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Abstract

Accurate representation of the molecular electrostatic potential, which is often ex-

panded in distributed multipole moments, is crucial for an efficient evaluation of in-

termolecular interactions. Here we introduce a machine learning model for multipole

coefficients of atom types H, C, O, N, S, F, and Cl in any molecular conformation. The

model is trained on quantum chemical results for atoms in varying chemical environ-

ments drawn from thousands of organic molecules. Multipoles in systems with neutral,

cationic, and anionic molecular charge states are treated with individual models. The

models’ predictive accuracy and applicability are illustrated by evaluating intermolec-

ular interaction energies of nearly 1,000 dimers and the cohesive energy of the benzene

crystal.
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1 Introduction

The efficient evaluation of intermolecular interactions1–3 is an essential part of all classi-

cal molecular dynamics simulations. Electrostatic, induction, dispersion, and exchange-

repulsion are the most frequently encountered non-bonded contributions to the energy of

interaction between molecules. In order to boost computational efficiency, these contribu-

tions are often projected on pairwise-additive functions, the sum of which then approximates

the potential energy surface of a molecular assembly. Many-body effects (e.g., induction and

dispersion) are accounted for effectively, by an appropriate parametrization of the potential

energy surface. These parametrizatons are, by construction, state-point dependent and rely

on either measured or first-principles evaluated thermodynamic properties of a molecular

assembly at a certain state point. For example, partial charges and Lennard-Jones param-

eters are often adjusted to fit the density, heat of vaporization, and other thermodynamic

properties.4

Force field transferability and accuracy can of course be improved by retaining many-body

contributions. The decisive advantage of this approach, which justifies extra computational

effort, is that these terms can be evaluated perturbatively, i.e., by first calculating electronic

properties of non-interacting molecules using first-principles methods and then accounting

for electrostatic (first order), induction (second order), and dispersion (higher orders) con-

tributions in a perturbative way.5 Such parametrizations do not require experimental input,

are state-point independent and, as such, can be used to pre-screen chemical compounds in

silico.

In this approach, however, even the molecular electrostatic potential must be evaluated

for every single molecular conformation, requiring electronic structure calculations at practi-

cally every molecular dynamics step. It has also been pointed out that the multipole-moment

(MTP) description of the electrostatics must include not only atomic charges but also higher

moments (e.g., dipoles and quadrupoles),6–9 improving free-energy calculations,10,11 spectro-

scopic signatures,12,13 and dynamics.14
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Avoiding the need for frequent quantum-chemical calculations has motivated the devel-

opment of fast prediction methods, such as machine learning (ML).15–17 With ML we refer

to statistical algorithms that extract correlations by training on input/output data, and that

improve in predictive power as more training data is added.18 While ML models for the fit-

ting of potential energies have been in use for decades,19 the possibility to infer point charges,

MTPs and polarizabilities has been investigated only recently.20–23 These approaches inter-

polate between a large number of conformations to accurately describe the effects of changes

in the geometry. The accuracy that is reached comes at a price: The specificity of the learn-

ing procedure limits its applicability to the given molecule of interest. Instead of training

electrostatic models for every new molecule, here we construct a transferable MTP model

which can be applied not only to different molecular conformers but also atom types.

The paper is organized as follows. We first describe how to build a machine learning

MTP model that predicts static, atomic point charges, dipoles, and quadrupoles for H,

C, O, N, S, F, and Cl atom types in specific chemical environments. Next, the resulting

electrostatic interactions are combined with a classical many-body dispersion (MBD)24 in

order to validate the model by estimating intermolecular energies of nearly 1,000 molecular

dimers as well as the cohesive binding energy of the benzene crystal. We find that the

machine-learning model retains an accuracy similar to the same model parametrized from

individual quantum-chemical calculations.

2 Methods

The following describes the ML model, the baseline property used in the delta-learning

procedure, the dataset, and the description of the reference MTPs.

3
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2.1 Machine Learning model

We rely on supervised learning to construct a kernel-ridge regression which generalizes the

linear ridge regression model (i.e., linear regression with regularizer λ) by mapping the input

space x into a higher-dimensional “feature space,” φ(x), thereby casting the problem in a

linear way.16,25 The strength of the method comes from avoiding the actual determination

of φ thanks to the so-called kernel trick:26 Since the ML algorithm only requires the inner

product between data vectors in feature space, one can apply a kernel function k(x, x′)

to compute dot products within input space, thereby leaving the feature space entirely

implicit. As a result, the problem is reformulated from a v-dimensional input space (i.e.,

the dimensionality of each data vector) into an n-dimensional space spanned by the number

of samples in the training set. This characteristics implies that the larger n, the better the

prediction ought to be—thus the denomination of a supervised learning method.

Here, we build on the ∆-ML approach,27 which estimates the difference between the

desired property and an inexpensive baseline model that accounts for the most relevant

physics. More specifically, a refined target property p(x) is predicted from baseline property

pVor (see Sec. 2.3) plus the ML-model ∆

p(x) = pVor(x) + ∆(x, pVor), (1)

where x corresponds to the representation vector—or descriptor—of the input sample (e.g.,

query molecule). ∆ corresponds to the standard kernel-ridge regression model of the differ-

ence between baseline and target property constructed for n training samples,

∆(x, pVor) =
n
∑

i=1

αi

[

k(x, xi) + k′(pVor, pVori )
]

, (2)

where αi is the weight given to training molecule i. These weights are determined by best

reproducing the reference property pRef(x) for each sample in the training set according to
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the closed-form solution α = (K+K′ + λ1)−1 (pRef − pVor), where pRef − pVor is the vector

of training properties, i.e. difference between reference and baseline, and K and K′ are

the two kernel matrices. Note that in Eq. 2, we have included representation and baseline

property in the kernel, each having a different width in their respective kernel functions.

ML maps an input representation vector x into a scalar value of similarity. Thus, before

applying ML to predict atomic MTPs, the information contained in the three-dimensional

structure of a molecule must be encoded in a vector of numbers i.e., its representation or

descriptor. Ideally, this information should reflect symmetries of molecular structures with

respect to rotations, translations, reflections, atom index permutations, etc. Here, we rely

on the Coulomb matrix descriptor,28

Cij =















1
2
Z2.4

i ∀ i = j

ZiZj

|Ri−Rj |
∀ i 6= j,

(3)

where i and j index atoms in the molecule, Zi is atom i’s atomic number, and Ri represents

its Cartesian coordinates. Note that the Coulomb matrix not only encodes inverse pairwise

distances between atoms but also the chemical elements involved. As different molecules

have different numbers of atoms, their Coulomb matrices will vary in size. Distant neighbors

are expected to have a comparatively small impact on a prediction, such that the inclusion

of all neighbors can prove inefficient for large molecules. Given a set of molecules, we pad

matrices with zeros such that their size amounts to n× n, where n is the number of closest

neighboring atoms considered.28 In the following, we set n = 4. Given a molecule’s d atoms,

there are d individual atomic MTP samples for the ML to learn from. For each, an individual

Coulomb matrix is built in which the atom of interest fills up the first row/column, while the

indices of the surrounding n atoms are sorted according to the atoms’ Euclidean distances

to the query atom. As such, we coarsen our descriptor to contain at least the first shell

of n covalently bound neighbors, and atoms that only differ in their environment at larger

distances will be assigned the same MTP. We have found n = 4 to correspond to a reasonable
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compromise between computational efficiency and performance. Note, however, that while

such choices of descriptor typically do affect the model’s performance for given training sets,

other descriptor choices could work just as well—as long as they meet the requirements and

invariances necessary for the ML of quantum properties.29

In the context of applying ML to the prediction of tensorial quantities, such as MTPs,

properties pVor(x) and p(x) will be expressed as vectors of size m—the number of indepen-

dent coefficients of the tensor of interest (e.g., 1 for a scalar charge, 3 for a vector dipole

moment, 5 for a traceless second-rank tensor quadrupole). We express MTP moments with

their minimal number of independent coefficients by using the spherical-coordinate repre-

sentation. We recognize that the kernel matrices, K and K′, will remain unmodified when

learning/predicting different tensor components of the same input data vector. Finally, the

weights α are expressed as a matrix of size m× n, which naturally reduces to a vector when

predicting a scalar quantity.

For this work, we have used the Laplacian kernels,

k(xi, xj) = exp

(

−
|xi − xj|

σNt

)

, (4)

k′(pVori , pVorj ) = exp

(

−

∣

∣pVori − pVorj

∣

∣

ζNt

)

, (5)

where σ and ζ are free parameters, | · | corresponds to the Manhattan, or city block, L1 norm.

This combination of kernel functions and distance measure has previously been shown to yield

the best performance for the modeling of molecular atomization energies and other electronic

properties using the Coulomb-matrix representation.30,31 Nt is the number of occurrences of

the chemical element type to which atom i belongs. As a result Nt normalizes the width

to be consistent with training set size of a given chemical element. We report below (Table

II) the strong variance of occurrence numbers of chemical elements in the employed training

set. Hyperparameter optimization on 85% of the elements encompassing the training set

(see below) yielded σ = 0.005, ζ = 0.002, and λ = 10−9. We have subsequently used these
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parameters for element-specific models throughout. Combining Eqs. 2, 4, and 5, the ∆-

learning ML model predicts the deviation from the Voronoi baseline for a new query atom

x of element t with Voronoi property pVor according to,

∆(x, pVor) =
n
∑

i=1

αi

(

e
−

|x−xi|

σNt + e
−

|pVor−pVor
i |

ζNt

)

. (6)

For the modeling of MTP in positively and negatively charged molecules (±1 e), we

have trained respectively different ML models for the same set of molecules, systematically

assigning the corresponding global molecular charge and assuming a doublet state.

2.2 Multipole moments

Molecular electron densities were computed using density functional theory calculations at

the M06-2X level of theory32 and cc-pVDZ basis set.33 All ab-initio calculations were per-

formed using the Gaussian09 program.34

The Generalized Distributed Multipole Analysis (GDMA)5 allowed us to partition the

density into atomic MTPs up to quadrupoles, where we relied on grid-based quadrature (i.e.,

switch value of 4). The same protocol was applied to train the ML models for positively and

negatively charged molecules, after reassigning the global charge of each molecule.

The reference MTPs, obtained from the distributed multipole analysis were rotated into

a molecular reference frame, which was constructed from the (sorted) eigenvectors of the

molecule’s moment of inertia tensor centered at the atom in question. To ensure uniqueness,

we set the positive axis of each vector such that its scalar product with the vector pointing

from the atom of interest to the molecule’s center of mass is positive. For linear (e.g.,

diatomic) molecules, we assign the interatomic direction as the first axis and arbitrarily

construct two orthogonal axes. After the ML prediction, we rotated back the MTPs in the

original, global frame.

All MTP interactions were computed in CHARMM35 using the MTPL module,11,36 while

7

Page 7 of 29

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



our in-house code used for the many-body dispersion energies24 is freely available online.37

2.3 Voronoi partitioning of the charge density

The Voronoi baseline model relies on a systematic, geometry-dependent estimation of a sys-

tem’s underlying charge density. Reference atomic MTP coefficients are extracted from the

partitioning of said density (see below for details), where monopole, dipole, and quadrupole

contributions are given by

q(i) =

∫

drni(r), (7)

µ(i)
α =

∫

drni(r) rα, (8)

Q
(i)
αβ =

∫

drni(r) rα rβ, (9)

respectively, where ni(r) denotes the partitioned density attributed to atom i, as a function of

spatial coordinate r, and α, β ∈ {x, y, z}. Rather than being derived from quantum-chemical

calculations, ni(r) is constructed as a Gaussian-based atomic density

ni(r) =
1

(2πr2i )
3/2

exp

(

−
|r−Ri|

2

2r2i

)

, (10)

where Ri is the position of nucleus i, and ri is the chemical element’s free-atom radius

which is fixed independent of molecular environment or geometry. For this, we have used

parameters reported elsewhere.38,39 Atomic densities {ni(r)} are partitioned according to a

Voronoi scheme,40 whereby only the closest atom contributes to a given spatial coordinate.

The Euclidean distance provides the distance metric to identify a region Rp associated to

atom p

Rp = {r ∈ R
3 | d(r, rp) ≤ d(r, rj) for all j 6= p}. (11)

Fig. 1 illustrates the Voronoi-based density partitioning between the atoms of water. Each

color corresponds to the atomic density of the corresponding atom. We recently introduced

8
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a similar protocol to effectively estimate atomic polarizabilities which serve as input for

many-body dispersion interactions.24

Figure 1: Cartoon of Voronoi-based density partitioning for a water molecule (rendered with
VMD41). Dashed lines delineate the partition boundaries. The axis system illustrates the
orientation of the water molecule’s global frame for the calculations presented in Sec. 3.1:
aligned in the xy plane with the oxygen atom pointing toward the y axis.

Note that the Voronoi model contains no free parameter—the free-atom radii being ap-

plied without prior fitting. Though the model hardly reproduces any of the reference MTP

coefficients, it provides a qualitative evaluation of the coefficients. In particular, the baseline

model reproduces elementary symmetries of the system that are entirely determined by the

geometry, e.g., a planar molecule cannot generate an orthogonal dipole moment.

While we compute Eqns. 7, 8, and 9 in Cartesian coordinates, we subsequently con-

vert them to their spherical counterparts Qκm, where κ denotes the rank (e.g., κ = 0

for monopoles) and m indexes the (real) component of the MTP (see Stone5 for more

details). Given a molecular structure, we estimate for each atom the baseline property

9
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pVor = {Q00, Q1m, Q2m}, where m runs over the 2κ+ 1 elements of an MTP of order κ.

2.4 Molecular dataset

To refine atomic properties beyond the baseline prediction, we train the transferable ML

algorithm on 3, 167 neutral molecules obtained from the Ligand.Info database,42 totaling 82.1

kilo atoms. Atoms have been segregated between training and prediction pools randomly.

The database provides three-dimensional coordinates of small, organic molecules. We focus

exclusively on a subset of neutral molecules that include elements H, C, N, O, S, F, and Cl.

The atomic coordinates of all molecules are provided in the Supporting Information.

3 Results

3.1 Voronoi-based baseline evaluation

To illustrate the applicability of the Voronoi-based baseline evaluation of MTP coefficients,

we compare its prediction with the reference MTP coefficients obtained from ab initio meth-

ods. Given that MTPs are inherently axis-system dependent (apart from the monopole), we

first describe the global frame used for the water molecule in Fig. 1. Inherent symmetries of

the geometry impose some coefficients to be zero, e.g., there can be no dipole moment along

the x or z directions due to the molecule’s C2v symmetry. While the Voronoi-baseline does

not even qualitatively reproduce the non-zero coefficients—due to the method not entailing

any prior parametrization—its ability to impose the right symmetry is very desirable. The

same kind of behavior is also shown for a carbon atom on benzene, or the carbonyl oxygen

of formic acid in Tab. 1. For comparison, Tab. 1 also shows already the corresponding ML

augmented MTP result. As such, the baseline recovers an important aspect of the underlying

symmetry, which the augmenting ML model no longer needs to account for.
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Table 1: MTP coefficients of oxygen in water (see Fig. 1) and in the carbonyl bond of formic
acid, as well as the MTPs of carbon in benzene. “Vor,” “∆-ML,” and “ref” correspond to the
Voronoi-based property evaluation, the delta-learned prediction across chemical compound
space (see the ∆-ML-85 model below), and the ab initio data, respectively. All coefficients
are expressed in units eÅl, where l is the MTP’s rank. The comparatively low accuracy of
the ∆-ML model for water is rationalized in the main text.

Q00 Q10 Q11c Q11s Q20 Q21c Q21s Q22c Q22s

water oxygen
Vor 0.04 0 0 -0.12 0.43 0 0 -0.21 0.01

∆-ML -0.13 -0.01 -0.02 0 0.16 -0.03 0.04 -0.18 0
Ref -0.39 0 0.01 -0.40 -0.92 0 0 0.45 0

formic acid carbonyl oxygen
Vor 0.01 0 0 0 0.08 0 0 0 0

∆-ML -0.35 -0.30 -0.03 0.03 0.55 0.10 -0.04 -0.10 0.15
Ref -0.45 -0.10 -0.15 0 0.38 0.13 0 -0.32 0

benzene carbon
Vor 0.01 -0.01 0.01 0 -0.01 0 0 0.07 0.01

∆-ML -0.10 -0.04 -0.10 -0.09 -0.73 -0.24 0.19 0.17 -0.05
Ref -0.03 0 0 0 -0.65 0 0 -0.14 0

3.2 ∆-ML MTP model trained and tested across chemical space

In principle, the above-mentioned Coulomb matrix encodes enough chemistry to train all

chemical elements. Memory limitations of the kernel-ridge regression, however, make atom-

type specific models better tractable. We now investigate the ∆-ML model’s capabilities to

predict MTP coefficients across chemical space, one for each of those chemical elements that

are most frequent in small, organic molecules (see above). The ML model has been trained

on various fractions of the considered dataset’s 82 kilo atoms.

Fig. 2 (a) displays error saturation curves for individual chemical elements. These mono-

tonically decaying learning curves are presented as a function of training size of the dataset,

where the predicted mean absolute error (MAE) is calculated across the remaining atoms

not included in the training set. The finding of monotonically decreasing error with training

set size represents numerical evidence for a crucial feature of the supervised-learning work-

ing hypothesis: The accuracy of the ∆-ML model of MTPs improves as more data is being

11
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Figure 2: (a) Mean absolute prediction error (MAE) as a function of training set percentage
of an 82k-atom database obtained from neutral molecules. MAEs are given in eÅl units with
l being the MTP rank. Errors correspond to MTP ∆-ML model predictions for individual
components of atomic monopole, dipole, and quadrupole moments shown in left, mid, and
right-hand side panel, respectively, for all elements present. Scatter correlation plots for
all components of (b) monopoles, (c) dipoles, and (d) quadrupoles, as predicted with the
∆-ML-85 model. Colors correspond to the atom legend in (a). The outliers in the monopole
correlation curve correspond to sulfur-oxide groups (see main text).
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added. Monopole coefficients have the fastest learning rate, quickly reaching MAE between

0.1 e and 0.01 e for all elements. Differences between elements are simply due to their rela-

tive frequency in the data base. More specifically, since hydrogens and carbons predominate

in small organic molecules they provide much larger training sets, and consequently more

accurate ML models when measured in terms of percentage of training data being used. The

scatter correlation plot between predicted and reference monopoles for each element is given

in Fig. 2 (b) for the largest training fraction used: 85% (denoted “∆-ML-85”), the exception

being the hydrogen ∆-ML model trained on only 75% of the dataset given its converged

accuracy. The monopoles modeled by ∆-ML-85 reach high Pearson correlation coefficients:

R2 ≈ 97%, except F and Cl, for which R2 = 17% and 68%, respectively. Such poor per-

formance is explained by the small size training data set available for these elements. The

outliers in the monopole scatter plot (Fig. 2 (b)) correspond to sulfur-oxide groups. Also

here, the few samples of these groups in the training set results in significant prediction

errors.

Predicted dipoles show a MAE across elements between 0.02 eÅ and 0.15 eÅ, depending

on training set size. The heterogeneity of the chemical environments of the elements is

reflected in the ML-model’s performance. The ∆-ML dipole moments of hydrogens are

extremely accurate—most likely due to hydrogens showing weak overall MTP moments and

due to their repeating saturating bonding pattern. By contrast, carbon atoms, albeit being

nearly as frequent as hydrogens in the database, have ML MTP models with significantly

larger MAE. We rationalize the ∆-ML’s relative difficulty to predict this element by the

large chemical variety carbon exhibits, i.e., strongly varying hybridization states and possible

bonding with all other elements. Also note the reversal of the relative offset of the F and

Cl learning curves as one proceeds from monopole to dipole moments, despite the fact that

there are roughly twice as many Cl as F atoms in the data base. This effect is possibly

due to chlorine’s larger polarizability, which implies that the chemical environment of the

atom plays a more important role for the dipole-moment, turning the ML-based modeling
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into a higher-dimensional and thereby more challenging statistical-learning problem. Such

effects, however, can only fully be explained through an in-depth study with significantly

larger data sets. The scatter plot for predicted versus reference dipole moments is shown

for all elements in Fig. 2 (c) for ∆-ML-85. Clearly, the correlation is worse in comparison

to monopoles (R2 ≈ 50%), which is in line with what one would expect for a more complex

vectorial quantity.

Of all MTPs considered, quadrupoles represent the most complex and challenging prop-

erty. Not surprisingly, the resulting ML models yield the largest MAE for our training set:

between 0.02 eÅ2 and 0.30 eÅ2 depending on training set size. The spread of MAEs across

elements is strikingly more pronounced. Nevertheless, we find a larger correlation coefficient

compared to dipoles: R2 ≈ 65%, see Fig. 2 (c) and (d). Note that the Cl/F accuracy reversal

with respect to the monopole model is also manifested for the ∆-ML MTP model of this

rank.

3.3 ML MTP vs ∆-ML MTP model

Table 2: MAE for each chemical element and MTP rank of the ML-85 and ∆-ML-85 trans-
ferable models (neutral molecules), corresponding to an 85% training-set size for all elements
but H (only 75%). The last lines averages over all chemical elements. The second column
denotes the number of molecules for which the MTP moments have been predicted.

MAE [eÅl]
# atoms q µα Qαβ

training (Nt) prediction ML-85 ∆-ML-85 ML-85 ∆-ML-85 ML-85 ∆-ML-85
H 28,822 9,607 0.01 0.01 0.03 0.01 0.04 0.02
C 24,356 4,297 0.01 0.01 0.05 0.05 0.18 0.09
N 4,054 715 0.02 0.02 0.09 0.05 0.26 0.15
O 6,134 1,082 0.02 0.02 0.08 0.04 0.22 0.12
F 363 63 0.03 0.09 0.04 0.05 0.14 0.11
S 1,542 272 0.05 0.05 0.12 0.09 0.31 0.20
Cl 739 130 0.03 0.06 0.11 0.10 0.28 0.26

66,010 16,166 0.02 0.04 0.08 0.06 0.20 0.13

We have compared the relative improvement gained when combining the ML with the
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baseline evaluation from the Voronoi scheme. Tab. 2 compares MAEs decomposed by chem-

ical element for the prediction with 85% training fraction both with (i.e., “∆-ML-85”) and

without (i.e., “ML-85”) prior Voronoi baseline evaluation. The table also specifies the num-

ber of atoms involved in the prediction pool (i.e., outside the training fraction). While the

Voronoi scheme does nothing to improve monopoles (for F and Cl it even worsens the pre-

diction) it is increasingly helpful as we move to dipoles (with negligible change for F and Cl),

and quadrupoles (with small improvement for F and Cl). We stress that the observed trends

for F and Cl should be interpreted with utmost caution since their frequency in the database

is very small (363 and 739). The lack of improvement for monopoles stems directly from

the Voronoi scheme’s strategy: Merely encoding symmetries, only higher MTP moments can

benefit from the absence of a number of components that are forbidden by the underlying

geometry. For fixed training size, the MAE is roughly halved for quadrupoles when using

the delta learning procedure, compared to the standard ML methodology.

All results discussed so far refer to ML models of atomic MTPs in neutral molecules. For

positively and negatively charged compounds we have found ML models to yield very similar

trends and accuracy (see Fig. S1 and S2 of the Supporting Information). The individual

comparisons between ML or ∆-ML MTPs with QM MTPs are provided in the Supporting

Information for all molecules that were not part of the training set.

4 Validation

To assess the introduced MTP model’s applicability we have used predicted electrostatic

coefficients to evaluate intermolecular interaction energies in molecular dimers and organic

crystals. To do this, we accounted only for static MTP electrostatics and many-body dis-

persion (MBD) interactions,

Einter ≈ EMTP + EMBD, (12)
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neglecting induction, penetration, and repulsion terms. A short description of the MBD

formalism is provided in the next paragraph. As discussed above, our MTP and MBD-

models also represent approximations in the form of the ∆-ML model and dipole-dipole-

manybody expansion, respectively. To better gauge the effect of the introduced ML MTP

model, we also compare to intermolecular energy predictions using quantum-mechanically

(QM) derived MTPs.

Common approximations in the exchange-correlation potential used in density functional

theory lead to inadequate predictions of dispersion interactions. This has motivated the

development of a number of dispersion-corrected methods. We hereby rely on the method

developed by Tkatchenko and coworkers,43 in which free-atom polarizabilities are first scaled

according to their close environment following a partitioning of the electron density. The

many-body dispersion up to infinite order (in the dipole approximation) is then obtained by

diagonalizing the Hamiltonian of a system of coupled quantum harmonic oscillators, thereby

coupling the scaled atomic polarizabilities at long range. The importance of many-body

effects and accuracy of the method has been demonstrated on a large variety of systems.43

Later, a classical approximation relaxed the requirement for an electron density, using instead

a physics-based approach to estimate how atomic polarizabilities needed to be scaled based

on a Voronoi partitioning.24

4.1 Molecular dimers

To gauge the accuracy of the electrostatics alone, we compare the electrostatic componenent

of reference symmetry adapted perturbation theory (SAPT) results44,45 to the corresponding

intermolecular components derived either from QM MTPs or from the ∆-ML MTP model.

Fig. 3 displays the correlation plot between the two model MTP electrostatics calculations

and SAPT for the S22 dimers46 at different intermolecular distances.44,45,47 The plot con-

firms that both MTP models generally underestimate the electrostatic SAPT component of

the interaction energies, presumably due to a lack of penetration effects. A recent study,
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which observed a similar deviation, was able to correct it by introducing a model for charge

penetration.48 We expect their method to be applicable to the present MTPs.
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P
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Figure 3: Scatter plot between reference energy components from SAPT and computed
electrostatics from either quantum-mechanical coefficients, EQM

MTP, or the universal ∆-ML-85
MTP model, EML

MTP, for intermolecular dimers in the S22x5 dataset.47 Dimers closer than the
equilibrium distance (i.e., factor 0.9) were systematically excluded. Symbols correspond to
different distance factors that multiply the equilibrium distance: 0.9 (plus sign), 1.0 (cross),
1.2 (star), 1.5 (open square), and 2.0 (filled square). The straight line corresponds to ideal
correlation.

Not all errors are distributed uniformly across compounds. Fig. 4 compares the MTP

energy contributions EQM
MTP and EML

MTP, as well as reference SAPT data for each molecular

dimer of the S22 dataset (i.e., at their equilibrium distance). We find good correlations

between the QM and ML MTP models: correlation R2 = 78% and MAE of 2.65 kcal/mol.

Both QM and ML MTP models correlate virtually identically to the SAPT results: corre-

lation R2 = 87% and 91% and MAE of 5.46 and 5.88 kcal/mol, respectively. We note a

number of qualitative discrepancies between QM and ML MTP models: In particular, the

ML model fails to reproduce the attractive nature of the electrostatic interaction for the
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water and ammonia dimers. Presumably, the model fails to predict their coefficients due to

the molecules’ unique chemical composition: the ML model relies on interpolations across

the trained molecules, of which some must be chemically similar to the new compound.

Larger molecules are less problematic because similarities between chemical fragments oc-

cur far more frequently. We do find systematic deviations between the MTP energies and

the SAPT reference electrostatic data for strongly hydrogen-bonding compounds, for which

penetration effects5,48 become significant.
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Figure 4: Intermolecular static electrostatic energy contribution for each dimer of the S22
dataset, for coefficients parametrized from quantum-mechanical calculations, EQM

MTP, and
the transferable ML model ∆-ML-85, EML

MTP. Electrostatic energies from reference SAPT
calculations are also provided.45

We have calculated molecular dimer energies corresponding to various datasets for which

high-level quantum-chemistry numbers have previously been published. We have considered

the following databases: S22,46 S22x5,47 S66 and S66x8,49 SCAI,50 and X40 and X40x10.51
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All MTP coefficients have been predicted using the ∆-ML-85 model (see Fig. 2 and Tab. 2).

We only considered dimers made up of the chemical elements H, C, O, N, S, F, and Cl,

keeping 992 out of over 1,300 intermolecular dimers.
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Figure 5: Correlation plot between reference intermolecular energies, Eref , and energies
predicted from the classical many-body dispersion method with static electrostatics, the
latter parametrized from the ∆-ML-85 model, EML

MTP + EMBD. The inset corresponds to
the two charged-charged side-chain interactions of the SCAI database. The present lack of
repulsion, induction, and penetration effects is at cause for the outliers.

Fig. 5 contrasts the scatter correlation between reference intermolecular energies, Eref ,

and the sum of many-body dispersion and ML-predicted MTP electrostatics, EML
MTP+EMBD.

The mean-absolute error of all intermolecular estimates using the MTPs from individual

quantum-chemistry calculations24 and the ML predictions amount to 2.36 and 2.19 kcal/mol,

respectively. In other words, the ML MTP prediction is on par with MTPs derived from

explicit electron densities generated by computationally demanding quantum-chemistry cal-

culations. Interactions between charged-charged amino acids of the SCAI database are rea-

sonably well reproduced (see insets of Fig. 5), pointing to the robustness of the method not
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only for neutral compounds, but also charged species. The most challenging compounds in

the X40 database are mostly composed of dimers that include a water or a diatomic molecule

(e.g., HF, HCl). As argued above, the smallest molecules are challenging due to the absence

of such small compounds in the database, which affects the quality of the interpolation. For

a more detailed account of the performance of ML MTPs, we provide decompositions of

the electrostatic and dispersion energies for ML and QM MTPs, as compared to reference

energies (see Figs. S3 to S26 in the Supporting Information).

4.2 Benzene crystal
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Figure 6: Cohesive binding energy of the benzene crystal as a function of the ratio of
densities, ρ/ρexp. Both models for intermolecular energies are presented: EQM

MTP + EMBD

and EML
MTP + EMBD. The experimental value is shown explicitly (black dot), including error

bar.52

Increasingly accurate and fast methods provide the means for crystal structure prediction

of organic compounds,53 to the point of ranking polymorphs of molecular crystals.54,55 Mov-

ing toward a condensed-phase system, we have also evaluated the cohesive binding energy

predictions of a molecular benzene crystal. Following previous work,56,57 we have computed

the binding energy for different ratios of the unit-cell density with respect to the experimen-
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tal density,52 ρ/ρexp. Isotropic density scalings were performed without further optimization,

and the binding energy included interactions with the neighboring unit cells, as discussed

in our previous publication.24 Fig. 6 features the MTP and MBD based intermolecular esti-

mates of cohesive energy as a function of density. Again, we compare the resulting numbers

once using the ∆-ML-predicted MTP electrostatics, combined with MBD, and once using

the QM MTP model combined with MBD. We find very good agreement between the two

methods, validating here as well the ML model. Coincidentally, the two methods yield cohe-

sive binding energies in good agreement with the experimental value. The lack of repulsive

interactions prohibits a further increase in energy as ρ gets larger.24

5 Conclusion

We have introduced machine-learning models for electrostatic multipoles (MTPs) of H, C, O,

N, S, F, and Cl atom types. The models have been trained on atomic multipole coefficients

of small organic molecules evaluated using first principles calculations. Neutral, cationic,

and anionic molecular states were treated with separate models. The model yields highly

accurate MTPs for H, reasonable performance for C, N, O, and significant errors for S, F

and Cl due to their sparsity in the training set.

Focusing on the intermolecular S22 dimer dataset, MTP energies show good correlation

between the coefficients parametrized from ML and individual quantum-chemistry calcula-

tions. A comparison with reference electrostatic interactions from symmetry-adapted per-

turbation theory (SAPT) is satisfactory for large intermolecular separations, and impaired

by the lack of penetration effects at short distances.

Furthermore, MTPs from the ML model have been combined with a classical many-body

dispersion potential to estimate intermolecular energies of nearly 1,000 molecular dimers as

well as the cohesive energy of the benzene crystal. The results show that the ML model

retains overall a similar accuracy compared to calculations with the MTPs parametrized
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from individual quantum-chemical calculations.

The ∆-ML approach, which augments a physics-based baseline model by a ML model,

has proven to be useful to more efficiently train vector and tensor quantities. Incorporation

of molecular symmetries via the Voronoi partitioning of the charge density, included in the

baseline model, is at the heart of this improvement.

The proposed models alleviate the need for quantum-chemistry calculations for every

single molecule/molecular conformation in a perturbative evaluation of intermolecular in-

teractions, bringing us one step forward toward the task of automated parametrizations of

accurate state-independent and transferable force fields.
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