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ABSTRACT. Self-organization of nano-components was mainly focused on solid nanoparticles, 

quantum dots or liposomes to generate complex architectures with specific properties, but 

intrinsically limited or not developed enough, to mimic sophisticated structures with biological 

functions in cells. Here, we present a biomimetic strategy to self-organize synthetic nano-

compartments (polymersomes) into clusters with controlled properties and topology by 

exploiting DNA hybridization to interconnect polymersomes. Molecular- and external factors 

affecting the self-organization served to design clusters mimicking the connection of natural 

organelles: fine tune of the distance between tethered polymersomes, different topologies, no 

fusion of clustered polymersomes and no aggregation. Unexpected, extended DNA bridges that 

result from migration of the DNA strands inside the thick polymer membrane (about 12 nm) 

represent a key stability and control factor, not yet exploited for other synthetic nano-object 
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 2 

networks. The replacement of the empty polymersomes with artificial organelles, already 

reported for single polymersome architecture, will provide an excellent platform for the 

development of artificial systems mimicking natural organelles or cells, and represents a 

fundamental step in the engineering of molecular factories. 

KEYWORDS. self-organization, polymersome clusters, DNA functionalization, DNA migration, 

membrane contact sites      

 

 

 

Self-organization is a process by which several components become ordered in space and/or 

time according to interaction rules, and generally characterized by emergent properties that differ 

from those of the single components. Almost all sophisticated biological functions and features 

of cells are realized by self-organization.1 The organization of the position and the connection 

between organelles determines their functions: for example, the spatial relationship between 

mammalian Golgi apparatus and the centrosomes changes during interphase and mitosis to 

achieve distinct signal pathways and functional interactions.2 In addition, the connection of 

specific organelles by membrane contact sites (MCSs) plays a central role in signal 

transduction,3, 4 Ca2+ storage,5, 6 monogenesis,7 and act as a widespread mechanism operating in 

the cell’s physiology and pathology.7-12 A biomimetic approach to self-organize synthetic 

compartments in order to achieve networks/clusters with a controlled spatial topology as in MCS 

connected organelles is of huge scientific and technological importance to model sophisticated 
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 3 

biological functions, and to mimic biological systems to create intelligent and “living” materials 

or technological devices with application for example in medicine or catalysis. 

Various solid nanoparticles (or nanorods), comprising mostly of inorganic materials have been 

organized into well-defined super-structures with emergent distinct and collective properties,13, 14 

such as fine-tunable optical,15, 16 magnetic17, 18 and electrical19, 20 responses in comparison with 

those of the single nano-objects. Among all molecular moieties used for self-organization of 

nano-objects, DNA is considered as one of the most powerful tools that favors highly regulated 

and complex structures including superlattices,21-24 colloidal molecules,25, 26 asymmetric 

nanoclusters27, 28 and chiral nanostructures.15, 29 The advantages of DNA arise from its 

remarkable inherent molecular recognition, feasible structural design by software, and rigid 

structure when hybridization takes place.30-32 In addition, the self-assembly of small 

nanoparticles into larger structures has been reported to improve their in vivo tumor 

accumulation, and facilitates their elimination after enzymatic degradation of DNA linkage.33 

Despite the aforementioned advantages, the self-organization of solid nanoparticles is only rarely 

exploited for biomimetic architectures due to the lack of an aqueous core and potential 

cytotoxicity.34 Instead, nano-compartments comprising of liposomes or polymersomes are more 

appealing for biological applications and cell mimics upon self-organization because they can 

exhibit versatile functions by insertion of synthetic or biological molecules into their membrane 

and accommodating various active entities in their cavities.35-37 In this respect, we and others 

used polymersomes to design mimics of organelles by co-encapsulation of enzymes in tandem 

that were able to perform their activity inside the cavity of single polymersomes.36, 38 Up to now 

the design of artificial organelles has been focused on increasing the in situ complexity of the 

enzymatic reactions35 or the inner morphology by polymersome-in-polymersome architectures.39 

Page 3 of 31

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 4 

In addition, polymersomes have the advantages of a variety of properties (wall thickness, 

polarity, non-toxicity or sensor-responsivity)35 achieved by the chemical versatility of the 

polymer blocks and an improved mechanic stability compared to their counterpart, the liposomes 

(which contains intrinsic defects and can, depending on their composition, undergo membrane 

fusion).40-42 The increased stability of polymersomes is due to their significantly thicker 

membrane (6 - 20 nm) compared to the one of liposomes (3 - 5 nm), which results from the huge 

difference in the molecular mass between amphiphilic copolymers and lipids serving as building 

blocks for the nano-compartments. Diverse micrometer-size organized structures based on 

compartments have been realized by Pickering emulsion43-45 and microfluidics,46 where the 

biphasic system has to be exploited to stabilize the assembled structures. This limitation can be 

overcome by linking the compartments in aqueous solution through molecular moieties such as 

biotin−streptavidin47 and DNA,48-50 but the self-assembly process is poorly controlled, and leads 

in various cases to the formation of large aggregates.48, 51 Templates are required in order to 

control the geometry of such micrometer-size assembled structures.52  

Here, we present a strategy for self-organization of synthetic nano-compartments with 

controlled spatial topology based on the hybridization of complementary DNA strands exposed 

at the surface of the compartments. In addition, as our aim is to take advantage of the intelligence 

of nature in respect to organelles connected by MCSs, the self-organization of nano-

compartments has to fulfill various bio-related requirements: (i) a distance between nano-

compartments of up to 30 nm for mimicking the size of MCSs region between two organelles,12, 

53 (ii) prevent membrane fusion to preserve the individual organelles,12, 53 and (iii) avoid 

aggregation. These requirements will select synthetic nano-compartments as ideal candidates 

with properties mimicking those of biocompartments (stable and flexible membrane, hollow 

Page 4 of 31

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 5 

spherical architecture, preserved integrity upon self-organization), such as organelles or cells. To 

fulfill the bio-related criteria results in a completely different approach compared with those used 

when other nano-objects (nanoparticles, quantum dots or nanorods) have been self-organized 

into networks.24, 32 To achieve this goal, we selected polymersomes as nano-compartments that 

are generated by self-assembly of amphiphilic block copolymers, and which were functionalized 

to expose binding sites at their surface for single-strand DNA (ssDNA) attachment. Upon mixing 

of the complementary ssDNA-polymersomes, the hybridization serves to self-organize them into 

spatial supramolecular topologies yet unreported for synthetic polymersomes. 

There are already advances in interconnecting liposomes or cell membranes via DNA 

hybridization.54-56 We selected polymersomes instead of liposomes as nano-compartments to be 

self-organized by DNA hybridization to take advantage of their mechanic stability, which will 

favor translational applications. However, the significant difference in the membrane thickness 

and thermodynamic properties of polymersomes compared with liposomes induces an increased 

degree of difficulty in the self-organization process of polymersomes by DNA hybridization, 

which prevents an extrapolation of the achievements already reported for interconnected 

liposomes.54-56 For example, the lateral diffusion in a polymer membrane is more than one order 

of magnitude lower than the one in a lipid membrane.57 For a successful insertion of 

biomolecules inside the synthetic membrane both the low lateral diffusion and the significant 

hydrophobic mismatch have to be overcome by carefully selection of the chemical nature of the 

copolymers. Moreover, to control the self-organization process we selected completely synthetic 

copolymers instead of copolymers that DNA serves as the hydrophilic block,58, 59 which does not 

allow the modulation of the DNA surface distribution at the polymersomes surface, and might 

assemble without a compartment-like architecture.58, 59  
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 6 

DNA provides high specific recognition between complementary ssDNA-polymersomes and 

the rigid structure of double-stranded DNA (dsDNA) is intended to control the distance between 

polymersomes up to 30 nm, suitable for mimicking MCSs. In addition, the dsDNA bridge 

between polymersomes is intended to act as an isolation layer preventing membrane fusion.60 We 

evaluated the influence of various molecular- (DNA surface density and size of polymersomes) 

and external factors (amount of polymersomes and hybridization temperature) on the self-

organization process of ssDNA-polymersomes to control the size of the resulting assemblies and 

their topology. The difference between the flexibility of the polymersome membrane and the 

intrinsic rigidity of nanoparticles induces a completely different scenario of the self-organization 

process, resulting in clusters with properties mimicking biocompartments (flexible membrane, 

stable hollow-sphere architecture). On the other hand, the reduced flexibility of the polymersome 

membranes compared with lipid bilayers will prevent fusion, and mimic the natural organelle 

integrity as compartments. 

In addition, the influence of molecular factors (surface density of ssDNA/polymersome, 

flexibility of the synthetic membrane and size of the polymersomes), on the specific conditions 

selected for development of our self-organized polymersomes prevents their aggregation, 

resulting in a hierarchically controlled assembly. Such polymersome clusters present the unique 

advantage over the reported networks of nano-objects to allow further development of reactions 

inside their cavity, by using the artificial organelle models already reported for single 

polymersomes.35 Polymersome clusters represent an essential step in development of 

interconnecting artificial organelles because they will topologically favor cascade reactions 

between different polymersomes and support a biomimetic strategy that is specific for cell 

signaling or interactions. In addition, our strategy based on synthetic nano-compartments instead 
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 7 

of lipidic ones will serve for translational applications, which might be hindered by the intrinsic 

instability of the lipid bilayers. The straightforward control over the self-organization process by 

changing the DNA sequences exposed at the surface of polymersomes will serve for 

development of more complex and multifunctional architectures. 

In order to obtain ssDNA-polymersomes, in situ modification of assembled polymersomes 

with ssDNA through strain-promoted azide–alkyne cycloaddition (SPAAC) was performed. This 

strategy avoids DNA pre-functionalization of the block copolymers, which would alter the ratio 

between hydrophilic and hydrophobic blocks and thereby disturb the self-assembly process. In 

order to generate polymersomes poly(2-methyloxazoline)-block-poly(dimethylsiloxane)-block-

poly(2-methyloxazoline) (PMOXA7-PDMS42-PMOXA7) triblock copolymer and 

poly(dimethylsiloxane)-block-poly(2-methyloxazoline) (PDMS75-PMOXA37-PEG3-N3) diblock 

copolymer were synthesized and mixed to self-assemble in dilute aqueous solution (Figure S1, 

S2). The terminal azide group of the PDMS75-PMOXA37-PEG3-N3 copolymer enables the 

linkage of the ssDNA via terminal dibenzocyclooctyne (DBCO) functionality. In addition, the 

extended PMOXA part serves both to favor the azide accessibility for the reaction with DBCO-

ssDNA and as a spacer between the polymersome surface and the DNA to assure the 

accessibility of the linked ssDNA for hybridization (Figure 1a,b), in a similar manner as the 

spacer reported for DNA-functionalized nanoparticles.61 

To maximize the number of azides exposed at the external surface of polymersomes, whilst 

avoiding to disturb the self-assembly process, PMOXA7-PDMS42-PMOXA7 was mixed with 

different amounts of PDMS75-PMOXA37-PEG3-N3 (0.00, 0.25, 1.00, 5.00 and 10.00 mol %, 

coded as P0, P0.25, P1, P5 and P10, respectively), and self-assembled by a film-rehydration 

method.36 Vesicular structures were observed in transmission electron microscopy (TEM) and 
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 8 

cryo-TEM micrographs for initial molar contents of PDMS75-PMOXA37-PEG3-N3 below or 

equal to 5.00 mol % (Figure S3a-d, g). They have a hydrodynamic diameter (DH) of 180 ± 60 nm 

(obtained by dynamic light scattering, DLS), independent of the molar fraction of PDMS75-

PMOXA37-PEG3-N3 (Table S1). These values are in agreement with the DH values obtained by 

analysis of the TEM micrographs (the slight difference being inherent for TEM and DLS 

methods). The morphology transited toward worms and micelles for PDMS75-PMOXA37-PEG3-

N3 content of 10.00 mol%, whilst PDMS75-PMOXA37-PEG3-N3 formed rod-like micelles (Figure 

S3e,f). We evaluated the molar ratio of PDMS75-PMOXA37-PEG3-N3 in the polymersome 

membrane by coupling DBCO-PEG4-Fluor 545 to the azide groups exposed at the polymersome 

surface through SPAAC. The brightness of DBCO-PEG4-Fluor 545-coupled to polymersomes 

was compared with that of the free DBCO-PEG4-Fluor 545. The average number of azide groups 

per polymersome for P0.25, P1 and P5 was determined as: 21 ± 1, 45 ± 5 to 121 ± 7, which 

corresponds to 0.2, 0.3 and 0.9 mol % of PDMS75-PMOXA37-PEG3-N3 present in the membrane 

(Table S2).         

Subsequently, P0.25, P1 and P5 were post-functionalized through SPAAC with 22-mers of 

dibenzocyclooctyl-terminated ssDNA (ssDNAa) or the complementary strand (ssDNAb) (Figure 

1b). A maximum yield of conversion was reached after 2 days, and no further significant 

increase was achieved by extending the reaction time (Figure S4). The reaction rate for the 

present system is lower than reported elsewhere62 for two reasons: (i) due to the click reaction 

being constrained to the polymersome surface and (ii) due to low content of PDMS75-PMOXA37-

PEG3-N3 in the polymersomes, desired to avoid disruption of the polymersome architecture and 

overpopulation with DNA. Both ssDNAa and ssDNAb were successfully bound to all P0.25 - P5 

polymersomes, with coupling yields ranging from 27 % to 75 % of the initial azide-group 
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 9 

amount (Table S1). The conjugation of ssDNAa to the polymersomes was proven by agarose gel 

electrophoresis where the appearance of a new band after cycloaddition reaction corresponds to 

the fraction of ssDNA bound to polymersomes (Figure S5). The variation of the coupling yields 

results from a combination of molecular factors, such as distribution of the surface density of the 

azide groups, their accessibility for SPAAC reaction, and the number of polymersomes 

present/solution volume. In addition, the increase of the content of PDMS75-PMOXA37-PEG3-N3 

induces the appearance of a minor population of micelles by self-assembly instead of co-

assembly with PMOXA7-PDMS42-PMOXA7. This hinders the expected increase of the number 

of azide groups exposed on the polymersome surface, resulting in a lower coupling yield for 

ssDNA on P5 (Table S1). 

However, the increase of DNA density on polymersomes surface from P0.25-ssDNAa to P5-

ssDNAa is clearly indicated by the raise of the respective zeta-potential values from -3.7 ± 1.0 

mV to -9.2 ± 1.3 mV (Table S1). No influence on the polymersome morphology or size was 

observed after DNA functionalization both by TEM and DLS (Figure 1c, Figure S6, Table S1).  

In order to evaluate the average ssDNA number per polymersome and to determine the 

distribution of the DNA surface density (σ), the hybridization of atto550-labelled complementary 

ssDNA (atto550-ssDNAb) with ssDNAa on the polymersomes was investigated by FCS (Figure 

1b,d). The significant increase of the diffusion time of the free atto550-ssDNAb (τD = 0.1 ms) to 

values of 4.3 ± 0.2, 4.7± 0.2 and 5.3 ± 0.8 ms for atto550-ssDNAb hybridized to P0.25-ssDNAa, 

P1-ssDNAa and P5-ssDNAa, respectively, indicates successful hybridization of the 

complementary ssDNAb to the ssDNAa exposed at the surface of polymersomes. Similarly, 

atto647N-ssDNAa was hybridized to ssDNAb-functionalized polymersomes (Table S3). In both 

cases the hybridization of the complementary ssDNA to the ssDNA-polymersomes did not affect 
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 10 

the polymersome architecture (Figure S7). No unspecific binding of atto550-ssDNAb to P5 

polymersomes or of atto647N-ssDNAa to P5-ssDNAa was observed by FCS analysis 12 hours 

after mixing (Table S3). The average number of ssDNA per polymersome obtained by brightness 

measurements was calculated by dividing the CPM of fluorescently labeled ssDNA hybridized to 

polymersomes with the CPM corresponding to the free fluorescently labeled ssDNA (Table S3). 

The number of ssDNA per polymersome increased from 14 ± 1 for P0.25-ssDNAa to 93 ± 2 for 

P5-ssDNAa, and from 18 ± 2 for P0.25-ssDNAb to 127 ± 9 for P5-ssDNAb, respectively, 

depending on the amount of azide groups present on the polymersomes surface. The number of 

ssDNA/polymersome corresponds to an average σ value from 0.1 to 1.2 strands per 1000 nm2 

(Table S3). Note that the low values of the surface density of the ssDNA/polymersome were 

selected to avoid DNA repulsive interactions, and preserve the polymersome architecture yet still 

allowing hybridization. 
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 11 

 

Figure 1. DNA-functionalized polymersomes. (a) Chemical structures of PMOXA7-PDMS42-

PMOXA7 and PDMS75-PMOXA37-PEG3-N3 and the sequences of ssDNAa and atto550-ssDNAb. 

(b) Schematic representation of polymersomes with azide groups on the surface, to which 

ssDNAa is bound, and further hybridized with atto550-ssDNAb. (c) TEM micrograph of P5-

ssDNAa, the scale bar is 200 nm. (d) Normalized FCS autocorrelation curves of atto550-

ssDNAb (20 nM, blue) and atto550-ssDNAb hybridized to P5-ssDNAa (dark yellow) with their 

respective fits (red). 
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 12 

In order to explore the DNA mediated self-organization of ssDNA-polymersomes, P0.25, P1 

and P5 were mixed in equal volume fractions with the respective complementary polymersomes, 

hybridized at 37 °C and characterized by a combination of DLS and TEM (Figure 2). A rapid 

increase of DH to a plateau was observed, indicating the self-organization of polymersomes in 

clusters by DNA hybridization for all ssDNA-polymersomes mixed with their complementary 

ssDNA-polymersomes (Figure 2b). Interestingly, polymersomes self-organized into sub-

micrometer sized clusters (a major population of small clusters and a minor one of bigger 

clusters), and no aggregation was observed in time (Figure 2d), contrary to previous reported 

aggregates of DNA-liposomes51. An apparent DH of 290 ± 100 nm was measured for P5-ssDNAa 

- P5-ssDNAb clusters (P5-ab) at equilibrium by DLS (n = 5, Figure S8c). The hybridization 

temperature of 37 °C was chosen to be well below the DNA’s melting temperature of 67 °C 

(Figure S9) and to demonstrate the cluster formation under physiological conditions. Note that 

the relatively high distribution of the apparent values of the DH is due to the intrinsic size 

distribution of polymersomes (Table S1). This appealing architecture of small clusters is exactly 

the desired one, when internalization of such clusters into cells is intended to develop 

translational applications. 

The distribution of the number of polymersomes per cluster determined from a statistical 

analysis of TEM micrographs (Figure S10, S11, n = 200) corresponds to a binomial distribution. 

An average number of 2.2 ± 1.5, 2.0 ± 1.3 and 1.7 ± 1.1 polymersomes/cluster was calculated for 

P5-ab, P1-ab and P0.25-ab, respectively. The number of free polymersomes decreases with time; 

after 6 hours, an unbound fraction of 33 ± 8 % was present for P0.25, whilst for P1 and P5 this 

fraction was 21 ± 11 % and 11 ± 7 %, respectively (Figure S11). 
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 13 

In order to evaluate the influence of molecular- (σ value and size of polymersomes) and 

external- factors (the amount of polymersomes and temperature) on the self-organization 

process, the change in apparent DH of clusters with respect to time was fitted by a double-

exponential function (Figure 2b,c, eq 1, Supporting Information). Two rate constants (a fast k1 

and a slow k2 defined according to eq 2, Supporting Information) indicate the occurrence of two 

different stages during the organization process (Table S4). In the initial stage, polymersomes 

underwent a rapid self-organization with a short dwell time (t1 = 0.12s, 0.16 s, and 0.21s for P5-

ab, P1-ab and P0.25-ab). The increase of the σ value of polymersomes (from P0.25-ab to P5-ab) 

accelerated the initial self-organization step, as indicated by a higher k1 value for P5-ab (k1 = 

8.33 s-1), in comparison with the values corresponding to P0.25-ab and P1-ab clusters (k1 = 6.25 

s-1 for P1-ab, and k1 = 4.76 s-1 for P0.25-ab). This behavior results from the increased probability 

of interaction between complementary ssDNA-polymersomes with an increased number of 

ssDNA/polymersome. 

In order to investigate how the polymersome concentration affects the cluster formation, the 

polymersome solution was diluted 5 times prior to hybridization. The number of 

polymersomes/solution volume induced a slight reduction of k1 (from 8.33 s-1 to 5.55 s-1), whilst 

k2 was not affected. The decrease of the number of polymersomes in solution is expected to 

decrease the probability of their interaction, and consequently the k1 value for the fast step of the 

self-organization process. A significant decrease of k1 was observed when either the temperature 

for the formation of P5-ab was reduced from 37 °C to 25 °C or when the polymersome diameter 

was reduced from 180 ± 60 nm to 110 ± 30 nm (Table S4). The reduced hybridization 

temperature resulted in an expected decrease of k1 (from 5.55 s-1 to 0.18 s-1) and ended with the 

same size of clusters as when formed at 37 °C (Figure 2c, magenta vs cyan curves). The latter 
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 14 

effect has as its main cause the difference in the number of ssDNA/polymersome when their size 

is reduced. As expected, the size of the polymersome clusters decreased when the concentrations 

of polymersomes, available for hybridization, was reduced five times (Figure 2c, grey and cyan 

curves).  

The second step of the self-organization process is characterized by a plateau in DH values 

with a low rate of cluster formation. k2 values are significantly lower than k1 values for all 

polymersomes with no obvious dependence on the σ value, the size of polymersomes, the 

polymersome concentration or the temperature (Table S4). The plateau indicates a stabilization 

of the size of the clusters, and explains the lack of aggregation, which has been observed for 

DNA-liposomes63. This interesting stabilization of small clusters results from the specificity of 

conditions for the self-organization process based on relatively low number of 

ssDNA/polymersomes. Various other molecular factors, such as the concentration of 

complementary ssDNA-polymersomes in the mixture, and the distribution of the DNA surface 

density play a role in the formation of such small clusters and lack of aggregation. Both a 

reduced number of ssDNA-polymersomes and a fraction of polymersomes with low number or 

no DNA/polymersome decrease the probability of interaction between complementary ssDNA-

polymersomes, and therefore represent “dilution” factors limiting the formation of clusters in the 

second step of the self-organization process. 
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Figure 2. Self-assembly of complementary ssDNA-polymersomes into clusters. (a) Schematic 

representation of ssDNA-polymersome assembly by DNA hybridization; (b) Self-organization 

processes of P5-ab (gray), P1-ab (green), P0.25-ab (blue) and free ssDNAa-polymersomes (pink) 

by change of DH as a function of the time at 37 °C. (c) Illustration of the self-organization 

process of P5-ab at five times more diluted polymersome concentration (compared to the grey 

trace) at 37 °C (cyan), at 25 °C (magenta) and with a size of 110 ± 30 nm at 37 °C (orange) by 

reporting the change of DH as a function of the time. The curves were fitted by a double-
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exponential function (red lines). (d) Self-organization of P5-ab at 0 min, after 20 min and after 6 

h, monitored by TEM. The scale bars are 1000 nm. 

In order to obtain more insight into the molecular factors favoring the self-organization process, 

the assembled clusters were analyzed by cryo-TEM (Figure S12). Unexpectedly, the growth of 

polymersome clusters induced a deformation of the polymeric membrane of interconnected 

ssDNA-polymersomes. The micrographs revealed the formation of an extended region of DNA 

bridges between interconnected polymersomes. This observation suggests that the initial binding 

of two complementary polymersomes is followed by a migration of DNA bearing polymer 

chains within the membrane. Such migration is supported by the flexibility of the PMOXA-

PDMS-PMOXA polymersome membrane, with high lateral diffusion coefficients for polymer 

chains inside the membrane.64 The concentration of DNA strands to form extended bridge 

domains between the interacting polymersomes represents a completely different phenomenon, 

not previously observed for other DNA-based networks/assemblies (e.g. nanoparticles65) where 

the position of the ssDNA is fixed by specific binding sites. In addition, such migration of the 

DNA strands is expected to induce an inhomogeneous distribution of the ssDNA/polymersome 

surface with a significant decrease of the number of DNA strands present at surface regions 

opposite to the binding region. This migration induced asymmetry in the DNA distribution on 

clustered polymersomes is one of the key factors hindering further growth of the clusters. It has 

been proposed in the case of nanoparticle assemblies that increasing elastic repulsive forces 

between linked nanoparticles and their oscillation towards different directions might induce 

instability of the assemblies.66, 67 However, in case of the very flexible membrane of our 

polymersomes the described membrane deformation is not leading to polymersome rupture and 

does therefore not affect the stability of the formed clusters. However, the repulsive forces 
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between the negatively charged phosphate groups in the DNA backbone are expected to play a 

role in determining the final size of the clusters. Together with the other molecular factors 

mentioned above it becomes evident that the process of DNA mediated polymersome cluster 

formation is rather complex. Further experiments are planned to understand and reveal the details 

of the self-organization process and the role of molecular factors in directing the clustering 

towards a specific topology. 

In nature, it is fundamental to colocalize specific compartments (organelles) in a defined 

spatial organization to accomplish specific metabolic pathways and cell functions. In order to 

direct the self-organization of polymersomes we exploited two driving forces, DNA 

hybridization and steric hindrance created by different sized polymersomes. It has been 

demonstrated that steric hindrance is a key factor directing the assembly of particles into specific 

configuration.68 Two distinctly different ssDNA-polymersome populations, one with a diameter 

of 180 ± 60 nm and a second one with a diameter of 110 ± 30 nm, were selected in order to 

create different steric hindrance (Figure 3a). For the visualization of the resulting clusters, 

atto488 and DY-633 dyes were encapsulated in P5-ssDNAb and P5-ssDNAa (P5-ssDNAb-

atto488, P5-ssDNAa-DY-633), respectively. The assembled clusters were immobilized on amino 

functionalized glass slides at pH 7.4 by electrostatic interaction between the negatively charged 

DNA backbone and the positively charged amino-glass surface. The immobilization of the 

clusters did not lead to any observable polymersome rupture and allowed to record confocal laser 

scanning microscopy (CLSM) images to reveal the different cluster configurations by their 

respective fluorescence patterns. (Figure 3c,e). When complementary ssDNA-polymersomes 

with a diameter of 180 ± 60 nm were mixed in an equal mass ratio, only clusters with a DH of 

290 ± 100 nm and no large aggregates were observed by DLS after reaching the equilibrium 
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(Figure S13c). Small chains of 2 - 4 polymersomes (2.2 ± 1.5; n = 200) were observed by TEM 

and CLSM (Figure 3b,c). The relatively high polydispersity of the DH of the assembled clusters 

can be explained by the dispersity of the polymersomes’ DH and the number of the assembled 

polymersomes. A completely different topology was observed by TEM and CLSM when 

nonequivalently sized polymersomes were hybridized: 2 - 6 small polymersomes (3.8 ± 1.9; n = 

230) hybridized onto the surface of a large polymersome, resembling a satellite like organization 

around a distinct central polymersome (Figure 3d,e, Figure S14). In addition, the electrostatic 

repulsive forces generated by DNA on the surrounding small polymersomes result in a large 

separation between individual satellites without any signs of uncontrolled aggregation (DLS: 

Figure S13e, TEM: Figure 3d). The distinct cluster topologies and the characteristics of the 

building blocks used to assemble them identifies steric hindrance, electrostatic repulsion and 

polymer chain migration as major driving forces behind the cluster architectures. The assembly 

of linear clusters is driven by polymer chain migration whereas the satellite configuration is 

governed by steric hindrance and electric repulsion between neighboring satellites. 
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Figure 3. Self-organization of complementary ssDNA-polymersomes. (a) Schematic 

representation of distinct spatial topology resulting from mixing differently sized complementary 

ssDNA-polymersomes. TEM and CLSM micrographs of chain-like (b, c) and satellite-like 

polymersome clusters (d, e). The scale bar for TEM micrographs is 1000 nm and 200 nm in the 

inset, in CLSM micrographs it is 2000 nm and 1000 nm in the inset. 

The spatial distance between ssDNA-polymersomes was manipulated by the length of ssDNA on 

the polymersomes exploiting the rigid nature of dsDNA69 (Figure 4). Complementary ssDNA 

with a length of either 22- or 44-mer were coupled to large P5 (180 ± 60 nm), and subsequently 

hybridized. The distances between ssDNA-polymersomes sustained by 22-mer dsDNA and 44-

mer dsDNA were determined as 6.8 ± 0.8 nm and 13.1 ± 1.7 nm by the analysis of cryo-TEM 

images (Figure 4, n=132), in good agreement with the theoretical values of 7.48 nm and 14.96 

nm assuming 3.4 nm per 10 base pairs,70 respectively.  Detailed image analysis of the region of 

the bridges between connected polymersomes revealed the presence of dark thin bands, which 
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can be associated with the dsDNA strands.71 Mean distance between them was estimated as: 5.83 

± 1.81 nm, in agreement with the value of 5.29 nm, which has been theoretically obtained based 

on a length of the DNA strand with 22-mer of 7.48 nm, and the hypothesis of a homogeneous 

distribution of DNA (Supplementary Information). We obtained the number of dark bands 

corresponding to dsDNA strands as 15.7 ± 2.2 (four connected polymersomes were measured). 

The mean value of the radius of the contact area between two connected polymersomes was 

measured as R = 37.6 ± 3.35 nm, which corresponds to a circular contact area of 4442 ± 35.3 

nm2. The resulting density of DNA strands/contact area was obtained as 13.9 DNA strands/1000 

nm2 (with the hypothesis of homogeneous distribution of the DNA strands), which is one order 

of magnitude higher than the average σ value from 0.1 to 1.2 strands per 1000 nm2 (obtained for 

uncoupled ssDNA-polymersomes). This huge difference in the density of DNA strands before 

and after the formation of the bridges clearly indicates the migration of the DNA strands to 

support the polymersomes coupling. In order to determine the density of dsDNA in the bridge 

region we calculated the force responsible for the polymersomes deformation upon their 

coupling via DNA hybridization (in the limit of small deformations), and divided it by the force 

corresponding to the formation of hydrogen bonds in a dsDNA strand with 22-mer 

(Supplementary Information). We obtained a maximum density of DNA strands/contact area of 

16.2 DNA strands/1000 nm2. Both the calculated value of the DNA density in the contact region 

based on cryo-TEM micrographs analysis, and that obtained from a simple model of elastic 

deformation of the polymersomes indicate a significant migration of the DNA strands to form the 

bridges between the connected polymersomes. 

The deformation of the membrane upon cluster formation does not induce membrane rupture, 

and the polymersomes preserve their overall architecture inside the clusters with the 
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encapsulated fluorescent dyes well separated in distinct cavities, as observed by a combination of 

cryo-TEM and CLSM (Figure 3, Figure 4). To determine whether the hybridization of ssDNA-

polymersomes induces membrane fusion between the respective polymersomes we mixed 

ssDNA-polymersomes containing a fluorescent dye in a self-quenching concentration with 

complementary ssDNA-polymersomes containing only PBS (Figure S15, Figure S16). When 

ssDNA-polymersomes containing self-quenched sulforhodamine B (SRB, 25 mM) were mixed 

with the complementary ones without dye, no increase of the fluorescence was observed after 5 

days. Therefore, the clusters were stable for several days, with no leakage of the encapsulated 

content and no mixing of their content as it might result from their fusion. FRET analysis 

indicated the hybridization of DNA strands upon formation of clusters (Figure S17). 

In comparison with polymersome aggregates linked by β-cyclodextrin and azobenzene, which 

undergo membrane fusion,72, 73 the stability of DNA-polymersome clusters indicates that DNA 

acts not only as a linker to connect the polymersomes and to control the spatial distance, but also 

generates a protective layer, preventing efficiently the fusion of the polymeric membranes. This 

is an exciting property because it will allow encapsulation of different catalysts (enzymes, 

mimics) inside each type of polymersome to perform reactions either inside the polymersome or 

between different polymersomes from the same cluster (appropriately permeabilized to allow 

exchange of molecules) to gain multifunctionality in a controlled manner. 
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Figure 4. Schematic representation and cryo-TEM micrographs of DNA-polymersome clusters 

connected by 22-mer (left) and 44-mer (right) dsDNA, resembling the neuronal gap. The scale 

bars are 100 nm. 

Self-organization of nano-objects is a key tool to generate complex networks with novel 

topology and properties. We were interested to go one step further in using this process by 

adding new properties in a biomimetic approach based on connected organelles inside cells, 

known as essential super-structures involved in various metabolic processes. Our strategy 

consists in self-organizing artificial nano-compartments, specifically polymersomes composed of 

a completely synthetic membrane, in a controlled manner to mimic the organization of organelles 

with MCSs, and generate clusters with a topology according to design. By selecting DNA as the 

linkage molecule to drive the self-organization between polymersomes, the clusters generated by 

self-organization of complementary ssDNA-polymersomes exhibit features for mimicking 

connected organelles, such as high stability, no membrane fusion, no aggregation, and control 

over the distance between polymersomes due to the rigid feature of dsDNA. Interestingly, 

extended DNA bridges that result from the migration of the DNA strands inside the thick flexible 

polymersome membrane (about 12 nm thick) were revealed in the gap between connected 

polymersomes by cryo-TEM micrographs. They generate an asymmetry in the DNA distribution 

at the surface of polymersomes, and represent an important factor to stabilize and control the 

architecture and size of clusters, which has not yet been exploited for other synthetic nano-

objects networks. Interfacing polymersomes by reorganization of DNA strands to generate 

extended bridges is expected to allow further development of complex architectures by the play 

between compact and incompact DNA distribution together with the length and surface density 

of the DNA strands. 
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In addition, by using artificial organelles (resulting from encapsulation/co-encapsulation of 

active compounds inside the clustered polymersomes) instead of empty polymersomes makes 

them ideal candidates for further development of in situ cascade reactions between different ones 

that cannot be achieved within other networks/clusters of nano-objects, such as nanoparticles, 

micelles or nanorods. This is a unique advantage for the development of novel materials 

exhibiting biomimetic features inside their hierarchical organization and a controlled architecture 

based on the straightforward change of molecular factors affecting the organization process (size 

of polymersome, surface density of DNA/polymersome, length of DNA strands, concentration). 

For example, these small ssDNA-polymersome clusters can be further optimized to provide by 

their architecture a highly promising platform for further cell mimicking such as emulation of the 

synaptic gap, signal transduction and Ca2+ storage considering the negative nature of DNA. In 

addition, our strategy provides control over the cluster formation by changing the DNA sequence 

in terms of size and specificity, in order to gain more complex architectures. 

Spatial organization and arrangement of such DNA-polymersomes with different functions in a 

defined order is of essential significance both for mimicking the integration of organelles in 

living cells, and for further development of translational applications, required in domains such 

as medicine, catalysis and, technology. 
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