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Abstract

Simultaneously accurate and efficient prediction of molecular properties throughout

chemical compound space is a critical ingredient toward rational compound design in

chemical and pharmaceutical industries. Aiming towards this goal, we develop and ap-

ply a systematic hierarchy of efficient empirical methods to estimate atomization and

total energies of molecules. These methods range from a simple sum over atoms, addi-

tion of bond energies, pairwise interatomic force fields, reaching to the more sophisti-

cated machine learning approaches that are capable of describing collective interactions

between many atoms or bonds. In the case of equilibrium molecular geometries, even

simple pairwise force fields demonstrate prediction accuracy comparable to benchmark

energies calculated using density-functional theory with hybrid exchange-correlation

functionals. However, accounting for the collective many-body interactions proves to

be essential for approaching the “holy grail” of chemical accuracy of 1 kcal/mol for both

equilibrium and out-of-equilibrium geometries. This remarkable accuracy is achieved

by a vectorized representation of molecules (so-called Bag-of-Bonds model) that ex-

hibits strong non-locality in chemical space. In addition, the same representation allows

us to predict accurate electronic properties of molecules, such as their polarizability

and molecular frontier orbital energies.

Keywords

chemical compound space — machine learning — atomization energies — molecular prop-

erties — many-body potentials
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Chemical compound space (CCS) is the space populated by all possible energetically

stable molecules varying in composition, size, and structure.1 Chemical reactions and trans-

formations due to external perturbations allow us to explore this astronomically large space

in order to obtain molecules with desired properties (e.g., stability, mechanical, and elec-

tronic properties). The accurate prediction of these molecular properties in the CCS is

a critical ingredient toward rational compound design in chemical and pharmaceutical in-

dustries. Therefore, one of the major challenges is to enable quantitative calculations of

molecular properties in CCS at moderate computational cost (milliseconds per molecule or

faster). However, currently only wavefunction-based quantum-chemical calculations, which

can take up to several days per molecule, consistently yield the desired “chemical accuracy”

of 1 kcal/mol required for predictive in silico rational molecular design.

Leaving aside the quest for accuracy, even our understanding of the structure and proper-

ties of CCS is remarkably shallow. Furthermore, a unique mathematical definition of CCS is

lacking because the mapping between molecular geometries and molecular properties is often

not unique, meaning that there can be structurally different molecules exhibiting very similar

values for any given property. This complexity is reflected by the existence of hundreds of

descriptors that aim to measure molecular similarity in chemoinformatics.2,3 In this context,

one of our goals is to shed light into the structure and properties of CCS in terms of molec-

ular atomization energies that is an essential molecular property measuring the stability of

a molecule with respect to its constituent atoms. Atomization energies are accessible exper-
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imentally and are frequently used to assess the performance of electronic structure methods.

The total energy of a molecule can be trivially determined from its atomization energy by

simply adding free atom energies. Under certain conditions chemical reaction barriers can

also be correlated to the difference between total energies of two molecules. Obviously, to-

tal energies are insufficient to predict the stability and reactivity of molecules in realistic

environments, therefore we will have to eventually account for thermodynamic and kinetic

effects beyond total energies.

In this Letter, we gradually construct more reliable models that include one-, two- and

finally many-body interactions between atoms or bonds. This cascade of models highlights

the importance of many-body effects and also illustrates to which amount they can be in-

corporated as effective terms of lower complexity. Moreover, the Bag-of-Bonds approach

introduced here enables us to demonstrate the impact of non-local information in CCS that

turns out to be crucial for achieving a prediction accuracy of 1.5 kcal/mol for a database of

more than 7000 organic molecules. Our research is aimed towards the goal of understanding

the structure and properties of CCS composed of molecules with arbitrary stoichiometry. We

would therefore like to distinguish our work on predicting molecular properties for varying

molecular composition from other very important efforts on constructing potential-energy

surfaces (“force fields”) of molecules and solids.4–8 Molecules at their equilibrium structures

form a well-defined submanifold of the CCS, and in this manuscript we focus on the proper-

ties of molecules in this fundamental submanifold.

Evidently, the dimensionality of CCS grows exponentially with increasing molecular size.

However, typical databases of synthetically accessible molecules are rather restricted in their

composition. To avoid systematic bias yet enable complete exploration of a subset of CCS,

we selected all 7165 molecules from the GDB database containing up to seven “heavy” (C,

N, O, S) atoms saturated with hydrogens to satisfy valence rules9,10 (this database is re-

ferred to as GDB-7 throughout this work). In contrast to other widely employed databases,

GDB includes all molecular graphs corresponding to a set of simple organic chemistry rules.
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Atomization energies range from -800 to -2000 kcal/mol. Structural features include a rich

variety of chemistry such as double and triple bonds, (hetero)cycles, carboxy, cyanide, amide,

alcohol, and epoxy groups. For each of the many stoichiometries, many constitutional (dif-

fering chemical bonds) but no conformational isomers are part of this database. The initial

geometries in the GDB-7 database were generated using OpenBabel from their associated

SMILES descriptors.11 Subsequently, the geometries were optimized using density functional

theory calculations with the PBE exchange-correlation functional12 in the FHI-aims code.13

Finally, the atomization energies were computed using the hybrid PBE0 functional14 at the

optimized PBE geometries. The PBE0 functional yields atomization energies with an overall

accuracy better than 5 kcal/mol when compared with experiment,15 and these atomization

energies will be used as a reference.

Figure 1: Schematic overview of employed modeling approaches: The dressed atoms model
incorporates only the atoms and weights them according to their type. The Sum-over-Bonds
and 2-Body potentials consider pairs of atoms and the interactions between them. The
Bag-of-Bonds model, which is illustrated for the ethanol molecule (C2H5OH) implements a
collective energy expression based on all interatomic distances within a molecule.

The hierarchy of models that we use to predict atomization energies is schematically

illustrated in Figure 1, ordered from crudest models to the more sophisticated ones in order

of complexity. The performance of the different models, evaluated using a rigorous five-fold

cross-validation approach,16 is shown in Table 1.

5

Page 5 of 18

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



In the most naive approximation, the energy of a molecule M can be written as a sum of

effective atomic contributions ÊDA(M) =
∑

α nαEα, where ÊDA refers to the approximated

atomization energy, Eα is a “dressed” atomic energy for atom type α (with α ∈ H,C,N,O, S),

and nα is the number of α-type atoms. This atomic model yields an accuracy of 15.1 kcal/mol

on the GDB-7 database (see Table 1).

Table 1: Performance of different models evaluated out-of-sample in five-fold
cross-validation on the GDB-7 database: The data was randomly split into five
sets of 1433 molecules each. Each of these five sets serves once as test set while
the remaining 5732 molecules are used for training. The performance of the
models averaged over the five runs is shown, as measured by the mean absolute
error (MAE) on the test set (with variance below 3% for all models).

Model MAE [kcal/mol]
Dressed atoms 15.1
Sum-over-bonds 9.9
Lennard-Jones potential 8.7

Polynomial pot. (n = 6) 5.6
Polynomial pot. (n = 10) 3.9
Polynomial pot. (n = 18) 3.0

Bag-of-Bonds (p = 2, Gaussian) 4.5
Bag-of-Bonds (p = 1, Laplacian) 1.5

Coulomb matrix (p = 2, Gaussian)17 10.0
Coulomb matrix (p = 1, Laplacian)16 4.3

Molecules form as a result of chemical bonding, hence an approach that considers bonds

rather than atoms is expected to perform much better. We define a bond by the type of

covalently bonded atoms (C,N,O,S) and bond order (single, double, triple), and compute the

energy as a sum over all bonds in the molecule. The bond energies are fitted on the GDB-

7 database. This definition leads to the so-called sum-over-bonds model, which improves

significantly over the atomic model, achieving an accuracy of 9.9 kcal/mol on the GDB-

7 database. However, the sum-over-bonds model is still unable to treat changes in bond

distances and interatomic interactions beyond nearest neighbors.
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Both of these effects can be included by constructing an effective pairwise interatomic

potential

ÊPP(M) =

Atom pairs∑
ij

r of type ij∑
r

Φij(r), (1)

where Φ(r) is an effective potential function for each type of atom pair ij (carbon–carbon C–

C, carbon–nitrogen C–N and so on). We note that different functional forms can be adopted

for Φ(r), ranging from Lennard-Jones and Morse-type to more general polynomial potentials.

Already the usage of Lennard-Jones potential yields an accuracy of 8.7 kcal/mol on the GDB-

7 database. This is because the Lennard-Jones potential reproduces the basic features which

a general interatomic potential should possess – repulsive wall at short distances, a well-

defined minimum and the van der Waals r−6 decay of the interaction at large interatomic

distances.

More general pairwise potentials can be constructed by a systematic expansion of Φ(r)

using powers of the inverse distance r−n. The performance of such polynomial models as

a function of the maximum degree n is shown in Table 1. The improvement in atomiza-

tion energies saturates around n = 18, reaching an accuracy of 3.0 kcal/mol. To put this

number in perspective, we recall that 3 kcal/mol is below the error of the reference PBE0

atomization energies when compared to experiment.15 Moreover, the performance of the

most sophisticated machine learning (ML) models in Ref.16 applied to a similar dataset was

3.1 kcal/mol. Therefore, it is remarkable that a simple and very efficient model based on

pairwise potentials is able to capture the subtle energetic contributions required to predict

atomization energies for equilibrium molecular geometries.

Seeking to better understand this finding, we plot the optimized C–C potential in Fig-

ure 2 for different values of n. The increase in the degree of the polynomial leads to the

appearance of shoulders and minima related to different bond orders. In fact, these features

appear at interatomic distances well known from empirical determinations of bond orders

and energies.18 We thus conclude that the increase in the degree of the polynomial enables

7

Page 7 of 18

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



the potential to “learn” about chemical bonding. Similar observations as for the C–C poten-

tial are demonstrated for C–N and and C–O potentials in the supplemental material. The

improvement in the predictive power of polynomial potentials does not only arise from their

ability to distinguish between different bonding scenarios. The decay of these potentials with

interatomic distance is rather slow, with energy contributions beyond nearest neighbors (>

1.5 Å) having an essential role on the scale of the obtained error (see inset in Fig. 2). We

note in passing that another attractive feature of interatomic potentials is that by construc-

tion they can exactly reproduce the limit of dissociated atoms, a condition that is difficult

to fulfill even in state-of-the-art ab initio theory. While we used polynomial potentials in

this work, other choices of basis functions are certainly possible, but no significant accuracy

gains are found, e.g., utilizing spline-based potentials.

Figure 2: Polynomial potentials for C–C interaction: The normalized gray histogramm refers
to the distribution of C–C distances within the GDB-7 dataset and is associated with the
right-hand axis. The red dots represent the energies of the C–C single, double and triple bond
as given by fits to experimental bond energies.18 In blue, polynomial two-body potentials
(as trained in cross validation) are shown. The inset shows the difference between potentials
for distances between 2.2 Å and 2.8 Å.

While the performance of pairwise potentials is already quite good, they have a few

notable drawbacks. For example, their performance for out-of-equilibrium molecular geome-

tries is strongly degraded. In order to demonstrate this, we extended the GDB-7 database

by scaling all the interatomic distances in the molecules by a factor of 0.9 and 1.1. When

8
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trying to learn the atomization energies for out-of-equilibrium molecular geometries, the

performance of pairwise potentials diminished by 16.7 kcal/mol compared to pure equilib-

rium geometries. This test demonstrates that while pairwise potentials can be successfully

applied in preliminary studies of stabilities for equilibrium geometries (when these are given

from some other method), more sophisticated approaches are required for non-equilibrium

molecular geometries.

Figure 3: Schematic view of the Bag-of-Bonds (BoB) representation. (a) Shows the three-
dimensional structure of ethanol (CH3CH2OH) and (b) specifies the involved nuclear charges
for each Coulomb matrix element. In (c) the different Coulomb matrix entries which are
present for ethanol are sorted into bags and the BoB vector (d) is obtained by concatenating
these bags and adding zeros to allow for dealing with other molecules with larger bags.

Evidently, collective effects beyond pairwise potentials are important for chemically ac-

curate modeling of molecular atomization energies. To include these effects, we propose

a more sophisticated ML approach, which we call Bag-of-Bonds (BoB). The BoB concept

is inspired by text mining descriptors utilized in computer science19,20 (see Figure 3 and

supplemental material for a detailed description of the model). In natural language pro-

cessing, the so-called bag-of-words descriptor that encodes the frequency of occurence of

words in text is used for solving classification problems.19,20 Here, instead we propose to use

interatomic (inverse) distances in the BoB descriptor for accurate predictions throughout

chemical compound space. In the BoB model, first the molecular Hamiltonian is mapped

to a well-defined descriptor, here a vector composed of bags, where each bag represents a

particular bond type (C–C, C–N and so on). Motivated by the Coulomb matrix concept of

Rupp et al.,17 each entry in every bag is computed as ZiZj/|Ri −Rj|, where Zi and Zj are

9
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the nuclear charges while Ri and Rj are the positions of the two atoms participating in a

given bond. In order to vectorize this information, instead of forming a matrix we simply

concatenate all bags of bonds in a specified order (the order is irrelevant for the learning pro-

cess), padding each bag with zeros in order to give the bags equal sizes across all molecules in

the GDB-7 database and sorting the entries in each bag according to their magnitude. This

representation is naturally invariant under molecular rotations and translations, whereas the

permutational invariance is enforced by the sorting step. We note in passing that unlike the

sorted Coulomb matrix17 the BoB descriptor is not able to distinguish between homometric

molecules21 (molecules with different geometries, but equal set of pairwise distances between

nuclei), however our database is devoid of such cases.

We split the full GDB-7 database into a training set of N molecules and a testing set

containing the rest of the molecules (cf.16). The energy of a molecule with a BoB vector M

is written as a sum over weighted exponentials centered on every molecule I in the training

set

ÊBoB(M) =
N∑
I=1

αI exp (−d(M,MI)/σ) , (2)

where d(M,MI) =
∑

j‖M j−M j
I ‖p defines the distance (not necessarily Cartesian) between

the BoB vectors M and MI (‖x‖p refers to the lp norm of x), αI are the regression coefficients,

the kernel width σ is optimized for each choice of p by five-fold cross-validation,16 and I

runs over all molecules MI in the training set of size N . The values of αI coefficients

and σ are determined by a kernel-ridge regression (KRR) procedure as described in detail

elsewhere.16,17 KRR is a standard robust technique in machine learning which limits the

norm of regression coefficients, αI , thereby ensuring the transferability of the BoB model to

new compounds.

To understand the physics behind the BoB model, we can decompose the BoB Laplacian

kernel for a molecule M as exp(−
∑n

j |M j −M j
I |/σ) =

∏n
j exp(−|M j −M j

I |/σ). Taylor-

series expansion of the exponential as a function of internuclear Coulomb repulsion and the

subsequent product will include contributions up to infinite order in terms of bond pairs

10
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between molecules M and MI . We stress that the BoB model uses implicitly the same

ingredients as conventional multipolar potentials, albeit with a different, arguably more

general, functional form. Simple sum over bonds and pairwise potential approaches can be

constructed as lower-order expansions of the BoB model, given sufficient training data. In

fact, a connection between the BoB model and pairwise potentials can be established by

approximately rewriting the BoB kernel as
∑nb

l

∏
j∈bl exp(−|M j −M j

I |/σ), where b refers to

a certain type of bond (e.g., C–C) and nb is the length of the bag corresponding to the bond

type b. We found that such partial linearization of the BoB model reduces the accuracy,

reverting the performance back to the pairwise polynomial potential model. This clearly

demonstrates the crucial role of collective many bond effects accounted for by the non-linear

infinite-order nature of the kernel. We note that Eq. 2 only includes contributions from pairs

of molecules. One could also envision more complex approaches that correlate information

from three or more molecules at a time.

The flexibility in choosing the kernel metric in CCS (the function d in Eq. 2) allows us

to investigate the locality properties of chemical space for the prediction model in terms

of atomization energies. The high sensitivity of the BoB model on the employed kernel

is demonstrated in Table 1, where a more local (in terms of distance in chemical space)

Gaussian kernel (p = 2) leads to an accuracy of 4.5 kcal/mol versus a much improved

performance of 1.5 kcal/mol for a non-local Laplacian kernel (p = 1). We remark that the

remarkable performance of the BoB model with the Laplacian kernel with respect to previous

work16,17 is far from being a trivial achievement. In the context of standard quantum-

chemical calculations, the improvement of accuracy from 3.1 kcal/mol16 to 1.5 kcal/mol

would imply an increase of several orders of magnitude in the computational cost. However,

the cost of BoB calculations is the same as that of the previous less accurate ML methods in

Refs.16,17 Hence, the development of the BoB model takes machine learning approaches to an

unprecedented level of accuracy, enabling calculations close to the “holy grail” of chemical

accuracy for equilibrium molecular geometries throughout chemical compound space. We
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note in passing that determining equilibrium molecular geometries as an input for BoB

calculations is not a difficult task, and even simple and efficient semi-empirical quantum-

chemical approaches yield accurate results for equilibrium molecular geometries.

To further elucidate the role of non-local information in chemical space in the prediction

of atomization energies, we have systematically studied the dependence of the prediction

accuracy on the metric norm p employed in Eq. 2. We find that the optimal value of p is

close to unity and the predictive capability decreases significantly for p < 0.5 and p > 1.5.

For larger values of p, e.g. p = 2, the resulting model is more local and yields worse results.

For kernel-based models it is possible to calculate the contribution to the predicted value for

each compound in the training set. Adding up all contributions from compounds close to the

compound in question we obtain a “local estimate” of the predicted value. Figure 4 illustrates

how this local estimate of the atomization energy converges towards the predicted value with

randomly selected and growing molecular neighborhoods in the case of ethanol molecule for

Gaussian and Laplacian kernels. Clearly, the Laplacian kernel is able to optimally utilize

non-local information in CCS. This is further demonstrated by analyzing the optimized

kernel width σ in Eq. 2 corresponding to the Gaussian and Laplacian kernels. The value of σ

fluctuates widely for the Gaussian kernel for different training set sizes in Figure 4 as does the

standard deviation when training on independently drawn training sets. The corresponding

fluctuations are smaller for the Laplacian kernel and σ reaches its converged value after N =

500. Similar results as for ethanol are found for the other molecules in the GDB-7 database.

The issue of (non)locality in the accurate prediction of molecular properties leads to the

question of whether it is possible to identify a minimal set of molecular structural fragments

which would be sufficient to preserve the good accuracy of the BoB model. Such finding

would allow us to extend the applicability of the BoB model to much larger molecules, and

this will be a subject of our future work.

In contrast to pairwise potentials, the good performance of the BoB approach extends also

to non-equilibrium molecular geometries. For the extended GDB-7 database with stretched
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Figure 4: Estimated atomization energy of the ethanol molecule (C2H5OH) as predicted
by the BoB model using Gaussian (blue line) and Laplacian (red line) kernels. The PBE0
reference energy is indicated by the dashed green line. For a given training set size, the
estimation is an average of predictions from 10 optimized models, each employing inde-
pendently sampled training molecules (excluding ethanol) from the GDB-7 database. The
envelope encloses the standard deviation of the estimate from 10 independent runs.

and compressed geometries described above, the prediction error of BoB increases only by 0.8

kcal/mol. This is a direct reflection of the ability of the BoB approach to correctly capture

the intricate collective interactions between many bonds within organic molecules.
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Figure 5: Mean absolute error (MAE in kcal/mol) for BoB and polynomial models: Training
sets from N = 500 to 7000 data points were sampled identically for the different meth-
ods. The polynomial model of degree 10 and 18 exhibit high variances due to the random
stratification, which for small N leads to non-robust fits.

Another advantage of the BoB model over pairwise potentials is its better transferabil-

ity and smooth prediction improvement with the number of training samples, as shown in

Figure 5. Already when using just 1000 random molecules out of GDB-7 for training, the
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BoB model demonstrates prediction accuracy comparable to the best optimized polynomial

potential with degree 18, which requires more than 5000 training samples to achieve the same

level of accuracy. At a first glance, this is surprising considering that the polynomial potential

contains less adjustable parameters. However, Figure 5 demonstrates that BoB represents a

more robust machine learning model with proper regularization and that further improve-

ment in accuracy is possible by simply enlarging the molecular database. This demonstrates

the great promise of the BoB approach for further exploration and understanding of CCS.
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Figure 6: Error distribution of BoB predicted electronic properties polarizability (α), at-
omization energy (E), HOMO and LUMO eigenvalues (ε) for 2165 randomly drawn out-of-
sample molecules from GDB-7 for training set sizes of N = 1000 and 5000, respectively.

The applicability and accuracy of the BoB model also extends for predicting properties

other than energies, including polarizability and highest and lowest molecular orbital energies

(HOMO, LUMO), all computed at the DFT-PBE0 level of theory. BoB error distributions

for out-of-sample predictions are shown in Figure 6. For models trained on N = 1000 GDB-7

molecules with property data taken from Ref.,22 the resulting MAE are 0.15 Å3, 0.21 eV,

0.19 eV, for polarizability (mean of 11.11 Å3), HOMO (mean of -7.02 eV), and LUMO (mean

of -0.52 eV), respectively. For the N = 5000 BoB model, these respective errors reduce to

0.09 Å3, 0.14 eV, and 0.12 eV. We remark that the BoB model once again performs as well

as or better than the more complex ML models in the literature.22
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The final question we would like to address is the feasibility of utilizing the BoB model

in the context of high throughput calculations on molecular systems. This requires the

assessment of the BoB model on a much larger dataset of molecules. To demonstrate that

the power and robustness of our method extends beyond GDB-7, we employed the 134k

dataset of quantum-chemical calculations (containing 133,885 molecules), recently presented

in Ref.23 Similar to the case of GDB-7 dataset, we obtain an accuracy of 2.0 kcal/mol

for atomization energies in the 134k dataset when training the BoB model on 30% of the

molecules.

In summary, we have devised and applied a systematic hierarchy of efficient models to

estimate atomization energies and different electronic properties for a representative set of

organic molecules. The developed BoB model is quite successful for non-equilibrium geome-

tries, hinting that it could also be extended to study vibrational properties of molecules. In

addition, the BoB model is demonstrated to be sufficiently robust as a tool in the context of

high-throughput calculations throughout a representative subset of the chemical compound

space.
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