the
summability of the spatial density � follows trivially by the mass conservation, while upper bounds
on ‖�‖Lp , for p > 1, are not trivial.
Proposition 3.2.3. Let �(t, ⋅) ∈ Lp ∩ L∞(ℝd) for some p ∈ [1, d). Then

‖E(t, ⋅)‖∞ ≤ C‖�‖p∕dLp ‖�‖
1−p∕d
∞ ,

with C depending only on p.
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Proof. For any R > 0, Hölder’s inequality implies

|E(t, x)| ≤ ∫
|x−y|<R

�(y)
|x − y|d−1

dy + ∫
|x−y|>R

�(y)
|x − y|d−1

dy

≲ R‖�‖∞ + (Rd−(d−1)q)1∕q‖�‖Lp ,

where 1∕p+1∕q = 1. We optimize this estimate by choosingR = c‖�‖Lp
‖�‖∞

and we obtain the thesis.

Proposition 3.2.4. Let m ≥ 0, f (t, ⋅, ⋅) ∈ L1(ℝ3 × ℝ3) and �(t, ⋅) ∈ L1(ℝ3) as in (3.1.2) or (3.1.3).
Then there exists a constant C > 0, which only depends on m, such that

‖�(t, ⋅)‖
L
m+3
3

≤ C‖f (t, ⋅, ⋅)‖
m
m+3
L∞

(

∬ |v|mf (t, x, v) dx dv
)

3
m+3

. (3.2.2)

Proof. By definition of � we have

‖�(t, ⋅)‖
L
m+3
3
=

(

∫
|

|

|

|

∫ f (t, x, v) dv
|

|

|

|

m+3
3
dx

)

3
m+3

. (3.2.3)

Fix R > 0 and split the integral in the v variable into two pieces:

∫ f (t, x, v) dv = ∫
|v|≤R

f (t, x, v) dv + ∫
|v|>R

f (t, x, v) dv

≤ R3‖f (t, ⋅, ⋅)‖L∞ +
1
Rm ∫ |v|mf (t, x, v) dv .

By optimizing in R in the last line of the above inequality, we get

∫ f (t, x, v) dv ≤ ‖f (t, ⋅, ⋅)‖
m
m+3
L∞

(

∫ |v|mf (t, x, v) dv
)

3
m+3

. (3.2.4)

We plug (3.2.4) in (3.2.3) and we obtain

‖�(t, ⋅)‖
L
m+3
3

≤ ‖f (t, ⋅, ⋅)‖
3

m+3
L∞

(

∬ |v|mf (t, x, v) dv dx
)

3
m+3

. (3.2.5)

Proposition 3.2.5. Let f ≥ 0, f (t, ⋅, ⋅) ∈ L1 ∩ L∞(ℝ3 × ℝ3) solution to (3.1.2) or (3.1.3). Assume
the total energy to be initially finite, then �(t, ⋅) ∈ L1 ∩ L5∕3(ℝ3) and E(t, ⋅) ∈ Lq(ℝ3), for any
3
2 < q ≤

15
4 .

Proof. The bound �(t, ⋅) ∈ L5∕3(ℝ3) follows by Proposition 4.3.4 for m = 2. The estimate on the
electric field is a consequence of Proposition 4.3.1 for s = 1 and s = 5

3 .
The following proposition regards specifically the case in which we deal with a Dirac mass.
As a consequence of Proposition 3.2.2, we observe that if the energyH(t) is assumed to be initially

finite, then it is bounded for all times. This ensures in particular that the velocity of the Dirac mass
located at �(t) is finite.
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Proposition 3.2.6. Let T > 0 such that for all t ∈ [0, T ], f (t) and �(t) are solutions of the system
(4.1.1)-(4.1.2) with finite associated initial energyH(0). Then

|�(t)| ≤ |�0| + T
√

2H(0) , (3.2.6)

|�(t)| ≤
√

2H(0) . (3.2.7)
Proof. We observe that H(t) is a sum of positive terms. Notice that here we are heavily using the
electrostatic nature of the particles in the plasma. In the gravitational case, the total energy has a
nonpositive term. By Proposition 4.3.2,H(t) = H(0) is finite, hence

|�(t)|2

2
≤ H(0) ,

from which estimate (4.3.5) easily follows. We can use this bound in the first equation of (4.1.2) to
get

|�(t)| ≤ |�0| + ∫

t

0
|�(s)|ds

which leads to (4.3.4) when using (4.3.5) and then taking the supremum in t ∈ [0, T ].

3.3 From local to global existence

From the theory of characteristics in the smooth framework we know that, when E ∈ C1, there exists
a unique local solution f ∈ C1 for the linear transport equation

)tf + v ⋅ ∇xf + E(t, x) ⋅ ∇vf = 0, (3.3.1)
which is constant along the trajectories, solution to the ODE

Ẋ(t) = V (t), V̇ (t) = E(t, x). (3.3.2)
The Vlasov-Poisson equation is, however, non linear, as the vector field (v, E) depends in turn on the
solution. Nevertheless there is a result which not only provides local existence and uniqueness for a
sufficiently large class of initial data, but also says in which way a solution can possibly stop to exist
after a finite time.
Theorem 3.3.1. Every initial datum f0 ∈ C1c (ℝ

3 ×ℝ3), f0 ≥ 0, launches a unique classical solution
f ∈ C1 on some time interval [0, T ) with f (0) = f0. For all t ∈ [0, T ) the function f (t) is compactly
supported and non-negative. If T > 0 is chosen maximal and if

sup{|v| | (x, v) ∈ suppf (t), 0 ≤ t < T } <∞

or
sup{�(t, x) | 0 ≤ t < T , x ∈ ℝ3} <∞,

then the solution is global, i.e. T = ∞.

This means that a classical solution can be extended as long as its velocity support or its spatial
density remain bounded. This rules out a breakdown of the solution by shock formation where typi-
cally the solution remains bounded but the derivative blows up; if the solution blows up, �must blow
up due to a concentration effect.
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Proof. We give a non-detailed proof.
Existence. To construct the solution, we consider the following iterative scheme. Let the initial datum
be such that

f0(x, v) = 0 for |x| ≥ R0 or |v| ≥ P0.

The 0th iterate is defined by
f0(t, z) ∶= f0(z), t ≥ 0, z ∈ ℝ6.

If the nth iterate fn is already defined, we define
�n ∶= �fn , En ∶= E�n

on [0,∞) ×ℝ3, and we denote by
Zn(s, t, z) = (Xn, Vn)(s, t, x, v)

the solution to the characteristic system
ẋ = v, v̇ = En(s, x)

with Zn(t, t, z) = z. Then
fn+1 ∶= f0(Zn(0, t, z)), t ≥ 0, z ∈ ℝ6

defines the next iterate. The idea is to show that the iterates converge on some time interval in a
sufficiently strong sense and to identify the limit as the desired solution. Setting, for each n ∈ ℕ,

Pn(t) ∶= sup
{

|Vn−1(s, 0, z)| | z ∈ suppf0, 0 ≤ s ≤ t
}

,

we observe that
fn(t, x, v) = 0 for |v| ≥ Pn(t) or |x| ≥ R0 + ∫

t

0
Pn(s)ds.

Moreover, using Lemma 4.2.17, we have
‖En(t)‖∞ ≤ ‖�n(t)‖

1∕3
L1

‖�n(t)‖2∕3∞ = ‖f0‖
1∕3
L1

‖�n(t)‖2∕3∞ and
‖�n(t)‖∞ ≤ 4�

3
‖f0‖∞P

3
n (t),

that lead to
‖En(t)‖∞ ≤ C(f0)P 2n (t).

Denoting by P ∶ [0, �)→ (0,∞) the maximal solution of the integral equation

P (t) = P0 + C(f0)∫

t

0
P 2(s)ds,

that is
P (t) =

P0
1 − P0C(f0)t

, 0 ≤ t < � ∶= (P0C(f0))−1,

it can be easily shown by induction that
Pn(t) ≤ P (t) for t ∈ [0, �).
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Therefore
‖�n(t)‖∞ ≤ 4�

3
‖f0‖∞P

3(t) and ‖En(t)‖∞ ≤ C(f0)P 2(t).

Now it is possible to show that fn converges to some f uniformly on [0, �0] × ℝ6, for each �0 < �.
Indeed one can see that

|fn+1(t, z) − fn(t, z)| ≤ ‖)xf0‖∞|Zn(0, t, z) −Zn−1(0, t, z)|

≤ C ∫

t

0
‖En(�) − En−1(�)‖∞d�

≤ C ∫

t

0
‖�n(�) − �n−1(�)‖2∕3∞ ‖�n(�) − �n−1(�)‖

1∕3
L1
d�

≤ C ∫

t

0

(

R0 + ∫

�

0
P (s)ds

)

‖�n(�) − �n−1(�)‖∞d�

≤ C�0P (�0)∫

t

0
‖�n(�) − �n−1(�)‖∞d�

≤ C�0P
4(�0)∫

t

0
‖fn(�) − fn−1(�)‖∞d�.

(3.3.3)

The value of C changes from line to line. Summing up we obtain
‖fn+1(t) − fn(t)‖∞ ≤ C∗ ∫

t

0
‖fn(�) − fn−1(�)‖∞d�,

and by induction
‖fn+1(t) − fn(t)‖∞ ≤ C

Cn∗ t
n

n!
≤ CC

n

n!
, n ∈ ℕ, 0 ≤ t ≤ �0.

This implies that fn is uniformly Cauchy, hence converges uniformly on [0, �0]×ℝ6 to some function
f ∈ C([0, �0] ×ℝ6). The fact that P (t) is bounded on [0, �0], i.e. P (�0) <∞, leads also to

�n → � ∶= �f , En → E ∶= Ef
as n→∞, uniformly on [0, �0] ×ℝ3. This in turn implies that

Z ∶= lim
n→∞

Zn,

which is the characteristic flow induced by the limiting field E. Hence
f (t, z) = lim

n→∞
f0(Zn(0, t, z)) = f0(Z(0, t, z)).

In order to obtain a smooth flow (i.e. C1x,v), and hence a smooth solution f , additional controls on the
derivatives of E are needed. These are obtained through another Gronwall loop as above.
Uniqueness. We notice that if f and g are two classical solutions with f (0) = g(0), we obtain,
similarly as above,

‖f (t) − g(t)‖∞ ≤ C ∫

t

0
‖f (s) − g(s)‖∞ds

and uniqueness follows.
Continuation criterion. Let f ∈ C1([0, T ) × ℝ6) be the maximally extended classical solution
obtained above, and assume that

P ∗ ∶= sup{|v||(t, x, v) ∈ suppf} <∞,
but T < ∞. The idea is to use the control of the length � of the interval on which we constructed
the solution to show that, if we use the procedure above for the new initial value problem where
we prescribe f (t0) as initial datum at time t = t0, we extend the solution beyond T if t0 is chosen
sufficiently close to T . This is then the desired contradiction.
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3.4 Vlasov-Poisson without point-charge

The Vlasov-Poisson equation in dimension two has been solved since many years (see for instance
[43] and [32]). We sketch the idea.

Let f0 be the initial distribution, compactly supported in velocity. As in the proof of Theorem
3.3.1, we define P0 and P (t) as the radius of the minimal sphere containing the support in velocity of
f0 and f (t), respectively. We have

P (t) ≤ P0 + ∫

t

0
‖E(s)‖∞ds.

On the other hand, from Prop. 3.2.3,

‖E(t)‖∞ ≤ C‖�(t)‖
1− 1

d
∞ .

Finally, using that
‖�(t)‖∞ ≤ CP d(t)

we arrive to
P (t) ≤ P0 + C ∫

t

0
P d−1(s)ds. (3.4.1)

Eqn. (3.4.1) trivially yields a globally in time control on the velocity (hence also the spatial density) in
dimension two only. Thanks to Theorem 3.3.1, this is enough to get global existence and uniqueness
of the solution to the Vlasov-Poisson problem in term of characteristics.

In dimension three Eqn. (3.4.1) can be improved by using the energy conservation. Indeed, as
shown in Prop. 4.3.5, this leads to additional integrability for �, i.e. � ∈ L5∕3. Moreover Prop. 3.2.3
with p = 5

3 yields to
‖E(t)‖∞ ≤ C‖�(t)‖

4
9
∞ ≤ CP

4
3 (t). (3.4.2)

In conclusion:
P (t) ≤ P0 + C ∫

t

0
P

4
3 (s)ds (3.4.3)

which is better that Eqn. (3.4.1) but still not enough to conclude.
One way to improve this argument is to observe that an a priori bound on a higher order Lp-norm

of �(t) allows for a smaller power of theL∞-norm of �(t) in the estimate (3.4.2) and thus for a smaller
power of P (s) in the Gronwall inequality (3.4.3). In the estimate (3.4.2) we would need an exponent
less or equal to 1∕3 on ‖�(t)‖∞ to obtain a Gronwall estimate on P leading to a global bound. If we
compare this to Prop. 3.2.3 and use Prop. 4.3.7 with m ≥ 3, we obtain a less demanding continuation
criterion which we note for later use:

Proposition 3.4.1. If for a solution f on its maximal existence interval [0, T ) the quantity ‖�(t)‖Lp
orMm(t) = ∬ |v|mf (t, x, v)dxdv is bounded for some p ≥ 2 or m ≥ 3, then the solution is global.

The strategy described above, of controlling the moments, is adopted by Lions and Perthame in
[36] (Eulerian point of view). At about the same time, in the nineties, the three-dimensional Vlasov-
Poisson problemwas also solved by Pfaffelmoser in [45] by controlling the characteristics (Lagrangian
point of view).
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3.4.1 Pfaffelmoser

The approach of [45] is to control the growth of the size of the support of a solution, i.e. to control
the velocities. The new idea is that the time average of the electric field is better than its maximum.
Below we state a slightly different version of the main theorem in [45], where the assumption on the
initial distribution is less general but simpler to read. Moreover we follow a simplified version of the
proof, due to J. Schaeffer ([47]).
Theorem 3.4.2. Let f0 ∈ C1c (ℝ

6) be the initial distribution. Then the Cauchy problem for the Vlasov-
Poisson equation has a global unique classical C1 solution.

Proof. We give only an idea of the proof.
Recalling Theorem 3.3.1, it is enough to verify the continuation criterion, that is: if f is a local

solution defined on [0, T ) ×ℝ6 for some T > 0, then P (t) is bounded on [0, T ), where
P (t) = sup {|v| | (x, v) ∈ suppf (s), 0 ≤ s ≤ t} = sup

{

|V (0, s, x, v)| | (x, v) ∈ suppf0, 0 ≤ s ≤ t
}

.

Let us single out one particle in our distribution, the increase in velocity of which we want to con-
trol over a certain time interval. Mathematically speaking, we fix a characteristic (X, V )(t) with
(X, V )(0) = (x, v) ∈ suppf0, and we take 0 ≤ Δ ≤ t < T . Therefore, from Liouville theorem
follows that

|V (t) − V (t − Δ)| ≤ ∫

t

t−Δ
|E(s,X(s))|ds

≤ ∫

t

t−Δ∬
f (s, y,w)
|X(s) − y|2

dwdy ds

≤ ∫

t

t−Δ∬
f (t − Δ, y, w)
|X(s) − Y (s)|2

dwdy ds,

(3.4.4)

where (Y ,W )(s) is a characteristic leaving (y,w) at time t − Δ.
Now we remember that, in order to get the bound (3.4.3), we first split x-space to obtain the

estimate (3.4.2) for E (see the proof of Prop. 3.2.3) and then split v-space to obtain a bound on
‖�‖L5∕3 (see Prop. 4.2.17 with m = 2). Pfaffelmoser’s idea is that, instead of doing one after the
other, one should split (x, v)-space in (3.4.4) into suitable chosen sets. Hence, for every parameter
0 < p ≤ P (t) and r > 0, which will be chosen later, we split the domain of integration in (3.4.4) into
the following sets, usually called the "good", the "bad" and the "ugly".

The "good" set is the one in which the velocities are bounded, either with respect to our frame of
reference or with respect to the one particle which we singled out, namely

Mg =
{

(s, x, v) ∈ [t − Δ, t] ×ℝ6 | |w| ≤ p ∨ |v −w| ≤ p
}

,

The integration onMg yields a good bound. Indeed

∫Mg

f (ti−1, y, w)
|X(s) − Y (s)|2

dwdy ds ≤ ∫

ti

ti−1
∫

�̃(s, y)
|X(s) − y|2

dy ds,

where
�̃(s, y) = ∫

|w|≤p or |v−w|≤p
f (s, y,w)dw ≤ Cp3,

and by Proposition 4.3.5,
‖�̃(s)‖L5∕3 ≤ ‖�(s)‖L5∕3 ≤ C.
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Therefore, by the estimate (3.4.2), we get

∫Mg

f (ti−1, y, w)
|X(s) − Y (s)|2

dwdy ds ≤ C(p3)
4
9Δ = Cp4∕3Δ.

Note that this is a good bound in case we set, for instance, p = P (t)3∕4. Nevertheless, in the proof, the
choice of p is postponed after estimating the integrals on the other two sets (and this leads to an even
better choice of p). Now, onMb andMu, where |w| > p and |v−w| > p, we restrict our attention to
the time integral

∫

ti

ti−1

ds
|X(s) − Y (s)|2

. (3.4.5)
The length of the time intervalΔ is chosen in such a way that the relative velocity remains large in that
time interval (stability property). In this situation the time integral (3.4.5) can be computed almost
explicitly, using thatX(s) − Y (s) essentially describes a free motion. We notice that the definition of
Mb andMu, which we omit here, involves also a second parameter r > 0. The trick, in conclusion, is
to optimize on the parameters p and r, which define the sets, in order to have a sublinear Gronwall-type
estimate for P (t). More specifically we obtain

1
Δ ∫

t

t−Δ
|E(s,X(s))|ds ≤ CP (t)16∕33| logP (t)|1∕2,

which leads to
P (t) ≤ C(1 + t)q for q > 33

17
.

Remark 13. We remark that the assumptions on the initial datum can be weakened. For instance f0
can be an L∞ function, compactly supported.

3.4.2 Lions and Perthame

We present the idea developed in [36], which leads to the verification of the continuation criterion in
Proposition 3.4.1. Here there is no need for the initial data to be compactly supported.
Theorem 3.4.3. Let f0 ≥ 0 be a function in L1 ∩ L∞(ℝ3 ×ℝ3) and assume that

∬ f0(x, v)|v|mdxdv < +∞

for some m > 3. Then there exists a weak solution to the Vlasov-Poisson system in C(ℝ+;Lp(ℝ3 ×
ℝ3) ∩ L∞(ℝ+ ×ℝ3 ×ℝ3) for any p ∈ [1,+∞) satisfying

sup
t∈(0,T )∬

f (t, x, v)|v|mdxdv ≤ C(T ) for any T > 0,

�(t, x) = ∫ f (t, x, v)dv ∈ C(ℝ+;Lq(ℝ3)), 1 ≤ q < 3 + m
3

,

E(t, x) ∈ C(ℝ+;Lq(ℝ3)), 3
2
< q < 33 + m

6 − m
.

Proof. The main estimate is the propagation of moments.

f (t, x, v) = ∫

t

0
divv(E)(t − s, x − vs)f (t − s, x − vs, v)ds + f0(x − vt, v)

= ∫

t

0
divv [Ef (t − s, x − vs, v)] ds + ∫

t

0
s divx [Ef (t − s, x − vs, v)] ds + f0(x − vt, v).
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If �0(t, x) = ∫ f0(x − vt, v)dv, then

�(t, x) = �0(t, x) + ∫

t

0
s divx [Ef (t − s, x − vs, v)] ds

and according to Hardy-Littlewood-Sobolev inequalities with 1
p
= 1

r
− 1

3
, 3
2
< p < +∞,

‖E(t)‖Lp ≤ ‖�0(t)‖Lr + C
‖

‖

‖

‖

‖

∫

t

0
s∫ Ef (t − s, x − vs, v)dvdx

‖

‖

‖

‖

‖Lp
.

For p = m + 3, r = 3(m+3)
m+6

, m ≥ 3,

‖�0(t)‖Lr ≤ C
(

∬ f0(x, v)|v|mdxdv
)

3
m+3

= const.

and ‖E(t)‖Lm+3 ≤ C

(

1 +
‖

‖

‖

‖

‖

∫

t

0
s∫ Ef (t − s, x − vs, v)dvdx

‖

‖

‖

‖

‖Lm+3

)

. But

d
dt

(

∬ |v|kf (t, x, v)dxdv
)

≤ C ‖E(t)‖Lk+3
(

∬ |v|kf (t, x, v)dxdv
)

k+2
k+3

which (roughly speaking) closes the system of Gronwall estimates.
Remark 14. Moreover if m > 6, adding other regularity assumptions on the initial density, it is
possible to prove uniqueness of a weak solution (see [36]). In addition, the theory of DiPerna and
Lions ([29]) ensures that such solutions are transported by characteristics which are defined in a weak
sense.

3.5 Vlasov-Poisson with point-charge

The study of the modified Vlasov-Poisson system with macroscopic point charges ((3.1.3)-(3.1.4))
was initiated by Caprino and Marchioro ([17]) who solved the problem in dimension two, in case
the charges are initially apart from the plasma. The difficulty here consists in the addiction to the
electric field produced by the plasma of a singular field, due to the presence of the charges. This
could push plasma and charges to get close to each other, causing an infinite velocity field. The
key idea in [17] is the introduction of the energy of a single plasma trajectory (see definition (3.5.1)
below) which controls the motion of a plasma particle and prevents its approach to the point charge.
Combining this with static estimates on the electric field, the authors of [17] prove global existence
and uniqueness of solutions à la Pfaffelmoser.

The problem in dimension three was studied, under particular assumptions on the inital data, by
Marchioro, Miot, Pulvirenti in [40] and by Desvillettes, Miot, Saffirio in [28].

3.5.1 Marchioro-Miot-Pulvirenti

The plasma-charge problem in dimension three is more involved. On one hand, when we raise the
dimension, the a priori bound on the electric field given by Prop. 3.2.3 is not anymore sufficient to
allow a linear (or sublinear) Gronwall-type estimate on the velocity support. Indeed we recall that it
leads only to

P (t) ≤ P (0) + ∫

t

0
P (s)2ds.
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Therefore, following the line of Pfeffelmoser, the approach in [40] will be to estimate not the maxi-
mum, but averages of the electric field on a proper partition of the time interval.

On the other hand, when a point charge is present, the stability property for the trajectories of the
plasma fails: from (3.1.4) we have

V̇ = E(X) +
X − �

|X − �|3
.

Indeed, the velocity of the plasma particles can change extremely quickly if one of them collides with
(or approaches very close to) the point charge. As a consequence, following [17], in [40] the authors
find convenient to exploit the notion of microscopic energy, defined by

ℎ(t, x, v) =
|v − �(t)|2

2
+ 1
|x − �(t)|

. (3.5.1)

Differentiating along the trajectories we get
d
dt
ℎ(t, X(t), V (t)) = (V (t) − �(t)) ⋅ (E(X(t)) − E(�(t)),

from which
|

|

|

|

d
dt

√

ℎ(t, X, V )
|

|

|

|

≤ |E(X)| + |E(�)|.

Note that the variation of ℎ is controlled by the smooth part of the electric field, as the singular part
does not appear. Therefore ℎ is stable (for small times we expect a little change), while V is not. In
conclusion, considering the partition of the time interval

(0, T ] = ∪ni=1(ti−1, ti],

we want to have a control on the quantities

∫

ti

ti−1
|E(X(t))|dt and ∫

ti

ti−1
|E(�(t))|dt.

This clearly allows to have an upper bound on√ℎ, once we assume that the plasma is initially apart
from �0 (recall also Prop. 4.3.3). This in turn implies that, if the initial density does not overlap with
the charge, this property remains true at later times so that the field induced by the charge is bounded
on the support of the density and the velocities of the plasma particles do not blow up. In other words,
it is possible to adapt Pfaffelmoser’s arguments, replacing P (t) with Q(t), showing that the quantity

Q(t) = sup
{

|V (0, t, x, v)| + 1
|X(0, t, x, v) − �(t)|

∣ t ∈ [0, T ], (x, v) ∈ supp(f0)
}

is bounded on [0, T ]. Once this fact is proved, existence and uniqueness of a classical solution follows
by rather standard arguments. Let us state the theorem of [40].
Theorem 3.5.1. Let f0 ∈ L∞ be compactly supported. Let (�0, �0) ∈ ℝ3 × ℝ3. Assume that there
exists a �0 > 0 such that

min{|x − �0| | (x, v) ∈ supp(f0)} ≥ �0.

For all time T > 0 there exists a unique classical solution (�, f ) to (3.1.3)-(3.1.4) on [0, T ] with this
initial datum.
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3.5.2 Desvillettes-Miot-Saffirio

In [28] the authors want to extend the study of the Vlasov-Poisson system with point-charge to the
case of initial densities which are not compactly supported and can overlap with the charge. Since the
electric field is now a priori unbounded with a singular component, the authors find more convenient
to adapt the PDE point of view from [36]. They show existence of a weak solution propagating the
energy moments. Notice that their result holds for initial densities that do not necessarily vanish in a
neighborhood of the charge, but that have to decay close to it in some sense.

The idea of the proof is the following: we consider a sequence of mollifier f0," of f0 which
vanishes in a small "- neighborhood of �0. Then the existence of a classical solution to (3.1.3)-
(3.1.4) is provided by [40]. Through iteration of some arguments used in [36], the authors are able to
recover some a priori estimates for (f, �) which will eventually lead to the existence of a solution by
compactness.

We state the theorem.
Proposition 3.5.2 (Theorem 1.1. in [28]). Let f0 ∈ L1∩L∞(ℝ3×ℝ3) non-negative, (�0, �0) ∈ ℝ3×ℝ3
andH(0) finite. Assume further that

(i) M(0) < 1,

(ii) There exists m0 > 6 such that for all m < m0

∬

(

|v|2 + 1
|x − �0|

)m∕2

f0(x, v)dxdv < +∞ .

Then there exists a global weak solution (f, �) to the system (4.1.1)-(4.1.2), with
f ∈ C(ℝ+, Lp(ℝ3 × ℝ3)) ∩ L∞(ℝ+, L∞(ℝ3 × ℝ3)) for any 1 ≤ p < +∞, � ∈ C2(ℝ+), and
E ∈ L∞([0, T ], C0,�(ℝ3)) for all T > 0.

Moreover, for all t ∈ ℝ+ and for all m < min(m0, 7),

∬

(

|v|2 + 1
|x − �(t)|

)m∕2

f (t, x, v) dx dv ≤ C(1 + t)c , (3.5.2)

where C and c only depend on the initial data.



Chapter 4

Lagrangian solution to the
Vlasov-Poisson system with a point
charge

In [26] we consider the Cauchy problem for the repulsive Vlasov-Poisson system in the three dimen-
sional space, where the initial datum is the sum of a diffuse density, assumed to be bounded and
integrable, and a point charge. Under some decay assumptions for the diffuse density close to the
point charge, under bounds on the total energy, and assuming that the initial total diffuse charge is
strictly less than one, we prove existence of global Lagrangian solutions. Our result extends the Eule-
rian theory of [28], proving that solutions are transported by the flow trajectories. The proof is based
on the ODE theory developed in [11] in the setting of vector fields with anisotropic regularity, where
some components of the gradient of the vector field is a singular integral of a measure.

4.1 Introduction and main result

The three-dimensional Vlasov-Poisson system for initial data containing one Dirac mass writes
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

)tf + v ⋅ ∇xf + (E + F ) ⋅ ∇vf = 0 ,

E(t, x) = ∫ x−y
|x−y|3 �(t, y) dy ,

�(t, x) = ∫ f (t, x, v) dv ,

F (t, x) = x−�(t)
|x−�(t)|3 .

(4.1.1)

Here f = f (t, x, v) ∈ L∞(ℝ+ × ℝ3 × ℝ3) corresponds to a nonnegative density of charged particles
in a plasma, subjected to a self-induced electric force field E = E(t, x). The plasma interacts with a
point charge, located at �(t) with velocity �(t), which induces the singular electric field F = F (t, x).
The evolution of the charge is itself given by

⎧

⎪

⎨

⎪

⎩

�̇(t) = �(t) ,

�̇(t) = E(t, �(t)) .
(4.1.2)

The initial conditions associated to (4.1.1)-(4.1.2) are
(�(0), �(0)) = (�(0), �(0)), f (0, x, v) = f0(x, v). (4.1.3)

57
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As observed in Chapter 3, the system (4.1.1)-(4.1.2) can also be thought of as the standard Vlasov-
Poisson system (3.1.2) for the total density f (t) + ��(t) ⊗ ��(t).

In [26] we prove, under particular assumptions on the initial density, existence of Lagrangian
solutions, i.e. a plasma density f and a trajectory (�, �) of the Dirac mass, both defined for t ∈ ℝ+,
such that f is transported by the Lagrangian flow (X, V ), solution to the ODE-system

⎧

⎪

⎨

⎪

⎩

Ẋ(t, x, v) = V (t, x, v)
V̇ (t, x, v) = E(t, X(t, x, v)) + F (t, X(t, x, v))
(

X(0, x, v), V (0, x, v)
)

= (x, v) ,
(4.1.4)

more precisely
f (t, x, v) = f0

(

X−1(t, ⋅, ⋅)(x, v) , V −1(t, ⋅, ⋅)(x, v)
)

.

This is a finer physical structural information on the solution than the mere fact that f and (�, �) are
weak solutions of (4.1.1)–(4.1.2).

In the framework of classical solutions, the Eulerian description and the Lagrangian evolution of
particles given by the system of characteristics are completely equivalent. When dealing with weak
or renormalized solutions, the correspondence between the Eulerian and Lagrangian formulations
is non trivial and requires a careful analysis of the Lagrangian structure of transport equations with
non-smooth vector fields. Indeed, without any regularity assumptions, it is not even clear whether the
flow associated with the vector field generated by a weak solution exists.

In recent years the theory of transport and continuity equations with non-smooth vector fields has
witnessed a massive amount of progress, also due to the large number of applications to nonlinear
PDEs. In the seminal paper by DiPerna and Lions [29] the theory has been first developed in the
context of Sobolev vector fields, with suitable bounds on space divergence and under suitable growth
assumptions. This has been extended by Ambrosio [4] to the setting of vector field with bounded
variation (BV ), roughly speaking allowing for discontinuities along codimension-one hypersurfaces.

In the context of the Vlasov-Poisson system with a Dirac mass considered in this paper ((4.1.1)-
(4.1.2)) the system of characteristics is given by (4.1.4). The singular electric field F generated by
the Dirac mass is not regular, and it does not even belong to any Sobolev space of order one or to
the BV space. Therefore the theory of [29, 4] cannot be directly applied to this case. However,
a related theory of Lagrangian flows for non-smooth vector fields has been initiated in [24]. In a
nutshell, the approach in [24] provides a suitable extension of Grönwall-like estimates to the context of
Sobolev vector fields, by introducing a suitable functional measuring a logarithmic distance between
Lagrangian flows. In addition, the theory in [24] has a quantitative character, providing explicit rates
in the stability and compactness estimates, and it has been pushed even to situations out of the Sobolev
or BV contexts of [29, 4]. In particular, using more sophisticate harmonic analysis tools, the case
when the derivative of the vector field is a singular integral of an L1 function has been considered
in [15]. This has been further developed in [11], allowing for singular integrals of a measure, under
a suitable condition on splitting of the space in two groups of variables, modelled on the situation
for the Vlasov-Poisson characteristics (4.1.4). This theory has been applied to the study of the Euler
equation with L1 vorticity [13] and of the Vlasov-Poisson equation with L1 density [12]. The latter
has also been studied in [6], using the theory of maximal Lagrangian flows developed in [5].

The purpose of [26] is to recover the relation between the Eulerian and the Lagrangian picture
for solutions provided in [28] by exploiting the transport structure of the equation. In other words we
aim to prove existence of Lagrangian solutions to the Vlasov-Poisson system (3.1.2) with  = 1 and
initial data f0 + ��0 ⊗ ��0 , where f0 satisfies the assumptions of [28].

Our main result is the following
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Theorem 4.1.1. Let f0 ∈ L1 ∩ L∞(ℝ3 ×ℝ3), such that the initial total charge

M(0) = ∬ f0(x, v) dxdv < 1 (4.1.5)

and the total energy

H(0) = ∬
|v|2

2
f0(x, v)dxdv +

|�0|2

2
+ 1
2 ∬

�(0, x)�(0, y)
|x − y|

dxdy +∬
�(0, x)
|x − �0|

dx (4.1.6)

is finite. Assume that there exists m0 > 6 such that for all m < m0 the energy moments

m(0) = ∬

(

|v|2 + 1
|x − �0|

)m∕2

f0(x, v)dxdv (4.1.7)

are finite. Then there exists a global Lagrangian solution to the system (4.1.1)–(4.1.2).
Some remarks are in order:

1. The moments (4.1.7) are propagated in time (see Proposition 4.3.7 for the precise statement
and [28] for details). This implies f ∈ C(ℝ+, Lp(ℝ3 × ℝ3)) ∩ L∞(ℝ+, L∞(ℝ3 × ℝ3)) for
1 ≤ p <∞, E ∈ L∞([0, T ], C0,�(ℝ3)) and � ∈ C2(ℝ+).

2. We observe that the hypothesis (4.1.5) is needed only to get a control on the electric field
generated by the point charge (see Proposition 4.3.6). This means that the charge of the plasma
has to be smaller than the charge associatedwith the Diracmass. From the viewpoint of physics,
this is a purely technical and too restrictive condition. In a forthcoming paper, we plan to remove
this constraint.

3. When considering the Cauchy problem associated with (3.1.2) with  = −1 (attractive case)
and initial data f0 + ��0 ⊗ ��0 , the whole strategy fails. This is due to a crucial change of sign
in the total energyH and inm. More precisely, the last two terms in (4.1.6) and the last term
in (4.1.7), representing respectively the potential energy of the system and the potential energy
per particle, come with a negative sign. This prevents to establish a control on the trajectory of
the point charge as in Proposition 4.3.3 and to prove Proposition 4.3.7.
The simpler case of a system in which the particles in the plasma are interacting through a
repulsive potential while the point charge generates an attractive force field has been treated
in [18] in dimension two. Notice that, even in this case, the existence of solutions in three
dimensions remains an interesting open problem.

4. Theorem 4.1.1 does not imply uniqueness of the Lagrangian solution. In analogy to [45], where
uniqueness of compactly supported classical solutions of (3.1.2) has been proved, uniqueness of
solutions to (4.1.1)-(4.1.2) which do not overlapwith the point charge and have compact support
in phase space has been established in [40]. In the context of weak solutions to (3.1.2), sufficient
conditions for uniqueness have been proved in [36] and later extended to weak measure-valued
solutions with bounded spatial density by Loeper [39]. RecentlyMiot [41] generalised the latter
condition to a class of solutions whose Lp norms of spatial density grow at most linearly w.r.t.
p, then extended to spatial densities belonging to some Orlicz space in [33]. Unfortunately, it
seems that none of these conditions apply to our setting and new ideas are needed.

Let us informally describe the main steps of our proof. We rely on the result in [40], which
guarantees existence of a (unique) Lagrangian solution to the Cauchy problem for the Vlasov-Poisson
system (4.1.1)-(4.1.2), provided that at initial time the plasma density has a positive distance from the
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Dirac mass and bounded support in the phase space. We therefore approximate the plasma density
f0 at initial time by a sequence f n0 obtained by cutting off f0 close to the Dirac mass in the space
variable and out of a compact set in phase space. We use [40] to construct a Lagrangian flow (Xn, Vn)
and a trajectory for the Dirac mass (�n, �n) corresponding to the initial data f n0 and (�0, �0). The
assumptions of Theorem 4.1.1 together with the propagation of the moments  from [28] entail
some additional integrability of the densities �n, which in turn implies uniform Hölder estimates
on the electric fields En. Moreover, assumption (4.1.5) allows to prove some uniform decay of the
superlevels of the Lagrangian flows (Xn, Vn), which combined with an extension of the Lagrangian
theory developed in [11] gives compactness of the Lagrangian flows (Xn, Vn). Finally, standard energy
estimates guarantee the uniform continuity of the trajectories �n uniformly in n. All this enables us
to pass to the limit in the Lagrangian formulation of the problem, eventually giving a Lagrangian
solution corresponding to the initial plasma density f0.

One of the main technical difficulties of our analysis is the control on large velocities. In this
work, this reflects in the necessity of some control on the superlevels of the Lagrangian flows. This
was already an issue in [12] and here the situation is made even more complicated by the presence of
the singular field generated by the point charge. We tackle this problem by weighting superlevels with
the measure given by the initial distribution of charges f0(x, v) dx dv (see Lemma 5.2.2). In this way
the control on the superlevels can be proven exploiting virial type estimates on the time integral of the
electric field generated by the diffuse charge and evaluated in the point charge (see Proposition 4.3.6).
This carries the physical meaning that it is only relevant to control the flow starting from points in the
support of the initial density of charge.

In connection to the theory of [11], this weighted estimatesmanifests in the presence of the density
ℎ = f0 in the functional (4.2.12) measuring the compactness of the flows. Moreover, in contrast to
[12], which was based on the isotropic analysis of [15], here we strongly rely on the anisotropic theory
of [11] in which some components of the gradient of the velocity field are allowed to be singular
integrals of measures, accounting for the presence of the point charge.

The plan of the chapter is the following: in Section 4.2 we present and prove the key theorem on
Lagrangian flows; in Section 4.3 we recall some useful properties related to solutions of the Vlasov-
Poisson system; in Section 4.4 we give the proof of Theorem 4.1.1, which follows from compactness
arguments by using the results established in Section 4.2 and 4.3.

4.2 Lagrangian flows

Consider a smooth solution u to a transport equation in ℝ+ ×ℝd

)tu + b ⋅ ∇zu = 0 ,

where b = b(t, z) is a smooth vector field. Then u is constant along the characteristics s↦ Z(s, t, z),
exiting from z at time t, i.e. solutions to the equation

dZ
ds
(s, t, z) = b(s,Z(s, t, z)), (4.2.1)

with initial data Z(t, t, z) = z. Thus the solution can be expressed as u(t, z) = u0(Z(0, t, z)).
For simplicity from now on we will consider the initial time t in (4.2.1) fixed and denote the flow

Z(s, t, z) by Z(s, z).
In [26] we deal with flows of non-smooth vector fields. In order to extend the usual notion of

characteristics to our case, we extend the definition of regular Lagrangian flows in a renormalized
sense by introducing a reference measure with bounded density. This turns out to be convenient in
the estimates involving the superlevels of the flow (see Lemma 5.2.2).
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Definition 4.2.1 (�-regular Lagrangian flow). Given an absolutely continuousmeasure�with bounded
density, a vector field b(s, z) ∶ [0, T ] ×ℝd → ℝd , and t ∈ [0, T ), a map

Z ∈ C([t, T ]s;L0loc(ℝ
d
z , d�)) ∩ ([t, T ]s; log logLloc(ℝd

z , d�))

is a �-regular Lagrangian flow in the renormalized sense starting at time t relative to b if we have the
following:

(1) The equation
)s(�(Z(s, z))) = �

′(Z(s, z))b(s,Z(s, z)) (4.2.2)
holds in ′((t, T )) for �-a.e. z, for every function � ∈ C1(ℝd ;ℝ) that satisfies

|�(z)| ≤ C(1 + log(1 + log(1 + |z|2))) and |�
′(z)| ≤ C |z|

(1 + |z|2)(1 + log(1 + |z|2))

for all z ∈ ℝd ;
(2) Z(t, z) = z for �-a.e. z ∈ ℝd ;
(3) There exists a L ≥ 0, called compressibility constant, such that, for every s ∈ [t, T ],

Z(s, ⋅)#� ≤ L�, (4.2.3)
i.e.

�({z ∈ ℝd ∶ Z(s, z) ∈ B}) ≤ L�(B) for every Borel set B ⊂ ℝd .

We have denoted withL0loc the space of measurable functions endowed with the local convergence
in measure, by log logLloc the space of measurable functions u such that
log(1 + log(1 + |u|2)) is locally integrable, and by  the space of bounded functions. When the
reference measure � is not explicitly specified, the spaces under consideration are endowed with the
Lebesgue measure.
Remark 15. Our definition of �-regular Lagrangian flow slightly differs from the one in [11]. On
the one hand we change the reference measure from the Lebesgue measure to �. On the other hand
we consider a different class of �’s, which grow slower at infinity.
Definition 4.2.2. Let Z ∶ [t, T ] × ℝd → ℝd be a measurable map. For every � > 0, we define the
sublevel of Z as

G� =
{

z ∈ ℝd ∶ |Z(s, z)| ≤ � for almost all s ∈ [t, T ]} . (4.2.4)

4.2.1 Setting and result of [11]

We summarize here the regularity setting and the stability estimate of [11]. We say that a vector field
b satisfies (R1) if b can be decomposed as

b(t, z)
1 + |z|

= b̃1(t, z) + b̃2(t, z) (4.2.5)

where b̃1 ∈ L1((0, T );L1(ℝd)), b̃2 ∈ L1((0, T );L∞(ℝd)). Notice that this hypothesis leads to an
estimate for the decay of the superlevels of a regular Lagrangian flow. In fact Lemma 3.2 of [11] tells
us that, if b satisfies (R1) andZ is a regular Lagrangian flow associated with b starting at time t, with
compressibility constant L, then d(Br ⧵G�) ≤ g(r, �) for any r, � > 0, where g depends only on L,
‖b̃1‖L1((0,T );L1(ℝd )) and ‖b̃2‖L1((0,T );L∞(ℝd )) and satisfies g(r, �) ↓ 0 for r fixed and � ↑∞.

(R2) We want to consider a vector field b(t, z) such that its regularity changes with respect to
different directions of the variable z ∈ ℝd , that is we consider ℝd = ℝn1 ×ℝn2 and z = (z1, z2) with
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z1 ∈ ℝn1 and z2 ∈ ℝn2 . We denote with D1 the derivative with respect to z1 and D2 the derivative
with respect to z2. Accordingly we denote b = (b1, b2)(s, z) ∈ ℝn1 × ℝn2 and Z = (Z1, Z2)(s, z) ∈
ℝn1 ×ℝn2 . Therefore we assume that the elements of the matrixDb, denoted as (Db)ij , are in the form

(Db)ij =
m
∑

k=1
 ijk(s, z2)S

i
jkm

i
jk(s, z1) (4.2.6)

where
- S ijk are singular integral operators associated with singular kernels of fundamental type in ℝn1

(see [48]),
- the functions  ijk belong to L∞((0, T );Lq(ℝn2)) for some q > 1,

- mi
jk ∈ L

1((0, T );L1(ℝn1)) for all the elements of the submatricesD1b1,D2b1 andD2b2, while
mi
jk ∈ L

1((0, T );(ℝn1)) if (Db)ij is an element of D1b2.

We have denoted by L1((0, T );(ℝn1)) the space of all functions t ↦ �(t, ⋅) taking values in the
space(ℝn1) of finite signed measures on ℝn1 such that

∫

T

0
‖�(t, ⋅)‖(ℝn1 )dt <∞.

Moreover, we assume condition (R3), that is
b ∈ Lploc([0, T ] ×ℝd) for some p > 1. (4.2.7)

We recall the main theorem from [11].
Theorem 4.2.3. Let b and b̄ be two vector fields satisfying assumption (R1), where b satisfies also
(R2), (R3). Fix t ∈ [0, T ] and let Z and Z̄ be regular Lagrangian flows starting at time t associated
with b and b̄ respectively, with compressibility constants L and L̄. Then the following holds. For
every  , r, � > 0 there exist �, C,r,� > 0 such that

d
(

Br ∩ {|Z(s, ⋅) − Z̄(s, ⋅)| > }
)

≤ C,r,�‖b − b̄‖L1((0,T )×B�) + �

for all s ∈ [t, T ]. The constants � and C,r,� also depend on:

• The equi-integrability in L1((0, T );L1(ℝn1)) of all the mi
jk which belong to this set, as well as

the norm in L1((0, T );(ℝn1)) of the remaining mi
jk (where these functions are associated

with b as in (R2)),

• The norms of the singular integrals operatorsS ijk, as well as the norms of 
i
jk inL

∞((0, T );Lq(ℝn2))
(associated with b as in (R2)),

• The norm in Lp((0, T ) × B�) of b,

• TheL1((0, T );L1(ℝd))+L1((0, T );L∞(ℝd)) norms of the decomposition of b and b̄ as in (R1),

• The compressibility constants L and L̄.
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4.2.2 Flow estimate in the new setting

We are going now to state a variant of this theorem, where (R1) and (R2) are replaced by (R1a) and
(R2a) below. The dimension d will be here equal to 2N , instead of n1 + n2, and the variable z will
be in the form z = (x, v) ∈ ℝN ×ℝN .

We consider the following assumptions, that are adapted to our setting of the Vlasov-Poisson
system with a point charge:

(R1a) For all �-regular Lagrangian flow Z ∶ [t, T ] ×ℝ2N → ℝ2N relative to b starting at time t
with compression constant L, and for all r, � > 0,

�(Br ⧵ G�) ≤ g(r, �), with g(r, �)→ 0 as �→∞ at fixed r, (4.2.8)
where G� denotes the sublevel of the flow Z defined in (4.2.2).

(R2a) Motivated by the particular structure of the Vlasov-Poisson system (4.1.1)-(4.1.2), we as-
sume b to have the following structure:

b(t, x, v) = (b1, b2)(t, x, v) = (b1(v), b2(t, x)), (4.2.9)
with

b1 ∈ Lip(ℝN
v ), (4.2.10)

and where b2 is such that for every j = 1,… , N ,

)xjb2 =
m
∑

k=1
Sjkmjk, (4.2.11)

where Sjk are singular integrals of fundamental type on ℝN and mjk ∈ L1((0, T );(ℝN )).
Theorem 4.2.4. Let � = ℎ2N with ℎ ∈ L1 ∩ L∞ and non-negative. Let b and b̄ be two vector
fields satisfying (R1a), b satisfying also (R2a), (R3). Given t ∈ [0, T ], let Z and Z̄ be �-regular
Lagrangian flows starting at time t associated with b and b̄ respectively, with sublevels G� and Ḡ�,
and compressibility constants L and L̄. Then the following holds.
For every , r, � > 0, there exist �, C,r,� > 0 such that

�(Br ∩ {|Z(s, ⋅) − Z̄(s, ⋅)| > }) ≤ C,r,�‖b − b̄‖L1((0,T )×B�) + �

uniformly in s, t ∈ [0, T ]. The constants � and C,r,� also depend on:

• The norms of the singular integral operators Sjk from (R2a),

• The norms in L1((0, T );(ℝN )) of mjk from (R2a),

• The Lipschitz constant of b1 from (R2a),

• The norm in Lp((0, T ) × B�) of b corresponding to (R3),

• The rate of decay of �(Br ⧵ G�) and �(Br ⧵ Ḡ�) from (R1a),

• The norm in L∞(ℝ2N ) of the function ℎ defined in (R1a),

• The compressibility constants L and L̄.
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Proof. The proof follows the same line as in Theorem 4.2.3 (see [11]), with some modifications due
to the different hypotheses. Given �1, �2 > 0, let A be the constant 2N × 2N matrix

A = Diag(�1,… , �1
⏟⏞⏟⏞⏟
N times

, �2,… , �2
⏟⏞⏟⏞⏟
N times

),

that means A(x, v) = (�1x, �2v). We consider the following functional depending on the two param-
eters �1 and �2, with �1 ≤ �2:

Φ�1,�2(s) = ∬
Br∩G�∩Ḡ�

log(1 + |A−1[Z(s, x, v) − Z̄(s, x, v)]|)ℎ(x, v) dx dv. (4.2.12)

In order to improve the readability of the following estimates, we will use the notation “≲" to denote
an estimate up to a constant only depending on absolute constants and on the bounds assumed in
Theorem 4.2.4, and the notation “≲�" to mean that the constant could also depend on the truncation
parameter for the superlevels of the flow �. The norm of the measure m however will be written
explicitly.
Step 1: Differentiating Φ�1,�2 . Differentiating with respect to time and taking out of the integral the
L∞ norm of ℎ, we get

Φ′�1,�2(s) ≤ ‖ℎ‖L∞(ℝ2N ) ∬
Br∩G�∩Ḡ�

|A−1[b(s,Z(s, x, v)) − b̄(s, Z̄(s, x, v))]|
1 + |A−1[Z(s, x, v) − Z̄(s, x, v)]|

dx dv

≲ ∬
Br∩G�∩Ḡ�

|A−1[b(s,Z(s, x, v)) − b̄(s, Z̄(s, x, v))]|
1 + |A−1[Z(s, x, v) − Z̄(s, x, v)]|

dx dv .

Then we set Z(s, x, v) = Z and Z̄(s, x, v) = Z̄ and we estimate

Φ′�1,�2(s) ≲ ∬
Br∩G�∩Ḡ�

|A−1[b(s, Z̄) − b̄(s, Z̄)]| dx dv + ∬
Br∩G�∩Ḡ�

|A−1[b(s,Z) − b(s, Z̄)]|
1 + |A−1[Z − Z̄]|

dx dv.

After a change of variable along the flow Z̄ in the first integral, and noting that �1 ≤ �2, we further
obtain

Φ′�1,�2(s) ≲
L̄
�1
‖b(s, ⋅) − b̄(s, ⋅)‖L1(B�)

+ ∬
Br∩G�∩Ḡ�

min
{

|A−1[b(s,Z) − b(s, Z̄)]|,
|A−1[b(s,Z) − b(s, Z̄)]|

|A−1[Z − Z̄]|

}

dx dv .

Step 2: Splitting the quotient. Using the special form of b from (R2a) and the action of the matrix
A−1, we have

A−1[Z − Z̄] =
(

X − X̄
�1

, V − V̄
�2

)

and
A−1[b(s,Z) − b(s, Z̄)] =

(

b1(V ) − b1(V̄ )
�1

,
b2(s,X) − b2(s, X̄)

�2

)

.
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Therefore
Φ′�1,�2(s) ≲

L̄
�1
‖b(s, ⋅) − b̄(s, ⋅)‖L1(B�)+

∬
Br∩G�∩Ḡ�

min
{

|A−1[b(s,Z) − b(s, Z̄)]|, 1
�1

|b1(V ) − b1(V̄ )|
|A−1[Z − Z̄]|

+ 1
�2

|b2(s,X) − b2(s, X̄)|
|A−1[Z − Z̄]|

}

dx dv

≤ L̄
�1
‖b(s, ⋅) − b̄(s, ⋅)‖L1(B�)+

∬
Br∩G�∩Ḡ�

min
{

|A−1[b(s,Z) − b(s, Z̄)]|,
�2
�1

|b1(V ) − b1(V̄ )|
|V − V̄ |

+
�1
�2

|b2(s,X) − b2(s, X̄)|
|X − X̄|

}

dx dv

≤ L̄
�1
‖b(s, ⋅) − b̄(s, ⋅)‖L1(B�) +

�2
�1
Lip(b1)2N (Br)+

∬
Br∩G�∩Ḡ�

min
{

|A−1[b(s,Z) − b(s, Z̄)]|,
�1
�2

|b2(s,X) − b2(s, X̄)|
|X − X̄|

}

dx dv

≤ L̄
�1
‖b(s, ⋅) − b̄(s, ⋅)‖L1(B�) +

�2
�1
Lip(b1)2N (Br) + ∬

Br∩G�∩Ḡ�

Ψ(s, z) dx dv ,

where we denoted
Ψ(s, z) = min

{

|A−1[b(s,Z(s, z)) − b(s, Z̄(s, z))]|,
�1
�2

|b2(s,X(s, z)) − b2(s, X̄(s, z))|
|X(s, z) − X̄(s, z)|

}

.

Step 3: Definition of the function U. Using assumption (R2a), we can now use the estimate of [15]
on the difference quotient of b2,

|b2(s,X(s, z)) − b2(s, X̄(s, z))|
|X(s, z) − X̄(s, z)|

≤ U(s,X(s, z)) +U(s, X̄(s, z)), (4.2.13)

where U for fixed s is given by

U(s, x) =
N
∑

j=1

m
∑

k=1
Mj(Sjkmjk(s, x)),

withMj a certain smooth maximal operator on ℝN
x .

Step 4: Estimates on Ψ. Let Ω = (t, �) × Br ∩ G� ∩ Ḡ� ⊂ ℝ2N+1 and Ω′ = (t, �) × B� ⊂ ℝ2N+1.
We can estimate the Lp(Ω) norm of Ψ by considering the first element of the minimum and changing
variables along the flows:

‖Ψ‖Lp(Ω) ≤
L + L̄
�1

‖b‖Lp(Ω′) ≲�
1
�1
. (4.2.14)

Considering now the second element of the minimum and eq.n (4.2.13), we can also bound theM1(Ω)
pseudo-norm of Ψ (where M1 is the Lorentz space):

|||Ψ|||M1(Ω) ≤
�1
�2
|||U(s,X) +U(s, X̄)|||M1(Ω) ≤

�1
�2
(L + L̄)|||U|||M1(Ω′)

≲
�1
�2
‖ |||U(s, x)|||M1

x,v(B�)
‖L1((t,�)) ≤

�1
�2
∥ |||U(s, x)|||M1(Bx�×B

v
�)
∥L1((t,�))

≤
�1
�2
∥∥ |||U(s, x)|||M1

x(B�)
∥L1v(B�)∥L1((t,�))≤

�1
�2
(2�)N‖ |||U(s, x)|||M1(ℝN )‖L1((t,�)),
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that is
|||Ψ|||M1(Ω) ≲�

�1
�2
‖ |||U(s, x)|||M1(ℝN )‖L1((t,�)).

From Theorem 2.10 in [11], we know
|||U(s, ⋅)|||M1(ℝN ) ≲ ‖m(s, ⋅)‖(ℝN ),

and thus
|||Ψ|||M1(Ω) ≲�

�1
�2
‖m‖L1((t,�);(ℝN )). (4.2.15)

Step 5: Interpolation. We have now the ingredients to apply the Interpolation Lemma 2.2 in [15],
which allows to bound the norm in L1(Ω) of Ψ using ‖Ψ‖Lp(Ω) and |||Ψ|||M1(Ω) as follows:

‖Ψ‖L1(Ω) ≲ |||Ψ|||M1(Ω)

[

1 + log

(

‖Ψ‖Lp(Ω)
|||Ψ|||M1(Ω)

)]

. (4.2.16)

Therefore, using the monotonicity of the functions log(y) and y
[

1 + log( 1
y
)
]

and the bounds (4.2.14)
and (4.2.15), we get

‖Ψ‖L1(Ω) ≲�
�1
�2
‖m‖

[

1 + log

(

�2
�21‖m‖

)]

. (4.2.17)

Step 5: Upper bound for Φ�1,�2 . Integrating in time, from t to �, the last inequality of Step 1, we
obtain

Φ�1,�2(�) ≲
L̄
�1
‖b − b̄‖L1(Ω) + T

�2
�1
Lip(b1)2N (Br) + ∫Ω

Ψ(s, z) dz ds (4.2.18)

≲ 1
�1
‖b − b̄‖L1(Ω) +

�2
�1
+ ‖Ψ‖L1(Ω). (4.2.19)

Therefore, applying (4.2.17) and setting �1
�2
= �, we get

Φ�1,�2(�) ≲�
1
�1
‖b − b̄‖L1(Ω) +

1
�
+ �‖m‖

[

1 + log
(

1
�1�‖m‖

)]

. (4.2.20)

Step 6: Final estimate. Fix  > 0. By definition of Φ�1,�2 and �, since ℎ is non negative, we have

Φ�1,�2(�) ≥ ∫Br∩{|Z(�,z)−Z̄(�,z)|>}∩G�∩Ḡ�
log

(

1 +

�2

)

ℎ(s, z) dz

= log
(

1 +

�2

)

�
(

Br ∩ {|Z(�, z) − Z̄(�, z)| > } ∩ G� ∩ Ḡ�
)

.

This implies that

�
(

Br ∩ {|Z(�, z) − Z̄(�, z)| > }
)

≤
Φ�1,�2(�)

log
(

1 + 
�2

) + �(Br ⧵ G�) + �(Br ⧵ Ḡ�). (4.2.21)
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Combining (4.2.20) and (4.2.21) we obtain
�
(

Br ∩ {|Z(�, z) − Z̄(�, z)| > }
)

≤ C�

⎧

⎪

⎨

⎪

⎩

‖b−b̄‖
�1

+ 1
�
+ �‖m‖

[

1 + log
(

1
�1�‖m‖

)]

log
(

1 + 
�2

)

⎫

⎪

⎬

⎪

⎭

+ �(Br ⧵ G�) + �(Br ⧵ Ḡ�)

= C�

⎧

⎪

⎨

⎪

⎩

‖b − b̄‖

�1 log
(

1 + 
�2

) + 1

� log
(

1 + 
�2

) +
�‖m‖

[

1 + log
(

1
�1�‖m‖

)]

log
(

1 + 
�2

)

⎫

⎪

⎬

⎪

⎭

+ �(Br ⧵ G�) + �(Br ⧵ Ḡ�)

= 1) + 2) + 3) + 4) + 5).

Fix � > 0. Since b and b̄ satisfy assumption (R1a), we can choose � > 0 large enough so that
4) + 5) ≤ 2�

4
. Then, replacing �1 with � ⋅ �2, we notice that 3) is uniformly bounded for �2 → 0, so

we can choose � small enough in order to get 3) ≤ �
4
. Now � and � are fixed, but �1 and �2 are free to

be chosen as long as the ratio equals �. Hence we choose �2 small enough so that 2) ≤ �
4 . This fixesall parameters.

Setting
C,r,� =

C�

�1 log
(

1 + 
�2

)

we have proven our statement.

4.2.3 Uniqueness, stability and compactness

In this subsection we use the result obtained in Theorem 4.2.4 to show uniqueness, stability, and
compactness of the regular Lagrangian flow.
Corollary 4.2.5 (Uniqueness). Let b be a vector field satisfying assumptions (R1a), (R2a) and (R3),
and fix t ∈ [0, T ]. Then, the �-regular Lagrangian flow associated with b starting at time t, if it exists,
is unique �-a.e..

Proof. LetZ and Z̄ be two �-regular Lagrangian flows associated with the same vector field b. Then
from Theorem 4.2.4, setting b = b̄, we have

�(Br ∩ {|Z(s, ⋅) − Z̄(s, ⋅)| > }) ≤ �, (4.2.22)
for all , r, � > 0 and for all s ∈ [0, T ]. This implies Z = Z̄ �-a.e..
Corollary 4.2.6 (Stability). Let {bn} be a sequence of vector fields satisfying assumption (R1a), con-
verging in L1loc([0, T ] × ℝ2N ) to a vector field b which satisfies assumptions (R1a), (R2a) and (R3).
Assume that there exist Zn and Z �-regular Lagrangian flows starting at time t associated with bn
and b respectively, and denote by Ln and L the compressibility constants of the flows. Suppose that:

• The measure of the superlevels associated with Zn in hypothesis (R1a) is bounded by some
functions gn(r, �) which go to zero uniformly in n as �→ ∞ at fixed r,

• The sequence {Ln} is equi-bounded.

Then the sequence {Zn} converges to Z locally in measure with respect to � in ℝ2N , uniformly in s
and t.
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Proof. We set b̄ = bn and Z̄ = Zn in Theorem 4.2.4, then there exist two positive constants � and
C,r,�, which are independent of n, such that for all s ∈ [0, T ] it holds

�(Br ∩ {|Z(s, ⋅) −Zn(s, ⋅)| > }) ≤ C,r,�‖b − bn‖L1((0,T )×B�) + �.

In particular, for any r,  > 0 and any � > 0, we can choose n̄ large enough so that
�(Br ∩ {|Z(s, ⋅) −Zn(s, ⋅)| > }) ≤ 2� for all n ≥ n̄ and s ∈ [t, T ],

which is the thesis.
Corollary 4.2.7 (Compactness). Let {bn} be a sequence of vector fields satisfying assumptions (R1a),
(R2a) and (R3), converging inL1loc([0, T ]×ℝ

2N ) to a vector field bwhich satisfies assumptions (R1a),
(R2a) and (R3). Assume that there exist Zn �-regular Lagrangian flows starting at time t associated
with bn. Suppose that:

• The measure of the superlevels associated with Zn in hypothesis (R1a) is bounded by some
functions gn(r, �) which go to zero uniformly in n as �→ ∞ at fixed r,

• For any compact subset K of ℝ2N ,

∫K
log(1 + log(1 + |Zn(s, z)|)) d�(z) (4.2.23)

is equi-bounded in n and s, t,

• For some p > 1 the norms ‖bn‖Lp((0,T )×Br) are equi-bounded for any fixed r > 0,

• The norms of the singular integral operators associated with the vector fields bn (as well as
their number m) are equi-bounded,

• The norms of mn
jk in L

1((0, T );(ℝN )) are equi-bounded in n.

Then as n → ∞ the sequence {Zn} converges to some Z locally in measure with respect to �,
uniformly with respect to s and t, and Z is a regular Lagrangian flow starting at time t associated
with b.

Proof. We apply Theorem 4.2.4 with b = bn and b̄ = bm. Observe that the compressibility constants
L and L̄ of the same theorem are equal to 1. Indeed b and b̄ are divergence free as they both satisfy
assumption (R2a). Hence we have for any r,  > 0

�(Br ∩ {|Zn(s, ⋅) −Zm(s, ⋅)| > })→ 0 as m, n→∞, uniformly in s, t.
Thus it follows that Zn converges to some Z ∈ C([t, T ];L0loc(ℝ

2N , d�)) locally in measure with
respect to �, uniformly in s, t. The uniformity in n and s, t of the bound (4.2.23) implies Z ∈
([t, T ]; log logLloc(ℝ2N , d�)). We notice that conditions (2) and (3) in Definition 4.2.1 are satis-
fied, since thanks to (R2a) the vector fields bn are divergence free. We are left with the proof of
condition (1). Observe that a � ∈ C1(ℝ2N ) can be approximated by a sequence of �� ∈ C1c (ℝ

2N ),
therefore it suffices to show condition (1) for this latter class of functions. To this end we want to
perform the limit in n of equation (4.2.2) written for Zn and bn. From the convergence in measure of
Zn toZ and the fact thatZn andZ lie in a fixed ball Br (the support of ��) it follows the convergence
in distributional sense of ��(Zn) to ��(Z) and of �′�(Zn) to �′�(Z). While using the uniform bound of
‖bn‖Lp((0,T )×Br) and Lusin’s Theorem, we get convergence in L1loc of bn(Zn) to b(Z). Thus we have
convergence in the sense of distribution to equation (4.2.2).
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The above compactness statement does not directly translate into an existence result for La-
grangian flows, since in general it is not trivial to find a sequence bn approximating b as in the hy-
potheses of Corollary 4.2.7. This is due to the fact that the function g(r, �) in Lemma 5.2.2 does not
depend only on bounds on the vector field, but also on bounds on the density of charge. We are able
to do this in the specific case of the flow associated with the Vlasov-Poisson equation (solution to
(4.1.4)) and therefore we postpone this to Section 4.4.

4.3 Useful estimates

In this Section we recall some a priori estimates related to the Vlasov-Poisson equation and we adapt
them to the context of the system (4.1.1)-(4.1.2). The estimates which are stated without proof have
already been proved in Chapter 3 (Section 3.2).
Proposition 4.3.1. Let �(t, ⋅) ∈ Ls(ℝ3), for some s such that 1 ≤ s ≤∞. Then

‖E(t, ⋅)‖L3s∕(3−s) ≤ C‖�(t, ⋅)‖Ls , if s ∈ (1, 3) , (4.3.1)

‖E(t, ⋅)‖C0,� ≤ C‖�(t, ⋅)‖Ls , if s > 3 , with � = 1 − 3
s
, (4.3.2)

|||E(t, ⋅)|||M3∕2 ≤ C‖�(t, ⋅)‖L1 , (4.3.3)
where C is a constant depending only on s.

Proof. We observe that the electric field can be written as E(t, x) = 4�∇xΔ−1x �(t, x). Eq.ns (4.3.1)and (4.3.2) easily follow respectively from Gagliardo–Nirenberg–Sobolev and Morrey inequalities
in dimension three (see for instance [30]). Inequality (4.3.3) is a direct consequence of Hardy-
Littlewood-Sobolev inequality.
Proposition 4.3.2 (Mass and energy conservation). Let

M(t) = ∬ f (t, x, v) dxdv ,

H(t) = ∬
|v|2

2
f (t, x, v)dxdv +

|�(t)|2

2
+ 1
2 ∬

�(t, x)�(t, y)
|x − y|

dxdy + ∫
�(t, x)

|x − �(t)|
dx ,

be respectively the total mass and the total energy associated with the system (4.1.1)-(4.1.2). If f (t)
and �(t) are solutions to (4.1.1)-(4.1.2) on [0, T ], thenM(t) andH(t) are conserved quantities w.r.t.
time.

From Proposition 4.3.2 follows that, if the energy H(t) is initially finite, then the velocity of the
Dirac mass is finite.
Proposition 4.3.3. Let T > 0 such that for all t ∈ [0, T ], f (t) and �(t) are solutions of the system
(4.1.1)-(4.1.2) with finite associated initial energyH(0). Then

|�(t)| ≤ |�0| + T
√

2H(0) , (4.3.4)

|�(t)| ≤
√

2H(0) . (4.3.5)
Proposition 4.3.4. Let m ≥ 0, f (t, ⋅, ⋅) ∈ L1(ℝ3 ×ℝ3) and �(t, ⋅) ∈ L1(ℝ3) as in (4.1.1). Then there
exists a constant C > 0, which only depends on m, such that

‖�(t, ⋅)‖
L
m+3
3

≤ C‖f (t, ⋅, ⋅)‖
m
m+3
L∞

(

∬ |v|mf (t, x, v) dx dv
)

3
m+3

. (4.3.6)
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Proposition 4.3.5. Let f ≥ 0, f (t, ⋅, ⋅) ∈ L1 ∩ L∞(ℝ3 × ℝ3) solution to (4.1.1). Assume the total
energy to be initially finite, then �(t, ⋅) ∈ L1 ∩ L5∕3(ℝ3) and E(t, ⋅) ∈ Lq(ℝ3), for any 3

2 < q ≤
15
4 .

Proof. The bound �(t, ⋅) ∈ L5∕3(ℝ3) follows by Proposition 4.3.4 for m = 2. The estimate on the
electric field is a consequence of Proposition 4.3.1 for s = 1 and s = 5

3 .
The following two propositions regard specifically the case in which we deal with a Dirac mass

and their proof relies on the condition that the total chargeM(0) has to be strictly less than one. This
is the only reason why we need to assume (4.1.5) in Theorem 4.1.1.
Proposition 4.3.6 (Proposition 2.9 in [28]). Let M(0) < 1, H(0) < +∞ and (f, �) a classical
solution to (4.1.1)-(4.1.2) on [0, T ]. Then for all t ∈ [0, T ] there is a constant depending only on
M(0) andH(0) such that

∫

t

0 ∬
f (s, x, v)
|x − �(s)|2

dx dv ds ≤ C(1 + t) . (4.3.7)
Proof. For s ∈ [0, T ], consider (X(s, x, v), V (s, x, v)) solution to the characteristic system (4.1.4)
with initial data (x, v). We now use the shorter notation (X(s), V (s)) and compute

d2

ds2
|X(s) − �(s)| = 1

|X(s) − �(s)|2
+
(X(s) − �(s)) ⋅ (E(s,X(s)) − E(s, �(s)))

|X(s) − �(s)|
.

Then we obtain
1

|X(s) − �(s)|2
≤ d2

ds2
|X(s) − �(s)| + |E(s,X(s))| + |E(s, �(s))| . (4.3.8)

By integrating the above expression w.r.t. time and the measure f0(x, v) dx dv, we get

∫

t

0 ∬
f0(x, v)

|X(s) − �(s)|2
dx dv ds ≤ ∫

t

0 ∬
d2

ds2
|X(s) − �(s)| f0(x, v) dx dv ds

+ ∫

t

0 ∬ |E(s,X(s))| f0(x, v) dx dv ds

+M(0)∫

t

0
|E(s, �(s))| ds .

(4.3.9)

The first term in the r.h.s. of (4.3.9) can be bounded as follows

∬ f0(x, v)∫

t

0

d2

ds2
|X(s) − �(s)| ds dx dv = ∬ f0(x, v)

[ d
ds

|X − �|
]s=t

s=0
dx dv

≤ 2 sup
t∈[0,T ]∬

f0(x, v) |V (t, x, v) − �(t)| dx dv

= 2 sup
t∈[0,T ]∬

f (t, x, v) |v − �(t)| dx dv

≤ CM(0)1∕2(H(0) +H(0)M(0))1∕2 ,
(4.3.10)

where we used Hölder inequality and the conservation of mass and energy in the latter estimate.
The second term in (4.3.9) is bounded by means of Hölder inequality and Proposition 4.3.5:

∫

t

0 ∬ |E(s,X(s))| f0(x, v) dx dv ds = ∫

t

0 ∬ |E(s, x)| f (s, x, v) dx dv ds

≤ C ∫

t

0
‖�(s)‖

L
5
3
‖E(s)‖

L
5
2
ds ≤ Ct .

(4.3.11)
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We use (4.3.10) and (4.3.11) in the r.h.s. of (4.3.9) and we obtain

∫

t

0 ∬
f (s, x, v)
|x − �(s)|2

dx dv ds ≤ C(1 + t) +M(0)∫

t

0

f (s, x, v)
|x − �(s)|2

dx dv ds ,

that concludes the proof sinceM(0) < 1.
Proposition 4.3.7 (Theorem 1.1. in [28]). Let f0 ∈ L1∩L∞(ℝ3×ℝ3) non-negative, (�0, �0) ∈ ℝ3×ℝ3
andH(0) finite. Assume further that

(i) M(0) < 1,

(ii) There exists m0 > 6 such that for all m < m0

∬

(

|v|2 + 1
|x − �0|

)m∕2

f0(x, v) dx dv < +∞ .

Then there exists a global weak solution (f, �) to the system (4.1.1)-(4.1.2), with
f ∈ C(ℝ+, Lp(ℝ3 × ℝ3)) ∩ L∞(ℝ+, L∞(ℝ3 × ℝ3)) for any 1 ≤ p < +∞, � ∈ C2(ℝ+), and
E ∈ L∞([0, T ], C0,�(ℝ3)) for all T > 0.

Moreover, for all t ∈ ℝ+ and for all m < min(m0, 7),

∬

(

|v|2 + 1
|x − �(t)|

)m∕2

f (t, x, v) dx dv ≤ C(1 + t)c , (4.3.12)

where C and c only depend on the initial data.

Remark 16. Observe that thanks to Proposition 4.3.4, condition (4.3.12) implies �(t) ∈ Ls(ℝ3), for
s > 3. Hence the Hölder continuity of the electric field follows directly by Proposition 4.3.1.

4.4 Proof of the Theorem 4.1.1

4.4.1 Existence of the Lagrangian flow

In this subsectionwe shall use the results obtained in Section 4.2 for a general flow solution to equation
(4.2.1) and apply them to the context of the Vlasov-Poisson system (4.1.1)-(4.1.2), namely to the ODE
(4.1.4). In particular we will prove existence of a flow associated with the vector field b(s, x, v) =
(v, E(s, x)+F (s, x)), using the compactness result provided by Corollary 4.2.7. To this end it suffices
to construct a sequence bn which approximates b and satisfies the hypotheses of Corollary 4.2.7.

Let f0 and (�0, �0) be the initial data of system (4.1.1), satisfying the hypotheses of Theorem 4.1.1.
We consider the approximating initial densities given by

f n0 (x, v) = f0(x, v)1{(x,v)∶ 1n<|x−�0|<n, |v−�0|<n}
(x, v). (4.4.1)

Thanks to [40], this choice ensures existence and uniqueness of fn and (�n, �n), solutions to theVlasov-
Poisson system (4.1.1)-(4.1.2). Moreover fn is a Lagrangian solution, i.e.

fn(s,Xn(s, x, v), Vn(s, x, v)) = f n0 (x, v), (4.4.2)
where (Xn, Vn) satisfy

{

Ẋn(s, x, v) = Vn(s, x, v)
V̇n(s, x, v) = En(s,Xn(s, x, v)) + Fn(s,Xn(s, x, v)),

(4.4.3)
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with
En(s, x) =

(

∇ 1
|⋅|
∗ �n

)

(s, x), �n(s, x) = ∫ fn(s, x, v) dv, Fn(s, x) =
x−�n(s)

|x−�n(s)|3
. (4.4.4)

From now on the abstract measure � of Section 2 will be set as � = f0 2N , where f0 is the initial
density of our problem. In order to apply Corollary 4.2.7, we need then the approximating vector
fields bn(s, x, v) = (v, En(s, x) + Fn(s, x)) to satisfy hypotheses (R1a), (R2a), and (R3) “uniformly"
in n (with equi-bounds on the quantities involved) and the bound (4.2.23). Furthermore we set the
dimensionN equal to 3.
Proof of (R1a) + equibound: control of superlevels

In [11] a control on the superlevels was obtained using hypothesis (R1) which provided an upper
bound on the integral of log(1 + |Z|). Without assumption (R1), we need estimates on |V |2 in order
to control the superlevels. This requires integrating a function which grows slower than log(1 + |V |)
at infinity. Furthermore, differently from [12], we will bound the superlevels ofZ with respect to the
measure � = f0 6. For the sake of clarity we will use the notation f0(B) to indicate the measure �
of a set B ⊆ ℝ6. The result is the following lemma, whose proof is postponed to Subsection 4.2.
Lemma 4.4.1. Let b(t, x, v) = (v, E(t, x) + F (t, x)) and let Z ∶ [t, T ] × ℝ3 × ℝ3 → ℝ3 × ℝ3 be the
�-regular Lagrangian flow relative to b starting at time t, with sublevelG�. AssumeM(0) < 1. Then,
for all r, � > 0, we have

f0(Br ⧵ G�) ≤ g(r, �),

where the function g depends only on ‖E‖L∞t (L2x), ‖E‖L∞t (L5∕2x ), ‖U‖L1t (L∞x ), ‖F‖L∞t (M3∕2
x ), ‖f‖L∞t (L∞x,v),

‖f‖L∞t (L1x,v),H(0), and g(r, �) ↓ 0 for r fixed and � ↑∞.

Notice that this lemma holds also for the regularized problem (system (4.1.1)-(4.1.2) with initial
density f n0 ). Therefore we have, for all r, � > 0,

f n0 (Br∖G
n
�) ≤ gn(r, �), (4.4.5)

where gn converges to zero for r fixed and � ↑∞. Moreover, this convergence is uniform in n. Indeed
the proof of Lemma 5.2.2 entails the functions gn to be increasing with respect to the norms of En,
Un, Fn, fn, and with respect toHn(0). These quantities are in turn all bounded by the same quantities
without the index n. Therefore, due to the choice of the initial densities of the regularized problem,
we have

f0(Br∖Gn�) ≤ f n0 (Br∖G
n
�) + f0

(

ℝ6∖
{

(x, v) ∶ 1
n
< |x − �0| < n, |v − �0| < n

}

)

≤ gn(r, �) + f0
(

{

(x, v) ∶ |x − �0| ≤
1
n
or |x − �0| ≥ n

}

)

+ f0
({

(x, v) ∶ |v − �0| ≥ n
})

,

(4.4.6)

where gn(r, �) depends on the norms of E, U , F , f and on H(0), and tends to zero as � → ∞ uni-
formly in n. Moreover the last two terms tend to zero as n→∞ by Lebesgue’s Dominate Convergence
Theorem. Hence we have, for any fixed �, r > 0, that there exist � > 0 andN ∈ ℕ such that

f0(Br∖Gn�) ≤ � (4.4.7)
for each n ≥ N .
Proof of (R2a): spatial regularity
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Since bn(t, x, v) = (bn1(v), b
n
2(t, x)) with bn1(v) = v and bn2(t, x) = En(t, x) + Fn(t, x), we observe

that the Lipschitz constants of bn1 and b1 are trivially equi-bounded. We are left to show that the
derivatives of bn2 and b2 are singular integrals of fundamental type on ℝ3 of finite measures, and that
the norms of the kernels associated with the singular integral operators and those of the measures in
L1((0, T );(ℝ3)) are equi-bounded. We compute, outside of the origin,

)xj (b2)i(x) = )xj (E + F )i(x) = )xj

(

⋅
| ⋅ |3

∗ �(t, ⋅)
)

i
(x) + )xj

(

⋅
| ⋅ |3

∗ ��(t)

)

i
(x)

=
(

)xj
(⋅)i
| ⋅ |3

∗
(

�(t, ⋅) + ��(t)
)

)

(x)

=

(

�ij| ⋅ |2 − 3 ⋅i ⋅j
| ⋅ |5

∗
(

�(t, ⋅) + ��(t)
)

)

(x).

Therefore )xj (b2)i is a singular integral of the finite measure � + ��(t), with kernel

Kij(y) =
�ij|y|2 − 3yiyj

|y|5
.

The kernel satisfies conditions of Def.2.13 in [15], therefore it is a singular kernel of fundamental
type. Similarly we have )xj (bn2)i = Kij(⋅) ∗ (�(t, ⋅) + ��n(t)), hence also )xj (bn2)i are singular integralsof finite measures, with equi-bounded kernels and equi-bounds on the measures’ norms.
Proof of (R3)

We shall prove now that the Lp-norms of b and bn in (0, T ) × Br are equi-bounded, for some p > 1
and for any fixed r > 0. Through an easy computation we notice that theM3∕2-pseudo-norms of F
and Fn are equi-bounded and uniform in t:

|||Fn(t, ⋅)|||
3∕2
M3∕2 = sup

�>0

{

�3∕23
(

{x ∶ 1
|x − �n(t)|2

> �}
)}

= sup
�>0

⎧

⎪

⎨

⎪

⎩

�3∕2 ∫
|x−�n(t)|<

1
√

�

1 dx

⎫

⎪

⎬

⎪

⎭

≤ C .

Similarly we have that the L1-norms of F and Fn are equi-bounded in (0, T ) × Br for any r > 0:

sup
t∈[0,T ]

‖Fn‖L1(Br) = sup
t∈[0,T ]∫Br

1
|x − �n(t)|2

dx = sup
t∈[0,T ]∫Br(�n(t))

1
|y|2

dy ≤ C .

Furthermore Propositions 4.3.1 tells us that E and En belong to L∞((0, T );M3∕2(ℝ3)), with the
respective pseudo-norms which are equi-bounded in n. Therefore the second component of the vec-
tor fields b and bn (i.e. E + F , En + Fn) are equi-bounded in the space L∞((0, T );M3∕2(ℝ3)) ⊂
Lploc((0, T ) × ℝ3) for any 1 ≤ p < 3

2
. Since v ∈ Lploc((0, T ) × ℝ3) for any p, we conclude that b, bn

belong to Lploc((0, T ) ×ℝ3) for any 1 ≤ p < 3
2
, with uniform bound on the norms.

Proof of the equi-boundedness of (4.2.23)
We observe that

|Zn| ≤ |Xn| + |Vn| ≤ |x| + (1 + T )|Vn| . (4.4.8)
Thus it suffices to prove the equi-boundedness of (4.4.16) for the regularised flow Vn. This is a
byproduct of the proof of Lemma 5.2.2, where we show that the constant A depends on quantities
which are uniformly bounded in n.
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4.4.2 Conclusion of the proof of Theorem 4.1.1: existence of Lagrangian solutions to
the Vlasov-Poisson system

Let f0 be as in Theorem 4.1.1. In order to prove existence of a Lagrangian solution to system (4.1.1)-
(4.1.2), we use a compactness argument. For each n, we consider the initial datum f n0 defined in
(4.4.1), which converges to f0. The result in [40] ensures existence and uniqueness of the classical
Lagrangian solution fn, (�n, �n) to the Vlasov-Poisson system with point charge

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

)tfn + v ⋅ ∇xfn + (En + Fn) ⋅ ∇vfn = 0 ,

fn(0, x, v) = f n0 (x, v) ,

En(t, x) = ∫ x−y
|x−y|3

�n(t, y) dy ,

�n(t, x) = ∫ fn(t, x, v) dv ,

Fn(t, x) =
x−�n(t)

|x−�n(t)|3
,

(4.4.9)

where (�n(t), �n(t)) evolves according to
⎧

⎪

⎨

⎪

⎩

�̇n(t) = �n(t) ,
�̇n(t) = En(t, �n(t)) ,
(�n(0), �n(0)) = (�0, �0) .

(4.4.10)

Therefore, there exists a unique flow Zn = (Xn, Vn) ∶ [0, T ] × ℝ3 × ℝ3 → ℝ3 × ℝ3 associated with
the vector field (Vn, En(Xn) + Fn(Xn)), such that f n = Zn#f

n
0 is the push-forward of f n0 through Zn,

i.e.
fn(t, Xn(t, x, v), Vn(t, x, v)) = f n0 (x, v) .

From Subsection 4.4.1, there exists Z such that Zn → Z in measure, with respect to � = f06.
Therefore we define a density f which is the push forward of the initial data f0 through the limiting
flow Z, i.e.

f ∶= Z#f0 .
The aim of this subsection is to verify that the above defined f is indeed a solution to (4.1.1)-(4.1.2).
In other words, we want to perform the limit n → ∞ in (4.4.9)-(4.4.10) and get (4.1.1)-(4.1.2). This
will conclude the proof of Theorem 4.1.1. To this end we observe that, up to subsequences:

• fn ⇀ f weakly in L1x,v and weakly∗ in L∞x,v, uniformly in t.
Indeed, f n0 → f0 in L1x,v andZn → Z in measure �. Since the latter limit is uniform in s and t,
we define the inverse of the flow Z−1

n (t, s, x, v) ∶= Zn(s, t, x, v) and observe that Z−1
n → Z−1

in measure and therefore �-a.e., uniformly in t. Given ' ∈ Cc(ℝ3 ×ℝ3), we can estimate

∬ '(x, v) (fn(t, x, v) − f (t, x, v)) dx dv

= ∬ '(x, v)
(

f n0 (Z
−1
n (t, x, v)) − f0(Z

−1(t, x, v))
)

dx dv

= ∬ '(Zn(t, x, v)) f n0 (x, v) dx dv −∬ '(Z(t, x, v)) f0(x, v) dx dv

= ∬
(

'(Zn(t, x, v)) − '(Z(t, x, v))
)

f0(x, v) dx dv

+∬ '(Zn(t, x, v)) (f n0 (x, v) − f0(x, v)) dx dv .
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The first term in the r.h.s. converges to zero, since Zn → Z �-a.e. The second term also con-
verges to zero because ' is bounded and f n0 → f0 in L1x,v. Moreover, since fn is equi-bounded
in L1x,v ∩ L∞x,v, uniformly in t, we obtain weak convergence in L1x,v and weak∗ convergence in
L∞x,v of fn to f , uniformly in t.

• �n ⇀ � weakly in L1x. It follows from the weak L1x,v convergence of fn to f . Moreover, thanks
to Remark 16, �n ⇀ � weakly in Lsx, for some s > 3.

• )tfn converges to )tf in ′ and v ⋅ ∇xfn converges to v ⋅ ∇xf in ′.
• En → E uniformly. This is a consequence of Proposition 4.3.7. Indeed, the r.h.s. of equation

(4.3.12) is uniformly bounded in n. Therefore, by Proposition 4.3.4, ‖�n‖Lm+3
3

is uniformly
bounded and Proposition 4.3.1 yields {En}n equi-Hölder. Ascoli-Arzelà Theorem guarantees
the existence of a uniformly convergent subsequence. The limit couple (E, �) satisfiesE(t, x) =
∫ x−y

|x−y|3 �(t, y) dy, since E ∈M3∕2 and decays at infinity, while � ∈ Ls, for some s > 3.
• En ⋅∇vfn → E ⋅∇vf in′. This follows by rewriting En ⋅∇vfn = divv(En fn) and E ⋅∇vf =
divv(E f ), and by the facts that En → E uniformly and fn ⇀ f weakly in L1x,v.

We are left with the part of the system (4.4.9)-(4.4.10) which involves the point charge. In particular,
we define

n(t) = (�n(t), �n(t)) (4.4.11)
and set

(�(t), �(t)) ∶= lim
n→∞

n(t) . (4.4.12)
Observe that the limit in (4.4.12) exists. Indeed, n(t) is equi-Lipschitz because of the following
estimate:

Lip(n) ≤ ‖̇n‖L∞ ≤ sup
t
|�n(t)| + sup

t
|En(t, �n(t))| , (4.4.13)

where Lip(n) is the Lipschitz constant of n. Proposition 4.3.3 yields a uniform bound on the first
term in the r.h.s. of (4.4.13), that combined with the uniform bounds on En proved in this subsection,
implies n equi-Lipschitz. By Ascoli-Arzelà Theorem, there exists a subsequence {(�nk(t), �nk(t))}kwhich converges uniformly to (�(t), �(t)). To perform the limit in (4.4.9)-(4.4.10), we observe that

• (�̇n(t), �̇n(t))→ (�̇(t), �̇(t)). Indeed, (�n(t), �n(t)) converges to (�(t), �(t)) uniformly and
sup
t
|̇n(t) − (�(t), E(t, �(t)))| ≤ sup

t
|�n(t) − �(t)| + sup

t
|En(t, �n(t)) − E(t, �(t))| . (4.4.14)

The first term in the r.h.s. of (4.4.14) converges to zero uniformly. As for the second term, we
use that
sup
t
|En(t, �n(t))−E(t, �(t))|

≤ sup
t
|En(t, �n(t)) − E(t, �n(t))| + sup

t
|E(t, �n(t)) − E(t, �(t))|

≤ sup
t,x

|En(t, x) − E(t, x)| + sup
t
|E(t, �n(t)) − E(t, �(t))|.

(4.4.15)

Combining the facts that En → E, �n → � and E is uniformly continuous, the last line in
(4.4.15) vanishes as n→∞.

• Fn → F in L1x, loc. Indeed, Fn → F pointwise, by the uniform convergence of �n(t) to �(t) up
to subsequences, and Fn, F ∈ L1loc(ℝ

3). Therefore, we conclude by Dominated Convergence’s
Theorem.

• Fn ⋅∇vfn → F ⋅∇vf in′. This follows by rewriting Fn ⋅∇vfn = divv(Fn fn) and F ⋅∇vf =
divv(F f ), and by the facts that Fn → F in L1loc(ℝ3) and fn

∗
⇀ f weakly∗ in L∞x,v.
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4.4.3 Proof of Lemma 5.2.2

We call G̃� the sublevel of V and we remark that by the first equation in (4.2.1), whenever (x, v) ∈ G̃�
one has |X(s, x, v)| ≤ |x| + |s − t|� and |Z(s, x, v)| ≤ |x| + (1 + T )�. Thus for � > r one has
Br∖G� ⊂ Br∖G̃(�−r)∕(1+T ), while for � ≤ r we can just use that Br∖G� ⊂ Br, so to conclude the proof
it suffices to bound the superlevels of V . In order to do this we will first prove that

∬Br
sup
s∈[t,T ]

log
(

1 + log
(

1 +
|V (s, x, v)|2

2

))

f0(x, v) dx dv ≤ A (4.4.16)

whereA is a constant depending on ‖E‖L∞t (L2x), ‖E‖L∞t (L5∕2x ), ‖U‖L1t (L∞x ), |||F |||L∞t (M3∕2
x ), ‖f‖L∞t (L∞x,v),

‖f‖L∞t (L1x,v) and H(0). Once one has shown that (4.4.16) holds, the statement of the lemma follows
simply by the following inequality:

∬Br
sup
s∈[t,T ]

log
(

1 + log
(

1 +
|V (s, x, v)|2

2

))

f0(x, v) dx dv

≥ f0(Br ⧵ G̃�) log
(

1 + log
(

1 + �2

2

))

. (4.4.17)

Consider the ODE system (4.1.4) and recall the Definition 4.2.1. Let �(z) = log
(

1 + log
(

1 + |z|2

2

))

,
then

�′(z) = z
(

1 + log
(

1 + |z|2
2

))

(1 + |z|2
2
)
. (4.4.18)

Using (4.2.2) and (4.4.18), we compute
)s[�(V (s, x, v))] =

(E(s,X(s, x, v)) + F (s,X(s, x, v))) ⋅ V (s, x, v)
(

1 + log
(

1 + |V (s,x,v)|2
2

))(

1 + |V (s,x,v)|2
2

) .

Observe that, by definition of the electric potential U ,
E(s,X(s, x, v)) ⋅ V (s, x, v) = −)s[U (s,X(s, x, v))] + ()sU )(s,X(s, x, v)) ,

thus

)s[�(V (s, x, v))] = − )s

⎡

⎢

⎢

⎢

⎣

U (s,X(s, x, v))
(

1 + |V (s,x,v)|2
2

)(

1 + log
(

1 + |V (s,x,v)|2
2

))

⎤

⎥

⎥

⎥

⎦

−
U (s,X(s, x, v))

(

1 + |V (s,x,v)|2
2

)2 (
1 + log

(

1 + |V (s,x,v)|2
2

))2

×
[

V (s, x, v) ⋅ (E(s,X(s, x, v)) + F (s,X(s, x, v))
(

1 + log
(

1 +
|V (s, x, v)|2

2

))

+
(

1 +
|V (s, x, v)|2

2

)

⎛

⎜

⎜

⎝

V (s, x, v) ⋅ (E(s,X(s, x, v)) + F (s,X(s, x, v))

1 + |V (s,x,v)|2
2

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

+
()sU )(s,X(s, x, v))

(

1 + log
(

1 + |V (s,x,v)|2
2

))(

1 + |V (s,x,v)|2
2

)

+
F (s,X(s, x, v)) ⋅ V (s, x, v)

(

1 + log
(

1 + |V (s,x,v)|2
2

))(

1 + |V (s,x,v)|2
2

) ,
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whence
)s[�(V (s, x, v))]

= − )s

⎡

⎢

⎢

⎢

⎣

U (s,X(s, x, v))
(

1 + |V (s,x,v)|2
2

)(

1 + log
(

1 + |V (s,x,v)|2
2

))

⎤

⎥

⎥

⎥

⎦

−
U (s,X(s, x, v))V (s, x, v) ⋅ (E(s,X(s, x, v)) + F (s,X(s, x, v))

(

1 + log
(

1 + |V (s,x,v)|2

2

))

(

1 + |V (s,x,v)|2
2

)2 (
1 + log

(

1 + |V (s,x,v)|2
2

))2

−
U (s,X(s, x, v))V (s, x, v) ⋅ (E(s,X(s, x, v)) + F (s,X(s, x, v))

(

1 + |V (s,x,v)|2

2

)

(

1 + |V (s,x,v)|2
2

)2 (
1 + log

(

1 + |V (s,x,v)|2
2

))2 (
1 + |V (s,x,v)|2

2

)

+
()sU )(s,X(s, x, v)) + F (s,X(s, x, v)) ⋅ V (s, x, v)

(

1 + log
(

1 + |V (s,x,v)|2
2

))(

1 + |V (s,x,v)|2
2

) .

(4.4.19)
By integrating (4.4.19) w.r.t. time we get

log
(

1 + log
(

1 +
|V (s, x, v)|2

2

))

= −
U (s,X(s, x, v))

(

1 + |V (t,x,v)|2
2

)(

1 + log
(

1 + |V (t,x,v)|2
2

))

+
U (t, x)

(

1 + |v|2
2

)(

1 + log
(

1 + |v|2
2

)) + log
(

1 + log
(

1 +
|v|2

2

))

+ ∫

s

t

⎧

⎪

⎨

⎪

⎩

−
U (�,X(�, x, v))V (�, x, v) ⋅ (E(�,X(�, x, v)) + F (�,X(�, x, v)))

(

1 + |V (�,x,v)|2
2

)2 (
1 + log

(

1 + |V (�,x,v)|2
2

))

−
U (�,X(�, x, v))V (�, x, v) ⋅ (E(�,X(�, x, v)) + F (�,X(�, x, v)))

(

1 + |V (�,x,v)|2
2

)2 (
1 + log

(

1 + |V (�,x,v)|2
2

))2

+
()sU )(�,X(�, x, v))

(

1 + log
(

1 + |V (�,x,v)|2
2

))(

1 + |V (�,x,v)|2
2

)

+
F (t, X(t, x, v)) ⋅ V (t, x, v)

(

1 + log
(

1 + |V (t,x,v)|2
2

))(

1 + |V (t,x,v)|2
2

)

⎫

⎪

⎬

⎪

⎭

d� .

(4.4.20)

We have by the Sobolev embedding in ℝ3 that
U (t, ⋅) = ∇−1E(t, ⋅) ∈ L6(ℝ3)

since E(t, ⋅) ∈ L2(ℝ3) thanks to Propositions 4.3.5. Thus clearly
U (t, x)

1 + |v|2
2

∈ L6(ℝ3x ×ℝ3v) ⊂ L
1(ℝ3x ×ℝ3v) + L

∞(ℝ3x ×ℝ3v) .
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It follows that the first two terms in the r.h.s. of (4.4.20) are bounded in L6(ℝ3x × ℝ3v) ⊂ L1(ℝ3x ×
ℝ3v) + L

∞(ℝ3x ×ℝ3v). The inequality

log
(

1 + log
(

1 +
|v|
2

2))

≤ |v|
2

2

allows to estimate the third term multiplied by f0 with the kinetic energy, that is in turn bonded by
the initial total energy H(0). Thus the third term belongs to L1(ℝ3x × ℝ3v, d�) with � = f0 6, so it
remains to compute the terms in the integral. Let

Φ ∶= ∫

s

t

⎛

⎜

⎜

⎜

⎝

−
U (�,X(�, x, v))V (�, x, v) ⋅ (E(�,X(�, x, v)) + F (�,X(�, x, v)))

(

1 + |V (�,x,v)|2
2

)2 (
1 + log

(

1 + |V (�,x,v)|2
2

))

−
U (�,X(�, x, v))V (�, x, v) ⋅ (E(�,X(�, x, v)) + F (�,X(�, x, v)))

(

1 + |V (�,x,v)|2
2

)2 (
1 + log

(

1 + |V (�,x,v)|2
2

))2

+
()�U )(�,X(�, x, v))

(

1 + log
(

1 + |V (�,x,v)|2
2

))(

1 + |V (�,x,v)|2
2

)

+
F (�,X(�, x, v)) ⋅ V (�, x, v)

(

1 + log
(

1 + |V (�,x,v)|2
2

))(

1 + |V (�,x,v)|2
2

) d�

⎞

⎟

⎟

⎟

⎠

= ∫

s

t
(Φ1 + Φ2 + Φ3 + Φ4) d� .

(4.4.21)

Observe that we only have to bound the integrals of Φ1,Φ3,Φ4, since Φ2 is easily estimated by Φ1.
We start with Φ1 and we split it into Φ1,1, which contains E, and Φ1,2, which contains F . Taking
absolute value and changing variables (X(t, x, v), V (t, x, v))↦ (x, v) we have

‖

‖

‖

‖

∫

s

t
Φ1,1(�)d�

‖

‖

‖

‖L3∕2x,v

≤ ∫

s

t
‖Φ1,1(�)‖L3∕2x,v

d�

= ∫

s

t

⎛

⎜

⎜

⎜

⎝

∬

|

|

|

|

|

|

|

|

U (�, x) v ⋅ E(�, x)
(

1 + |v|2
2

)2 (
1 + log

(

1 + |v|2
2

))

|

|

|

|

|

|

|

|

3∕2

dxdv

⎞

⎟

⎟

⎟

⎠

2∕3

d�

≤ ∫

s

t

(

∫ |U (�, x)E(�, x)|3∕2dx
)2∕3

d�

⎛

⎜

⎜

⎜

⎝

∫
v3∕2

(

1 + |v|2
2

)3 (
1 + log

(

1 + |v|2
2

))3∕2
dv

⎞

⎟

⎟

⎟

⎠

2∕3

≤ C‖U‖L1t (L6x)‖E‖L∞t (L2x) ∫

∞

0

r7∕2dr
(

1 + r2
)3 (1 + log

(

1 + r2
))3∕2

≤ C‖U‖L1t (L6x)‖E‖L∞t (L2x)

Since the integral in dr is convergent, we have that ∫ s
t Φ1,1(�)d� ∈ L3∕2(ℝ3x × ℝ3v) ⊂ L1(ℝ3x ×

ℝ3v) +L
∞(ℝ3x ×ℝ3v). We now estimate the L1t (M3∕2

x,v ) pseudo-norm ofΦ1,2. We obtain thatΦ1,2(�) ∈
M3∕2(ℝ3x ×ℝ3v) ⊂ L

1(ℝ3x ×ℝ3v) + L
∞(ℝ3x ×ℝ3v), since
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∫

s

t
|||Φ1,2(�)|||M3∕2

x,v
d�

≤ ∫

s

t
|||U (�)F (�)|||M3∕2

x

‖

‖

‖

‖

‖

‖

‖

‖

v
(

1 + |v|2
2

)2 (
1 + log

(

1 + |v|2
2

))

‖

‖

‖

‖

‖

‖

‖

‖L3∕2v

d�

≤ C ∫

s

t
‖U (�)‖L∞x |||F (�)|||M3∕2

x
d� ≤ C‖U‖L1t (L∞x )‖F‖L∞t (M3∕2

x ),

where U ∈ L∞x by Sobolev embedding. However, notice that in this case the previous estimate does
not imply directly that ∫ s

t Φ1,2(�)d� ∈M
3∕2(ℝ3x ×ℝ3v), since ||| ⋅ |||M3∕2 is not subadditive. In order

to obtain ∫ s
t Φ1,2(�)d� ∈ M3∕2(ℝ3x × ℝ3v) ⊂ L1(ℝ3x × ℝ3v) + L

∞(ℝ3x × ℝ3v), which we need for the
bound (4.4.16), it suffices to recall that, if p > 1, the pseudo-norm ||| ⋅ |||Mp is well known to be
equivalent to a norm ‖ ⋅ ‖∗ defined as

‖u‖∗ ∶= sup
0<|E|<∞

∫E |u|

|E|1−
1
p

, for any measurable function u.

For Φ3 we observe that
)sU = Δ−1∕2j(s, x), where j(s, x) = ∫ vf (s, x, v)dv (4.4.22)

hence by Hölder inequality in the v variable

|j(s, x)| ≤
(

∫ f (s, x, v)dv
)1∕2(

∫ |v|2f (s, x, v)dv
)1∕2

. (4.4.23)
Integrating over x, using Hölder inequality and the bounds f (s) ∈ L1x,v and ∫ |v|2f (s)dxdv ≤ H(0),
we get that j(s) ∈ L1x. Thus by Hardy-Littlewood-Sobolev inequality,

|||)sU (s)|||M3∕2
x
= ||||x|−2 ∗ j(s)|||M3∕2

x
≤ c‖j(s)‖L1x .

Therefore, changing variables, we obtain thatΦ3(�) ∈M3∕2(ℝ3x×ℝ
3
v) ⊂ L

1(ℝ3x×ℝ
3
v)+L

∞(ℝ3x×ℝ
3
v),in fact

|||Φ3(�)|||M3∕2
x,v
=
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

()�U )(�,X(�, x, v))
(

1 + log
(

1 + |V (�,x,v)|2
2

))(

1 + |V (�,x,v)|2
2

)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|M3∕2
x,v

=
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

()�U )(�, x)
(

1 + log
(

1 + |v|2
2

))(

1 + |v|2
2

)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|M3∕2
x,v

≤
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

()�U )(�, x)
(

1 + log
(

1 + |v|2
2

))(

1 + |v|2
2

)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|M3∕2
x (L3∕2v )

≤ C|||)�U (�)|||M3∕2
x ∫

ℝ3

1
(

1 + log
(

1 + |v|2
2

))3∕2 (
1 + |v|2

2

)3∕2
dv

≤ C‖j(�)‖L1x ∫

∞

0

r2 dr
(

1 + log
(

1 + r2
))3∕2 (1 + r)3

≤ C‖j(�)‖L1x ,

(4.4.24)



80 CHAPTER 4. LAGRANGIAN SOLUTION TO V-P SYSTEM WITH POINT CHARGE

where in the inequality we used that the integral in the r variable is convergent. Given that f0 is
bounded, in order to have (4.4.16), we are left with the term Φ4, which does not belong to L1(ℝ3 ×
ℝ3) + L∞(ℝ3 ×ℝ3).

For Φ4 we compute

∫

T

0 ∬ Φ4(�, x, v) f0(x, v) dx dv d�

= ∫

T

0 ∬
F (�,X(�, x, v)) ⋅ V (�, x, v)

(

1 + log
(

1 + |V (�,x,v)|2
2

))(

1 + |V (�,x,v)|2
2

) f0(x, v) dx dv d� .
(4.4.25)

Since the denominator of the integrand is bounded, we can estimate the above quantity as follows:

(4.4.25) ≤ C ∫

T

0 ∬ F (�,X(�, x, v)) f0(x, v) dx dv d�

≤ C ∫

T

0 ∬
f0(x, v)

|X(�, x, v) − �(�)|2
dx dv d�

= C ∫

T

0 ∬
f (�,X(�, x, v), V (�, x, v))

|X(�, x, v) − �(�)|2
dx dv d�

= C ∫

T

0 ∬
f (�, x, v)
|x − �(�)|2

dx dv d� ≤ C(1 + T ),

where in the last inequality we used Proposition 4.3.6.
Thus, condition (4.4.16) is satisfied and the proof is completed thanks to (4.4.17).



Chapter 5

Flows of partially regular vector fields

In [25] we derive quantitative estimates for the Lagrangian flow associated to a partially regular vector
field of the form

b(t, x1, x2) = (b1(t, x1), b2(t, x1, x2)) ∈ ℝn1 ×ℝn2 , (x1, x2) ∈ ℝn1 ×ℝn2 .

Weassume that the first component b1 does not depend on the second variable x2, and has SobolevW 1,p

regularity in the variable x1, for some p > 1. On the other hand, the second component b2 has Sobolev
W 1,p regularity in the variable x2, but only fractional SobolevW �,1 regularity in the variable x1, for
some � > 1∕2. These estimates imply well-posedness, compactness, and quantitative stability for the
Lagrangian flow associated to such a vector field.

5.1 Introduction

Regarding the problem of wellposdness for transport equation and ODE, we would like to remark
that both approaches of renormalization (due to DiPerna-Lions) and of a priori estimates of the flow,
require information on a full derivative of the vector field, even though in a suitable weak sense
(Sobolev or BV regularity, derivative which is a singular integral of an integrable function. . . ), with
an integrable control with respect to time. This kind of assumption is in general sharp, as shown by
various counterexamples ([27, 22, 1, 29, 3, 2]). However, under more special “structural” conditions
on the vector field, wellposedness can be proved even for vector fields with “less than one derivative”,
see for instance [3, 2] in the two-dimensional setting and [20] for the Hamiltonian case in general
dimension.

A further case enjoying a “special structure” is that of partially regular vector fields as in [35, 37,
38] (see also Section 3.2.2 in [14]). Let us describe this case in some more detail. We assume to have
a splitting of the space as ℝN = ℝn1 × ℝn2 and we denote the variable by x = (x1, x2). We consider
a vector field of the form

b = (b1, b2) , with b1 = b1(t, x1) , b2 = b2(t, x1, x2) , (5.1.1)
where b1 is assumed to be Sobolev (respectively, BV ) in x1, and b2 is assumed to be Sobolev (respec-
tively,BV ) in x2, but merely integrable in x1, see [35, 37] (respectively, [38]). Compared to the theory
in [29, 4], no regularity is required for b2 in the variable x1; this is due to the strong requirement that
b1 does not depend on x2. The authors in [35, 37, 38] address the PDE problem relying on the renor-
malization theory, with the additional idea to use two regularization kernels, namely �"1 = �"1(x1)and �"2 = �"2(x2), and to eventually send "1 → 0 first, and then "2 → 0. Roughly speaking, this gives
rise to commutators “in x1 only” for b1 and “in x2 only” for b2.

In [25] we exploit the Lagrangian approach from [29] in order to derive well-posedness and quan-
titative estimate for the flow associated to a vector field of the form (5.1.1). As in [35, 37, 38] we
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exploit the anisotropy of the problem and we employ different scales in x1 and x2. However, this is
not done by convolving the PDE with the two kernels �"1(x1) and �"2(x2), but rather relying on an
anisotropic variant (introduced in [11]) of the Lagrangian functional (0.0.6), namely

Φ�1,�2(s) = ∫ log
(

1 +
|X1 − X̄1|

�1
+
|X2 − X̄2|

�2

)

dx , (5.1.2)

where �1 ≤ �2 (see (5.3.5) below for the exact expression of the functional we will use).
In fact, due to the structure of the proof, we cannot send the two parameters �1 and �2 to zero one

after the other; they are however related, and �1 will be taken to be much smaller than �2. This will
reflect in the need for some regularity on b2 in the variable x1; however, we will need only a derivative
of fractional order (more specifically, higher that 1∕2, see assumption (R2) in Section 5.3.1 for the
precise statement).

Let us explain the key steps in our argument. Directly differentiating Φ�1,�2 in time and arguing
as in [11] we get

Φ�1,�2(s) ≲ ‖Dx1b1‖ +
�1
�2
‖Dx1b2‖ + ‖Dx2b2‖ ,

with suitable norms on the right hand side, which depend on which exact regularity we assume on
the vector field. The ratio �1∕�2 can indeed be taken very small, but since b2 does not possess a full
derivative with respect to x1, the term ‖Dx1b2‖ is not bounded.

We can fix this issue by regularizing b2 in the variable x1 at scale " > 0. In this way we get:

Φ�1,�2(s) ≲
‖b"2 − b2‖

�1
+ ‖Dx1b1‖ +

�1
�2
‖Dx1b

"
2‖ + ‖Dx2b2‖ ≲ C +

"�

�1
+
�1
�2
"�−1 , (5.1.3)

where in the second inequality we used that
‖b"2 − b2‖ ∼ "

� and ‖Dx1b
"
2‖ ∼ "

�−1 ,

assuming that b2 possesses a derivative of order � in x1 (see Lemma 5.2.4). Taking �1 = �2"1−�
the right hand side of (5.1.3) takes the form C + "2�−1∕�2, which can be made bounded as �2 → 0
by a suitable choice of " provided � > 1∕2. This is the reason why, with this approach, we need
some fractional regularity of b2 in x1. From this bound on Φ�1,�2 all results on the well-posedness
and further properties of the flow follow as in [15], see Section 5.3.3 for the precise statements.

5.2 Preliminaries

5.2.1 Regular Lagrangian flows

In the context of non-Lipschitz vector fields, the right concept of solution of the ordinary differential
equation (0.0.2) is that of regular Lagrangian flow (see [29, 4, 7]). In the following, we are going to
assume that the vector field b ∶ (0, T ) ×ℝN → ℝN satisfies the following growth condition:

(R1) ∶ b(s, x)
1 + |x|

= c1(s, x) + c2(s, x) ,

with c1 ∈ L1((0, T );L1(ℝN )) and c2 ∈ L1((0, T );L∞(ℝN )) .
(5.2.1)

Definition 5.2.1 (Regular Lagrangian flow). Let b be a vector field satisfying (R1). A map
X ∈ C([0, T ];L0loc(ℝ

N )) ∩ ([0, T ]; logLloc(ℝN ))

is a regular Lagrangian flow in the renormalized sense relative to b if:
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1. The equation
)s
(

�(X(s, x))
)

= �′(X(s, x))b(s,X(s, x))

holds in ′((0, T ) ×ℝN ), for every function � ∈ C1(ℝN ;ℝ) that satisfies

|�(z)| ≤ C(1 + log(1 + |z|)) and |�′(z)| ≤ C
1 + |z|

for all z ∈ ℝN ,

2. X(0, x) = x for a.e x ∈ ℝN ,

3. There exists a constant L ≥ 0 such that ∫ℝN '(X(s, x))dx ≤ L ∫ℝN '(x)dx for all continuous
functions ' ∶ ℝN → [0,∞). The constant L is called compressibility constant of the flow.

In the above definition, L0loc denotes the space of measurable functions endowed with the local
convergence in measure,  denotes the space of bounded functions, and logLloc denotes the space of
locally logarithmically integrable functions.

Given a vector field satisfying (R1), we can estimate the measure of the superlevels of the asso-
ciated regular Lagrangian flow thanks to the following lemma:

Lemma 5.2.2. Let b ∶ (0, T )×ℝN → ℝN be a vector field satisfying (R1) and letX ∶ [0, T ]×ℝN →
ℝN be a regular Lagrangian flow relative to b with compressibility constant L. Define the sublevels
of the flow as

G� = {x ∈ ℝN ∶ |X(s, x)| ≤ � for almost all s ∈ [0, T ]} . (5.2.2)
Then for all r, � > 0 it holds

N (Br ⧵ G�) ≤ g(r, �) ,

where the function g depends only on L, ‖c1‖L1((0,T );L1(ℝN )) and ‖c2‖L1((0,T );L∞(ℝN )) and satisfies
g(r, �) ↓ 0 for r fixed and � ↑∞.

5.2.2 Fractional Sobolev spaces

We will make use of fractional Sobolev spaces according to the Sobolev–Slobodeckij definition:

Definition 5.2.3 (Fractional Sobolev–Slobodeckij space). Let f ∶ ℝn → ℝ be an integrable function,
f ∈ L1(ℝn). Given 0 < s < 1 and 1 ≤ p <∞, we say that f ∈ W s,p(ℝn) if

∫ℝn ∫ℝn

|f (x) − f (y)|p

|x − y|sp+n
dy dx < ∞ .

The following lemma gives a rate of convergence of the convolution to the original function,
and a rate of blow-up of the derivative of the function, under the assumption of fractional Sobolev
regularity.

Lemma 5.2.4. Let f ∈ W s,p(ℝn) and let f " be the convolution of f with the standard mollifier '".
Then we have

‖f − f "‖Lp(ℝn) ≤ C"s‖f‖W s,p(ℝn) and ‖Df "‖Lp(ℝn) ≤ C"s−1‖f‖W s,p(ℝn). (5.2.3)
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Proof. For the first estimate we compute

‖f − f "‖pLp(ℝn) = ∫ℝn
|f (x) − f "(x)|pdx = ∫ℝn

|

|

|

|

f (x) − ∫ℝn
f (x − y)'"(y) dy

|

|

|

|

p
dx

= ∫ℝn

|

|

|

|

f (x) − ∫ℝn
f (x − y)'

(y
"

) 1
"n
dy

|

|

|

|

p
dx = ∫ℝn

|

|

|

|

f (x) − ∫ℝn
f (x − "z)'(z) 1

"n
"ndz

|

|

|

|

p
dx

= ∫ℝn

|

|

|

|

f (x) − ∫ℝn
f (x − "z)'(z) dz

|

|

|

|

p
dx = ∫ℝn

|

|

|

|

∫ℝn
[f (x)'(z) − f (x − "z)'(z)]dz

|

|

|

|

p
dx

= ∫ℝn

|

|

|

|

∫ [f (x) − f (x − "z)]'(z)dz
|

|

|

|

p
dx ≤ ∫ℝn ∫ℝn

|f (x) − f (x − "z)|p'(z) dz dx

≤ ∫ℝn ∫ℝn

|f (x) − f (x − "z)|p

|"z|sp+n
|"z|sp+n'(z) dz dx

≤ "sp+n ∫ℝn ∫ℝn

|f (x) − f (x − "z)|p

|"z|sp+n
sup
z
{|z|sp+n'(z)}dz dx

≤ C"sp+n ∫ℝn ∫ℝn

|f (x) − f (x − "z)|p

|"z|sp+n
dz dx = C"sp+n ∫ℝn ∫ℝn

|f (x) − f (y)|p

|x − y|sp+n
1
"n
dy dx

≤ C"sp‖f‖pW s,p ,

where in the forth line we used Jensen’s inequality applied with the measure ' ⋅ n. This proves the
first inequality in the statement.

For the second estimate we compute

‖Df "‖pLp(ℝn) = ‖f ∗ D'"‖pLp(ℝn) = ∫ℝn

|

|

|

|

∫ℝn
f (x − y)D'"(y) dy

|

|

|

|

p
dx

= ∫ℝn

|

|

|

|

∫ℝn
f (x − y)Dy

( 1
"n
'
(y
"

))

dy
|

|

|

|

p
dx = ∫ℝn

|

|

|

|

∫ℝn
f (x − "z)Dz'(z)

1
"n+1

"n dz
|

|

|

|

p
dx

= 1
"p ∫ℝn

|

|

|

|

|

∫B1
f (x − "z)Dz'(z) dz

|

|

|

|

|

p

dx = 1
"p ∫ℝn

|

|

|

|

|

∫B1
f (x − "z)Dz'(z) dz − ∫ℝn

f (x)Dz'(z) dz
|

|

|

|

|

p

dx

= 1
"p
n(B1)p ∫ℝn

|

|

|

|

|

∫B1
[f (x − "z) − f (x)]Dz'(z)

dz
n(B1)

|

|

|

|

|

p

dx

≤ 1
"p
n(B1)p ∫ℝn ∫B1

|

|

[f (x − "z) − f (x)]Dz'(z)||
p dz
n(B1)

dx

= 1
"p
n(B1)p−1 ∫ℝn ∫B1

|

|

[f (x − "z) − f (x)]Dz'(z)||
p dz dx

= 1
"p
n(B1)p−1 ∫ℝn ∫B1

|f (x − "z) − f (x)|p

|"z|sp+n
|"z|sp+n|Dz'(z)|pdz dx

≤ 1
"p
"sp+nCn ∫ℝn ∫B1

|f (x − "z) − f (x)|p

|"z|sp+n
sup
z
{|z|sp+n|Dz'(z)|p}dz dx

≤ C"p(s−1)"n ∫ℝn ∫ℝn

|f (x) − f (y)|p

|x − y|sp+n
1
"n
dy dx

≤ C"p(s−1)‖f‖pW s,p ,

where in the third line we used that Dz' has zero average, and in the fifth line we used Jensen’s
inequality for the measure 1

n(B1)
⋅ n.
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5.2.3 Maximal estimates

In the course of the proof of our main theorem we will several times need to estimate difference quo-
tients of the vector field. We will follow the strategy in [24] and rely on suitable maximal estimates.
We now briefly recall the main definitions, the most classical version of these estimates, and some
anisotropic variants proved in [11].
Definition 5.2.5. For any integrable function u ∶ ℝn → ℝ the maximal function of u is defined as

Mu(x) = sup
r>0

1
n(B(x, r)) ∫B(x,r)

|u(z)| dz , x ∈ ℝn .

It can be shown that, for u ∈ L1(ℝn), the maximal function Mu is a.e. finite. Moreover, the
following norm estimates hold (see [48, 49] for a proof):
Lemma 5.2.6. For any 1 < p ≤∞ the strong estimate

‖Mu‖Lp(ℝn) ≤ C‖u‖Lp(ℝn)

holds, where C depends on p and n only. For p = 1 only the weak etimate

|||Mu|||M1(ℝn) ≤ C‖u‖L1(ℝn)

holds, with C depending on n only. In the above we denoted by

|||f |||M1(ℝn) = sup
�>0

{

�n({x ∶ |f | > �})
} (5.2.4)

the weak-L1 norm.

The basic maximal estimate for the difference quotients of a Sobolev function is the following
one. We recall its classical proof for the reader’s convenience.
Lemma 5.2.7. Let f ∶ ℝn → ℝ be a function inW 1,1(ℝn). Then for a.e. x, y ∈ ℝn,

|f (x) − f (y)| ≤ Cn|x − y|
(

MDf (x) +MDf (y)
)

.

Proof. First we prove the estimate for f ∈ C1. We denote

A = B
(

x + y
2

,
|x − y|
2

)

At,x = tx + (1 − t)A Bt,x = B(x, (1 − t)|x − y|)

At,y = ty + (1 − t)A Bt,y = B(y, (1 − t)|x − y|) .
(5.2.5)

We note that At,x ⊂ Bt,x and At,y ⊂ Bt,y. We estimate

|f (x) − f (y)| = ⨍A
|f (x) − f (y)| dz ≤ ⨍A

|f (x) − f (z)| dz + ⨍A
|f (y) − f (z)| dz

= ⨍A

|

|

|

|

|

∫

1

0

d
dt
[f (tx + (1 − t)z]dt

|

|

|

|

|

dz + ⨍A

|

|

|

|

|

∫

1

0

d
dt
[f (ty + (1 − t)z]dt

|

|

|

|

|

dz

≤ 1
n(A) ∫A ∫

1

0

|

|

|

|

d
dt
[f (tx + (1 − t)z]

|

|

|

|

dt dz + 1
n(A) ∫A ∫

1

0

|

|

|

|

d
dt
[f (ty + (1 − t)z]

|

|

|

|

dt dz

≤ 1
n(A)

[

∫

1

0 ∫A
|Df (tx + (1 − t)z)| |x − z|dzdt + ∫

1

0 ∫A
|Df (ty + (1 − t)z)| |y − z|dzdt

]

≤ 1
n(A)

|x − y|

[

∫

1

0 ∫A
|Df (tx + (1 − t)z)|dzdt + ∫

1

0 ∫A
|Df (ty + (1 − t)z)|dzdt

]

.
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We apply a change of variable and we obtain that the last line equals
1

n(A)
|x − y|

[

∫

1

0 ∫At,x
|Df (w)| dw

1 − t
dt + ∫

1

0 ∫At,y
|Df (w)| dw

1 − t
dt

]

≤ 1
n(A)

|x − y|

[

∫

1

0

n(Bt,x)
1 − t

1
n(Bt,x) ∫Bt,x

|Df (w)|dwdt + symmetric
]

≤ n
|x−y|n
2n

(2�)
n
2

|x − y|
⎡

⎢

⎢

⎣

∫

1

0

(1−t)n

n
|x − y|n(2�)

n
2

1 − t
sup
r>0 ⨍B(x,r)

|Df (w)|dwdt + symmetric
⎤

⎥

⎥

⎦

= 2n|x − y|∫

1

0
(1 − t)n−1dt

[

MDf (x) +MDf (y)
]

= Cn|x − y|
[

MDf (x) +MDf (y)
]

,

where we used n(B(x, r)) = rn(2�)
n
2

n
.

To conclude the proof for f ∈ W 1,1(ℝn) it suffices to approximate f with a sequence (f") ⊂
C1(ℝn) which converges to f inW 1,1(ℝn) as "→ 0.

In our main result we will deal with a vector field with partial regularity. This assumption entails
a splitting of the space as ℝN = ℝn1 ×ℝn2 (withN = n1 + n2). We will denote the variable x ∈ ℝN

by x = (x1, x2), where x1 ∈ ℝn1 and x2 ∈ ℝn2 . Following [11], for �1, �2 > 0we consider theN ×N
diagonal matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�1
�1

⋱
�2

�2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (5.2.6)

where �1 appears at the first n1 entries on the diagonal, and �2 at the remaining n2. In other words,
we have

A(x1, x2) = (�1x1, �2x2) , (x1, x2) ∈ ℝn1 ×ℝn2 .

The next two lemmas have been proved in larger generality in [11]. We state them in our setting
and give a simpler proof for the reader’s convenience.
Lemma 5.2.8. Let f ∶ ℝN → ℝ be a function inW 1,1(ℝN ). Let A be the matrix defined in (5.2.6).
Then there exists a nonnegative function U such that for a.e. x, y ∈ ℝN ,

|f (x) − f (y)| ≲ |A−1[x − y]| (U (x) + U (y)) ,

with

U (x) =M

( N
∑

j=1
|)jf (A⋅)|Ajj

)

(A−1x).

Proof. The result follows from Lemma 5.2.7 above. We denote f̃ (z) = f (Az). Then we know that,
for a.e. z, w,

|f̃ (z) − f̃ (w)| ≤ CN |z −w|
(

MDf̃ (z) +MDf̃ (w)
)

, (5.2.7)
where in addition we notice

MDf̃ (z) ≤M

( N
∑

j=1
|)j f̃ |

)

(z) =M

( N
∑

j=1
(|)jf (A⋅)|Ajj)

)

(z). (5.2.8)
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Combining (5.2.7) and (5.2.8) we have, for a.e. z,w,

|f (Az) − f (Aw)| ≤ CN |z −w|

(

M
N
∑

j=1
(|)jf (A⋅)|Ajj)(z) +M

N
∑

j=1
(|)jf (A⋅)|Ajj)(w)

)

. (5.2.9)

Now from the last inequality, taking x and y such that z = A−1x and w = A−1y, we obtain the
thesis.

Lemma 5.2.9 (Operator bounds). Let U be defined as in Lemma 5.2.8. Then we have the estimates

|||U |||M1(ℝN ) ≤ C

(

�1
n1
∑

j=1
||)jf ||L1(ℝN ) + �2

N
∑

j=n1+1
||)jf ||L1(ℝN )

)

(5.2.10)

for )jf ∈ L1, and

||U ||Lp(ℝN ) ≤ C

(

�1
n1
∑

j=1
||)jf ||Lp(ℝN ) + �2

N
∑

j=n1+1
||)jf ||Lp(ℝN )

)

(5.2.11)

for )jf ∈ Lp.

Proof. As in Lemma 5.2.8 we consider f̃ (z) = f (Az). We exploit the estimates in Lemma 5.2.6 to
the effect that

|||U |||M1(ℝN ) =
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

M
N
∑

j=1
(|)jf (A⋅)|Ajj)(A−1⋅)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|M1(ℝN )

=
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

M
N
∑

j=1
|)j f̃ |(A−1⋅)

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|M1(ℝN )

≤ C
|

|

|

|

|

|

|

|

|

|

|

|

N
∑

j=1
|)j f̃ |(A−1⋅)

|

|

|

|

|

|

|

|

|

|

|

|L1(ℝN )

≤ C
N
∑

j=1
‖()j f̃ )(A−1⋅)‖L1(ℝN )

= C
N
∑

j=1
‖()jf (A⋅)Ajj)(A−1⋅)‖L1(ℝN ) = C

N
∑

j=1
Ajj‖)jf‖L1(ℝN ) ,

which is equation (5.2.10). With similar computations we can obtain (5.2.11).

We close this section with the following interpolation lemma, which allows to estimate the L1
norm in terms of the weak-L1 norm defined in (5.2.4), with a logarithmic dependence on higher
integrability norms.
Lemma 5.2.10 (Interpolation). Let u ∶ Ω → [0,+∞) be a nonnegative measurable function, where
Ω ⊂ ℝn has finite measure. Then for every 1 < p <∞, we have the interpolation estimate

‖u‖L1(Ω) ≤
p

p − 1
|||u|||M1(Ω)

[

1 + log
(

‖u‖Lp(Ω)
|||u|||M1(Ω)

n(Ω)1−
1
p

)]

,

and analogously for p = ∞

‖u‖L1(Ω) ≤ |||u|||M1(Ω)

[

1 + log
(

‖u‖L∞(Ω)
|||u|||M1(Ω)

n(Ω)
)]

.
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5.3 Main result and corollaries

5.3.1 Assumptions on the vector field

We recall that we consider a splitting of the space asℝN = ℝn1 ×ℝn2 and that we denote the variable
by x = (x1, x2), with x1 ∈ ℝn1 and x2 ∈ ℝn2 . We are dealing with a vector field
b ∶ (0, T ) ×ℝn1 ×ℝn2 → ℝn1 ×ℝn2 for which we assume the following regularity:

(R2) ∶ b(s, x1, x2) =
(

b1(s, x1), b2(s, x1, x2)
)

∈ ℝn1 ×ℝn2 = ℝN

b1(s, x1) ∈ L1
(

(0, T );W 1,p
x1
(ℝn1)

)

b2(s, x1, x2) ∈ L1
(

(0, T ) ×ℝn2
x2 ;W

�,1
x1
(ℝn1)

)

∩ L1
(

(0, T ) ×ℝn1
x1 ;W

1,p
x2
(ℝn2)

)

,

(5.3.1)

for some given p > 1 and 1∕2 < � < 1.
Moreover, we will assume that

(R3) ∶ b(t, x1, x2) ∈ L
p
loc((0, T ) ×ℝN ) . (5.3.2)

Also recall that suitable growth conditions on b have been assumed in (R1).
Let us introduce some further notation that will be used in the following.
We denote byDibj = Dxibj the partial derivatives in distributional sense. We setD1b1 = p(t, x1),

D1b2 = q(t, x1, x2), and D2b2 = r(t, x1, x2). Then we have

Db =
(

D1b1 D2b1
D1b2 D2b2

)

=
(

p 0
q r

)

∈

(

L1x2,locL
p
x1 0

distribution L1x1L
p
x2

)

. (5.3.3)

5.3.2 Main estimate for the Lagrangian flow

Theorem 5.3.1. Let b and b̄ be two vector fields satisfying assumptions (R1). Assume the following:

• The second component of b̄ satisfies b̄2 ∈ L1
(

(0, T ) ×ℝn2
x2 ;W

�,1
x1
(ℝn1)

)

,

• The vector field b satisfies (R2) and (R3).

Let X and X̄ be regular Lagrangian flows associated to b and b̄ respectively, with compressibility
constants L and L̄. Then the following holds. For every positive  , r and � there exists � > 0 and
C,r,� > 0 such that

N
(

Br ∩
{

|X(s, ⋅) − X̄(s, ⋅)| > 
})

≤ C,r,�‖b − b̄‖L1((0,T )×B�) + � (5.3.4)

for all s ∈ [0, T ], where C,r,� depends on L, L̄, the bound for b̄2 in L1
(

(0, T )×ℝn2
x2 ;W

�,1
x1
(ℝn1)

)

, the
bound for the decomposition of b̄ as in (R1), and the various bounds for b involved in the assump-
tions (R1), (R2), and (R3).

Proof. We exploit the anisotropic functional

Φ�1,�2(s) = ∫Br∩G�∩Ḡ�
log

(

1 + |A−1[X(s, x) − X̄(s, x)]|
)

dx , (5.3.5)

where the matrix A has been defined in (5.2.6) and G� (respectively, Ḡ�) are the sublevels of the
regular Lagrangian flow X (respectively, X̄) defined as in (5.2.2).
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Step 1: Regularization of the vector field. We regularize b2 by convolution in x1. Let'" be a standard
mollifier in ℝn1 . We denote the regularization of b2 by

b"2(t, x1, x2) = b2(t, x1, x2) ∗x1 '
"(x1) , for t and x2 fixed,

and we further denote b" = (b1, b"2). Moreover, q" and r" are associated to b" as in (5.3.3).
Due to standard properties of the convolution we have that b" → b and r" → r in L1loc(ℝN ). Also

recall the rates of convergence and blow-up proved in Lemma 5.2.4.
Step 2: Time differentiation. By differentiating the functional Φ�1,�2(s) with respect to time we get

Φ′�1,�2(s) ≤ ∫Br∩G�∩Ḡ�

|A−1[b(s,X) − b̄(s, X̄)]|
1 + |A−1[X − X̄]|

dx

≤ ∫Br∩G�∩Ḡ�

|A−1[b(s,X) − b"(s,X)]|
1 + |A−1[X − X̄]|

+
|A−1[b̄"(s, X̄) − b̄(s, X̄)]|
1 + |A−1[X − X̄]|

+
|A−1[b"(s,X) − b̄"(s, X̄)]|

1 + |A−1[X − X̄]|
dx

≤ L
�1
‖b − b"(s, ⋅)‖L1(B�) +

L̄
�1
‖b̄ − b̄"(s, ⋅)‖L1(B�)

+ ∫Br∩G�∩Ḡ�

|A−1[b"(s,X) − b"(s, X̄) + b"(s, X̄) − b̄"(s, X̄)]|
1 + |A−1[X − X̄]|

dx

≤ L
�1
‖b − b"(s, ⋅)‖L1(B�) +

L̄
�1
‖b̄ − b̄"(s, ⋅)‖L1(B�) +

L̄
�1
‖b" − b̄"(s, ⋅)‖L1(B�)

+ ∫Br∩G�∩Ḡ�

|A−1[b"(s,X) − b"(s, X̄)]|
1 + |A−1[X − X̄]|

dx

≤ L
�1
‖b − b"(s, ⋅)‖L1(B�) +

L̄
�1
‖b̄ − b̄"(s, ⋅)‖L1(B�) +

L̄
�1
‖b" − b̄"(s, ⋅)‖L1(B�)

+ ∫Br∩G�∩Ḡ�
min

{

|A−1[b"(s,X) − b"(s, X̄)]|,
|A−1[b"(s,X) − b"(s, X̄)]|

|A−1[X − X̄]|

}

dx.

Step 3: Bounds with maximal operators. Integrating in time and recalling the definition of the ma-
trix A in 5.2.6 we get

Φ�1,�2(�) ≤
L
�1
‖b − b"‖L1((0,�)×B�) +

L̄
�1
‖b̄ − b̄"‖L1((0,�)×B�) +

L̄
�1
‖b" − b̄"‖L1((0,�)×B�)

+∫

�

0 ∫Br∩G�∩Ḡ�
min

{

|A−1[b"(s,X) − b"(s, X̄)]|, 1
�1

|b1(s,X) − b1(s, X̄)|
|A−1[X − X̄]|

+ 1
�2

|b"2(s,X) − b
"
2(s, X̄)|

|A−1[X − X̄]|

}

dxds.

(5.3.6)
Lemmas 5.2.8 and 5.2.9 can be easily extended to vector valued functions. We would like to apply

these lemmas to b", which is only locallyW 1,1 inℝN , as the first component b1 does not depend on x2.
This can be done by defining a new vector field b̃" as the smooth cut-off of b" on the ball of radius 2�,
i.e. b̃" = b" ⋅�B� = (b1 ⋅�B� , b"2 ⋅�B�) = (b̃1, b̃"2), where �B� is a smooth function with value 1 on B2�
and 0 on ℝN ⧵ B2�+1, and by using suitable truncated maximal functions in the maximal estimates.
We define p̃, q̃, r̃, q̃" and r̃" as the partial derivatives of b̃ (= b ⋅ �B�) and b̃".Lemma 5.2.8 applied to b̃1 and b̃"2 yields

|b̃1(s, x) − b̃1(s, x̄)|
|A−1[x − x̄]|

≲ Up̃(x) + Up̃(x̄), (5.3.7)
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and
|b̃"2(s, x) − b̃

"
2(s, x̄)|

|A−1[x − x̄]|
≲ Uq̃",r̃"(x) + Uq̃",r̃"(x̄) (5.3.8)

for s ∈ [0, T ], and for a.e. x, x̄ ∈ ℝN .
By subadditivity of U we can estimate

Uq̃",r̃" ≤ Uq̃" + Ur̃" ,

implying that
|b̃1(s, x) − b̃1(s, x̄)|

|A−1[x − x̄]|
≲ Up̃(x) + Up̃(x̄),

|b̃"2(s, x) − b̃
"
2(s, x̄)|

|A−1[x − x̄]|
≲ Uq̃"(x) + Ur̃"(x) + Uq̃"(x̄) + Ur̃"(x̄).

Step 4: Estimates for the maximal operators. Let Ω = (0, �) ×
(

Br ∩ G� ∩ Ḡ�
)

⊂ ℝN+1. We can
estimate the last term of the sum (5.3.6) with

∫Ω
min

{

|A−1[b"(s,X) − b"(s, X̄)]|, 1
�1

(

Up̃(s,X) + Up̃(s, X̄)
)

+ 1
�2

(

(Uq̃" + Ur̃")(s,X) + (Uq̃" + Ur̃")(s, X̄)
)

}

dx ds =∶ Φ̃�1,�2(�) .

Lemma 5.2.9 implies
|||Uq̃"|||M1((0,T )×B�) ≲ �1‖q̃

"
‖L1((0,T )×ℝN ) = �1‖q̃"‖L1((0,T )×B2�+1) ≤ �1‖q

"
‖L1((0,T )×B2�+1) =∶ �1 (") .

Notice that the quantity  (") at the right hand side could a priori blow up as " → 0, as we are not
assuming that q = D1b2 is integrable.

Splitting the minima once again, we obtain

Φ̃�1,�2(�) ≤ ∫Ω
min

{

|A−1[b"(s,X) − b"(s, X̄)]|, 1
�2

(

Uq̃"(s,X) + Uq̃"(s, X̄)
)

}

dx ds

+ ∫Ω
min

{

|A−1[b"(s,X) − b"(s, X̄)]|, 1
�2

(

Ur̃"(s,X) + Ur̃"(s, X̄)
)

}

dx ds

+ ∫Ω
min

{

|A−1[b"(s,X) − b"(s, X̄)]|, 1
�1

(

Up̃(s,X) + Up̃(s, X̄)
)

}

dx ds

= ∫Ω
'1(s,X, X̄) dxds + ∫Ω

'2(s,X, X̄) dxds + ∫Ω
'3(s,X, X̄) dxds .

LetΩ′ = (0, �) ×B� ⊂ ℝN+1. Using the first element of the minimum and relying on assumption
(R3) we can estimate

‖'1‖Lp(Ω) ≤
L1∕p + L̄1∕p

�1
‖b"‖Lp(Ω′) ≲

1
�1
‖b"‖Lp(Ω′) ≲

1
�1
‖b‖Lp(Ω′) ≃

1
�1
.

Exploiting the second term of the minimum, we get

|||'1|||M1(Ω) ≤
1
�2
|||Uq̃"(X)+Uq̃"(X̄)|||M1(Ω) ≲

1
�2
|||Uq̃"|||M1(Ω′) ≲

�1
�2
‖q"‖L1((0,T )×B2�+1) =

�1
�2
 (") .
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For '2 and '3 using assumption (R2) we have

‖'2‖L1(Ω) ≲
1
�2
‖Ur̃"‖L1(Ω′) ≲�

1
�2
‖Ur̃"‖L1((0,T );Lp(B�)) ≲

�2
�2
‖r̃"2‖L1((0,T );Lp(ℝN )) ≲ C (5.3.9)

and
‖'3‖L1(Ω) ≲

1
�1
‖Up̃‖L1(Ω′) ≲�

1
�1
‖Up̃‖L1((0,T );Lp(B�)) ≲

�1
�1
‖p̃2‖L1((0,T );Lp(ℝN )) ≲ C . (5.3.10)

Step 5: Interpolation Lemma. We can apply now Lemma 5.2.10 to '1, to the effect that

Φ�1,�2(�) ≲�
1
�1
‖b" − b̄"‖L1(Ω′) +

1
�1
�(") + 1

�1
�̄(") +

�1
�2
 (") log

⎛

⎜

⎜

⎝

1
�1
�2
 (")�1

⎞

⎟

⎟

⎠

+ C

≲ 1
�1
‖b − b̄‖L1(Ω′) +

1
�1

[

�(") + �̄(")
]

+
�1
�2
 (") log

⎛

⎜

⎜

⎝

1
�1
�2
 (")�1

⎞

⎟

⎟

⎠

+ C ,

where �(") = ‖b− b"‖L1(Ω′) and �̄(") = ‖b̄− b̄"‖L1(Ω′) tend to 0 as "→ 0. Lemma 5.2.4 implies that

�(") + �̄(") ≲
(

‖b2‖L1t,x2W
�,1
x1
+ ‖b̄2‖L1t,x2W

�,1
x1

)

"� and  (") ≲
(

‖b2‖L1t,x2W
�,1
x1

)

"�−1. (5.3.11)

Therefore
N

(

Br ∩
{

|X(s, ⋅) − X̄(s, ⋅)| > 
})

≲�
‖b − b̄‖L1(Ω′)
�1 log(1 +


�2
)
+

�(") + �̄(")
�1 log(1 +


�2
)
+

�1
�2
 (") log

(

1
�1
�2
 (")�1

)

log(1 + 
�2
)

+ C
log(1 + 

�2
)

+ N (Br ⧵ G�) + N (Br ⧵ Ḡ�)

≲
‖b − b̄‖L1((0,T )×B�)
�1 log(1 +


�2
)

+ "�

�1 log(1 +

�2
)
+

�1
�2
"�−1 log

(

1
�1
�2
"�−1�1

)

log(1 + 
�2
)

+ C
log(1 + 

�2
)

+ N (Br ⧵ G�) + N (Br ⧵ Ḡ�)

=
‖b − b̄‖L1((0,T )×B�)
�1 log(1 +


�2
)

+ 1) + 2) + 3) + 4) + 5) .

Step 6: Choice of the parameters and conclusion. Fix � > 0. By choosing � sufficiently large we can
make 4) + 5) ≤ 2�∕5.

Define
� =

�1
�2
≪ 1 , so that �1 = ��2.

We need to choose " > 0, � > 0, and �2 > 0 in such a way that

1) + 2) + 3) = "�

��2 log(1 +

�2
)
+
�"�−1 log

(

1
�2"�−1�2

)

log(1 + 
�2
)

+ C
log(1 + 

�2
)
≤ 3�
5
.
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The term 3) can be made smaller than �∕5 by choosing �2 > 0 sufficiently small. We fix 0 < � < 1 to
be determined later (depending on the exponent � > 1∕2 in assumption (R2) only) and choose " > 0
such that

"�−1 = ��−1 , that is, " = � 1−�
1−� .

In this way we get

2) =
�� log

(

1
��+1�2

)

log(1 + 
�2
)

=
�� log

(

1
��+1

)

log(1 + 
�2
)
+
�� log

(

1
�2

)

log(1 + 
�2
)
,

which can be made smaller that �∕5 if � > 0 is chosen to be small enough.
With the above choices the term 1) becomes

1) =
�
1−�
1−� �

��2 log(1 +

�2
)
=

�
2�−��−1
1−�

�2 log(1 +

�2
)
,

which can be made smaller than �∕5 by a suitable choice of � > 0, provided the exponent of � at the
numerator is positive, that is,

2� − �� − 1
1 − �

> 0 ⟺ � > 1
2 − �

. (5.3.12)

Since � > 1∕2, we see that we can choose � > 0 small enough in such a way that (5.3.12) holds. This
gives 1) + 2) + 3) + 4) + 5) ≤ � and therefore concludes the proof.

5.3.3 Well-posedness and further properties of the Lagrangian flow

Estimate (5.3.4) in Theorem 5.3.1 is the key information which guarantees existence, uniqueness, and
stability of the regular Lagrangian flow. The proof of these results as a consequence of estimate (5.3.4)
is by now quite standard, see the theory developed in [24, 15, 11]. We begin with the uniqueness.
Corollary 5.3.2 (Uniqueness). Let b be a vector field satisfying assumptions (R1), (R2), and (R3).
Then, the regular Lagrangian flow associated to b, if it exists, is unique.

It is indeed very easy to see that uniqueness follows from estimate (5.3.4). We consider b = b̄,
then the right hand side of (5.3.4) can be made arbitrarily small, for any  > 0 fixed. This readily
implies uniqueness.
Remark 17. We observe that, in contrast to the PDE theory in [35, 37, 38], no assumptions on the
divergence of the vector field are required for the uniqueness of the regular Lagrangian flow. The
divergence will play a role for the existence only.

The main advantage of the quantitative theory of ODEs, in contrast to the PDE theory, is that it
provides an explicit rate for the compactness and the stability, depending on the uniform bounds that
are assumed on the sequence of vector fields. The following two results can be proven arguing as
in [15], as a consequence of the main estimate (5.3.4).
Corollary 5.3.3 (Stability). Let {bn} be a sequence of vector fields satisfying assumption (R1), con-
verging in L1loc([0, T ] × ℝN ) to a vector field b which satisfies assumptions (R1), (R2), and (R3).
Assume that there exist Xn and X regular Lagrangian flows associated to bn and b respectively, and
denote by Ln and L the compressibility constants of the flows. Suppose that:
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• For some decomposition bn∕(1 + |x|) = cn,1 + cn,2 as in assumption (R1), we have that

‖cn,1‖L1t (L1x) + ‖cn,2‖L1t (L∞x ) is equi-bounded;

• The sequence {Ln} is equi-bounded;

• The norm of bn,2(s, x1, x2) in L1
(

(0, T ) ×ℝn2
x2 ;W

�,1
x1
(ℝn1)

)

is equi-bounded.

Then the sequence {Xn} converges to X locally in measure in ℝN , uniformly with respect to time.

In the above corollary, the assumption in the third bullet is necessary in order to have a uniform
estimate on the quantity �n(") associated to bn (as in the proof of Theorem 5.3.1).
Corollary 5.3.4 (Compactness). Let {bn} be a sequence of vector fields satisfying assumption (R1),
(R2), and (R3), converging in L1loc([0, T ] ×ℝN ) to a vector field b which satisfies assumptions (R1),
(R2), and (R3). Assume that there existXn regular Lagrangian flows associated to bn, and denote by
Ln the compressibility constants of the flows. Suppose that:

• For some decomposition bn∕(1 + |x|) = cn,1 + cn,2 as in assumption (R1), we have that

‖cn,1‖L1t (L1x) + ‖cn,2‖L1t (L∞x ) is equi-bounded;

• The sequence {Ln} is equi-bounded;

• The norms of the vector fields {bn} involved in the assumptions (R2) and (R3) are equi-bounded.

Then the sequence {Xn} is pre-compact locally in measure in ℝN , uniformly with respect to time,
and converges to a regular Lagrangian flow X associated to b.

By a simple regularization procedure Corollary 5.3.4 implies existence of the regular Lagrangian
flow, under the assumption of boundedness of the divergence of the vector field. Such an assumption
is needed in order to have equi-boundedness of the compressibility constants for the sequence of
approximated regular Lagrangian flows Xn in Corollary 5.3.4.
Corollary 5.3.5 (Existence). Let b be a vector field satisfying assumptions (R1), (R2), and (R3).
Assume that the (distributional) spatial divergence of b is bounded. Then, there exists a regular
Lagrangian flow associated to b.

Remark 18. Arguing as in [15], it is also possible to develop a theory of Lagrangian solutions of the
continuity equations, that is, solutions that are transported by the regular Lagrangian flow.

5.3.4 Remarks and possible extensions

We conclude by listing a few remarks and questions concerning the results and the approach in this
work:
(1) The same proof for Theorem 5.3.1 works if we assume only local regularity bounds in assump-

tion (R2). We omitted this just for simplicity of notation.
(2) Compared to the PDE theory in [35, 37, 38], we need to assume some fractional Sobolev reg-

ularity of b2 with respect to the variable x1. This seems unavoidable for our strategy of proof,
since we cannot send to zero the two parameters �1 and �2 one after the other, but we rather
need to send them together to zero, under a condition on their ratio � = �1∕�2. Is it possible
to modify our proof and remove this assumption, that is, is it possible to derive an estimate
like (5.3.4) under the only assumption of integrable depencence of b2 with respect to x1?
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(3) Is it possible to treat the case p = 1 in assumption (R2)? We briefly explain here what is the ob-
struction with the present approach. In the case p = 1, in Step 4 of the main proof the operators
Ur̃" and Up̃ cannot be directly estimated in L1 as in (5.3.9) and (5.3.10) (recall Lemma 5.2.9).
One needs to argue as done in the same step for Uq̃" exploiting the equi-integrability and the
interpolation from Lemma 5.2.10. After some computations we would obtain that, for every
� > 0, there is a constant C� > 0 so that the term

C
log(1 + 

�2
)

in the last estimate at the end of Step 5 is replaced by the sum

� log
(

1
���2

)

log(1 + 
�2
)
+

C�
log(1 + 

�2
)
.

We need to make also this sum small, exploiting the arbitrariness of �. We see that, in order
to make the first term small, we need to take � coupled to �. Choosing "�−1 = ��−1 as in the
proof of Theorem 5.3.1, we see that we still have � and �2 as free parameters, and eventually
we need to make small the sum

�
2�−��−1
1−�

�2 log(1 +

�2
)
+

C�
log(1 + 

�2
)

(as now � is coupled to �). However, since C� blows up for � → 0 (depending on the equi-
integrability rate), with this strategy there is in general no choice of such parameters which
makes the last sum small.

(4) Can one relax the strong requirement that b1 does not depend on the variable x2, and require
instead (for instance) that b1 has a smooth dependence on x2?
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