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Abstract

We introduce machine learning models of
quantum mechanical observables of atoms in
molecules. Instant out-of-sample predictions
for proton and carbon nuclear chemical shifts,
atomic core level excitations, and forces on
atoms reach accuracies on par with density
functional theory reference. Locality is ex-
ploited within non-linear regression via local
atom-centered coordinate systems. The ap-
proach is validated on a diverse set of 9 k small
organic molecules. Linear scaling of computa-
tional cost in system size is demonstrated for
saturated polymers with up to sub-mesoscale
lengths.
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Accurate solutions to the many-electron prob-
lem in molecules have become possible due to
progress in hardware and methods.1–4 Their
prohibitive computational cost, however, pre-
vents both routine atomistic modeling of large
systems and high-throughput screening.5 Ma-
chine learning (ML) models can be used to
infer quantum mechanical (QM) expectation
values of molecules, based on reference calcu-
lations across chemical space.6,7 Such models
can speed up predictions by several orders of
magnitude, demonstrated for relevant molec-
ular properties such as enthalpies, entropies,
polarizabilities, electron correlation, and, elec-
tronic excitations.8–10

A major drawback is their lack of transfer-
ability, e.g., ML models trained on bond disso-
ciation energies of small molecules will not be
predictive for larger molecules. In this work, we
introduce ML models for properties of atoms
in molecules. These models exploit locality
to achieve transferability to larger systems and
across chemical space, for systems that are lo-
cally similar to the ones trained on (Fig. 1).
These aspects have only been treated in isola-
tion before.6,11

We model spectroscopically relevant observ-
ables, namely 13C and 1H nuclear magnetic res-
onance (NMR) chemical shifts12 and 1s core
level ionization energies (CIE), as well as atomic
forces, crucial for structural relaxation and

1

Page 1 of 9

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



⟶ z

Q

Figure 1: Sketch illustrating local nature of
atomic properties for the example of force
〈Ψ|∂RQ

Ĥ|Ψ〉 acting on a query atom in a
molecule (mid), inferred from similar atoms in
training molecules (top, bottom). Shown are
force vectors (arrows), integrated electron den-
sity

∫
dx dy n(r) (solid) and integrated elec-

tronic term of Hellmann-Feynman force along
z (dashed).

molecular dynamics. Nuclear shifts and ioniza-
tion energies are dominated by inherently lo-
cal core electron-nucleus interactions. Atomic
forces are expectation values of the differential
operator applied to an atom’s position in the
Hamiltonian,13 and scale quadratically with in-
verse distance.

Inductive modeling of QM properties of atoms
in molecules constitutes a high-dimensional in-
terpolation problem with spatial and composi-
tional degrees of freedom. QM reference calcu-
lations provide training examples {(xi, yi)}ni=1,
where the xi encode atoms in their molecu-
lar evironment and yi are atomic property val-
ues. ML interpolation between training exam-
ples then provides predicted property values for
new atoms.

The electronic Hamiltonian is determined by
number of electrons, nuclear charges {ZI} and
positions {RI}, which can be challenging for di-
rect interpolation.14 Proposed requirements for
representations include uniqueness, continuity,
as well as invariance to translation, rotation,
and nuclear permutations.15 For scalar proper-
ties (NMR, CIE), we use the sorted Coulomb
matrix6 to represent a query atom Q and
its environment: MII = 0.5Z2.4

I and MIJ =

ZIZJ/|RI − RJ |, where atom indices I, J run
over Q and all atoms in its environment, sorted
by distance to Q. Note that all molecules in
this study are neutral, and no explicit encoding
of charge is necessary.

Atomic forces are vector quantities requiring
a basis, which should depend only on the local
environment; in particular, it should be inde-
pendent of the global frame of reference used
to construct the Hamiltonian in the QM cal-
culation. We project force vectors into a local
coordinate system centered on atomQ, and pre-
dict each component separately. Later, the pre-
dicted force vector is reconstructed from these
component-wise predictions.

We use principal component analysis (PCA)
to obtain an atom-centered orthogonal three-
dimensional local coordinate system. In
analogy to the electronic term in Hellmann-
Feynman forces,

∫
dr (r − RQ)ZQ n(r)/‖r −

RQ‖3,13 we weight atoms by ZI/‖RI −RQ‖3,
increasing influence of heavy atoms and de-
creasing influence of distant atoms. Non-
degenerate PCA axes are unique only up to
sign; we address this by defining the center
of charge to be in the positive quadrant. A
matching matrix representation is obtained via
MI = (ZI , X

′
I , Y

′
I , Z

′
I), where X ′, Y ′, Z ′ are

projected atom coordinates, and rows are or-
dered by distance to central atom Q, yielding
an m× 4 matrix, where m is number of atoms.
In both representations, we impose locality by
constraining Q’s environment to neighboring
atoms within a sphere of radius τ .

For interpolation between atomic environ-
ments we use kernel ridge regression (KRR),16

a non-linear regularized regression method
effectively carried out implicitly in a high-
dimensional Hilbert space (“kernel trick”).17

Predictions are linear combinations over all
training examples in the basis of a sym-
metric positive definite kernel k: f(z) =∑n

i=1 αik(xi, z), where α are regression weights
for each example, obtained from a closed-form
expression minimizing the regularized error
on the training data. See Refs.6,18–20 for de-
tails. As kernel k, we use the Laplacian kernel
k(x, z) = exp(−‖x−z‖1/σd), where ‖·‖1 is the
L1-norm, σ is a length scale, and d = dim(x).
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This kernel has shown best performance for
prediction of molecular properties.18

Our models contain three free parameters:
cut-off radius τ , regularization strength λ,
and kernel length scale σ. Regularization
strength λ, controlling the smoothness of the
model, was set to a small constant (10−10), forc-
ing the model to fit the QM values closely. As
for length scales σ, note that for the Laplacian
kernel, non-trivial behavior requires ||·, ·||1 ≈ σ.
We set σ to four times the median nearest
neighbor L1-norm distance in the training set.21

Cut-off radii τ were then chosen to minimize
RMSE in initial experiments (Fig. 2). For the
comparatively insensitive FC, other statistics
(maxAE, R2) yielded an unambiguous choice.
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Figure 2: Locality of properties, measured by
model performance as a function of cut-off ra-
dius τ . Root mean square error (RMSE) shown
as fraction of corresponding property’s range22

for nuclear shifts (13C δ, 1H δ), core level ion-
ization energy (1s C δ), and atomic forces (FC,
FH). Asterisks ∗ mark chosen values. Shaded
areas indicate 1.6 standard deviations over 15
repetitions.

We used three datasets for validation: For
NMR chemical shifts and CIEs, both scalar
properties, we employed a dataset of 9 k syn-
thetically accessible organic molecules contain-
ing 7–9 C, N, or O atoms, with open valencies
saturated by H, a subset of a larger dataset.23,24

Relaxation and property calculations were done
at the DFT/PBE0/def2TZVP level of the-
ory25–30 using Gaussian.31 For forces, we dis-
torted molecular equilibrium geometries using

normal mode analysis32–34 by adding random
perturbations in the range [−0.2, 0.2] to each
normal mode, sampling homogeneously within
an harmonic approximation. Adding spatial de-
grees of freedom considerably increases the in-
trinsic dimensionality of the learning problem.
To accommodate this, we reduced dataset vari-
ability to a subset of 168 constitutional isomers
of C7H10O2, with 100 perturbed geometries
for each isomer. Computationally inexpensive
semi-empirical quantum chemistry approxima-
tions are readily available for forces. We exploit
this to improve accuracy by modeling the dif-
ference between baseline PM735 and DFT refer-
ence forces (∆-learning10). To demonstrate lin-
ear scaling of computational cost with system
size, we used a third dataset of organic satu-
rated polymers, namely linear polyethylene, the
most common plastic, with random substitu-
tions of some CH units with NH or O for chem-
ical variety. All prediction errors were measured
on out-of-sample hold-out sets never used dur-
ing training.
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Figure 3: Systematic improvement in accuracy
of atomic property predictions with increas-
ing training set size n. Root mean square er-
ror (RMSE) shown as fraction of correspond-
ing property’s range22 for nuclear shifts (13C δ,
1H δ), core level ionization energy (1s C δ), and
atomic forces (FC, FH). Values from 15 repeti-
tions; see Table 1 for ranges and standard devi-
ations. Solid lines are fits to theoretical asymp-
totic performance of O(1/

√
n).

Table 1 presents performance estimates for
models trained on 10 k randomly chosen atoms,
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measured on a hold-out set of 1 k other atoms.
Comparison with literature estimates of typical
errors of the employed DFT reference method
suggests in all cases that the ML models achieve
similar accuracy—at negligible computational
cost after training. Statistical learning theory
shows that under certain assumptions the ac-
curacy of a ML model asymptotically improves
with increasing training set size as O(1/

√
n).36

Fig. 3 presents corresponding learning curves
for all properties. Errors are shown as percent-
age of property ranges,22 enabling comparison
of properties with different units. All errors
start off in the single digit percent range at
1 k training atoms, and decay systematically to
roughly half their initial value at 10 k training
atoms.

ML predictions and DFT values for chem-
ical shifts of all 50 k carbon atoms in the
dataset are featured in Fig. 4. The shielding
of the nuclear spin from the magnetic field is
strongly dependent on the atom’s local chem-
ical environment. In accordance with the di-
versity of the dataset, we find a broad dis-
tribution with four pronounced peaks, char-
acteristic of up- or downshifts of the reso-
nant frequencies of nuclear carbon spin. The
peaks at 30, 70, 150, and 210 ppm typically
correspond to saturated sp3-hybridized carbon
atoms, strained sp3-hybridized carbons, con-
jugated or sp2-hybridized carbon atoms, and
carbon atoms in carbonyl groups, respectively.
A ML model trained on only 500 atoms al-
ready reproduces all major peaks; larger train-
ing sets yield systematically improved distribu-
tions. For 10 k training examples predictions
are hardly distinguishable from the DFT refer-
ence, except for a small deviation at 140 ppm.
Using the same model, we predicted shifts
for 847 k carbon atoms in all 134 k molecules
published in Ref.24 The resulting distribution
is roughly similar, reflecting similar chemical
composition of molecules in this much larger
dataset, which is beyond the current limits of
DFT reference calculations employed here.

The presented approach to model atomic
properties scales linearly: Since only a finite
volume around an atom is considered, its nu-

0 50 100 150 200

10

102

103

104

13C δ / ppm

# DFT ML 0.5k ML 1k
ML 10k GDB9

Figure 4: Distribution of 50 k 13C chemical
shifts in 9 k organic molecules. ML predictions
for increasing training set sizes approach DFT
reference values. Molecular structures highlight
chemical diversity and effect of molecular envi-
ronment on chemical shift of query atom (or-
ange; see main text). GDB9 corresponds to ML
predictions for 847 k carbon atoms in 134 k sim-
ilar molecules published in Ref.24

merical representation is of constant size; 1 in
particular, it does not scale with the system’s
overall size. Comparing atoms, and thus kernel
evaluations, therefore requires constant compu-
tational effort, rendering the overall computa-
tional cost of predictions linear in system size,
with small prefactor. Furthermore, a form of
chemical extrapolation can be achieved despite
the fact that ML models are interpolation mod-
els. As long as local chemical environments of
atoms are similar to those in the training set,
the model can interpolate. Consequently, using
similar local “building blocks”, large molecules
can be constructed that are very different from
the ones used in the training set, but amenable
to prediction.

To verify this, we trained a ML model on
atoms drawn from the short polymers in the
third dataset, then applied the same model to
predict properties of atoms in polymers of in-
creasing length. Training set polymers had a
backbone length of 29 C,N,O atoms; for vali-
dation, we used up to ten times longer back-

1Although the size of the representation may vary, it
is bounded from above by a constant.
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Table 1: Prediction errors for ML models trained on 10 k atoms and predicting proper-
ties of 1 k other out-of-sample atoms. Calculated properties are NMR chemical shifts
(13C δ, 1H δ), core level ionization energy (1s C δ), and forces (FC, FH).

a

Property Ref. Range MAE RMSE maxAE R2 σ τ/Å
13C δ/ppm 2.430,37,38 6 – 211 3.9±0.28 5.8±0.30 36±8.0 0.988±0.001 20±3.4 3
1H δ/ppm 0.1138–40 0 – 10 0.28±0.01 0.42±0.02 3.2±1.1 0.954±0.005 0.53±1.2 3.5
1s C δ/mEh 7.541–43 -165 – -2 4.9±0.12 6.5±0.27 34±17 0.971±0.002 181±0.0 7
FC/mEh/a0 144 -99 – 96 3.6±0.10 4.7±0.15 29±5.5 0.983±0.002 0.69±0.1 6
FH/mEh/a0 144 -43 – 43 0.8±0.02 1.1±0.03 7.4±2.6 0.996±0.003 0.35±0.0 3

a Shown are MAE of DFT reference from literature (Ref.), property ranges,22 mean absolute error (MAE),
root mean squared error (RMSE), maximum absolute error (maxAE), squared correlation (R2) and hy-
perparameters (kernel length scale σ, cut-off radius τ). Averages ± standard deviations over 15 randomly
drawn training sets.

bones, reaching lengths of 355 Å and 696 atoms
in total. Fig. 5 presents numerical evidence for
excellent near-constant accuracy of model pre-
dictions, independent of system size, validated
by DFT. Although trained only on the smallest
instances, the model’s accuracy varies negligi-
bly with system size, confirming both transfer-
ability and chemically extrapolative predictive
power of the ML model.
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Figure 5: Linear scaling and chemical extrap-
olation for ML predictions of saturated poly-
mers of increasing length. Shown are root mean
square error (RMSE), given as fraction of corre-
sponding property’s range,22 as well as indica-
tive compute times of cubically scaling DFT
calculations (gray bars) and ML predictions
(black bars, enlarged for visibility), which scale
linearly with low prefactor. See Table 1 for
property ranges.

Individual ML predictions are 4–5 orders of

magnitude faster than reference DFT calcula-
tions. Overall speed-up depends on dataset and
reference method, and is dominated by training
set generation, i.e., the ratio between number of
predictions and training set size. DFT and ML
calculations were done on a high-performance
compute cluster and a laptop, respectively.

In conclusion, we have introduced ML models
for QM properties of atoms in molecules. Per-
formance and applicability have been demon-
strated for chemical shifts, core level ioniza-
tion energies, and atomic forces of 9 k chem-
ically diverse organic molecules and 168 iso-
mers of C7H10O2, respectively. Accuracy of
predictions is on par with the QM reference
method. We have used the ML model to pre-
dict chemical shifts of all 847 k carbon atoms
in the 134 k molecules published in Ref.24 Lo-
cality of modeled atomic properties is exploited
through use of atomic environments as building
blocks. Consequently, the model scales linearly
in system size, which we have demonstrated for
saturated linear polymers over 30 nm in length.
Results suggest that the model could be useful
in mesoscale studies.

For the investigated molecules and properties
the locality assumption, implemented as a finite
cut-off radius in the representation, has proven
sufficient. This might not necessarily be true in
general. The Hellmann-Feynman force, for ex-
ample, depends directly on the electron density,
which can be altered substantially due to long-
range substituent effects such as those in conju-
gated π-bond systems. For other systems and
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properties, larger cut-offs or additional mea-
sures might be necessary.

The presented ML models could also be used
for nuclear shift assignment in NMR struc-
ture determination, for molecular dynamics
of macro-molecules, or condensed molecular
phases. We consider efficient sampling, i.e., im-
proving the ratio of performance to training set
size (“sample efficiency”), and improving repre-
sentations to be primary challenges in further
development of these models.

Supporting Information Available:
Movie showcasing chemical diversity in the
small organic molecules dataset as a function of
carbon nuclear chemical shift. This material
is available free of charge via the Internet at
http://pubs.acs.org/.
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